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Theorem

If there is a relationship between two tensor fields in one coordinate
system, that relationship holds in certain other coordinate systems

This means the laws of physics can be expressed as relationships
between tensors!
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Einstein's field equations govern general relativity,
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The Dual Space

Let V be an n-dimensional vector space over R

Definition

Given u,w € V and A € R, a covector is a map
a:V —=>R

satisfying a(u + Aw) = a(u) + Aa(w)

Covectors form the dual space V*
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Linear algebra 101

Given a basis e, of V,

7
u € V can be represented as | 11
13

there is a corresponding basis e of V*
a € V* can be represented as (0 1 O)
Naturally, a: V — R
7

(0 1 0)|11] =(0)7+1(11)+ (0)13 =11
13
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Multilinear maps

A multilinear map is linear in each argument, i.e.

t(out+Adw, ) =t u, )+ At )

We've already seen multilinear maps:

Covectors, a: V — R
u— (o, u)
Vectors, v : V¥ — R
a— (a, u)
(Think of scalars like a: ) — R
— a)
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t:Vx...x\/JxV*x...xV*—ﬂR
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Examples of tensors

A tensor of type (g) is a multilinear map

t:V><...><\/J><V*><...><V*—>R
q p

m 2 (é) tensor t : V* — R is a vector

Ea ((1)) tensor t : V — R is a covector

m 2 (8) tensor t :— R is a scalar
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Components of a Tensor

A tensor is completely determined by its values on all combinations
of the basis vectors

Definition

These values are called components

£ = t(ea, s ebi €5, ..y €%)

a,



Representing tensors with components



Representing tensors with components

((1)) tensor



Representing tensors with components

%1

1) tensor v
(o)

V3



Representing tensors with components

%1

1) tensor v
(o)

V3

((1)) tensor



Representing tensors with components

%1

1) tensor v
(o)

V3

((1)) tensor (al a?



Representing tensors with components

%1

1) tensor v
(o)

V3

((1)) tensor (al «Q

(}) tensor



Representing tensors with components

%1

1) tensor v
(o)

V3

((1)) tensor (al a?

(}) tensor (ol a?) (tf



Representing tensors with components

%1

1) tensor v
(o)

V3

((1)) tensor (al «Q a3)

tt t3\ (v
() tensor  (ad  a?) (é é) <V;>

(é) tensor



Representing tensors with components

%1

1) tensor v
(o)

V3

((1)) tensor (al «Q a3)

tt t3\ (v
() tensor  (ad  a?) (é é) <V;>

(é) tensor ?7?
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Tensor fields

Definition

A tensor field of type (Z) assigns a tensor of type (Z) to every
point in a manifold (more general kind of mathematical space than
Euclidean space)?
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Theorem

If there is a relationship between two tensor fields in one coordinate
system, that relationship holds in certain other coordinate systems

This means the laws of physics can be expressed as relationships
between tensors!
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A few more examples

Newton's three laws are only invariant in inertial frames

Einstein’s field equations govern general relativity,
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