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ABSTRACT

The purpose of this paper is to provide a new way of approach and get a result
on the rank bound problem.

We construct cohomology classes from quadratic twisted elliptic curves very
similar to Kolyvagin’s cohomology classes. We verify that these cohomology classes
satisfy a formula for computation as was obtained by Kolyvagin.

This has an immediate consequence of E(py(Q) C Ep)(R)° if £ and D satisfy
some conditions which will be described.

The formulas from the construction, combined with mod 2 algebra, gives us a
bound of rank E(Q) < 2n if Q(v/A) is a PID where n is the number of prime
divisors of 2Noo. Here A = A(FE) is the discriminant and N is the conductor of

E. This result extends our knowledge on the rank bound.
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1. INTRODUCTION

Let E be an elliptic curve defined by a Weierstrass equation
y* = 2° + Az + B with A, B € Q. (1)

The points of F(Q) have a natural, geometrically-defined group structure, with
the point at infinity O as its identity element. By the Mordell-Weil theorem,

EQ)~FxZ

where F'is a torsion subgroup of F(Q). Here r is a non-negative integer, called the
rank of F over Q.

Let E(py be an elliptic curve defined by a Weierstrass equation
Dy =2+ Az + B with A, Be€ Q

which we call the D-twisted elliptic curve of E given in (1). So E and Ep) are
isomorphic over K = Q(v/D).

We are interested in understanding the structure of £(Q) and finding points of
B(Q).

For the torsion part, the structure of the group over Q is fairly well known. On
the other hand, to find the rank remains as the one of the most challenging problem
of mathematics.

There is a conjecture which says that there can be an “effective” algorithm to

compute the rank r.

Conjecture (Birch-Swinnerton-Dyer Conjecture). Let E be a modular elliptic
curve over Q. If r is the rank of E over Q, then the function L(E,s) has a zero of

exacl order r al s = 1.

Every elliptic curve over Q is modular. In the above statement “modular” means
Weil parametrization and important properties of elliptic curves which follow from
it.

We call k = ord,—1L(F, s) the analytic rank of E. So the Birch-Swinnerton-
Dyer Conjecture claims that the rank of an elliptic curve is the same as its analytic

rank.



The full version of this conjecture relates important arithmetical quantities of
E (the order of Shafarevich-Tate group III, elliptic regulator, Tamagawa factor,
etc.) to the first non-zero coefficient of the L-function of E.

There is a partial result on this conjecture.

Theorem 1.1. [Kolyvagin, 1988] Let E be a modular curve. Let r be the rank of
E over Q. If ords—1 L(E,s) = k < 1, then k = r and 11 is finite. (And up to some
simple factors, the order of I divides the order of the conjectural T involved in

Birch-Swinnerton-Dyer Conjecture. )

Before Kolyvagin’s work, the Birch-Swinnerton-Dyer Conjecture(BSD Conjec-
ture) for £ < 1 was known for CM elliptic curves from the results of Coates-Wiles,
Gross-Zagier and Rubin. (For the reference, see [IR] Chapter 20.)

Although we expect that there are elliptic curves over Q with arbitrarily high
ranks it is still unknown showing the difference of our situation from the Dirichlet
Unit Theorem if we consider the analogy of the Mordell-Weil group with the unit
group of an order of any algebraic number field. ( [BSh] Chapter 2, §4.3.)

Conjecture (Mai and R. Murty). Let N be the conductor of E. Then we have

log N
rank F(Q) = O((@)lﬂ).

For the idea of this conjecture, see the appendix of [Ra).

Theorem 1.2 (Mestre). Let E be an elliptic curve over Q of conductor N. The

log N
analytic rank of E is bounded by O(L

0wl N) under Generalized Riemann Hy-
og log
pothesis.

For the prool of this, see [Me], TT1-2.

In this paper, we will prove that the rank of an elliptic curve is bounded by the

estimation of Mestre in the following case:

Theorem 1.3. Let F(Q); = O and Q(v/A) is a PID. Then rank E(Q) < 2n where
A is the discriminant of E and n is the number of prime divisors of 2Noc. Here
N s the conductor of E.

In particular, Theorem 1.3 implies that if A = —16(44°% + 27B?) is a square of

a rational number, then we have the desired rank bound: rank E(Q) < 2n.
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If A <0, then we know that there are only finitely many fields Q(v/A) which is
a PID. This is so called Gauss’s class number 1 problem, which was solved (with a
gap) by Heegner in 1952. On the other hand, Gauss had already noticed that many
real quadratic number fields are PID’s. Considering such fields which have prime
discriminant, computations show that about 80% of them are PID’s. ([IR], p.361.)

Let v(z) denote the number of prime divisors of = for x € Z. A theorem of
log N

Ramanujan says that v(N) < O(gi

loglog N

Mestre’s result if we assume BSD conjecture. Moreover, we do not assume the

). Therefore, our result would imply

Generalized Riemann Hypothesis.

Theorem 1.3 was previously known for the case F(Q)s = Z/2Z + Z/2Z. A very
similar result for E(Q)s = Z/27Z can be found in Coates paper based on Tate’s
unpublished lecture note. (See the appendix of [Co].) But when E(Q), = O, the
above theorem was unknown.

There were also previous results on this kind of problem involving the ideal class
number. Our improvement here is to remove the factor related to the ideal class
number from the following bounds of Brumer-Kramer and Honda. It is significant
because to compute the ideal class number of a number field is more old problem
and as hard as to compute the rank of an elliptic curve. And we know that the

ideal class number can be arbitrarily big.

Theorem 1.4 (Brumer and Kramer). Suppose that E has no rational point of order
two. Then
rank E(Q) + [L] < g +u + e+ Z(np —1)
pG(I)a

where
®, set of rational primes at which E has additive reduction,

KA
3

set of rational primes at which E has mult. reduction with ord A even,
(@],
cubic subfield of two-division field of F,

dimension of ideal class group of F' modulo squares,

QQ@Q

1 or 2 according to the sign of A,

n, number of primes lying over p in F.

The Theorem 1.4 is the Proposition 7.1 in [BK].



Theorem 1.5 (Honda). rank F(Q) < 2(s+2[L : Q]+ hr(2)), where s is the number
of prime divisors of N and hy(2) is the 2-rank of the absolute ideal class group of
L, where L = Q(E,).

The Theorem 1.5 follows from Theorem 5 in [Hon].

The main idea in the prool of Theorem 1.3 is to apply the local-global duality
theorem (a reformulation of the reciprocity law) with the explicitly constructed co-
homology classes. It is similar to Kolyvagin’s idea when he proved Theorem 1.1. In
Kolyvagin’s case explicit cohomology classes are constructed from Heegner points,
whereas in our prool they are constructed from the points of quadratic twisted
elliptic curves.

Here “explicit” means that we can describe its construction and control the be-
havior of such cohomology classes in localizations, and consequently we can obtain
an explicit interpretation of the reciprocity law.

In this paper, we apply a variation of Kolyvagin’s theory into families of qua-
dratic twists by considering the curve over varying quadratic extensions instead of
extending base fields by ring class fields with growing conductor in his case. It is
reasonable to expect that if Kolyvagin was able to bound the size of Selmer group
using the theory of Euler Systems and study IIT from it, then a similar method can

be used to put restrictions on the Mordell-Weil group itself.

The construction of cohomology classes from quadratic twisted elliptic curves
will be described in §3.

It will be verified in Proposition 4.2 that Kolyvagin’s fundamental formula in-
terpreting the reciprocity law (which is the formula computing the value of Tate

pairing) works in our case as well.

The main results of this paper are contained in §5, §6 and §7.

For any elliptic curve A, let A(R)® denote the connected component of the iden-
tity in A(R), in other words, A(R)? = 2A(R) under the addition operation of an
elliptic curve. Let E denote a given elliptic curve. Assume that the discriminant
A(FE) > 0 and E(Q)s # Z/27Z + Z/27Z. We will obtain a sufficient condition on D
so that E(py(Q) C Epy(R)® in §5. And we will find enough numerical data for this
in §6.

In §7, we will find the rank bound depending on the number of prime divisors

of conductor as stated in Theorem 1.3. The first prool of this (which is slightly
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different) uses Gupta and Murty’s result on the elliptic curve analogue of Artin’s
primitive root conjecture[GM]. Later, Prof. Ram Murty pointed out that what is
needed here is weaker than their result, and suggested ways of avoiding their result
so that we can remove the assumption of Generalized Riemann Hypothesis or other

restrictions of their result. Consequently, it worked out as he suggested.

We introduce some common notations. If M is a field, then M is an algebraic
closure of M. If L/M is a Galois extension, then Gal(L/M) denotes the Galois group
of L over M. We shall use the abbreviations H'(M, A) = H'(Gal(M/M), A), where
A is a Gal(M/M)-module, and H'(M, E) = H*(M, E(M)) for an elliptic curve E.
If O is a commutative ring with identity, then O* denotes the group of invertible
elements of O. For x € Z, the number v(x) denotes the number of prime divisors
of . The field Q is assumed to be embedded in the field of complex numbers C.
a|b denotes that b is divisible by a. For @ € F(p)(Q), red(Q) at the corresponding
place will denote the reduction of the image of @ in E(K) under some inclusion of
Ep)(Q) into E(K) where K = Q(v/D).



