Elements of co-Category Theory

Emily Riehl and Dominic Verity

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD 21218, USA
Email address: eriehl@math.jhu.edu

CENTRE OF AUSTRALIAN CATEGORY THEORY, MACQUARIE UNIVERSITY, NSW 2109, AUSTRALIA
Email address: dominic.verity@mq.edu.au



This text is a rapidly-evolving work in progress — use at your own risk. The most recent version can
always be found here:

www.math.jhu.edu/~eriehl/elements.pdf
We would be delighted to hear about any comments, corrections, or confusions readers might have.
Please send to:
eriehl@math.jhu.edu

Commenced on January 14, 2018.

Last modified on August 25, 2020.


http://www.math.jhu.edu/~eriehl/elements.pdf
mailto:eriehl@math.jhu.edu

We would like to dedicate this book to our supervisors: .M.E. Hyland and ].P. May.

Peter —

My debt to you is evident in everything that I write. I found
it astounding that, after each of three or four consecutive close-
readings of my thesis in which you suggested complete structural
revisions, your advice remained entirely correct every time. You
taught me to derive immense pleasure from each comprehensive
reappraisal that is demanded whenever deepened machematical un-
derstanding allows a more fundamental narrative to emerge.

By that standard, this text isn’t ready yet. Nevertheless, in honor
of your 80th birthday, I wanted to dedicate an early draft to you.
I'm hoping you'll like the final version.

— Emily






Preface

Contents

Aims of this text
Acknowledgments

Part I. Basic co-category theory

Chapter 1. 00-Cosmoi and their homotopy 2-categories

1.1
1.2.
1.3.
1.4.

Quasi-categories
00-Cosmoi
Cosmological functors

The homotopy 2-category

Chapter 2. Adjunctions, limits, and colimits I

2.1
22.
23.
2.4.

Adjunctions and equivalences
Initial and terminal elements
Limits and colimits

Preservation of limits and colimits

Chapter 3. Weak 2-limits in the homotopy 2-category

3.1
3.2.
3.3.
34.
3.5.
3.6.

Smothering functors

oo-categories of arrows

Pullbacks and limits of towers

The comma construction

Representable comma co-categories

Sliced homotopy 2-categories and fibered equivalences

Chapter 4. Adjunctions, limits, and colimits II

4.1.
4.2.
43.
4.4.

The universal property of adjunctions
oo-categories of cones

The universal property of limits and colimits
Loops and suspension in pointed co-categories

Chapter 5. Fibrations and Yoneda’s lemma

5.1.
5.2.
5.3.
54.
5.5.

The 2-category theory of cartesian fibrations
Cocartesian fibrations and bifibrations

The quasi-category theory of cartesian fibrations
Discrete cartesian fibrations

The external Yoneda lemma

xi
xii
Xiv

w

24
26

33
33
39
42
47

51
52
55
60
63
69
78

87
87
90
93
103

109
109
129
132
136
142



Parc I1.

Homotopy coherent category thCOI‘y

Chapter 6.  Homotopy coherent diagrams

6.1.  Simplicial computads

6.2.  Free resolutions and homotopy coherent simplices

6.3.  Homotopy coherent realization and the homotopy coherent nerve
6.4.  Homotopy coherent realizations of joins

6.5. Hom spaces in quasi-categories

Chapter 7. Weighted limits in co-cosmoi

71.  Weighted limits and colimits

7.2.  Flexible weighted limits and the collage construction

7.3.  Homotopical properties of flexible weighed limits

74. Flexible weighted homotopy limits model co-categorical limits
7.5.  Weak 2-limits revisited

Chapter 8. Exotic 0co-cosmoi

8.1.
8.2.

The oo-cosmos of isofibrations
Replete sub co-cosmoi

Chapter 9. Homotopy coherent adjunctions
9.1. The free homotopy coherent adjunction
9.2.  Homotopy coherent adjunction data
9.3.  Building homotopy coherent adjunctions
9.4.  Homotopical uniqueness of homotopy coherent adjunctions

Chapter 10.  The formal theory of homotopy coherent monads
10.1.  Homotopy coherent monads
10.2.  Homotopy coherent algebras and the monadic adjunction
10.3.  Limits and colimits in the co-category of algebras
10.4.  The monadicity theorem
10.5.  Monadic descent
10.6. Homotopy coherent monad maps

Part III. The calculus of modules

Chapter 1. Two-sided fibrations
111, Four equivalent definitions of two-sided fibrations
11.2.  The co-cosmos of two-sided fibrations
11.3.  Representable two-sided fibrations and the Yoneda lemma
11.4. Modules as discrete two-sided fibrations

Chapter 12.  The calculus of modules
121, The double category of two-sided fibrations
12.2. The virtual equipment of modules
12.3.  Composition of modules
124.  Representable modules

