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1. [10 marks] Consider the ring of the Gaussian integers Z[i] (i =
√−1).

(a) Is 4 + i a prime element in Z[i]?

(b) Compute the cardinality of Z[i]/(4 + i). What group is it?

(c) Find the G.C.D.(1 + 3i, 5 + i).

Sol. (a) N(4 + i) = 42 + 12 = 17 is a prime number in Z, and so 4 + i is an
irreducible element of Z[i]. Moreover, Z[i] is a Euclidean domain, and so every
irreducible element is also a prime element. Therefore 4 + i is a prime element in
Z[i].

(b) The cardinality of R = Z[i]/(4 + i) is precisely N(4 + i) = 17. Let I =
(4 + X). By the third isomorphism theorem we have: R ∼= Z[X]/(X2 + 1, 4 + X) ∼=
Z[X]/I/(X2 + 1, 4 + X)/I ∼= Z/17Z, where the last isomorphism is obtained by

noticing that X2 + 1 = −(4 + X)(4 − X) + 17 in Z[X], so that X2 + 1 = 17 in
Z[X]/I. It follows that R is the cyclic group of order 17.

(c) We apply the division algorithm in Z[i]:

5 + i

1 + 3i
=

4

5
− 7

5
i

and so we choose the approximate quotient 1− i, to get

5 + i− (1− i)(1 + 3i) = 1− i

Therefore
5 + i = (1− i)(1 + 3i) + 1− i

where N(1 − i) = 2 < N(1 + 3i) = 10. Now we repeat the process with 1 + 3i and
1− i:

1 + 3i

1− i
= −1 + 2i

and so
1 + 3i = (−1 + 2i)(1− i)

and the division algorithm ends. The algorithm tells us that GCD(5+i, 1+3i) = 1−i.



2. [20 marks] Give a proof or disprove the following statement:

Z[
√−3] is an Euclidean domain.

Sol. O = Z[1+
√−3
2

] is a Euclidean domain, but Z[
√−3] is a proper subring, so we may

have some doubts that the division algorithm of O when applied in Z[
√−3] holds

within Z[
√−3]. Similarly we may have some reasonable doubts that the unique

factorization in Z[
√−3] holds, although O is a UFD, and so we turn our attention

to the possibility of finding an element of Z[
√−3] with non-unique factorization.

We search for possible candidates among elements of Z[
√−3] with small norm, the

norm itself providing a means to discover possible factorizations. By trying out
N(a + bi) = a2 + 3b2 for different small integer values of a and b, we soon find that
4 = 12 + 3 · 12 = 22 + 3 · 02. So 4 = (1 + i

√
3)(1− i

√
3) = 22.

If α ∈ Z[
√−3] is a unit, then there is a β ∈ Z[

√−3] such that αβ = 1, and
so N(α)N(β) = 1, which shows that N(α) = 1. Conversely, if N(α) = 1, since
N(α) = αᾱ we see that α is a unit in Z[

√−3]. Since the only integer solutions to
a2 + 3b2 = 1 are a = ±1, b = 0, the units of Z[

√−3] are ±1. If 2 = αβ in Z[
√−3]

then 4 = N(2) = N(α)N(β). N(α) = N(β) = 2 is impossible, since no element of
Z[
√−3] has norm 2. So without loss we have N(α) = 4, N(β) = 1 so β is a unit

and hence 2 is irreducible in Z[
√−3]. A similar argument shows that both 1± i

√
3

are irreducible since N(1 ± i
√

3) = 4 also. Therefore 4 has two factorizations into
irreducibles in Z[

√−3] which are clearly not associate, and thus Z[
√−3] is not a

UFD, so also not a Euclidean domain.



3. [10 marks] Consider the domain R = Z[
√

3] := {a + b
√

3 | a, b ∈ Z}.
(a) Which among the following elements of R are invertible and why?

5 + 3
√

3, 2−√3, 1 +
√

3, 7 + 4
√

3.