2. GALOIS COHOMOLOGY AND DUALITIES

In this section, how the local and global dualities of class field theory are used to
study elliptic curves is explained. In Kolyvagin’s papers [Kol], [Ko2] and [Ko3], this
gives a mechanism for bounding the Selmer group and it has the applications to the
study of the ideal class group, Iwasawa’s main conjecture, Mordell-Weil group of an
elliptic curve, TIT (the Safarevich-Tate group), Birch-Swinnerton-Dyer conjecture,
and a study of the p-adic main conjecture for elliptic curves. The reader can find
the material of this section from [Ru] and [La2].

Let’s recall the cohomology theory of elliptic curves over Q.

Let F be any field and let M be a positive integer such that (M, char F) =1 if
char F > 0. For a given elliptic curve E, Ey = E(F)y = Z/MZ + Z./MZ denotes
the G(F/F)-module of M-torsion points of E over F. And uy, denotes the set of
M-th roots of unity of the field.

Let G = Gal(Q/Q). E(Q) has a G-module structure.

A cocycle ¢ : G — E(Q) is given by a continuous homomorphism satisfying

©(9192) = q10(g2) + o(g1) for all g1, g2 € G.

Here a cocycle is continuous means that it may be factored through a finite quotient

of G, that is, there exists a finite Galois extension F' of QQ such that ¢ is trivial on

Qal(Q/F).

And a coboundary % is given by a cocycle satisfying a further condition that

Y(g) = gP — P with P € E(Q) for all g € G.

It is casy to check that ¥(g192) = g:9(g2) + ¥(g1).

A cocycle ¢ : G(Q/Q) — E(Q) has the property that there exists a cocycle
¢+ Gal(L/Q) — E(L) where L is a finite Galois extension of Q in @ such that ¢
is induced by ¢(g) = ¢'(g restricted to L) for all ¢ € G. So ¢ is determined by the

following diagram

G(Q/Q) —— Gal(L/Q)

|+
E(L)
where j is a natural surjection.



In other words we can counsider the direct limit over L

lig H'(Gal(L/Q), E(L))

where L runs through finite Galois extensions ol Q.

In this way, we get H'(Gal(Q/Q), E(Q)) abbreviated to H*(Q, E).

The set ol equivalence classes of main homogeneous spaces has a group structure
isomorphic to H*(Q, E).

Next, we have a natural localization map (via restriction):

loc, = H'(Gal(@/Q), E(@) — H'(Cal(@,/Qy), E(@,)).

Consider G’ = {o | ¢ : Q — Q an automorphism such that ¢ is continuous}.
Then G’ is a subgroup of Gal(Q/Q) and we have G'= Gal(Q,/Q,), which is ob-
tained from direct limit of finite Galois extensions of @Q,. (It is the same thing
as to fix a system of extended valuations of v,, which is a valuation of Q to all
finite Galois extensions in a compatible way. So our choice of automorphism is not
unique, since extension of v, to Q is not unique. In fact, G = Gal(Q/Q) acts on
the set of equivalence classes of valuations, thus loc, doesn’t depend on the choice

of valuations.)

There is an important short exact sequence involving H'(FE, Q) (recall that it
classifies the main homogeneous spaces), which we shall call as our fundamental

3

exacl sequence
O — E(Q)/ME(Q) — H'(Q,Ey) — H(Q,E)y — O. (2)

There is a duality pairing which associates an M-th root of unity [e;, es] s with
two elements e; and ey of Eyy, called the Weil pairing. (See [Shi] pp.100-101 for
definition and details.)

Suppose that M is relatively prime to the characteristic of the field F. Then the
Weil pairing [, |y : Eam X Ey — pa has the following properties :

(a) bilinear : [e1 + eq, €]pr = le1, €]urles, €]u

le,er + ea)n = e, er]mle, e
(b) alternating : [e, e]as = 1, so in particular [e1, €]y = [ea, €1]3; ;
(c) nondegenerate : If [e1, es]ps = 1 for all e; € Eyy, then eg = 1;
(d) Galois invariant : For all ¢ € Gal(F/F), [e1, e2]” = [e7, €5].
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Remark. At level 2, the Weil pairing takes a very simple form:
1 ife;=0o0re; =0 ore =e,.

[e1, €2]o = ]
—1 otherwise.

It can be checked easily by using properties of Weil pairing (a)—(c).

The Weil pairing induces a bilinear pairing (via cup-product), called the Tate

pairing. Let’s begin with the local Tate pairing.

Let g be a place of Q. We have a sequence of maps

a b
HY(Qy, Er) x H'(Qq, Ent) 2% H2(Qg, By ® Ent) 2

b c
O H2(Qy ) S mmz (3)

where (a) is the cup-product map, (b) is the map induced by the Weil pairing, and

(c) is the canonical isomorphism obtained by a composition of isomorphisms
% inv 1
H(Qqy pae) = HX(Qq Q)ur ™ 572/ 75 Z/ML. (4)

Here Hz(Qq,@Z)M = Br(Q,) s by definition of the Brauer group and inv is the
mapping defined in local class field theory. (For the definition and properties of the
Brauer group, see [CF] Chapter VI, §1.)

Further, we have the localization of our fundamental exact sequence (2).
O_>E<Qq)/ME<Qq)_>H1(QQ>EM)_>H1(@Q>E)M_>O- (2)12

By this exact sequence (2), for the first component of the pairing, and by the
fact that F(Q,)/MFE(Q,) is an isotropic subgroup of H'(Q,, Fy) relative to the
pairing H'(Qy, Eax) x HY(Qy, Ernr) — Z/MZ given by (3) for the second component

(Pontryagin duality), we get an induced nondegenerate pairing
(Do 1 B(Qq)/ME(Qy) x HY(Qy, E)y — Z/MZ
which is called the (local) Tate pairing (at ¢).
The local Tate pairing
HYQq, En) X H(Qq, Erg) = H*(Qq, i) C Q/Z

is a perfect pairing. Hence the cohomology class ¢, may be identified with the
functional “cupping with ¢,”, ¢, : H'(Qy, Eaxr) = H*(Qy, tar)-

8



Next, Global Class Field Theory tells us that if we compose the global (cup-
product) pairing
H'(Q, Ey) x HY(Q, Ey) = H*(Q, piur)
with the homomorphism H?*(Q, uy) — Q/Z which is given by summing local in-

variants, we get a bilinear pairing

HY(Q,Ey) x H(Q,Ey) — Q/Z

which has the virtue of vanishing identically. This follows from global class field
theory that for an element of the Brauer group the sum of the local invariants at

all primes is zero. (For reference see [CF] Chapter VII, Theorem B of §10.)

Finally, we have the global-to-local restriction mappings

HI(QJ EM) — H Hl(@q; EM)
q
(denoting by [], ¢, the image of the global cohomology class ¢), which connects the

local and global class field theories.

Theorem 2.1 (Orthogonality Relation for Elliptic Curves).

For P € E(Q)/ME(Q) and C € H'(Q, E)y, the sum of the local Tate pairing
(Pys Cq)q pr over all prime divisors of Q (including o) equals zero where Py and
C, are the localizations of P and C respectively.

The relation Zq (P, C, >q7M = 0, which is a reformulation of the reciprocity law,

is called the orthogonality relation.

For Theorem 2.1 over general number [ields, see [Wa] p.267.



3. CONSTRUCTION OF COHOMOLOGY CLASSES FROM TWISTS

To construct explicit main homogeneous spaces it is essential to find points of
trivial norm in our method. The construction idea of this section comes from
Kolyvagin. As mentioned in Introduction, we will construct them using rational
points on quadratic twists.

Let L/K be a Galois extension with its Galois group G isomorphic to a cyclic
group of order M generated by (.

G =Gal(L/K)3Z/MZ ={t, j=0,---,M—1}.

G acts on E(L).
When P is a point of trivial norm, then we can construct cocycles of H*(G, E(L))
namely, define ¢ : G — E(L) by the conditions

3

e(t°) =0and p(t’) = (1+---+t/ P, 1<j< M-1.

We can show that ¢ defined in this way are cocycles by checking: ¢(g192) =
919(g2) + (g1).

Proposition 3.1. Every element of H'(G(L/K),E(L)) is obtained in the way

described above.

Proof. A cocycle is a continuous homomorphism satisfying
©(9192) = 10(92) + 0(91)-
Since the Galois group G(L/K) is a cyclic group of order M generated by ¢, the
cocycle ¢ is determined by its values at #* (0 <1< M —1), p(t) = tp(t 1) + o(t).
S0 (1) = ¢(1-1) = (1) + ¢(1) = »(1) =0,
p(t) = (t-1) =tp(l) + ¢(t) = ¢(1) = 0,
p(1?) = p(t- 1) =to(t) + (t) = (t + L)o(t),
and so on.
Let’s use induction on 7.
o) =t 2+ + D) +t) = (1 + 24+ + 1+ 1)p(t).
So cvery cocycle should be of the given form.
Moreover Norm(p(t)) = (M) = ¢(1) = 0. So @(t) should be some point of

trivial norm. On the other hand, the mapping ¢ defined as above is a well-defined

10



cocycle. Thus the cohomology classes are well-defined in this form if and only if

©(t) is a point of trivial norm. O

Now we will discuss on the points of trivial norm coming from quadratic twists
and construct corresponding cohomology classes.

Let E be an elliptic curve given by a Weierstrass equation y? = z° + Az + B
and E(p) its quadratic twist given by Dy? = 2® + Az + B where D is a square-
free integer. Let’s denote by N the conductor of E. We can construct explicit
homogeneous spaces from Fpy(Q) whose rational points will be studied through

the orthogonality relation with rational points of E.

