THE JOHNS HOPKINS UNIVERSITY
Faculty of Arts and Sciences

FINAL EXAM - FALL SESSION 2006
110.401 - ADVANCED ALGEBRA I.

Examiner: Professor C. Consani
Duration: take home final.

No calculators allowed. Total Marks = 100

SOLUTIONS



1. [10 marks] Consider the ring of the Gaussian integers Z[i] (i = v/—1).

(a) Is 4 4+ ¢ a prime element in Z[i]?
(b) Compute the cardinality of Z[i]/(4 + ). What group is it?
(c) Find the G.C.D.(1 + 3i, 5+ 7).

Sol. (a) N(4+1i) = 4>+ 1% = 17 is a prime number in Z, and so 4 + 7 is an
irreducible element of Z[i]. Moreover, Z[i] is a Euclidean domain, and so every

irreducible element is also a prime element. Therefore 4 4 ¢ is a prime element in
Z|i].

(b) The cardinality of R = Z[i]/(4 + i) is precisely N(4 4+ i) = 17. Let [
(4 + X). By the third isomorphism theorem we have: R~ Z[X]/(X?* + 1,4 + X)
ZIX|)T/(X? 4+ 1,4+ X)/I = Z/17Z, where the last isomorphism is obtained by
noticing that X2+ 1 = —(4 + X)(4 — X) + 17 in Z[X], so that X2+ 1 = 17 in
Z[X]/I. Tt follows that R is the cyclic group of order 17.

(111

(¢c) We apply the division algorithm in Z][i]:
o+1 4 7.

143 5 5
and so we choose the approximate quotient 1 — 7, to get

5+i—(1—i)(1+3)=1—1i

Therefore
S5+i=(1—-9)(1+3i)+1—1i
where N(1 —i) =2 < N(1+ 3i) = 10. Now we repeat the process with 1 + 3i and
1 —u
143

=—1+22
11— + 2

and so
1+43i = (=1 + 2i)(1 —1)
and the division algorithm ends. The algorithm tells us that GCD(5+4, 14-37) = 1—1.



2. [20 marks| Give a proof or disprove the following statement:

Z[v/—3] is an Euclidean domain.

Sol. O = Z[%‘T)’] is a Euclidean domain, but Z[/—3] is a proper subring, so we may
have some doubts that the division algorithm of O when applied in Z[y/—3] holds
within Z[y/—3]. Similarly we may have some reasonable doubts that the unique
factorization in Z[v/—3] holds, although O is a UFD, and so we turn our attention
to the possibility of finding an element of Z[\/—3] with non-unique factorization.
We search for possible candidates among elements of Z[\/—3] with small norm, the
norm itself providing a means to discover possible factorizations. By trying out
N(a+ bi) = a® + 3b? for different small integer values of a and b, we soon find that
4=1243-12=2243.02 So4 = (1+iV3)(1 —iV3) = 2%

If « € Z[y/-3] is a unit, then there is a 3 € Z[v/=3] such that a3 = 1, and
so N(a)N(B) = 1, which shows that N(a) = 1. Conversely, if N(a) = 1, since
N(a) = aa we see that « is a unit in Z[v/=3]. Since the only integer solutions to
a’? +3b®> = 1 are a = £1,b = 0, the units of Z[/—3] are 1. If 2 = af in Z[v/—3]
then 4 = N(2) = N(a)N(B). N(a) = N(B) = 2 is impossible, since no element of
Z[\/=3] has norm 2. So without loss we have N(a) = 4, N(3) = 1 so 3 is a unit
and hence 2 is irreducible in Z[/—3]. A similar argument shows that both 1 & iv/3
are irreducible since N(1 #+4+/3) = 4 also. Therefore 4 has two factorizations into
irreducibles in Z[y/—3] which are clearly not associate, and thus Z[v/=3] is not a
UFD, so also not a Euclidean domain.



3. [10 marks] Consider the domain R = Z[v/3] := {a + bv/3 | a,b € Z}.

(a) Which among the following elements of R are invertible and why?
5+3v3, 2—+3, 1+V3, 7+4V3.
(b) Does the following equality of ideals hold in R?
(5+3V3) = (1+V3)
Explain in details your answer.
(c) Is (3 4+ v/3) a prime ideal of R? Explain in details.
(d) Determine a maximal ideal 9t C Z[X]| such that X? — 3 € 9.

Sol. (a) We need only compute norms to see which elements in the list have norm
+1, where N(a+b0v3) = a?—3b%. N(5+3v3) = -2, N2—-v3) =1, N(1+3) =
—2, N(7+4+/3) = 1. So the second and fourth elements in the list are units, the
others are not.

(b)  Yes, the equality holds since 5+ 3v/3 and 1 + /3 are associates by part (a) of
this exercice: 1++/3 = (2 —v/3)(5 + 3v/3).