(b) Does the following equality of ideals hold in R?

(5 + 3
√

3) = (1 +
√

3)

Explain in details your answer.

(c) Is (3 +
√

3) a prime ideal of R? Explain in details.

(d) Determine a maximal ideal M ⊂ Z[X] such that X2 − 3 ∈ M.

Sol. (a) We need only compute norms to see which elements in the list have norm
±1, where N(a+ b

√
3) = a2− 3b2. N(5+3

√
3) = −2, N(2−√3) = 1, N(1+

√
3) =

−2, N(7 + 4
√

3) = 1. So the second and fourth elements in the list are units, the
others are not.

(b) Yes, the equality holds since 5 + 3
√

3 and 1 +
√

3 are associates by part (a) of
this exercice: 1 +

√
3 = (2−√3)(5 + 3

√
3).

(c) No it is not a prime ideal. N(3 +
√

3) = 6. If π is a prime element in R, then
(π)∩Z is a prime ideal of Z, hence is pZ for some prime p ∈ Z. Then p ∈ (π) shows
that p = ππ′ in R, and so p2 = N(p) = N(π)N(π′). Since π is not a unit in R,
N(π) 6= ±1, and it follows that p | N(π) | p2 in integers. Since 6 is not a prime or
the square of a prime (up to sign) in Z, (3 +

√
3) is not a prime ideal in R.

(d) We consider the following ideal of Z[X]: M = (X + 1) + (X2 − 3) = (X +
1, X2 − 3). We have

Z[X]

M
∼=

Z[X]
(X+1)

M
(X+1)

by the third isomorphism theorem. Now Z[X]/(X + 1) ∼= Z via the evaluation map
X 7→ −1, and under this isomorphism, the ideal M/(X +1) corresponds to the ideal
2Z. Hence

Z[X]
(X+1)

M
(X+1)

∼= Z
2Z

∼= F2

and therefore M is indeed a maximal ideal in Z[X].

Why did we pick M as we did? Since Z[X]/(X2−3) ∼= Z[
√

3] via the evaluation map
X 7→ √

3, the fourth isomorphism theorem tells us that the ideals of Z[X] containing
(X2−3) are in one-to-one correspondence with the ideals of Z[

√
3], and in particular

that maximal ideals correspond to maximal ideals. The third isomorphism theorem
tells us also that for any ideal I of Z[X] containing (X2 − 3) we have

Z[X]

I
∼=

Z[X]
(X2−3)

I
(X2−3)

∼= Z[
√

3]

Ī

where Ī is the ideal of Z[
√

3] corresponding to I under the isomorphism induced
by evaluation at

√
3 described above. We don’t need to know whether Z[

√
3] is a

Euclidean domain, or a PID or even a UFD. But we do know by part (a) that 1+
√

3
is an irreducible factor of 2 in Z[

√
3], and this makes it a good candidate, since a



first guess to form a maximal ideal of Z[X] containing (X2 − 3) is simply to add
in a prime element of Z, forming for example (2, X2 − 3). (Note however that this
ideal is not maximal, and in fact is not even prime, in Z[X]. Arguments similar to
the isomorphism arguments above show that Z[X]/(2, X2 − 3) ∼= F2[X]/(X + 1)2,
or also similarly, that Z[X]/(2, X2 − 3) ∼= F2[

√
3], which is not an integral domain

since (1 +
√

3)2 = 4 + 2
√

3 = 0 mod 2.) Since 2 does not remain prime in Z[
√

3]
we instead choose a (hopefully) prime (but certainly irreducible) factor of 2 such as
1+

√
3, and consider the pre-image of the ideal (1+

√
3) in Z[X] under the evaluation

map X 7→ √
3, which is precisely M. (M = (1 +

√
3) in the notation above.) That’s

how we came upon our particular M as a candidate. (Note also that maximality of
M shows that (1 +

√
3) is a maximal ideal of Z[

√
3], and hence 1 +

√
3 is a prime

factor of 2.)
Given the discussion above, we could also try to choose an integer prime p which
remains prime in Z[

√
3]. Say we have a prime p ∈ Z which remains prime in Z[

√
3].

