THE JOHNS HOPKINS UNIVERSITY
 Faculty of Arts and Sciences
 SECOND TEST - SPRING SESSION 2005
 110.201 - LINEAR ALGEBRA.

Examiner: Professor C. Consani
Duration: 50 minutes, April 27, 2005

No calculators allowed.
Total Marks $=100$

1. [25 marks] In \mathbb{R}^{3}, find the point P on the plane described by the equation

$$
x+y-z=0
$$

which is closest to $\underline{b}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
Sol. Every point on the plane described by the equation $x+y-z=0$ is a solution to

$$
\left[\begin{array}{lll}
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
$$

The special solutions $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are a basis for the 2-dimensional plane in \mathbb{R}^{3}.
The least squares solution \underline{x} to the system

$$
\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] \underline{x}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

determines the point P that is closest to \underline{b}. Let $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$.
In particular we get

$$
\begin{aligned}
A^{T} A \underline{x} & =A^{T} \underline{b} \quad \text { that is } \\
{\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \underline{x} } & =\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \quad \text { i.e. } \quad \underline{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Hence, $A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $P=(1,0,1)$.
2. [25 marks] Give an orthonormal basis for the image of the linear transformation described by the matrix

$$
\left[\begin{array}{ccc}
1 & 3 & 8 \\
1 & 3 & 0 \\
1 & -1 & 0 \\
1 & -1 & 0
\end{array}\right] .
$$

Sol. Use the Gram-Schmidt process:

$$
\begin{gathered}
\underline{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \leadsto \underline{u}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
\underline{v}_{2}=\left[\begin{array}{c}
3 \\
3 \\
-1 \\
-1
\end{array}\right]-\left(\underline{u}_{1} \cdot\left[\begin{array}{c}
3 \\
3 \\
-1 \\
-1
\end{array}\right]\right) \underline{u}_{1}=\left[\begin{array}{c}
2 \\
2 \\
-2 \\
-2
\end{array}\right] \quad \underline{u}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \\
\underline{v}_{3}=\left[\begin{array}{l}
8 \\
0 \\
0 \\
0
\end{array}\right]-\left(\underline{u}_{1} \cdot\left[\begin{array}{l}
8 \\
0 \\
0 \\
0
\end{array}\right]\right) \underline{u}_{1}-\left(\underline{u}_{2} \cdot\left[\begin{array}{l}
8 \\
0 \\
0 \\
0
\end{array}\right]\right) \underline{u}_{2}=\left[\begin{array}{c}
4 \\
-4 \\
0 \\
0
\end{array}\right] \leadsto \underline{u}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right] .
\end{gathered}
$$

3. Consider the matrix $A=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4\end{array}\right]$
a) [10 marks] Find $\operatorname{det}(A)$.

Sol. We can obtain an upper-traingular matrix via two row-exchanges. Exchange rows 1 and 4; exchange rows 2 and 3 .
Two row exchanges: determinant does not change sign. The determinant of the upper-triangular matrix is: $1 \cdot 2 \cdot 3 \cdot 4=24$.
b) $[\mathbf{1 0}$ marks $]$ Find $\operatorname{det}\left(\frac{1}{2} A\right)$.

Sol. $\operatorname{det}\left(\frac{1}{2} A\right)=\left(\frac{1}{2}\right)^{4} \operatorname{det}(A)=\frac{3}{2}$
c) [5 marks] Is A diagonalizable? Why?

Sol. The 4 eigenvalues of A are distinct, hence A is diagonalizable.
4. Suppose the following information is known about a matrix A

$$
A\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=6\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad A\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \quad A\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] .
$$

a) [10 marks] Find the eigenvalues of A.

Sol. The first two results show that 6 and 3 are eigenvalues of A. The last two results show that there are (at least) two different solutions to the system

$$
A \underline{x}=\left[\begin{array}{c}
3 \\
-3 \\
3
\end{array}\right]
$$

In other words, A has non-trivial nullspace, which means

$$
A \underline{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\lambda_{3} \underline{x}
$$

where \underline{x} is a non-zero vector and λ_{3} must be zero. Therefore, the eigenvalues are $\lambda_{1}=6, \lambda_{2}=3, \lambda_{3}=0$.
b) [10 marks] Find the corresponding eigenspaces.

Sol. The first two results show that $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ are eigenvectors of A. We can find the third eigenvector that satisfies $A \underline{x}=\underline{0}$ via

$$
A\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]-A\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]=A\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\underline{0}
$$

that is $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ is the third eigenvector.
c) [5 marks] In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit
Is A a diagonalizable matrix? Is A an invertible matrix? Is A a projection matrix?
Sol. A is diagonalizable as A has distinct eigenvalues (or because the eigenvectors are linearly independent). A is not invertible, as one of the eigenvalues is zero. A is not a projection matrix, as the eigenvalues of a projection matrix are either 1 or 0 .