(c) No it is not a prime ideal. N(3 4 v/3) = 6. If 7 is a prime element in R, then
() NZ is a prime ideal of Z, hence is pZ for some prime p € Z. Then p € (7) shows
that p = 77’ in R, and so p> = N(p) = N(m)N(x'). Since 7 is not a unit in R,
N(rm) # +1, and it follows that p | N(7) | p? in integers. Since 6 is not a prime or
the square of a prime (up to sign) in Z, (3 + /3) is not a prime ideal in R.

(d) We consider the following ideal of Z[X]: 9 = (X + 1) + (X? - 3) = (X +
1, X% —3). We have

Z[X]

Z[X] . &y
- M

M =

by the third isomorphism theorem. Now Z[X]/(X + 1) = Z via the evaluation map
X — —1, and under this isomorphism, the ideal 9t/(X + 1) corresponds to the ideal

27,. Hence
Z[X]

=+ o Z
= — = FZ
M
(X+1) 2Z

and therefore 9 is indeed a maximal ideal in Z[X].

Why did we pick 9t as we did? Since Z[X]/(X?—3) = Z[v/3] via the evaluation map
X /3, the fourth isomorphism theorem tells us that the ideals of Z[X] containing
(X2 —3) are in one-to-one correspondence with the ideals of Z[+/3], and in particular
that maximal ideals correspond to maximal ideals. The third isomorphism theorem
tells us also that for any ideal I of Z[X] containing (X? — 3) we have

Z[X]

Z[X] ~ (X2_3) ~ Z[\/g]
= i = =
I eem I

where [ is the ideal of Z[v/3] corresponding to I under the isomorphism induced
by evaluation at /3 described above. We don’t need to know whether Z[/3] is a
Euclidean domain, or a PID or even a UFD. But we do know by part (a) that 1++/3
is an irreducible factor of 2 in Z[v/3], and this makes it a good candidate, since a



first guess to form a maximal ideal of Z[X]| containing (X? — 3) is simply to add
in a prime element of Z, forming for example (2, X? — 3). (Note however that this
ideal is not maximal, and in fact is not even prime, in Z[X]. Arguments similar to
the isomorphism arguments above show that Z[X]/(2, X% — 3) = Fo[X]/(X + 1),
or also similarly, that Z[X]/(2, X? — 3) = Fy[v/3], which is not an integral domain
since (1 4++/3)2 = 4 +2v/3 = 0 mod 2.) Since 2 does not remain prime in Z[v/3]
we instead choose a (hopefully) prime (but certainly irreducible) factor of 2 such as
1++/3, and consider the pre-image of the ideal (1-++/3) in Z[X] under the evaluation
map X — /3, which is precisely 9t. (9T = (1 ++/3) in the notation above.) That’s
how we came upon our particular 9% as a candidate. (Note also that maximality of
9N shows that (1 4 v/3) is a maximal ideal of Z[v/3], and hence 1 + /3 is a prime
factor of 2.)

Given the discussion above, we could also try to choose an integer prime p which
remains prime in Z[v/3]. Say we have a prime p € Z which remains prime in Z[v/3].
This occurs if and only if the reduction of X? — 3 modulo p is irreducible in F,[X].
Let 9 = (p, X? — 3). Then

2[X]
ZIX] o N o FolX]
M pZJ\[/IX] (X2 =3)

since the homomorphism “reduction of coefficients modulo p” which induces the
isomorphism Z[X|/pZ[X]| = (Z/pZ)[X] = F,[X] takes 9 to the ideal (X? — 3) of
F,[X], where the bar indicates reduction modulo p. But since p remains prime in
Z[/3], X2 — 3 is irreducible and hence prime in F,[X], so the ideal (X2 — 3) is prime
and hence maximal in the PID F,[X]. Therefore Z[X]/9M is a field and M is a
maximal ideal. To find a particular p in order to answer the question, we note that
we have already seen that 2 does not remain irreducible in Z[v/3], and obviously 3
becomes reducible also. However the reduction of X? —3 mod 5 remains irreducible
in F5[X] and so 5 is prime in Z[v/3]. It follows that taking 9t = (5, X? — 3) would
also work.



4. [5 marks| Do the equations
3X —10Y =2, 2X46Y =5

have solutions in Z? If yes, determine for each equation a complete set of solutions.

Sol. 2X + 6Y = 5 certainly has no solutions in Z since the left hand side of the
equation is always even, the right hand side is odd. (A more formal way of saying
this is that 5 is not a multiple of the GCD of 2 and 6, which is 2.)

Since the GCD of 3 and 10 is 1, by the division algorithm in Z there exist integers
A and B such that 34 4+ 10B = 1, and then certainly 3(2A) + 10(2B) = 2, so the
first equation has solutions in Z. In particular one solution (found by observation)
to 3X — 10Y = 2 is given by Xy = 14,Y, = 4. But then given this one particular
solution we may find all solutions:

~10
X=X = 14-10
0T 10) "
Y =Y, 5 4-3
= —mM—-—- = —_ m
o 73, 10)

for any m € Z.



5. [10 marks] Consider the quotient ring R = Z[X]/(X* + 3X3 +1).
(a) Is (2) C R a maximal ideal of R? Why?
(b) Is R a domain? Is R a field? Explain.