This occurs if and only if the reduction of X2 − 3 modulo p is irreducible in Fp[X].
Let M = (p,X2 − 3). Then

Z[X]

M
∼=

Z[X]
pZ[X]

M
pZ[X]

∼= Fp[X]

(X2 − 3)

since the homomorphism “reduction of coefficients modulo p” which induces the
isomorphism Z[X]/pZ[X] ∼= (Z/pZ)[X] ∼= Fp[X] takes M to the ideal (X2 − 3) of
Fp[X], where the bar indicates reduction modulo p. But since p remains prime in

Z[
√

3], X2 − 3 is irreducible and hence prime in Fp[X], so the ideal (X2 − 3) is prime
and hence maximal in the PID Fp[X]. Therefore Z[X]/M is a field and M is a
maximal ideal. To find a particular p in order to answer the question, we note that
we have already seen that 2 does not remain irreducible in Z[

√
3], and obviously 3

becomes reducible also. However the reduction of X2−3 mod 5 remains irreducible
in F5[X] and so 5 is prime in Z[

√
3]. It follows that taking M = (5, X2 − 3) would

also work.



4. [5 marks] Do the equations

3X − 10Y = 2, 2X + 6Y = 5

have solutions in Z? If yes, determine for each equation a complete set of solutions.

Sol. 2X + 6Y = 5 certainly has no solutions in Z since the left hand side of the
equation is always even, the right hand side is odd. (A more formal way of saying
this is that 5 is not a multiple of the GCD of 2 and 6, which is 2.)
Since the GCD of 3 and 10 is 1, by the division algorithm in Z there exist integers
A and B such that 3A + 10B = 1, and then certainly 3(2A) + 10(2B) = 2, so the
first equation has solutions in Z. In particular one solution (found by observation)
to 3X − 10Y = 2 is given by X0 = 14, Y0 = 4. But then given this one particular
solution we may find all solutions:

X = X0 + m
−10

(3, 10)
= 14− 10m

Y = Y0 −m
3

(3, 10)
= 4− 3m

for any m ∈ Z.



5. [10 marks] Consider the quotient ring R = Z[X]/(X4 + 3X3 + 1).

(a) Is (2̄) ⊂ R a maximal ideal of R? Why?

(b) Is R a domain? Is R a field? Explain.

(c) Does R have any further unit besides ±1? If yes, give an example of such unit.

Sol. (a) Yes it is a maximal ideal. Let p(X) = X4 + 3X3 + 1, I = p(X)Z[X] =
(x4 + 3X3 + 1). We have (2̄) = (2Z[X] + I)/I, and the third isomorphism theorem
yields

Z[X]
I

(2̄)
=

Z[X]
I

2Z[X]+I
I

∼= Z[X]

2Z[X] + I
∼=

Z[X]
2Z[X]

2Z[X]+I
2Z[X]

∼= F2[X]

(X4 + X3 + 1)

where the last isomorphism is induced by reduction of coefficients modulo 2, which
sends p(X) to q(X) = X4 + X3 + 1. Now q(X) has no roots in F2, so has no linear
factors. Suppose q(X) = (X2 +aX +b)(X2 +cX +d) factors into quadratics over F2,
with a, b, c, d ∈ F2. Multiplying out, we find q(X) = X4+(a+c)X3+(b+d+ac)X2+
(bc + ad)X + bd. Comparing coefficients we see bd = 1 ⇒ b = d = 1 and a + c = 1 ⇒
a = 1, c = 0, without loss of generality. But then 0 = bc + ad = 1, a contradiction,
and so q(X) is irreducible over F2. Since q(X) is irreducible, F2[X]/(q(X)) is a field,
which proves that (2̄) is a maximal ideal in R.

