THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - FALL SESSION 2006 110.401 - ADVANCED ALGEBRA I.

Examiner: Professor C. Consani Duration: take home final.

No calculators allowed.

Total Marks = 100

SOLUTIONS

- 1. [10 marks] Consider the ring of the Gaussian integers $\mathbb{Z}[i]$ $(i = \sqrt{-1})$.
 - (a) Is 4 + i a prime element in $\mathbb{Z}[i]$?
 - (b) Compute the cardinality of $\mathbb{Z}[i]/(4+i)$. What group is it?
 - (c) Find the G.C.D.(1+3i, 5+i).
 - **Sol.** (a) $N(4+i) = 4^2 + 1^2 = 17$ is a prime number in \mathbb{Z} , and so 4+i is an irreducible element of $\mathbb{Z}[i]$. Moreover, $\mathbb{Z}[i]$ is a Euclidean domain, and so every irreducible element is also a prime element. Therefore 4+i is a prime element in $\mathbb{Z}[i]$.
 - (b) The cardinality of $R = \mathbb{Z}[i]/(4+i)$ is precisely N(4+i) = 17. Let I = (4+X). By the third isomorphism theorem we have: $R \cong \mathbb{Z}[X]/(X^2+1,4+X) \cong \mathbb{Z}[X]/I/(X^2+1,4+X)/I \cong \mathbb{Z}/17\mathbb{Z}$, where the last isomorphism is obtained by noticing that $X^2+1=-(4+X)(4-X)+17$ in $\mathbb{Z}[X]$, so that $\overline{X^2+1}=\overline{17}$ in $\mathbb{Z}[X]/I$. It follows that R is the cyclic group of order 17.
 - (c) We apply the division algorithm in $\mathbb{Z}[i]$:

$$\frac{5+i}{1+3i} = \frac{4}{5} - \frac{7}{5}i$$

and so we choose the approximate quotient 1-i, to get

$$5 + i - (1 - i)(1 + 3i) = 1 - i$$

Therefore

$$5 + i = (1 - i)(1 + 3i) + 1 - i$$

where N(1-i) = 2 < N(1+3i) = 10. Now we repeat the process with 1+3i and 1-i:

$$\frac{1+3i}{1-i} = -1 + 2i$$

and so

$$1 + 3i = (-1 + 2i)(1 - i)$$

and the division algorithm ends. The algorithm tells us that GCD(5+i,1+3i) = 1-i.

2. [20 marks] Give a proof or disprove the following statement:

 $\mathbb{Z}[\sqrt{-3}]$ is an Euclidean domain.

Sol. $\mathcal{O} = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is a Euclidean domain, but $\mathbb{Z}\left[\sqrt{-3}\right]$ is a proper subring, so we may have some doubts that the division algorithm of \mathcal{O} when applied in $\mathbb{Z}[\sqrt{-3}]$ holds within $\mathbb{Z}[\sqrt{-3}]$. Similarly we may have some reasonable doubts that the unique factorization in $\mathbb{Z}[\sqrt{-3}]$ holds, although \mathcal{O} is a UFD, and so we turn our attention to the possibility of finding an element of $\mathbb{Z}[\sqrt{-3}]$ with non-unique factorization. We search for possible candidates among elements of $\mathbb{Z}[\sqrt{-3}]$ with small norm, the norm itself providing a means to discover possible factorizations. By trying out $N(a+bi) = a^2 + 3b^2$ for different small integer values of a and b, we soon find that $4 = 1^2 + 3 \cdot 1^2 = 2^2 + 3 \cdot 0^2$. So $4 = (1 + i\sqrt{3})(1 - i\sqrt{3}) = 2^2$. If $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is a unit, then there is a $\beta \in \mathbb{Z}[\sqrt{-3}]$ such that $\alpha\beta = 1$, and so $N(\alpha)N(\beta)=1$, which shows that $N(\alpha)=1$. Conversely, if $N(\alpha)=1$, since $N(\alpha) = \alpha \bar{\alpha}$ we see that α is a unit in $\mathbb{Z}[\sqrt{-3}]$. Since the only integer solutions to $a^2+3b^2=1$ are $a=\pm 1,b=0$, the units of $\mathbb{Z}[\sqrt{-3}]$ are ± 1 . If $2=\alpha\beta$ in $\mathbb{Z}[\sqrt{-3}]$ then $4 = N(2) = N(\alpha)N(\beta)$. $N(\alpha) = N(\beta) = 2$ is impossible, since no element of $\mathbb{Z}[\sqrt{-3}]$ has norm 2. So without loss we have $N(\alpha)=4, N(\beta)=1$ so β is a unit and hence 2 is irreducible in $\mathbb{Z}[\sqrt{-3}]$. A similar argument shows that both $1 \pm i\sqrt{3}$ are irreducible since $N(1 \pm i\sqrt{3}) = 4$ also. Therefore 4 has two factorizations into irreducibles in $\mathbb{Z}[\sqrt{-3}]$ which are clearly not associate, and thus $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, so also not a Euclidean domain.