Chapter 13. Formal category theory in a virtual equipment

vi

151

153
154
159
163
170
176

187
187
193
199
205
215

217
217
219

231
232
243
250
253

261
261
264
270
274
284
291

297

299
299
306
309
314

319
320
327
331
337

345



13.1.  Liftings and extensions of modules

13.2.  Exact squares

133.  Pointwise right and left extensions

13.4.  Formal category theory in a virtual equipment
13.5.  Limits and colimits in cartesian closed co-cosmoi
13.6.  Weighted limits and colimits of co-categories

Part IV. Change of model and model independence

Chapter 14.  Cosmological biequivalences
14.1. Cosmo]ogica] functors
14.2.  Cosmological biequivalences as change-of-model functors
14.3.  Properties of change-of-model functors
14.4.  Inverse cosmological biequivalences

Chapter 15 Proof of model independence
15.1.  Ad hoc model invariance
15.2.  The context for the model independence theorem
153. A biequivalence of virtual equipments

Chapter 16.  Applications of model-independence
16.1.  Cores and opposites of (00, 1)-categories
16.2. Pointwise universal properties
16.3.  Strongly generating functors
16.4.  Complete and cocomplete (00, 1)-categories

Part V. Yoneda stuff

Chapter 17. The comprehension construction
17.1. Extending cocartesian cones

172. A global reinterpretation of the global lifting property

17.3.  Homotopical uniqueness of extended homotopy coherent cones

17.4.  The comprehension construction

Chapter 18.  The external and internal Yoneda embeddings
18.1.  The external Yoneda embedding
18.2.  The internal Yoneda lemma
18.3. Preservation of limits by the external Yoneda embedding
18.4. Limit and colimit constructions

Chapter 19.  Cartesian exponentiation and monadicity
19.1.  Pullback along a cocartesian fibration as an oplax colimit
19.2.  Pushforward along a cocartesian fibration
19.3.  Pullback and pushforward along a cocartesian fibration
19.4.  Exponentiation
19.5.  Co/monadicity of cartesian fibrations
19.6.  Homs for modules between quasi-categories
19.7.  Existence of pointwise Kan extensions

vii

345
352
357
360
362
367

371

373
373
378
382
386

399
399
400
403

407
407
414
427
431

439

443
444
453
462
464

471
471
475
479
483

493
496
506
514
517
522
526
529



Appendix of Abstract Nonsense

Appendix A.  Basic concepts of enriched category theory

Al
A2.
A3.
A4
Ab.
A.6.

Cartesian closed categories

Enriched categories

Enriched natural transformations and the enriched Yoneda lemma
Tensors and cotensors

Conical limits

Change of base

Appendix B.  An introduction to 2-category theory

B.1.
B.2.
B.3.

BA4.

B.5.

B.6.

2-categories and the calculus of pasting diagrams

The 3-category of 2-categories

Adjunctions and mates

Right adjoint right inverse adjunctions

A bestiary OFZ—Categorica] lemmas

Representable characterizations of‘Z—categorical notions

Appendix C.  Abstract homotopy theory

C.l
C.2
C3.
C4.
Cb5.

Abstract homotopy theory in a category of fibrant objects

Lifting properties, weak factorization systems, and Leibniz closure
Model categories and Quillen functors

Reedy categories and canonical presentations

The Reedy model structure

Appendix of Concrete Calculations

Appendix D.  The combinatorics of (marked) simplicial sets

D.1.

D.2.
D3.
DA4.
D.5.
D.6.

D.7.

D.8.

Complicial sets

The join and slice constructions

Leibniz stability of cartesian products

Isomorphisms and naturally marked quasi-categories

Isofibrations between quasi-categories

Equivalence between slices and cones

Equivalences and saturation

Marked homotopy coherent realization and the marked homotopy coherent nerve

Appendix E.  0o-cosmoi found in nature

E.l
E.2.
E3.
E.4.
E.5.

Quasi-categorically enriched model categories
00-cosmoi of (00, 1)-categories

00-cosmoi of (00, 11)-categories

Other examples

00-cosmoi with non-cofibrant objects

Appendix F.  Compatibility with the analytic theory of quasi-categories

F.1.
F2.
E3.

Initial and terminal elements
Limits and colimits
Right adjoint right inverse adjunctions

viii

533

535
536
539
542
547
550
552

559
559
564
566
569
572
574

579
579
587
594
599
605

617

619
619
625
634
642
657
663
667
677

691
691
694
701
708
708

709
709
712
713



F.4. Cartesian and cocartesian fibrations 715

F5.  Adjunctions 722
Bibliography 729






Preface

Mathematical objects of a certain sophistication are frequently accompanied by higher homotopi-
cal structures: maps between them might be connected by homotopies, which might then be connected
by higher homotopies, which might then be connected by even higher homotopies ad infinitcum. The
natural habitat for such mathematical objects is not an ordinary 1-category but instead an co-category
or, more precisely, an (00, 1)-category, with the index “1” referring to the fact that its morphisms above
the lowest dimension 1, the homotopies just discussed, are invertible.