Let K = Q(v/D). Then FE(py and I are isomorphic over K under an isomorphism
v: (z,y) — (z,VDy). The elements Q of Epy(Q) corresponds to points @ in
E(K) which have the property that Q" + 0 Q" = O, where o is the conjugation
automorphism which maps /D to %/D and G(K/Q) = {1,c}.

Considering the quadratic extension K/Q, we have

L (B)(@) = {Q € B(K)| Normgg Q = 0},

that is, the group of points on F(p)(Q) is isomorphic to a subgroup of points on
E(K) with trivial norm from K to Q.
By including H*(G(K/Q), E(K)) into H'(Q, E)2 we get a map

1 (Ep)(Q)) = H(Q, E);

which maps @ € Ep)(Q) to ¢(Q) € H'(Q, E)2, where ¢(Q) corresponds to a cocycle
¢ determined by ¢ (1) =0 and ¢ (0) = Q"

So the cohomology class is defined by :

Ep)(Q) — E(K) — HY(Q,E),
Q@ = @ = ¢

From now on we will identify £py(Q) with its isomorphic image in £(K) without
any notice. In particular, ¢ is determined by ¢ (1) = 0 and ¢ (¢) = Q. By red,(Q")
or red4(Q) we denote the reduction of the image of @ € Epy(Q) at v (¢ = v*) in

the corresponding group, otherwise it doesn’t make sense.

Proposition 3.2. Every element of H'(G(K/Q), E(K)) is obtained in the way

described above.

11



Proof. Since the Galois group G(K/Q) is a cyclic group of order 2 generated by o,
the cocycle ¢ is determined by its values at 1 and ¢. And then the result follows

considering Proposition 3.1 O

Let X be the completion of K at a prime divisor v € K which divides q.

Consider those primes ¢ { 2Noc and ¢| D, therefore ¢ totally ramifies in K. So
G(X/Q,) = G(K/Q) ={1,0}. And we identify them. In general, the Galois group
of corresponding local field extension is a subgroup of the Galois group of global

field extension. But if the extension is totally ramified at ¢, they are isomorphic.

Recall that we have a localization map (§2)
locy + H'(Gal(K/Q), E(K)) — H'(Gal(X/Q,), E(X)).

And we have an embedding H'(Gal(X/Q,), E(X)) < H (Q,, E)..
Thus we get a localization of the cohomology class ¢ : Eypy(Q) — H'(Q, E); as

¢q: Bpy(Q) = H'(Qy, E)2

in the way described above.

For Q € Epy(Q), ¢,(Q) € HY(G(X/Q,), E(X)) € H'(Q, E)2 corresponds to
the cocycle ¢ : 0 — Q. Hence ¢,(Q) denotes loc,(¢).

There exists a class b of the cocycle ¢ in H'(Q,, E»), which is mapped into
¢,(Q) in HY(G(X/Q), E(X)) corresponding to the cocycle ¢ : 0 — Q in H(Q, E)
through our fundamental exact sequence. We will explicitly compute ¥ and use it

to compute the Tate pairing in the next section.

We can define the Tate pairing of level 2 in exactly the same way as was defined

in the previous section for general level M. Then we get a nondegenerate pairing

{ >q,2 1 B(Qg)/2B(Q,) x Hl(@an)2 — Z/2Z

which is the (local) Tate pairing at q.

Then for P € E(Q)/2E(Q) and C € H'Y(Q, E), the sum of the local Tate
pairing (£, Cy)q 4
the localizations of P and C respectively, that is, > (Fy,Cy), , =0, which is the
orthogonality relation for quadratic extensions.

The point is that we have a map ¢ : E(p)(Q) = H'(Q, E)2 and its localizations
g Bpy(Q) = HY(Qy, E), at each ¢, so that the orthogonality relation informs us
some relations between E(Q) and Ep)(Q).

over all prime divisors of Q equals zero where P, and C, are

12



4. COMPUTATION OF TATE PAIRING

In this section we compute the local Tate pairing at each prime. The computation
of it is based on the local class field theory. The explanations and proofs of this
section come from those in [Kol]. The more general prools can be found there.
We will check here that Kolyvagin’s formulas with Heegner points also works with
points of quadratic twisted elliptic curves. I provide this section for the convenience
of the reader.

We assume that (D,2Noo) = 1.

Let ¢ be a prime of Q such that ¢ = v? in K = Q(v/D), ¢t 2Noo. Since X/Q
is totally ramified, the residue field of X is the same as that of @@, in other words,
Z/qZ = Ok [vOxg = Ly/qZ,; = Ox/vOx. (The residue class fields doesn’t change
under completion.) We identify G(X/Q,) with G(K/Q) = {1,0}.

Let 0 : Q; — G(K/Q) be the local reciprocity map. ([CF] Chapter VI.)

Let € be a primitive root (i.e. a generator) of (Z/qZ)*, where (Z/qZ)* is a reduced
residue system mod ¢ and it is a cyclic group of order ¢ —1 under multiplication.
Thus 6(¢) = o and ¢ = —1(& is a quadratic non-residue in particular).

Let n be the uniformizing parameter of Q, which is a norm from X. Then 6(n) is
trivial on X and its restriction on Q)" is the Frobenius element Fr, of Gal(Q;"/Q,)
by local class field theory .

Then Qg /Qg? = n?/?2¢272 if q # 2, where Q. is the subgroup of squares of
the multiplicative group Q, of the field of ¢g-adic numbers. ([BSh] Chapter 1, §6.1.)
In fact, Q; = n% x (Z/qZ)* x (1 + qZ,). Soif 21 q, then Q. /Q;? = n?/?*% x (2122,

Let & be a local field with residue field F}. Let’s look at the operation of
reduction at non-archimedean places which we denote by a tilde.

Having chosen a minimal Weierstrass equation for F, we can reduce its coeffi-
cients to obtain a (possibly singular) curve E over Fj.

This gives a reduction map
red : B(F) = E(F).

E is said to have a good reduction if F is non-singular. Otherwise it is said to
have a bad reduction. The prime divisors of the conductor N of an elliptic curve is

the set ol primes at which the curve has a bad reduction.
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Let p be an odd finite prime which doesn’t divide the conductor N. Then the
elliptic curve has a good reduction at p.

Moreover if (MN,p) = 1 then the group F(Z/pZ) is M-divisible, that is, for
P € E(Z/pZ) there exists Q € E(Z/pZ) such that MQ = P € E(Z/pZ).

It is a standard property of a good reduction that

red : E(@p)M 1) E(W)M

is an isomorphism.
We will often use F instead of E to denote the reduction of E if the situation is

clear, especially when we denote F); because it is isomorphic to Ey (not reduced).

For a finite extension F of Q, (where (M N,p) = 1) with residue field Fy, the
reduction map is surjective and the multiplication by M is an isomorphism onto
its kernel F1(F). In other words, we have an exact sequence ([Sil] Chapter VII, §2)

O — E\(F) 2 E(F) =% E(F) — O.

Suppose F = Z/pZ is a finite field of characteristic p with p > 0, F is an algebraic

closure of F, and let [ = p". If F is an elliptic curve given by a Weierstrass equation,

we define Fr; on E(F) to be the morphism given by
Fr; : (z,9)— (2, 9).

Then Fr; is an endomorphism of F, called the Frobenius endomorphism. The set
of points fixed by Fr, is exactly the finite group E(F). (See [Sil] p.74.)

Let P be a point of E(Q) and P, be its image in £(Q,)/2E(Q,). Let R € E(Q)
such that 2R = P and R € E(Z/qZ) where 2R = red(P). Notice that R is

determined only up to 2-torsion points.

Definition 1. Let ¢|D. Then Q,(R) is an unramified extension of Q,. We denote
by e,(P) an element of Ey obtained by the condition
red(e,(P)) = Fry(R) — R (mod (Fr, — 1)Ej).

Since 2 (Fry(R) — R) = Fr,(2R) —2R = P — P = O, so Fr,(R) — R € E(Z/qZ),.

Once we choose R, e,(P) is well-defined in terms of R, due to the property of
good reduction that red : By — E(F), is an isomorphism.

But if the 2-torsion points are not defined in the ground field Q then e (P) is
not uniquely determined, since R is determined up to 2-torsion points and for any

2-torsion point { ¢ E(Q,)a, Fr,(t) =1 # O. (Fr,(t) — L =0 & L € E(Qy)2.)
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Definition 2. Let € Ep)(Q) and ¢|D(so ¢ 1 2Noo). Then Normg g, (@) =
Normgg(Q") = O, since the Galois groups of the corresponding extensions coin-
cide. We denote by e (Q) an element of £(Q,)2 obtained by the condition

red(e;(Q)) = red (Q").

Remark. Since X/Q, is a totally ramified extension and Normg g, (@) = O, we
have that 2red(Q*) = O.

Proposition 4.1. Let ¢ 1 2DNoo, then (P, c,(Q)) 0.

q,2
Proof. ¢,(Q) € HY(Qg, E)y,, and HY(Qy, E),, = 0 due to the property of good
reduction.(See [Kol] p.536.) O

Let’s denote the cocycle corresponding to P by ¢4, and the cocycle corresponding

to @ by ¢s.
Then the cocycle ¢; U ¢ is defined by a bilinear mapping B below:

HYQ,, B) x HY(Qy, By) % HAQy, B ® Ey) 15 H2(Q,, o) = 2,22

(¢1, ¢2) — B — B
Then ¢; U ¢, is determined by the conditions B(g1, g2) = ¢1(g1) & ¢2(g2) or

by B(g1,92) = [1(g1), P2(g2)]2 after Weil pairing for g, g2 € Gal(@q/Qq). B is
mapped to an element of Z/2Z under the canonical isomorphism given by (¢) of

exact sequence (3) in §3.
Proposition 4.2. Let ¢|D, P € E(Q)/2E(Q), and @ € Epy(Q). Then

(-1 P @l = [ey(P), Q)
where P, is the class of P in E(Q,)/2E(Q,).