- **3.** [10 marks] Consider the domain $R = \mathbb{Z}[\sqrt{3}] := \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}.$
 - (a) Which among the following elements of R are invertible and why?

$$5 + 3\sqrt{3}$$
, $2 - \sqrt{3}$, $1 + \sqrt{3}$, $7 + 4\sqrt{3}$.

(b) Does the following equality of ideals hold in R?

$$(5+3\sqrt{3}) = (1+\sqrt{3})$$

Explain in details your answer.

- (c) Is $(3 + \sqrt{3})$ a prime ideal of R? Explain in details.
- (d) Determine a maximal ideal $\mathfrak{M} \subset \mathbb{Z}[X]$ such that $X^2 3 \in \mathfrak{M}$.
- **Sol.** (a) We need only compute norms to see which elements in the list have norm ± 1 , where $N(a+b\sqrt{3})=a^2-3b^2$. $N(5+3\sqrt{3})=-2$, $N(2-\sqrt{3})=1$, $N(1+\sqrt{3})=-2$, $N(7+4\sqrt{3})=1$. So the second and fourth elements in the list are units, the others are not.
- (b) Yes, the equality holds since $5 + 3\sqrt{3}$ and $1 + \sqrt{3}$ are associates by part (a) of this exercice: $1 + \sqrt{3} = (2 \sqrt{3})(5 + 3\sqrt{3})$.
- (c) No it is not a prime ideal. $N(3+\sqrt{3})=6$. If π is a prime element in R, then $(\pi) \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z} , hence is $p\mathbb{Z}$ for some prime $p \in \mathbb{Z}$. Then $p \in (\pi)$ shows that $p = \pi \pi'$ in R, and so $p^2 = N(p) = N(\pi)N(\pi')$. Since π is not a unit in R, $N(\pi) \neq \pm 1$, and it follows that $p \mid N(\pi) \mid p^2$ in integers. Since 6 is not a prime or the square of a prime (up to sign) in \mathbb{Z} , $(3+\sqrt{3})$ is not a prime ideal in R.
- (d) We consider the following ideal of $\mathbb{Z}[X]$: $\mathfrak{M}=(X+1)+(X^2-3)=(X+1,X^2-3)$. We have

$$\frac{\mathbb{Z}[X]}{\mathfrak{M}} \cong \frac{\frac{\mathbb{Z}[X]}{(X+1)}}{\frac{\mathfrak{M}}{(X+1)}}$$

by the third isomorphism theorem. Now $\mathbb{Z}[X]/(X+1) \cong \mathbb{Z}$ via the evaluation map $X \mapsto -1$, and under this isomorphism, the ideal $\mathfrak{M}/(X+1)$ corresponds to the ideal $2\mathbb{Z}$. Hence

$$\frac{\frac{\mathbb{Z}[X]}{(X+1)}}{\frac{\mathfrak{M}}{(X+1)}} \cong \frac{\mathbb{Z}}{2\mathbb{Z}} \cong \mathbb{F}_2$$

and therefore \mathfrak{M} is indeed a maximal ideal in $\mathbb{Z}[X]$.

