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Why tensors are cool, kids

Theorem

If there is a relationship between two tensor fields in one coordinate
system, that relationship holds in certain other coordinate systems

This means the laws of physics can be expressed as relationships
between tensors!



Why tensors are cool, kids

Theorem

If there is a relationship between two tensor fields in one coordinate
system, that relationship holds in certain other coordinate systems

This means the laws of physics can be expressed as relationships
between tensors!



Why tensors are cool, kids

Theorem

If there is a relationship between two tensor fields in one coordinate
system, that relationship holds in certain other coordinate systems

This means the laws of physics can be expressed as relationships
between tensors!



What tensors look like

Example

Einstein’s field equations govern general relativity,

Gµν︸︷︷︸
(02) tensor

=
8πG

c4
Tµν︸︷︷︸

(02) tensor



What tensors look like

Example

Einstein’s field equations govern general relativity,

Gµν︸︷︷︸
(02) tensor

=
8πG

c4
Tµν︸︷︷︸

(02) tensor



The Dual Space

Let V be an n-dimensional vector space over R

Definition

Given u,w ∈ V and λ ∈ R, a covector is a map

α : V → R

satisfying α(u + λw) = α(u) + λα(w)
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Covectors form the dual space V ∗
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Linear algebra 101

Given a basis ea of V ,

u ∈ V can be represented as

 7
11
13


there is a corresponding basis ea of V ∗

α ∈ V ∗ can be represented as
(
0 1 0

)
Naturally, α : V 7→ R

(
0 1 0

)  7
11
13

 = (0)7 + 1(11) + (0)13 = 11
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Multilinear maps

Definition

A multilinear map is linear in each argument, i.e.

t(..., u + λw , ...) = t(..., u, ...) + λt(..., u, ...)

We’ve already seen multilinear maps:

Covectors, α : V 7→ R
u → 〈α, u〉

Vectors, v : V ∗ 7→ R
α→ 〈α, u〉

(Think of scalars like a : ∅ 7→ R
→ a)
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Examples of tensors

Definition

A tensor of type
(p
q

)
is a multilinear map

t : V × ...× V︸ ︷︷ ︸
q

×V ∗ × ...× V ∗︸ ︷︷ ︸
p

→ R

Example

a
(1
0

)
tensor t : V ∗ → R is a vector

a
(0
1

)
tensor t : V → R is a covector

a
(0
0

)
tensor t :→ R is a scalar
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Components of a Tensor

A tensor is completely determined by its values on all combinations
of the basis vectors

Definition

These values are called components

tc,...,da,...,b := t(ea, ..., eb; ec , ..., ed)
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Tensor fields

Definition

A tensor field of type
(p
q

)
assigns a tensor of type

(p
q

)
to every

point in a manifold (more general kind of mathematical space than
Euclidean space)1

1value of tensor field must vary smoothly from point to point
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