Proof. For Q € Epy(Q), ¢,(Q) € H(G(X/Q,), E(X)) C H'(Q,, E)2 corresponds
to the cocycle ¢ : 0 — Q.

Ifg € G(@q/(@q), then by g we denote the image of g in G(K/Q,). Let @ € E(@q)
be such that 2Q = (). The mapping ¥ : g 0(g) + (g — 1)@ is a cocycle
in Ey. In fact, it is obvious that 1 is a cocycle in E(@q), and if § = o, then
2¢(9) =2Q+ (0 -1)Q@=2Q-2Q =0.

The cohomology class b of the cocycle ¥ in H(Q,, E») is mapped onto ¢,(Q) in
HYQ,, E),. ~ ~

Since E1(X) is 2-divisible, there is a Qg € E;(X) such that 2 )y = Qy. Therefore

Q=€ (Q) + 2 Qo.
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We set Q = ,(Q) + Qo where 2¢,(Q) = e, (Q).

In computing the value of Tate pairing of the cohomology class b € H'(Q,, F»)
with P, € E(Q,)/2E(Q,). because E(Q,)/2E(Q,) is isotropic, we can simply re-
place @ by @0. (Since e, (Q) € F(Q), it is killed under Tate pairing by Pontryagin
duality.) Thus @ = @0.

Suppose § = 0. Then 9(g) = Q + (0 — 1)Qo = Q — 2Qo = €4(Q).

In other words, the corresponding cohomology class b € H'(Q,, Fy) is simply the

homomorphism of G(Q,/Q,) into E» induced by the homomorphism of G(X/Q,)
into Iy under which o~ e (Q).

Now recall that Q. /Q? = n%/22¢2%L (if ¢ +# 2).

We denote by (G5 the Galois group of the maximal abelian 2-periodic extension of
Q,- Then 0 : Q. /Q;* — G5 is an isomorphism, and we identify G with Q' /Q,*.

The cocycle ¢ : Go — Ey corresponding to P, € E(Q,)/2E(Q,) is determined
by the values ¢;(€) = 0 and ¢1(n) = €,(P), since K(R) is an unramified extension
of X where 2R = P. The cocycle ¢, corresponding to e} (Q)) is determined by the

values ¢y (€) = e;(Q) and (n) = 0.
The cohomology class @1 U @y € H*(Go, 1) is defined by a bilinear mapping
By GQ X GQ — U2 such that

Bi(n,m) =1, Bi(n,€) = [eg(P), €4(Q)]2,
B1(§777) = 1: Bl(é-?g) =1

We have the Hilbert symbol (,)s : Qg /Qs? x Q/Q.% — po. If B € Q/, then 3
is associated to a @z € H'(Gy, 12) such that ps(g) = g(3)/3, where 5% = 5. The
Hilbert pairing is defined to be (o, 3)2 = pa(0(c)).

An equivalent definition is the following. We define homomorphisms
ot Go — Z/27 and @3 : Gy — L /2L
by the conditions
(=179 = a(g) and (~1)9) = gy(g).
We define an element of H?(Gs, its) by the bilinear form
Bas(g1,90) = (—1)Palo)osls),
Then (a, B)y = (—1)@™Bas) (2invB, 4 is defined as an element of Z/27Z.) In

particular, we have
<P§(€) = (§7§)2 = 1: <10§(77) = (777§)2 = _]-:
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(&) =(&—n)2=(-182= (-1, (&2 =—1,
-y(n) = (n,—n)2=1.
Therefore
B, (n,m) =1, Be _y(n, &) = —1,
Be . (§,m) =1, Be 5 (£,6) = 1.
Let [e,(P), e,(Q)]2 = (=1)%, = € Z/2Z.
Then B, = Bgfn. Hence, 2invB; = (—x)2invBg _,.
But (—1)2"5 1 = (£, —n), = —1.
Hence 2invB; = z, which proves the Proposition. (See [Kol] pp.530-532.) O

Caution. In the above proof, () was used instead of ()* for simplicity. But the

situation would be clear which is meant.
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5. NON-EXISTENCE OF RATIONAL POINTS

An immediate consequence of the construction of special cohomology classes
from E(K) is the distribution of Q-rational points of F(py over the real numbers R
where K = Q(v/D).

Let E be an elliptic curve over Q, A(E) the discriminant of some Weierstrass
equation for F, N the conductor of E, and J(F) be the modular invariant of E.

We begin by considering the following list of conditions on the elliptic curves F.
These conditions are assumed throughout this section and the next(§§5-6) if not

mentioned otherwise.

Condition 5.1.  (a) A(E) > 0. (This is equivalent to E(R), = Z/2Z + Z/2Z.)
(b) E(Q)s £Z/2Z.+ 7/2Z.
(¢) For some P € F(Q)\2E(R) and Vz € H'(Q,, E)5", we have

(Py; )y, =0Vq|N.

Of these, only (c) requires clarification. (See Propositions 5.2 and 5.3 as sufficient
conditions on (c).)

First, if 2 4 [H'(Q,, F)5"] or P, = 0 then Condition (c) is satisfied. If P, = 0,
then (c) is satisfied by the bilinearity of Tate pairing. If 2 1 [H'(Q,, F)5"], then for
all z € HY(Qy, F)5", = is killed both by 2 and the order of H'(Q,, F)5" which is
odd, therefore z = 0.

We can say more about this condition.

For any local field F, let ™" denote the maximal unramified extension (the union
of all unramified extensions) of F in a given separable closure of J.
Let X be a p-adic field and k& be its perfect residue field.

0 if E has a good reduction

HHGaAC XL BN =4 1 alisem 1500, mo(B)
a o In any case

Here F denotes the special (or closed) fiber of the Néron model of E and

is the (finite algebraic) group of its connected components. For the prool in the
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non-degenerate case the problem reduces to showing that the norm mapping for un-
ramified extensions is surjective, which is established by means of Hensel’s lemma.
(See [Mal, p.32.)

We abbreviate H'(Gal(X" /X), E(X")) by H' (X, E)™ (or by H'(X, E),,). No-
tice that even if F doesn’t have a good reduction at the residue field of X, the group
H' (X, E)™ is still finite.

Take a minimal Weierstrass equation for F and let Q, be a field of g-adic numbers

with normalized valuation v,.
We have
HY(Qg, )" = H'(Gal(Q,""/Q,), 7TO<E)):
where  denotes the special (or closed) fiber of the Néron model of E and m is the
(finite algebraic) group of its connected components.

Let Fy(Q,) = {P € B(Q,) | P € E(k)ns}, the set of points of E(Q,) with
non-singular reduction.

In general, we have an inclusion F(Q,)/F(Q,) = mo(F). In lact, because Q,
is complete (or even merely Henselian), this inclusion is an isomorphism. See [Si2]
Chapter TV, §9, Corollary 9.2(b).

Let m,(FE) denote [F(Q,)/Eo(Q,)]. (In fact, m,(F) is equal to the number of
connected components of the fiber of the Néron model of E that are rational over
Z/qL.) )

Therefore in our case m,(E) = [m(E)].

Proposition 5.2. If m,(E) is odd, then Condition (c) is satisfied.
Proof. In this case 2t [H(Q,, E)5"]. O

Proposition 5.3. Assume that E has split multiplicative reduction al q, and that
—v,(J(F)) is odd. Then Condition (c) is satisfied.

Proof. The group F(Q,)/Ey(Q,) is finite. More precisely, if E' has split multiplica-
tive reduction at ¢, then E(Q,)/Ex(Q,) is a cyclic group of order —v,(J(E)). ([Si2]
Chapter IV, §9, Corollary 9.2(d).)

Thus [mo(E)] = [E(Qq)/Eo(Qq)] = —v,(J(E)) is odd. So 24 [H(Qq, E)5"]. [
Let D be a negative integer such that (N, D) =1 and 21 ND.
Proposition 5.4 (Tate pairing at 2). (%, c2(Q) )y, = 0.
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Proof. The cocycle representing ) € Fpy(Q) is given by ¢ : 0+ Q" (see §3 for the
isomorphism ) where ¢ : v/D — =/D. Since (2,D) = 1, ¢ € Gal(Qy"/Qs) and
Q' € E(K) C E(Qy(vVD)) C BE(Qy7). Thus locy(¢) = c2(Q) € HY(Qg, E) -
Since 2 is a place of good reduction of E, H'(Qy, E),, = 0.
Hence the corresponding cohomology class is trivial and we get the conclusion.
[

Proposition 5.5 (Tate pairing at ¢ { 2DNoo). Let Q € Epy(Q) and g { 2DNoo.
Then (Fy, c(Q) >q,2 = 0.