Why did we pick \mathfrak{M} as we did? Since $\mathbb{Z}[X]/(X^2-3)\cong\mathbb{Z}[\sqrt{3}]$ via the evaluation map $X\mapsto\sqrt{3}$, the fourth isomorphism theorem tells us that the ideals of $\mathbb{Z}[X]$ containing (X^2-3) are in one-to-one correspondence with the ideals of $\mathbb{Z}[\sqrt{3}]$, and in particular that maximal ideals correspond to maximal ideals. The third isomorphism theorem tells us also that for any ideal I of $\mathbb{Z}[X]$ containing (X^2-3) we have

$$\frac{\mathbb{Z}[X]}{I} \cong \frac{\frac{\mathbb{Z}[X]}{(X^2 - 3)}}{\frac{I}{(X^2 - 3)}} \cong \frac{\mathbb{Z}[\sqrt{3}]}{\bar{I}}$$

where \bar{I} is the ideal of $\mathbb{Z}[\sqrt{3}]$ corresponding to I under the isomorphism induced by evaluation at $\sqrt{3}$ described above. We don't need to know whether $\mathbb{Z}[\sqrt{3}]$ is a Euclidean domain, or a PID or even a UFD. But we do know by part (a) that $1+\sqrt{3}$ is an irreducible factor of 2 in $\mathbb{Z}[\sqrt{3}]$, and this makes it a good candidate, since a first guess to form a maximal ideal of $\mathbb{Z}[X]$ containing (X^2-3) is simply to add in a prime element of \mathbb{Z} , forming for example $(2,X^2-3)$. (Note however that this ideal is not maximal, and in fact is not even prime, in $\mathbb{Z}[X]$. Arguments similar to the isomorphism arguments above show that $\mathbb{Z}[X]/(2,X^2-3)\cong \mathbb{F}_2[X]/(X+1)^2$, or also similarly, that $\mathbb{Z}[X]/(2,X^2-3)\cong \mathbb{F}_2[\sqrt{3}]$, which is not an integral domain since $(1+\sqrt{3})^2=4+2\sqrt{3}=0\mod 2$.) Since 2 does not remain prime in $\mathbb{Z}[\sqrt{3}]$ we instead choose a (hopefully) prime (but certainly irreducible) factor of 2 such as $1+\sqrt{3}$, and consider the pre-image of the ideal $(1+\sqrt{3})$ in $\mathbb{Z}[X]$ under the evaluation map $X\mapsto \sqrt{3}$, which is precisely \mathfrak{M} . $(\overline{\mathfrak{M}}=(1+\sqrt{3})$ in the notation above.) That's how we came upon our particular \mathfrak{M} as a candidate. (Note also that maximality of \mathfrak{M} shows that $(1+\sqrt{3})$ is a maximal ideal of $\mathbb{Z}[\sqrt{3}]$, and hence $1+\sqrt{3}$ is a prime factor of 2.)

Given the discussion above, we could also try to choose an integer prime p which remains prime in $\mathbb{Z}[\sqrt{3}]$. Say we have a prime $p \in \mathbb{Z}$ which remains prime in $\mathbb{Z}[\sqrt{3}]$. This occurs if and only if the reduction of $X^2 - 3$ modulo p is irreducible in $\mathbb{F}_p[X]$. Let $\mathfrak{M} = (p, X^2 - 3)$. Then

$$\frac{\mathbb{Z}[X]}{\mathfrak{M}} \cong \frac{\frac{\mathbb{Z}[X]}{p\mathbb{Z}[X]}}{\frac{M}{p\mathbb{Z}[X]}} \cong \frac{\mathbb{F}_p[X]}{(X^2 - 3)}$$

since the homomorphism "reduction of coefficients modulo p" which induces the isomorphism $\mathbb{Z}[X]/p\mathbb{Z}[X]\cong (\mathbb{Z}/p\mathbb{Z})[X]\cong \mathbb{F}_p[X]$ takes \mathfrak{M} to the ideal $(\overline{X^2-3})$ of $\mathbb{F}_p[X]$, where the bar indicates reduction modulo p. But since p remains prime in $\mathbb{Z}[\sqrt{3}]$, $\overline{X^2-3}$ is irreducible and hence prime in $\mathbb{F}_p[X]$, so the ideal $(\overline{X^2-3})$ is prime and hence maximal in the PID $\mathbb{F}_p[X]$. Therefore $\mathbb{Z}[X]/\mathfrak{M}$ is a field and \mathfrak{M} is a maximal ideal. To find a particular p in order to answer the question, we note that we have already seen that 2 does not remain irreducible in $\mathbb{Z}[\sqrt{3}]$, and obviously 3 becomes reducible also. However the reduction of X^2-3 mod 5 remains irreducible in $\mathbb{F}_5[X]$ and so 5 is prime in $\mathbb{Z}[\sqrt{3}]$. It follows that taking $\mathfrak{M}=(5,X^2-3)$ would also work.