Here the homotopies defining the higher morphisms of an co-category are to be regarded as data
rather than as mere witnesses to an equivalence relation borne by the 1-dimensional morphisms. This
has the consequence that all of the categorical structures in an co-category are weak. Even at the
base level of 1-morphisms, composition is not necessarily uniquely defined but instead witnessed by a
2-morphism and associative up to a 3-morphism whose boundary data involves specified 2-morphism
witnesses. Thus, diagrams valued in an co-category cannot be said to commute on the nose but are
instead interpreted as homotopy coherent.

A fundamental challenge in defining co-categories has to do with giving a precise mathemarti-
cal meaning of this notion of a weak composition law, not just for the 1-morphisms but also for the
morphisms in higher dimensions. Indeed, there is a sense in which our traditional set-based foun-
dations for mathematics are not really suitable for reasoning about co-categories; sets don’t feature
prominently in co-categorical data, especially when co-categories are considered in a morally correct
fashion as objects that are only well-defined up to equivalence. The morphisms between a fixed pair
of objects in an co-category assemble into an co-groupoid, which describes a well-defined homotopy
type, though not a well-defined space. When considered up to equivalence, 0o-categories, like ordinary
categories, also don’t have a well-defined set of objects.

Precision is achieved through a variety of models of (00, 1)-categories, which are Bourbaki-style
mathematical structures that encode infinite-dimensional categories with a weak composition law in
which all morphisms above dimension 1 are Weakly invertible. In order of appearance, these include
simplicial categories, quasi-categories (nee. weak Kan complexes), relative categories, Segal categories, complete
Segal spaces, and 1-complicial sets (nee. saturated 1-trivial weak complicial sets), each of which comes with
an associated array of naturally-occurring examples. The proliferation of models of (00, 1)-categories
begs the question of how they might be compared. In the first decades of the 21st century, Bergner,
Joyal-Tierney, Verity, Lurie, and Barwick—Kan built various bridges that prove that each of the models
listed above “has the same homotopy theory” in the sense of defining the fibrant objects in Quillen
equivalent model categories.1

In parallel with the development of models of (00, 1)-categories and the construction of compar-
isons between them, Joyal pioneered and Lurie and many others extended a wildly successful project

'A recent book by Bergner surveys all but the last of these models and their interrelationships [16]. For a more
whirlwind tour, see [25].
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to extend basic category theory from ordinary 1-categories to (00,1)-categories modeled as quasi-
categories in such a way that the new quasi-categorical notions restrict along the standard embedding
Cat — QCat to the standard 1-categorical notions. A natural question is then: does this work extend
to other models of (00, 1)-categories? And to what extent are basic co-categorical notions invariant
under change of model? For instance, (00, 1)-categories of manifolds are most naturally constructed
as complete Segal spaces, so Kazhdan—Varshavsky [56] and Rasekh [79, 78] have recently endeavored
to redevelop some of the category theory of quasi-categories using complete Segal space instead so as
to have direct access to constructions and definitions that had previously been introduced only in the
quasi—categorica] model.

For practical, aesthetic, and moral reasons, the ultimate desire of practitioners is to work “model
independently,” meaning that theorems proven with any of the models of (oo, 1)-categories would
apply to them all, with the technical details inherent to any particular model never entering the dis-
cussion. Since all models of (00, 1)-categories “have the same homotopy theory” the general consensus
is that the choice of model should not matter greatly, but one obstacle to proving results of this kind
is that, to a large extent, precise versions of the categorical definitions that have been established for
quasi-categories had not been given for the other models. In cases where comparable definitions do
exist in different models, an ad-hoc heuristic proof of model-invariance of the categorical notion in
question can typically be supplied, with details to be filled in by experts fluent in the combinatorics of
cach model, but it would be more reassuring to have a systematic method of comparing the category
theory of (00, 1)-categories in different models via arguments that are somewhat closer to the ground.

Aims of this text

In this text we develop the theory of co-categories from first principles in a model-independent
fashion using a common axiomatic framework that is satisfied by a variety of models. In contrast with
prior “analytic” treatments of the theory of co-categories — in which the central categorical notions are
defined in reference to the coordinates of a particular model — our approach is “synthetic,” proceeding
from definitions that can be interpreted simultancously in many models to which our proofs then
apply. While synthetic, our work is not schematic or hand-wavy, with the details of how to make
things fu]]y precise left to “the experts” and turtles all the way down.” Rather, we prove our theorems
starting from a short list of clearly-enumerated axioms, and our conclusions are valid in any model of
oco-categories satisfying these axioms.