Proof. ¢,(Q) € H'(Qy, E)r and HY(Q,, F), = 0 by the property of good redution.
O

We considered the value of Tate pairing at prime divisors of D in Proposition 4.2
, assumed its value to be zero at prime divisors of N from Condition (¢) of this
section, and considered its value at 2. Now it remains to consider its value at
infinity. As was seen in Proposition 5.5 the value is zero outside these primes.
The idea is that if we can control its value at all localizations, then by local-global

duality we get results on the global points.

Proposition 5.6. There is an isomorphism of real Lie groups

E(R) ~ (R/Z) x (Z/2Z), if A(E) > 0.

Proof. [Si2] Chapter V, Corollary 2.3.1. In particular, the isomorphism is given by
log |ul
loggq
where ¢ is chosen so that R*/¢” is real analytically isomorphic to E(R). O

R* [ 5 (R/Z) x {+1}, urs ( (mod Z) , sign (u) )

Corollary 5.7. E(R)/2E(R) ~ Z/27Z, if A(E) > 0.
Proof. Clear from the above Proposition. O

Proposition 5.8 (Localization at 0o). A point Q) € Epy(Q) is mapped by cw to a
trivial class of HY(R, E)s if and only if it is a point from 2Epy(R) for D < 0.

Proof. Let A, B and C denote A = E(R)/2E(R), B = H'(Gal(C/R), E(R)2) and
C = H'(Gal(C/R), E(C)), respectively.
Then we have an exact sequence
O—-A—-B—=>C—=0 (%)
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because E(R), = E(C)y = Esy, so B= H'(Gal(C/R), E(C),).
Since o acts trivially on F(R), (where o € Gal(C/R))

3

B = Hom(Gal(C/R), E(R),) ~ Hom(Z/2Z, Z/2Z + Z./2Z) ~ L./ 2Z + L./ 2.

Thus [B] = 4. ([-] means the order of a set.)

[A] = 2, and since C' is a quotient of B by A, [C] =4/2 = 2.

Let B={pe: 0> e,¢ € Es}.

Then two elements of B are mapped to the nontrivial cohomology class in C
and the other two are mapped to the identity in C' through the exact sequence (x).
(The images of A will be mapped to the identity in C'.)

This means that there is e € Ey such that e # (6 —1)R for all R € E(C).

Consider a map
ds : Epy(R)/2E(p)(R) = H'(R, E)»
Q = de(@) = (p:0 = Q)

Since (1—-0)Q" = 2@Q", the elements of 2E(py(R) are mapped to coboundaries,
and this map is well-defined.

Now dy is surjective because there exists e € Epy(R)2 C FE(p)(R) such that
e# (c—1)R for all R € E(C).

As 2E(p)(R) is mapped to the coboundary, so £(p)(R)\ 2E(p)y(R) is mapped to
the nontrivial cohomology class since both E(p)(R)/2E(p)(R) and H'(R, E) have

order two. Therefore

oo : E0)(Q) = H' (R, E)s
Q= Q) =(v:0—=Q)

is a trivial class if and only if it comes from 2F(p)(R). O

Proposition 5.9 (Tate pairing at oc for D < 0). Let Q@ € Ep)(Q).

(a) If Q € 2E()(R), then (Pa, ¢so(Q) )o» = 0.
(b) If Q & 2E0)(R), then (Pag, coo(Q) Yoo p = 1.

Proof. We know that the cohomology class corresponding to P at oc is nontrivial,
which is equivalent to the statement that P is not a square at oo.
If @ € 2E(p)(R), then it corresponds to a trivial cohomology class at oo, so the

value of Tate pairing is also trivial.
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If @ is a point of F(p)y(Q) such that the cohomology class corresponding ) at
oc is nontrivial, then (P, cx(@))s o = 1 from the nondegeneracy of the Tate

pairing. 0]

Notation. Let P be a rational point in E. Let Tg(P) denote the set of all odd
primes ¢ { N at which P € F(Q) is a local square, i.e. there is a point R € F(Z/q7Z)
satisfying 2 R = P where P is the reduction of P at ¢. Next, set
Tp= |J Te@),
PEE(Q)\2E(R)

and let Sg be the set of negative square-free D’s such that D is a product of primes
of TE

We have the following result on the non-existence of rational points on the non-

trivial connected component of E over R.

Main Theorem 1. We have E(py(Q) C 2E(p)(R) if D € Sg.

Proof. Suppose @ is a point of E(p)(Q) such that the cohomology class representing
@ at oc is nontrivial.

If Sg is empty the statement is trivial.

If Sk is non-empty, then we can choose P € F(Q)\ 2E(R) so that

<P007000(Q) >oo,2 =1
from Proposition 5.9.

S0 2 g1 (Far €4(@) )g o = 1.

If we choose D € Sg, then eq(P) = 0 for all ¢|D, and so 3, p (Fy: ¢g(Q) )g., = 0,
which is a contradiction.
Thus we cannot find a point of Epy(Q) in Epy(Q)\ 2Ep)(R). O

We now present another theorem regarding the situation where D is not nec-
essarily in Sg. (See Theorem 5.13.) The following Propositions 5.10 and 5.11 are

true for all elliptic curves.

Proposition 5.10. Assume that P € E(Q) is not a square at a prime g and

R € E(Q) satisfies 2R = P, where E(Z/qZ), = {0, e}, q12Noo.
Then (Fr, — 1) red(R) # e.

Proof. Let t € E(Z/qZ)>\ E(Z/qZ),. Such t exists since E(Z/qZ)s =~ Z/27 and
E(Z/qZ)s ~7.]2Z + 7] 2.
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Note first that 2 (Fr, — 1)t = (Fr, — 1)(2t) = O, so (Fr, — 1)t is a 2-torsion.
Consider the Weil pairing [ , |2 of (Fr, — 1)t with e:

[(Fr, — Dt el = [t, (Fr;t — 1)e]s = [t,0] = 1,

q

due to the property of Weil pairing that [ga, gb]s = [a, bl = [a, b]» for any a,b € Fy
and g is in Gal(Q,/Q,).

This implies that (Fr, — 1)t = O or e. But { € E(Z/qZ)s, so (Fr, — 1)t # O.
Thus (Fr, — 1)t =e.

Suppose (Fr, — 1)red(R) =e.

Then (Fr, — 1)red(R + 1) = (Fr, — 1)red(R) + (Fr, — 1)t = e + ¢ = O, where
redi = ¢, L € E(Q,)2.

But then R+17 € F(Q,) (since it is fixed by Fr,) and 2 (R+1%) = 2R = P, which

means that P is a square at q. O

Proposition 5.11. Let ¢ be a prime such that E(Z/qZ)y ~ Z/27Z, and suppose
that P € E(Q) is not a local square at q. Let D be an integer with q|D. Then for
any rational point Q € Ep)(Q) with red(Q") # O, we have

(Pyycq(@))y = 1.

Here QO is the image of Q in E(K), with K = Q(v/D) and red is the reduction in
E(K) modulo the prime v in K with v? = q.

Proof. By Proposition 5.10, (Fr,—1)red (R) # red,(Q") = e. Also (Fr,—1)red(R) #

O since P is not a local square at ¢. So the result follows by Proposition 4.2. [

Proposition 5.12. Under the same conditions as Proposition 5.11, we have :
Any rational point of E(_g(Q) with redy(Q") # O has the property that

Q ¢ 2E 4 (R).

Proof. Consider the orthogonality relation between E(Q) and E_q(Q).
(P ¢q(Q) ) g, 07 (Poos €oo(@) Voo o = O and ( Py, ¢4(Q) ), , = 1 by Proposition 5.11.
Thus (Peo, €oo(®) oo, = 1, which implies that @ ¢ 2E(4)(R). O

We have an extension of Main Theorem 1 regarding on the real connected com-

ponent the point belongs.

Theorem 5.13. Let P € E(Q)\2E(R) and D = D1 Dy < 0 where P is a square at

prime divisors of Dy and P is nol a square at prime divisors of Dy. Assume further
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that for any rational point Q@ € E(py(Q) whose image in E(K) has a nontrivial
reduction and E(Z/qZ)s ~ 7 /27 at all prime divisors q|Dy. Then

(a) Q € 2Ep)(R), if the number of prime divisors of Dy is even.
(b) Q & 2Epy(R), if the number of prime divisors of Dy is odd.
Proof. By Proposition 5.11, (P, c,(Q) ), ,

If the number of prime divisors of Ds is even, then

ZlﬂD <Pq7 Cq(Q) >q72 - Zq\DQ <an Cq(Q) >q,2 =0.

S0 (Peo; €oo(Q) ) oo, , = 0 and this case reduces to that of Main Theorem 1.
If it is odd, then >~/ p, (Fy, ¢4(Q) g 5 =1 50 (Poo, €0(Q) )oo,» = 1 and this case
reduces to that of Proposition 5.12. 0]

=1 at all prime divisors ¢ of Ds.

Lemma 5.14. If the denominator of x-coordiante of Q € Epy(Q) is not divisible
by q where q| D, then red ,(Q") # O.

Proof. Let denom(%) denote b when a,b € Z and (a,b) = 1.

Let @ = (z, y) and ¢ = v* in K = Q(v/D). Let (¢, A(E)) = 1.

Since z is a rational number, ¢ { denom(z) < v { denom (x). If this is the case,
then ¢ t denom (Dy?) < v { denom (Dy?) because denom (x) and denom(Dy?) have
the same factors.

Suppose ¢|denom (y), which is equivalent to ¢*|denom (y*). Then ¢|denom (Dy?)
because D is square-free, but we know that this is not the case from our assumption
that ¢ { denom (z). Hence q { denom(y). Therefore Dy? is a g-adic unit and /Dy
is a v-adic unit in X.