(c¢) Does R have any further unit besides £17 If yes, give an example of such unit.

Sol. (a) Yes it is a maximal ideal. Let p(X) = X* 4+ 3X° + 1, I = p(X)Z[X] =
(z* +3X3 +1). We have (2) = (2Z[X] + I)/I, and the third isomorphism theorem
yields

Z[X]
= _ B zx] L omm oL Fy[X]
@~ EREL wX]+1 T (X + X+

where the last isomorphism is induced by reduction of coefficients modulo 2, which
sends p(X) to ¢(X) = X* + X3 + 1. Now ¢(X) has no roots in Fy, so has no linear
factors. Suppose ¢(X) = (X?+aX +b)(X?+cX +d) factors into quadratics over Fy,
with a, b, ¢, d € Fy. Multiplying out, we find ¢(X) = X*+ (a+¢) X3+ (b+d+ac) X2+
(bc+ ad) X + bd. Comparing coefficients we see bd =1 =b=d=1anda+c=1=
a = 1,c = 0, without loss of generality. But then 0 = bc 4+ ad = 1, a contradiction,
and so ¢(X) is irreducible over Fy. Since ¢(X) is irreducible, F2[X]/(¢(X)) is a field,
which proves that (2) is a maximal ideal in R.

(b) R is a domain but not a field. Since ¢(X) is the reduction of p(X) modulo 2
and ¢(X) is irreducible in Fo[X], this proves that p(X) is irreducible in Z[X]. Since

Z[X] is a UFD, I is a prime ideal and so R = Z[X]/I is a domain. (2) is a nonzero
maximal ideal in R, hence R cannot be a field. (The only ideals of a field are the
zero ideal and the field itself.)

(¢) Yes, R has units besides +1. For example,
(XP4+3X2 4+ (=X +1)=—-X*—3X3+1
=-X'"-3X°+pX)+I=1+1
so —X + [ is a unit in R which is not equal to 1 + I, since —X +1 ¢ .



6. [15 marks| Let H be a subgroup of a group G and write
CI(H)={g'Hg : g G}
for the conjugacy class of H in G. Show that
|CI(H)| = |G : Ne(H))
(N¢(H) = the normalizer of H in G).

Assume that G is a finite group and prove that G cannot be the set-union of its
conjugate subgroups (# G).

Sol. The group G acts on the set of its subgroups by conjugation. The orbit of
H under this action is exactly CI(H). If G is finite, we know that |Orb(H)| =
|G|/|Stab(H)|. The stabilizer of H is Ng(H). Therefore, |CI(H)| = |G : Ng(H)|. If
G is infinite, one can always argue that the map of sets

Cl(H) — {gN¢(H)|g € G}, T =gHg;'— a1Nc(G)

is (well defined) and bijective.
Now, consider H < G (i.e. a proper subgroup of G). Call |G : H| = h (note that
h > 1). Because H < Ng(H), it follows that |G : Ng(H)| < h. Therefore, H has a
most A conjugate subgroups. All together they contain at most

(IH| = Dh+1=[G| = (h=1) <[G]|

elements.



7. [10 marks] Show that a group G cannot be described as a product of two conjugate
subgroups different from G.

Sol. We prove the contrapositive. Suppose G = HgHg ' for some H < G and
g € (G. Since multiplication on the right by g is a bijection of G with itself, we have
G=Gg=HgHg 'g= HgH. Then we must have 1 = hgh’ for some h,h' € H, and
sog=~h"'h"t¢c H. Hence gHg ' = H, and so G = H?> = H.



8. [20 marks] Show that if a group G has two normal, proper, distinct subgroups H, K
of index p > 1, p prime number, s.t. H N K = {1}, then:

|G| = p* and G is not cyclic.

Sol. Let H and K be two distinct subgroups satisfying the hypothesis. Then
neither subgroup can contain the other, since in that case the contained subgroup
would then have index strictly greater than p. We have

Gl =|G: {1}|=|G:HNK| <

since both indexes |G : H| and |G : K| are finite. Thus G cannot be cyclic, since
|H| = |G|/|G : H| =|G|/|G : K| = |K]|, and cyclic groups have unique subgroups of
any given (allowable) order.
Since K is a normal subgroup of G, HK = K H is a subgroup and
H < G = Ng(K), so we can apply the second isomorphism theorem to conclude
that H/(HNK) = HK/K. Now K < HK < @, and since K is normal in G,
HK/K < G/K. Moreover, |G/K| = p is prime, so either HK/K = {K} (the
trivial group in G/K) and hence HK = K, or HK/K = G/K and hence HK = G
(by the fourth isomorphism theorem, if you like).
If HK = K then we have H < HK = K, which we have already noted is not
possible; hence HK = G. Since H N K = {1} we find that H is isomorphic to
G/K, so |H| = p. But then |G| = |G||H|/|H| = |G : H||H| = p*.

Note that without the assumption that H and K are distinct subgroups there is a
counterexample to the question as literally stated: take G = Z/pZ and
H = K = {1}. Then |G| = p and G is cyclic.



