Tensors In 10 Minutes Or Less

Sydney Timmerman Under the esteemed mentorship of Apurva Nakade

December 5, 2018 JHU Math Directed Reading Program

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

If there is a relationship between two tensor fields in one coordinate system, that relationship holds in certain other coordinate systems

Theorem

If there is a relationship between two tensor fields in one coordinate system, that relationship holds in certain other coordinate systems

This means the laws of physics can be expressed as relationships between tensors!

What tensors look like

What tensors look like

Example

Einstein's field equations govern general relativity,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Dual Space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition

Given $u, w \in V$ and $\lambda \in \mathbb{R}$, a *covector* is a map

 $\alpha: V \to \mathbb{R}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

Given $u, w \in V$ and $\lambda \in \mathbb{R}$, a *covector* is a map

 $\alpha: \mathbf{V} \to \mathbb{R}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

satisfying $\alpha(u + \lambda w) = \alpha(u) + \lambda \alpha(w)$

Definition

Given $u, w \in V$ and $\lambda \in \mathbb{R}$, a *covector* is a map

 $\alpha: V \to \mathbb{R}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

satisfying $\alpha(u + \lambda w) = \alpha(u) + \lambda \alpha(w)$

Definition

Covectors form the dual space V^*

Given a basis e_a of V,

Given a basis e_a of V,

$$u \in V$$
 can be represented as $\begin{pmatrix} 7 \\ 11 \\ 13 \end{pmatrix}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Given a basis e_a of V,

$$u \in V$$
 can be represented as $\begin{pmatrix} 7\\11\\13 \end{pmatrix}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

there is a corresponding basis e^a of V^*

Given a basis e_a of V,

$$u \in V$$
 can be represented as $\begin{pmatrix} 7\\11\\13 \end{pmatrix}$

there is a corresponding basis e^a of V^*

 $\alpha \in V^*$ can be represented as $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given a basis e_a of V,

$$u \in V$$
 can be represented as $\begin{pmatrix} 7\\11\\13 \end{pmatrix}$

there is a corresponding basis e^a of V^*

 $\alpha \in V^*$ can be represented as $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Naturally, $\alpha: V \mapsto \mathbb{R}$

Given a basis e_a of V,

$$u \in V$$
 can be represented as $\begin{pmatrix} 7\\11\\13 \end{pmatrix}$

there is a corresponding basis e^a of V^*

 $\alpha \in V^*$ can be represented as $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

Naturally, $\alpha: V \mapsto \mathbb{R}$

 $(0 \quad 1 \quad 0)$

Given a basis e_a of V,

$$u \in V$$
 can be represented as $\begin{pmatrix} 7\\11\\13 \end{pmatrix}$

there is a corresponding basis e^a of V^*

 $\alpha \in V^*$ can be represented as $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Naturally, $\alpha: \mathit{V} \mapsto \mathbb{R}$

$$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 7 \\ 11 \\ 13 \end{pmatrix}$$

Given a basis e_a of V,

$$u \in V$$
 can be represented as $\begin{pmatrix} 7\\11\\13 \end{pmatrix}$

there is a corresponding basis e^a of V^*

 $\alpha \in V^*$ can be represented as $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

Naturally, $\alpha: \mathit{V} \mapsto \mathbb{R}$

$$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 7 \\ 11 \\ 13 \end{pmatrix} = (0)7 + 1(11) + (0)13 = 11$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A multilinear map is linear in each argument, i.e.

$$t(..., u + \lambda w, ...) = t(..., u, ...) + \lambda t(..., u, ...)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

A multilinear map is linear in each argument, i.e.

$$t(..., u + \lambda w, ...) = t(..., u, ...) + \lambda t(..., u, ...)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We've already seen multilinear maps:

Definition

A multilinear map is linear in each argument, i.e.

$$t(..., u + \lambda w, ...) = t(..., u, ...) + \lambda t(..., u, ...)$$

We've already seen multilinear maps:

Covectors,
$$\alpha : V \mapsto \mathbb{R}$$

 $u \to \langle \alpha, u \rangle$
Vectors, $v : V^* \mapsto \mathbb{R}$
 $\alpha \to \langle \alpha, u \rangle$
(Think of scalars like $a : \emptyset \mapsto \mathbb{R}$
 $\to a$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition A tensor of type $\binom{p}{q}$ is a multilinear map $t: \underbrace{V \times ... \times V}_{q} \times \underbrace{V^* \times ... \times V^*}_{p} \to \mathbb{R}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition A tensor of type $\binom{p}{q}$ is a multilinear map $t: \underbrace{V \times ... \times V}_{q} \times \underbrace{V^* \times ... \times V^*}_{p} \to \mathbb{R}$

Example

$$lacksymbol{ extbf{a}}$$
 a $inom{1}{0}$ tensor $t:V^* o\mathbb{R}$ is a vector

Definition

A *tensor* of type $\binom{p}{q}$ is a multilinear map

$$t: \underbrace{V \times ... \times V}_{q} \times \underbrace{V^* \times ... \times V^*}_{p}
ightarrow \mathbb{R}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

■ a
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 tensor $t : V^* \to \mathbb{R}$ is a vector
■ a $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ tensor $t : V \to \mathbb{R}$ is a covector

Definition

A *tensor* of type $\binom{p}{q}$ is a multilinear map

$$t: \underbrace{V \times ... \times V}_{q} \times \underbrace{V^* \times ... \times V^*}_{p}
ightarrow \mathbb{R}$$

Example

Г

. ~

$$lacksymbol{i}$$
 a $inom{1}{0}$ tensor $t:V^* o\mathbb{R}$ is a vector

• a
$$\binom{0}{1}$$
 tensor $t: V o \mathbb{R}$ is a covector

• a
$$inom{0}{0}$$
 tensor $t: o\mathbb{R}$ is a scalar

Components of a Tensor

(ロ)、

Components of a Tensor

A tensor is completely determined by its values on all combinations of the basis vectors

(ロ)、(型)、(E)、(E)、 E) の(の)

Components of a Tensor

A tensor is completely determined by its values on all combinations of the basis vectors

Definition

These values are called components

$$t^{c,...,d}_{a,...,b} \coloneqq t(e_a,...,e_b;e^c,...,e^d)$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ tensor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $^{1}\text{value of tensor field must vary smoothly from point to point (\textbf{m} + \textbf{m} \textbf{m}) = - \mathfrak{O} \triangleleft \mathfrak{O}$

Definition

A *tensor field* of type $\binom{p}{q}$ assigns a tensor of type $\binom{p}{q}$ to every point in a manifold (more general kind of mathematical space than Euclidean space)¹

Definition

A *tensor field* of type $\binom{p}{q}$ assigns a tensor of type $\binom{p}{q}$ to every point in a manifold (more general kind of mathematical space than Euclidean space)¹

Definition

A *tensor field* of type $\binom{p}{q}$ assigns a tensor of type $\binom{p}{q}$ to every point in a manifold (more general kind of mathematical space than Euclidean space)¹

¹value of tensor field must vary smoothly from point to point a second second

Theorem

If there is a relationship between two tensor fields in one coordinate system, that relationship holds in certain other coordinate systems

Theorem

If there is a relationship between two tensor fields in one coordinate system, that relationship holds in certain other coordinate systems

This means the laws of physics can be expressed as relationships between tensors!

A few more examples

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A few more examples

Example

Newton's three laws are only invariant in inertial frames

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A few more examples

Example

Newton's three laws are only invariant in inertial frames

Example

Einstein's field equations govern general relativity,

$$\underbrace{G_{\mu\nu}}_{\begin{pmatrix} 0\\2 \end{pmatrix} \text{ tensor }} = \frac{8\pi G}{c^4} \underbrace{T_{\mu\nu}}_{\begin{pmatrix} 0\\2 \end{pmatrix} \text{ tensor }}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

http://farside.ph.utexas.edu/teaching/em/lectures/node112

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- https://en.wikipedia.org/wiki/Vector_field
- Zerai, Mourad Moakher, Maher. (2007). Riemannian level-set methods for tensor-valued data.