If we consider the reduction of Q* = (x,v/Dy) satisfying (v Dy)? = 2+ Az + B,
then we get red,(Q") (at v) is a finite 2-torsion point, i.e. red,(Q") is not a point
at infinity O. U

From the proof of Theorem 5.13 and the above Lemma, the following result

about the denominator of the z-coordinate of rational point of Fp)(Q) is obtained.

Corollary 5.15. Decompose D into DDy as in Theorem 5.13.
(a) If the number of prime divisors of Dy is even and @ € Epy(Q)\ 2Ep)(R),

then the denominator of the x-coordinate of QQ and Do has a common divisor.
Moreover the number of “common” prime divisors of Dy are odd.
(b) If the number of prime divisors of Dy is odd and Q € 2E(p)(R), then the

denominator of the z-coordinate of () and Dy has a common divisor.
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In the following we will prove a Proposition which may be useful to determine
whether or not a point P € E(Q) is a square at a given prime. It is valid for any
elliptic curve with F(Q), = O. Note that this Proposition asserts that if there
exists a point in E(Q) and a prime ¢ which satisfies the condition E(Q,)2 = O,
then we know that P is a local square at ¢ without knowing what the point P
is specifically. Thus it may help us to extend the results of this section to other

elliptic curves whose generators are not exactly known.

Proposition 5.16. Let F(Q,)2 = O where ¢ 1 2Noo. Then P is a local square al
q.

Proof. Let R € E(Q) satisfy 2R = P.

Let (Fr, — 1)R = L € By,

Since Fr, — 1 is an automorphism on FE, if E(Q,)s = O, choose t' € E, such
that (Fr, — 1)t' = ¢. (Let t1,¢0 € Ey and ¢ # to. Since t; —t9 € Ey\ O, so
(Fr, — 1)(t1 — t2) # O, i.e. (Fr, — 1)ty # (Fr, — 1)t5. Thus Fr, — 1 is an injective
endomorphism on a finite group Fy, therefore an automorphism.)

Considering (Fr, — 1)(R+t') = (Fr, — 1)R + (Fr, — 1)t' = ¢t +¢ = O, we have
that R+t € F(Q,). Thus 2(R +t') = P implies that P is a square at ¢. O

General Case

Previously, we considered the case when E(Z/qZ)s = Z/2Z in Proposition 5.11.
Also we considered the case when E(Z/qZ)s = O in Proposition 5.16. Now consider
the case when D includes a factor g at which F(Z/qZ)s ~ Z/27 + 7./ 27.

Let’s decompose D into relatively prime factors Dy, Dy, and D; where

q| D1 < P isasquare at ¢
q|Dy & q1Dyand E(Z/qZ)s ~ 727
q|Ds < qtD;and E(Z/qZ)s ~7)27 + 7] 27Z.

Suppose red,(Q") # O at all ¢| Dy. Then

Z<qucq<Q)>q’2: Z <Pq>C¢J(Q)>q,2

q| D3 g|D1Dacc

= (P cg(Q))g 5+ (Poo(Q): €00(Q) oo

q| D2

= number of prime divisors of Dy + ¢ (mod 2)
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0 ifQe QE(D)(R)
1 if Q ¢ 2F(R)

Moreover by Proposition 4.2, we have

(_1)<Pq,cq(Q))q‘2 _ [eq(P) ¢! (Q)]2 _ 1 if 6;(@) = O or e;(@) = GQ<P)

’Tq

where € =

—1 otherwise.

This can be considered as a general restriction which the orthogonality relation

imposes on the rational points of the Mordell-Weil group.
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6. QUADRATIC TWISTS OF 3% =423 — 4z + 1

In this section we will consider the curve y? = 42° — 42 + 1 and its quadratic
twists to see the usefulness of the theorems established in the previous section. It
will be proved that this curve satisfies all the requirements to apply the theorems.

We start by proving a lemma which describes the behaviour of xz-coordinates of
twisted elliptic curves. This is useful in finding rational points actually.

Most of calculations in this section are done by algorithms written in MATLAB.
Let y* = 2° + Az + B and E(p) : Dy* = 2® + Az + B where (D, 2Noo) = 1.

Proposition 6.1. Every rational point Q) € E,)(Q) with p-integral coordinates has
its x-coordinates of the form
a+pm
T = or some m,n €%
@=T0

where a € Z, (a,0) € E(Z/pZ):\ O and a =@ (mod p).

Proof. Consider the p-twisted elliptic curve py? = z* + Az + B and its rational
point @ = (z,y) € E)(Q).

Since @ is p-integral, we have 2° + Az + B = O (mod p), that is, z(Q) = a
(mod p) for some (a,0) € E(Z/pZ)2\ O. So

R Where%zd (mod p) and k,l € Z.
p

We exclude the case when § = O (mod p), in which case @ is not p-integral. So
0 # O (mod p). Let §* be the arithmetic inverse of 3 in Z/pZ. Then
Q) = EEPE f*(a+pk) _ aB*+p(5k)
Bpl pr(B+pl) BB+ p(5)
Let af* =a+p, 86" =1+pj 1,7 € Z. Thus

_a+p(Bk+i)  a+pm
#(@Q) = L+p(Bl+35) 1+pn

dm,n € Z. O

Example. —139y? = 42% — 4z + 1. E(Z/139Z), = {0, (74,0), (94,0), (110,0)}.

94 4+ 139 x 17 91 67

e ] 1 t — \— == E* .
TS T a7 (o) Bves apoint @ = (55, 575) € B (@)
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Corollary 6.2. Every rational point Q € Epy(Q), (D,2Noo) =1, D is square-
free, with p-integral coordinates at each prime divisors p of D has its x-coordinates

of the form
Gy + pmy,
T (? = - =
( ) 1+ pn,

where a, € Z, (a,,0) € E(Z/pZ)2\ O and a, = a, (mod p).

for some my,n, € Z

Proof. The proof at p| D is exactly the same as that of Lemma 6.1. O

Proposition 6.3. Every rational point Q € Epy(Q), (D,2Noo) =1, D is square-
free, with p-integral coordinates at prime divisor p of D has its x-coordinates of the

form

m
z(Q)=a,+p-—; forsome m,ncZ
n

where a, € Z, (a,,0) € E(Z/pZ)2\ O and a, = a, (mod p).

Proof. Let f(z) =2® + Az + B and 1 + pn = sa? and s is square-lree. Then z(Q)
is given by (a, +pm)/(1 +pn) for some m,n € Z by Corollary 6.2. So
_Gp T+ pm a, +pm

= LA B
) 1+pn)jL (1+pn)+
(ap, + pm)® + A(a, + pm)(1+ pn)® + B(1 + pn)?
(1+pn)?
(ap + pm)® + A(a, + pm)s?a* + Bs*al
s3ab '

a, +pm
14+ pn

S

For (a,+pm)/(1+pn) to be an z-coordinate of a rational point of Fp)(Q), this
number should be D-(a square). So it is necessary that s|a, + pm, otherwise the
denominator cannot be a square.

1+ pn = sa?
Thus = p(na, — m) = s(aya® — 3) = s|p(na, —m) =
a, +pm = sf3
s|na, — m.
Hence na, —m = sk’ 3k’ € Z & m = na, — sk’ = na, + sk Ik € Z.

k 1 k
Therefore z(Q) = ay + p(nay + sk) — ap(1+pn) + sp

1+pn 14+ pn
spk spk k
:ap+m:ap+ﬁzap+p-¥

So we have the desired result by adjusting variables from k£ and « to m and
n. 0]
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Remark. A point Q € Ep)(Q), (D,2Noo) =1, D is square-free, with p-integral

z-coordinate at all prime divisors p of D has its z-coordinate of the form

D
x(Q):i—:_D: for some m,n € Z or
m
x(Q):a%—D-ﬁ for some m,n € Z

where ¢ € 7Z is obtained from Chinese Remainder Theorem satisfying ¢« = a,

(mod p) at all prime divisors p of D.(a, comes from the previous Propositions.)

In the following we will find some numerical data for the elliptic curve
E:y? =423 — 4z +1 .
There exists a point P = (0,1) € E(Q)\ E(R) and A(F) > 0.
We can prove that the value of Tate pairing at the conductor is 0. In our specific
case N = 37. The modular invariant J(E) = 2'% - 3% /37.

Proposition 6.4. Vo € ' (Qs7, E)5", (P37, 7 )57, = 0.

Proof. [mo(E)] = ms7(E) = 1.(See [Ko2], §3).

3

So H'(Qs7, B)py = H' (Gal(Q¥ /Qy7), mo(E)) = 0. O

Therefore all the results of §5 applies to this elliptic curve and its quadratic

twists.

Data 1.

(A) Odd primes p < 500 at which P is a local square (p # 37).  (59)

3,7, 11, 23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 83, 97, 101, 113, 127, 139, 149,
157, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 239, 241, 257, 263, 271, 277,
281, 283, 293, 307, 331, 337, 347, 359, 373, 379, 383, 389, 397, 409, 419, 433, 439,
443, 463, 467, 479, 499.

(B) D’s satisfying —D = a square (mod 4-37), —D # —3,—4, 0 < D < 500,
D is square-ree, (D, 2-37)=1. (47)

7,11, 47, 67, 71, 83, 95, 107, 115, 123, 127, 139, 151, 155, 159, 195, 211, 215,
219, 223, 231, 247, 255, 263, 271, 287, 295, 299, 303, 307, 323, 359, 367, 371, 379,
391, 395, 403, 411, 419, 435, 443, 447, 451, 455, 471, 491.
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(C) D’s of (B) such that F_p)(Q) has a positive rank
D = 95,107,139, 215, 255, 391.