(b) R is a domain but not a field. Since q(X) is the reduction of p(X) modulo 2
and q(X) is irreducible in F2[X], this proves that p(X) is irreducible in Z[X]. Since
Z[X] is a UFD, I is a prime ideal and so R = Z[X]/I is a domain. (2̄) is a nonzero
maximal ideal in R, hence R cannot be a field. (The only ideals of a field are the
zero ideal and the field itself.)

(c) Yes, R has units besides ±1. For example,

(X3 + 3X2 + I)(−X + I) = −X4 − 3X3 + I

= −X4 − 3X3 + p(X) + I = 1 + I

so −X + I is a unit in R which is not equal to ±1 + I, since −X ± 1 /∈ I.



6. [15 marks] Let H be a subgroup of a group G and write

Cl(H) = {g−1Hg : g ∈ G}
for the conjugacy class of H in G. Show that

|Cl(H)| = |G : NG(H)|
(NG(H) = the normalizer of H in G).

Assume that G is a finite group and prove that G cannot be the set-union of its
conjugate subgroups ( 6= G).

Sol. The group G acts on the set of its subgroups by conjugation. The orbit of
H under this action is exactly Cl(H). If G is finite, we know that |Orb(H)| =
|G|/|Stab(H)|. The stabilizer of H is NG(H). Therefore, |Cl(H)| = |G : NG(H)|. If
G is infinite, one can always argue that the map of sets

Cl(H) → {gNG(H)|g ∈ G}, T = g1Hg−1
1 7→ g1NG(G)

is (well defined) and bijective.
Now, consider H < G (i.e. a proper subgroup of G). Call |G : H| = h (note that
h > 1). Because H < NG(H), it follows that |G : NG(H)| ≤ h. Therefore, H has a
most h conjugate subgroups. All together they contain at most

(|H| − 1)h + 1 = |G| − (h− 1) < |G|
elements.



7. [10 marks] Show that a group G cannot be described as a product of two conjugate
subgroups different from G.

Sol. We prove the contrapositive. Suppose G = HgHg−1 for some H ≤ G and
g ∈ G. Since multiplication on the right by g is a bijection of G with itself, we have
G = Gg = HgHg−1g = HgH. Then we must have 1 = hgh′ for some h, h′ ∈ H, and
so g = h−1h′−1 ∈ H. Hence gHg−1 = H, and so G = H2 = H.



8. [20 marks] Show that if a group G has two normal, proper, distinct subgroups H, K
of index p > 1, p prime number, s.t. H ∩K = {1}, then:

|G| = p2 and G is not cyclic.

Sol. Let H and K be two distinct subgroups satisfying the hypothesis. Then
neither subgroup can contain the other, since in that case the contained subgroup

would then have index strictly greater than p. We have

|G| = |G : {1}| = |G : H ∩K| < ∞
since both indexes |G : H| and |G : K| are finite. Thus G cannot be cyclic, since
|H| = |G|/|G : H| = |G|/|G : K| = |K|, and cyclic groups have unique subgroups of

any given (allowable) order.
Since K is a normal subgroup of G, HK = KH is a subgroup and

H < G = NG(K), so we can apply the second isomorphism theorem to conclude
that H/(H ∩K) ∼= HK/K. Now K ≤ HK ≤ G, and since K is normal in G,
HK/K ≤ G/K. Moreover, |G/K| = p is prime, so either HK/K = {K} (the

trivial group in G/K) and hence HK = K, or HK/K = G/K and hence HK = G
(by the fourth isomorphism theorem, if you like).

If HK = K then we have H ≤ HK = K, which we have already noted is not
possible; hence HK = G. Since H ∩K = {1} we find that H is isomorphic to

G/K, so |H| = p. But then |G| = |G||H|/|H| = |G : H||H| = p2.

Note that without the assumption that H and K are distinct subgroups there is a
counterexample to the question as literally stated: take G = Z/pZ and

H = K = {1}. Then |G| = p and G is cyclic.