4. [5 marks] Do the equations

$$3X - 10Y = 2$$
, $2X + 6Y = 5$

have solutions in \mathbb{Z} ? If yes, determine for each equation a complete set of solutions.

Sol. 2X + 6Y = 5 certainly has no solutions in \mathbb{Z} since the left hand side of the equation is always even, the right hand side is odd. (A more formal way of saying this is that 5 is not a multiple of the GCD of 2 and 6, which is 2.)

Since the GCD of 3 and 10 is 1, by the division algorithm in \mathbb{Z} there exist integers A and B such that 3A + 10B = 1, and then certainly 3(2A) + 10(2B) = 2, so the first equation has solutions in \mathbb{Z} . In particular one solution (found by observation) to 3X - 10Y = 2 is given by $X_0 = 14, Y_0 = 4$. But then given this one particular solution we may find all solutions:

$$X = X_0 + m \frac{-10}{(3,10)} = 14 - 10m$$

$$Y = Y_0 - m \frac{3}{(3,10)} = 4 - 3m$$

for any $m \in \mathbb{Z}$.

- **5.** [10 marks] Consider the quotient ring $R = \mathbb{Z}[X]/(X^4 + 3X^3 + 1)$.
 - (a) Is $(\bar{2}) \subset R$ a maximal ideal of R? Why?
 - (b) Is R a domain? Is R a field? Explain.
 - (c) Does R have any further unit besides ± 1 ? If yes, give an example of such unit.

Sol. (a) Yes it is a maximal ideal. Let $p(X) = X^4 + 3X^3 + 1$, $I = p(X)\mathbb{Z}[X] = (x^4 + 3X^3 + 1)$. We have $(\bar{2}) = (2\mathbb{Z}[X] + I)/I$, and the third isomorphism theorem yields

$$\frac{\frac{\mathbb{Z}[X]}{I}}{(\bar{2})} = \frac{\frac{\mathbb{Z}[X]}{I}}{\frac{2\mathbb{Z}[X]+I}{I}} \cong \frac{\mathbb{Z}[X]}{2\mathbb{Z}[X]+I} \cong \frac{\frac{\mathbb{Z}[X]}{2\mathbb{Z}[X]}}{\frac{2\mathbb{Z}[X]+I}{2\mathbb{Z}[X]}} \cong \frac{\mathbb{F}_2[X]}{(X^4 + X^3 + 1)}$$

where the last isomorphism is induced by reduction of coefficients modulo 2, which sends p(X) to $q(X) = X^4 + X^3 + 1$. Now q(X) has no roots in \mathbb{F}_2 , so has no linear factors. Suppose $q(X) = (X^2 + aX + b)(X^2 + cX + d)$ factors into quadratics over \mathbb{F}_2 , with $a, b, c, d \in \mathbb{F}_2$. Multiplying out, we find $q(X) = X^4 + (a+c)X^3 + (b+d+ac)X^2 + (bc+ad)X + bd$. Comparing coefficients we see $bd = 1 \Rightarrow b = d = 1$ and $a+c=1 \Rightarrow a=1, c=0$, without loss of generality. But then 0 = bc + ad = 1, a contradiction, and so q(X) is irreducible over \mathbb{F}_2 . Since q(X) is irreducible, $\mathbb{F}_2[X]/(q(X))$ is a field, which proves that $(\bar{2})$ is a maximal ideal in R.