(According to [Ko2] Theorem H, for all other cases it is proved that Fp)(Q) = O.
For these 6 cases we can actually find a point not at infinity on each of them. This

is enough to conclude that they have positive rank, since they have trivial torsion

part.)

(D) D’s of (B) such that all prime divisors of D are from (A). (26)

7,11, 47,71, 83, 123, 127, 139, 159, 211, 219, 223, 231, 263, 271, 287, 303, 307,
359, 371, 379, 419, 443, 447, 451, 471.

Let Vg0 be the set of D’s obtained in (D).
# V00 = 26 and for one of them the corresponding (—D)-twisted elliptic curve

has a positive rank. (D = 139)
#({D’s in (B)}\ Vs09) = 21 and for 5 of them the corresponding (—D)-twisted

elliptic curves have positive ranks.

D = 95,107,215, 255, 391.

Data 2.

(a) There are 30 primes p < 500 at which E(Z/pZ)s = O (p # 2,37):
3,7, 11, 41, 47, 53, 71, 73, 83, 101, 127, 149, 157, 173, 181, 197, 211, 223,
229, 263, 271, 307, 337, 359, 373, 379, 397, 419, 433, 443.
According to Proposition 5.16, P is a square at these primes. So these

primes form a subset of those primes in Data 1(A).

(b) There are 51 primes p < 500 at which E(Z/pZ)s ~ Z/2Z (p # 2,37):
o, 13, 17,19, 23, 29, 31, 43, 59, 61, 79, 89, 97, 103, 109, 113, 131, 163, 167,
179, 191, 193, 199, 227, 239, 241, 251, 257, 277, 281, 283, 311, 313, 331, 347,
353, 383, 389, 401, 409, 421, 431, 439, 449, 457, 461, 463, 467, 479, 487, 499.

(c) There are 12 primes p < 500 at which E(Z/pZ)s ~ Z/2Z+7Z/2Z (p # 2,37):
67, 107, 137, 139, 151, 233, 269, 293, 317, 349, 367, 491.
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Interpretation of the Main Theorem 1.

It is known that there are 6 twisted elliptic curves F(_p)(Q) among (—D)’s
computed in Data 1(B) with rank £_p)(Q) # 0. (See Data 1(C))

The Main Theorem 1 says that for those D € Vi, B p)(Q) C 2E_py(R).
On the other hand, for all of those 5 of D & Vg, T could find rational points
on Ep)(Q)\2Ep)(R).

For example,

(8 23 13 1 2 1 163 257 5 1

w1 e 5wk Gur s )

are the points on F_py(Q)\2£_p)(R) for D =95, 107, 215, 255, 391 respectively

in this order. These points were found using Corollary 6.2 and Proposition 6.3.
Interpretation of Theorem 5.13.

Based on Data 1 (A) and Data 2, we can divide D into types described by Main
Theorem 1, Theorem 5.13 (a) or (b), or the general case.

There are 196 elliptic curves which correspond to (—D)’s such that —D #
—3,—4, 0 < D < 500, D is square-free, (D, 2-37) = 1. And there are 180 el-
liptic curves whose z-coordinates are under the restriction by the Main Theorems
1 or Theorem 5.13.

Let’s see how we can use these results to analyze the behavior of rational points

on quadratic twists £_py(Q) corresponding to —D in Data 1(C).
(a) D =95 =5x19. This is the case of Theorem 5.13(a). So if a rational point

exists on F(_g5)(Q)\2E(_g5)(R), then its denominator must be divisible either

by 5 or 19 :

4 1 8 23
G G ig)

(b) D =215 = 5x43. This is the case of Theorem 5.13(a). So if a rational point

exists on K 215 (Q) \ 2E(_215(R), then its denominator must be divisible

either by 5 or 43 :
2 1 16 67
5w (G
(c) D =255=3x5x 17. This is the case of Theorem 5.13(a). So if a rational

point exists on F(_255(Q) \ 2E(_955)(R), its denominator must be divisible
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either by 5 or 17 :
163 257
(317 23172
(d) D =391 = 17 x 23. This is the case of Theorem 5.13(b) since P is a local

square at 23. Therelore, it is possible to find a point like (g %) But on
25_301)(R), cvery point has its z-coordinate whose denominator is divisible
either by 17 or 23.

(e) For E(_107)(Q) the restriction is by the general case. For F(_139(Q), P is a
square at 139, so there’s no rational point at all on £ 139)(Q) \ 25 _139)(R)
as considered earlier. (Main Theorem 1.)

These exhaust all known positive rank cases.

From the theorems and examples so far, it can be said that the orthogonality
relation imposes direct restriction on the existence or type of rational points on
quadratic twists over Q. The restrictions can be simply described in some cases if

we can compute the value of Tate pairing at prime divisors of conductor of E.
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7. A NEW RESULT ON THE RANK BOUND

Let E be an elliptic curve with E(Q), = O and Q(V/A) is a PID where A = A(E)
is the discriminant of F.

The aim of this section is to prove that rank F(Q) < 2n where n = v(2Noo).

I would like to say thank you to Prof. Ram Murty for his suggestions and helps
to clarify the proof and extend the result.

We may assume that rank F(Q) > 1. Otherwise rank E(Q) = 0 and the result
on the rank bound holds trivially.

The point is that most of our previous results remain true over general number
fields. In fact, Kolyvagin’s papers are already based on the general setting.

Let F' be a finite algebraic extension of Q.

Mordell-Weil theorem over F

E(F) ~T x 7" &)
where T is the torsion part. Here r(E, I') is a nonnegative integer.

Tate pairing is defined over J, where JF is the localization of F"

HY(F,Ey) x H(F,Ey) — Z/MZ.
For this see [Ba]. We again consider the case when M = 2.

Local-global duality theorem (Orthogonality relation)
For P € E(F)/ME(F) and C € H'(F, E), the sum of the local Tate pairing

(P, Cp)g py over all prime divisors of F' (including oo) equals zero where P and Cl

are the localizations of P and C at ¢ respectively. In other words,

Z {(Pe,Ce)ep =0,
¢
Construction of explicit cohomology classes
For D € F with D square-free and (2N,D) = 1, we have Epy and I are
isomorphic over Kp = F(v/D) under an isomorphism + : (z, y) + (z,+/Dy) and

we have

1(Epy(F)) ={Q € E(Kp)| Normg,,r @ =0} = H'(F, E),.
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Proposition 4.2 can be formulated without change if we replace Q by F' as follow-
ing Proposition 7.1 shows. The more general formula can be found in [Kol] where
it was done for cyclic extensions not just for quadratic extensions. We assume that

D is square-free and (2N, D) = 1 in the following Proposition:
Proposition 7.1. Let £|D, £ a prime of F, P € E(F)/2E(}"), and Q € Epy(F).
Then
(_1)<Pz,cz(Q)>z,2 = [e)(P), €4(Q)]»
where Py is the class of P in E(F)/2E(F). Here e,(P) and €,(Q) are defined in

exactly the same way as in Definitions 1 and 2 of §4 if we replace Q by F' and K
by K, and F is the localization of F al £.

Remark. For a prime ¢ of F' which divides p of @, we denote by Fr; the Frobenius
(;L.Norm(é)7 yNorm(l)).

endomorphism of £(Q,) over E(F) given by Iry(z,y) = Here

Norm(¢) = p/ if f is the corresponding inertial degree.

Corollary 7.2. Assume the conditions of Proposition 7.1. If e € E(p)(F)s, then
(~1)Ples = [eo(P), el

and e,(P) = O if and only if P is a square al L.

Proof. Clear from the Definitions 1 and 2 of §4. O

Let T be a free subgroup of E(Q) defined by T = {P € E(Q)| P is a point of

infinite order, a square at 2Noc but not a global square over Q }.

Lemma 7.3. There is an injective homomorphism
o i B(Q,)/2E(Q,) — (2/22)°
where a = 2 if ¢ is an odd prime, a =3 if ¢ =2, and a =1 if ¢ = .
Proof. Consider
Hom(Qy, E2) = Hom(Qy, Z/2Z + Z/2Z) = Hom(Qy, 12) + Hom(Qy, pe).
Then using Kummer theory, as {+1} C Q,, we have Hom(Q,, 1s) = Q; / Q> =

I
(Z./27)* where a =2 if ¢ is an odd prime, a =3 if ¢ =2, and a = 1 if ¢ = oc.

On the other hand, we have [F(Q,)/2E(Q,)] - [H(Qy, E)2] = [H'(Q,, E2)] and
[F(Q,)/2E(Q,)] = [H(Qy, E)2]. (For these equalities, see [Bal, p.37.)

As E(Q,)/2E(Q,) is a subgroup of H*(Q,, ) from the descent exact sequence,

we get our conclusion. O
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Proposition 7.4. Let rank E(Q) = r. Then rank(I') > r—2n, where n is the num-
ber of prime divisors of 2Noc in Q. Here rank(I") denotes the mazimum number

of linearly independent points in the sel T up Lo torsion part.

Proof. Let P € E(Q) be a point of infinite order. (The existence of such a point is
guaranteed by the assumption that rank £(Q) > 1.)
Then we define maps for ¢| N and q # 2

fot B(Q)/2E(Q) 5 B(Q,)/2B(Q,) <> /2L + L/2L =< ag,b, > .

For g = 2, let fo: B(Q)/2E(Q) %% E(Qy)/2E(Qy) < (Z/22)° =< ay, by, a0e >

Here we write ao. instead of ¢; for notational convenience.
For ¢ = o0, let fs : E(Q)/2E(Q) X5 E(R)/2E(R) < Z/2Z =< by > .
For ¢| N and ¢ # 2, define f,(P) and f2(P) in Z/2Z by

fo(P) = f4(P)ag + £ (P)b,.

For ¢ = 2 and oo, define analogously by fo(P) = fo(P)as + f3(P)bs + fL(P)a
and foo(P) = foo(P)boo-

If P is a square at ¢ if and only if f#(P) = 0 for k = 1,2 when ¢ # 2, c0. (We
can say a similar fact for the other cases also.)

Let { P, }1<i<r be a set of generators of E(Q) of infinite order. Consider all points
P which can be expressed as P =Y. m;P;. ( Some points of E(Q) may not be
expressed in this way. We exclude those points.)

Suppose that P is a square at prime divisors of ¢;(1 < j < n) of 2Noo.

Then we have a set of relations:

o (P) =221 nifg, (F) = O
where n; € Z/2Z such that n; = m; (mod 2). (We have one linear equation over

Z /27 for each generator upon localizations at bad primes.)
Let Qi = fql] (Pz) and bji = fq2j (Pz) And let A = (aij),B = (bw) and X(P) =

ni
[+ ]. We will write X = X (P) € (Z/2Z)" within context. Note that the matrices
(za
A and B depend on the generators {P;}1<;<,, but not on particular points P. So
the coeflicients a;;’s are constants, but X is determined by P.
A : : . : :

Let C = [—B—]. That is, C' is the matrix composed of first n-rows of its entries

coming from those of matrix A and the second n-rows of entries coming from those

of matrix B, so C is a 2n X r matrix.
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Hence we have the following:

P =737 m;P; is a square at prime divisors of 2Noc if and only if CX (P) = O.

Let r =2n+c.

Then the solutions of the homogeneous system C'X = O has at least ¢ indepen-
dent vectors X € (Z/2Z)" (exactly ¢ independent vectors X if C' is nondegenerate).
So the solutions of the system C'X = O has rank at least ¢ = r — 2n. Now any
nontrivial point P satisfying CX(P) = O is a point in I'. O

The following Theorem 7.5 and Proposition 7.6 were provided by Kolyvagin in

reply to my question.

Theorem 7.5. Let a point P on an elliptic curve E(K) be a square over K' =
K(E,), then it is a square over K.

Proof. K'/K is a finite Galois extension. Let H = Gal(K'/K) — GLo(Z/2Z) —
S3,
where S5 is the permutation group of ¢;, e; and e3 = e; + e¢; which denote the
nontrivial elements of Fy. So H is a subgroup of Ss.

Since P is a square in F(K’), there exists @ € E(K') such that 2Q = P.

Then for all h € H, 2(h(Q)) = h(2Q) = hP = P.

So h(Q) — Q € FE> and h — h(Q) — @ is a cocycle of H in E5 because

Normgr /g M(Q) =) g ohQ =3 ,0Q =Normg/ /g Q,
ie. h(Q)— @ is a point of trivial norm.

We will show that H'(H, E;) = O. Then h(Q) — @ = he — e for some e € E,.
This implies that h(QQ —e) =Q —e. So @ —e € E(K) and P =2(Q —e¢) € 2E(K).

Now the only remaining thing is to prove that H'(H, Ey) = O. There are three

cases(we consider the case H # O);

Case 1) H has order 2.

H = {1,0} where o is a transposition, say o(e;) = ¢q, 0(e2) = e1, and o(e3) = e3.
Then

ole)+e=0e=0ore=e3=0(e;) —e; =0(ey) — ey = H'(H,Ey) = O.

Case 2) H has order 3.

H'(H, E,) = O because it is killed both by |H| = 3 and 2.

Case 3) H = S;.

36



We have a Restriction-Inflation exact sequence (A3 is a normal subgroup of S3

because it is a subgroup of index 2)

O — H'(Ss/ A3, ES5) 5 HY(Sy, o) 25 HY (A4, )

Here E3* = O, so H'(Ss/As, F3#) = O and H'(As, E5) = O by the second case.
Therefore we conclude that H'(S3, Ey) = O. O

The above theorem implies that a point P € T is not a global square over
L = Q(E,) either.

Proposition 7.6. If P € E(K) is a square almost everywhere, then it is a global
square, i.e. P € 2E(K).

Proof. Let K' = K(F5). We will prove that if P is a square almost everywhere, it
is a square in E(K'). Then the result would follow from Theorem 7.5.

Let Q@ € E(K) be such that 2Q = P.

Let v be a prime of K such that P is a local square at v. Then there is a
Q. € E(K,) such that P = 2Q),.

Let F = K(Q), the field generated by the coordinates of @ over K. Then F' is a
finite subextension of K. Let w be a prime of F' with w]v.

Then F C F, and Q € E(F,) where 2QQ = P. And @, € E(F,) under a
canonical embedding K, — F,,.

So 2(Q — Q,) =0, that is Q — @, € Es. Thus Q@ = @, + ¢ € E(K,(Fy)), which
implies that F' C K,(E>).

Thus F(Ey) C K,(F2) C K/, for almost all prime v of K, where v is a prime of
K' dividing v. Moreover K' C F(E3), so F'(E2) = K'. And hence Q € E(K'). O

Recall that T is defined by ' = {P € E(Q)| P is a point of infinite order, a
square at 2Noc but not a global square over Q }.

Let S(I') = {p prime in Q | p { 2Aoc where there exists P € T with P is not a
local square at p}.

Then Proposition 7.6 says that S(I') is an infinite set if T # ().

Main Theorem 2. Let E(Q)y = O and Q(v/A) = Q, where A = A(E) is the
discriminant of E. Then rank E(Q) < 2n where n = v(2Noo).

Proof. Suppose
rank F(Q) > 2 - v(2Noo). (%)
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Then as T’ # (0 by Proposition 7.4, so S(I') is an infinite set by Proposition 7.6.
Therefore we can choose P € T and p € S(I') such that P is not a square at p, in
other words, P represents a nontrivial element of £(Q,)/2E(Q,).

Let L = Q(E;) and let Ly be a completion of L at ¢ where £|p. Then from
Theorem 7.5, we have that P € F(Q,) is a square over Q, if and only if P is a
square over L,. Thus if P represents a nontrivial element of F(Q,)/2F(Q,), then
it represents a nontrivial element of F(L,)/2E(L,) also.

We now consider the orthogonality relation between E(L) and E,(L). (Notice
that a prime p is square-[ree over L, since p 1 2A00.)

If we choose P € T', then the orthogonality relation becomes

> {Prei(@) )y, =0 for all Q € Egy(L).

£p

In particular,

> (Prcile) )y, =0 for all e € Egy(L)s.
£p
Let R € E(Q,) such that 2R = P.

If p is inert in L, then the above relation becomes
(P, co(e) )472 =0 for all e € By (L)

which implies that [(Fr,—1)(R), e]o = 1 forall e € E)(L)2. Then the nondegeneracy
of Weil pairing implies that (Fr, — 1)(R) = O, that is, R € E(L,). Therefore, P is
a square over L;. This should be true for all P € T', but we know that there is a
point P € T which represents a nontrivial element of E(L,)/2E(L,). So we get a
contradiction.

Now suppose that p splits into three different primes. Then L; = Q,, so Fr, =
Fr,, which is given by Fr,(z,y) = (P, y?) for all ¢|p.

Thus the orthogonality relation, in terms of Weil pairing, is
[1(Fre = 1)(R), e]o = [(Fr, — 1)(R), e]f = [(Fr, — 1)(R), o = 1.
£lp

The above relation should be true for all e € Fy,y(L)2, which again implies that P
is a square at p (or equivalently at £) and we get a contradiction.

This contradiction comes from the assumption that rank E(Q) > 2n, which
assures that T 2 (). Therefore we get the conclusion that rank F(Q) < 2n. O
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Theorem 7.7. Let E(Q)y = O and Q(v/A) is a PID. Then rank E(Q) < 2n where

A and n are as defined in the above theorem.

Proof. Let p be a prime of Q(+v/A) with p|p where p € S(T).

As Q(v/A) is a PID, we can consider the orthogonality relation between E(L)
and F(,) (L) where L = Q(E,).

The rest of the arguments are exactly the same as those of the Main Theorem
2 with p replaced by p. Note that Fr,, is now given by Fr,(z,vy) = (z", yP") where
f =1if psplits and f = 2 if p is inert in Q(v/A). O

Example (The curve £ : y?> = 2° — 3z + 1 and its quadratic twists).
Let A and Ap denote the discriminant of F2 and Fpy respectively. Then Q(A) =
Q(Ap) = Q. Therefore, we can have that rank Fpy(Q) < 2n where n = v(D) + 3.

Here 3 is the number of prime divisors of 2Noc.

Example (The curve E : y? = 423 — 42 + 1 and its quadratic twists).

In this case, Q(A) = Q(Ap) = Q(v/37) and Q(v/37) has class number 1. Therefore,
we can have that rank Fp)(Q) < 2n where n = v(D) + 3. Here 3 is the number of

prime divisors of 2Noc.
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