- (b) R is a domain but not a field. Since q(X) is the reduction of p(X) modulo 2 and q(X) is irreducible in $\mathbb{F}_2[X]$, this proves that p(X) is irreducible in $\mathbb{Z}[X]$. Since $\mathbb{Z}[X]$ is a UFD, I is a prime ideal and so $R = \mathbb{Z}[X]/I$ is a domain. ($\overline{2}$) is a nonzero maximal ideal in R, hence R cannot be a field. (The only ideals of a field are the zero ideal and the field itself.)
- (c) Yes, R has units besides ± 1 . For example,

$$(X^{3} + 3X^{2} + I)(-X + I) = -X^{4} - 3X^{3} + I$$
$$= -X^{4} - 3X^{3} + p(X) + I = 1 + I$$

so -X + I is a unit in R which is not equal to $\pm 1 + I$, since $-X \pm 1 \notin I$.

6. [15 marks] Let H be a subgroup of a group G and write

$$Cl(H) = \{g^{-1}Hg : g \in G\}$$

for the conjugacy class of H in G. Show that

$$|Cl(H)| = |G: N_G(H)|$$

 $(N_G(H))$ = the normalizer of H in G).

Assume that G is a finite group and prove that G cannot be the set-union of its conjugate subgroups $(\neq G)$.

Sol. The group G acts on the set of its subgroups by conjugation. The orbit of H under this action is exactly Cl(H). If G is finite, we know that |Orb(H)| = |G|/|Stab(H)|. The stabilizer of H is $N_G(H)$. Therefore, $|Cl(H)| = |G:N_G(H)|$. If G is infinite, one can always argue that the map of sets

$$Cl(H) \to \{gN_G(H)|g \in G\}, \quad T = g_1Hg_1^{-1} \mapsto g_1N_G(G)$$

is (well defined) and bijective.

Now, consider H < G (i.e. a proper subgroup of G). Call |G:H| = h (note that h > 1). Because $H < N_G(H)$, it follows that $|G:N_G(H)| \le h$. Therefore, H has a most h conjugate subgroups. All together they contain at most

$$(|H| - 1)h + 1 = |G| - (h - 1) < |G|$$

elements.

- 7. [10 marks] Show that a group G cannot be described as a product of two conjugate subgroups different from G.
 - **Sol.** We prove the contrapositive. Suppose $G=HgHg^{-1}$ for some $H\leq G$ and $g\in G$. Since multiplication on the right by g is a bijection of G with itself, we have $G=Gg=HgHg^{-1}g=HgH$. Then we must have 1=hgh' for some $h,h'\in H$, and so $g=h^{-1}h'^{-1}\in H$. Hence $gHg^{-1}=H$, and so $G=H^2=H$.

8. [20 marks] Show that if a group G has two normal, proper, distinct subgroups H, K of index p > 1, p prime number, s.t. $H \cap K = \{1\}$, then:

$$|G| = p^2$$
 and G is not cyclic.

Sol. Let H and K be two distinct subgroups satisfying the hypothesis. Then neither subgroup can contain the other, since in that case the contained subgroup would then have index strictly greater than p. We have

$$|G| = |G: \{1\}| = |G: H \cap K| < \infty$$

since both indexes |G:H| and |G:K| are finite. Thus G cannot be cyclic, since |H| = |G|/|G:H| = |G|/|G:K| = |K|, and cyclic groups have unique subgroups of any given (allowable) order.

Since K is a normal subgroup of G, HK = KH is a subgroup and $H < G = N_G(K)$, so we can apply the second isomorphism theorem to conclude that $H/(H \cap K) \cong HK/K$. Now $K \leq HK \leq G$, and since K is normal in G, $HK/K \leq G/K$. Moreover, |G/K| = p is prime, so either $HK/K = \{K\}$ (the trivial group in G/K) and hence HK = K, or HK/K = G/K and hence HK = G (by the fourth isomorphism theorem, if you like).

If HK = K then we have $H \le HK = K$, which we have already noted is not possible; hence HK = G. Since $H \cap K = \{1\}$ we find that H is isomorphic to G/K, so |H| = p. But then $|G| = |G||H|/|H| = |G||H||H| = p^2$.

Note that without the assumption that H and K are distinct subgroups there is a counterexample to the question as literally stated: take $G = \mathbb{Z}/p\mathbb{Z}$ and $H = K = \{1\}$. Then |G| = p and G is cyclic.