The synthetic theory is developed in any co-cosmos, which axiomatizes the universe in which
oo-categories live as objects. So that our theorem statements suggest their natural interpretation, we
recast 00-category as a technical term, to mean an object in some (typically fixed) co-cosmos. Several
models of (00, 1)-categories’ are co-categories in this sense, but our co-categories also include certain
models of (00, 11)-categories* as well as fibered versions of all of the above. Thus each of these objects

’A less rigorous “model-independent” presentation of co-category theory might confront a problem of infinite regress,
since infinite-dimensional categories are themselves the objects of an ambient infinite-dimensional category, and in de-
veloping the theory of the former one is tempted to use the theory of the latter. We avoid this problem by using a very
concrete model for the ambient (00, 2)-category of co-categories that arises frequently in practice and is designed to fa-
cilitate relatively simple proofs. While the theory of (00, 2)-categories remains in its infancy, we are content to cut the
Gordian knot in this way.

*Quasi-categories, complete Segal spaces, Segal categories, and 1-complicial sets (naturally marked quasi-categories)
all define the co-categories in an co-cosmos.

'Q,,-spaces, iterated complete Segal spaces, and 11-complicial sets also define the co-categories in an co-cosmos, as do
(nee. weak) complicial sets, a model for (00, 00)-categories. We hope to add other models of (00, 11)-categories to this list.
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are ©o-categories in our sense and our theorems apply to all of them.” This usage is meant to inter-
polate between the classical one, which refers to any variety of weak infinite-dimensional categories,
and the common one, which is often taken to mean quasi-categories or complete Segal spaces.

Much of the development of the theory of co-categories takes place not in the full co-cosmos but
in a quotient that we call the homotopy 2-category, the name chosen because an co-cosmos is something
like a category of fibrant objects in an enriched model category and the homotopy 2-category is then
a categorification of its homotopy category. The homotopy 2-category is a strict 2-category — like the
2-category of categories, functors, and natural transformations® — and in this way the foundational
proofs in the theory of oo-categories c]ose]y resemble the classical foundations of ordinary category
theory except that the universal properties they characterize, e.g. when a functor between co-categories
defines a cartesian fibration, are slightly weaker than in the familiar case of strict 1-categories.

In Part I, we define and develop the notions of equivalence and adjunction between co-categories,
limits and colimits in co-categories, cartesian and cocartesian fibrations and their discrete variants,
and prove an external version of the Yoneda lemma all from the comfort of the homotopy 2-category.
In Part II, we turn our attention to homotopy coherent structures present in the full co-cosmos to
define and study homotopy coherent adjunctions and monads borne by co-categories as a mechanism
for universal algebra. We also give a more careful account of the full class of limit constructions
present in any 00-cosmos and use this analysis to develop further examples of 00-cosmoi, whose objects
are pointed co-categories, or stable co-categories, or cartesian or cocartesian fibrations in a given
00-COSMOS.

What's missing from this basic account of the category theory of co-categories is a satisfactory
treatment of the “hom” bifunctor associated to an co-category, which is the prototypical example of
what we call a module. In Part I11, we develop the calculus of modules between co-categories and apply
this to define and study pointwise Kan extensions. This will give us an opportunity to repackage
universal properties proven in Part I as parts of the “formal category theory” of oo-categories.

This work is all “model-agnostic” in the sense of being blind to details about the specifications of
any particu]ar 00-cosmos. In Part IV we prove that the category theory ofm—categories is also “model-
independent” in a precise sense: all categorical notions are preserved, reflected, and created by any
“change-of-model” functor that defines what we call a biequivalence. This model-independence theo-
rem is stronger than our axiomatic framework might initially suggest in that it also allows us to trans-
fer theorems proven using “analytic” techniques to all biequivalent e0-cosmoi. For instance, the four
0o-cosmoi whose objects model (00, 1)-categories are all biequivalent. It follows that the analytically-
proven theorems about quasi-categories from [66] transfer to complete Segal spaces, and vice versa.
We conclude in Part V by developing more sophisticated Yoneda-type structures for co-cosmoi of
(00, 1)-categories using a mix of synthetic and analytic methods.

The ideal reader might already have some acquaintance with enriched category theory, 2-category
theory, and abstract homotopy theory so that the constructions and proofs with antecedents in these
traditions will be familiar. Because co-categories are of interest to mathematicians with a wide variety
of backgrounds, we review all of the material we need on each of these topics in Appendices A, B, and

*This may seem like sorcery but in some sense is really just the Yoneda lemma. To a close approximation, an co-cosmos
is a “category of fibrant objects enriched over quasi-categories.” When the JoyaLLurie theory of quasi-categories is ex-
pressed in a sufficiently categorical way, it extends to encompass analogous results for the corresponding “representably
defined” notions in a general co-cosmos.

°In fact this is another special case: there is an co-cosmos whose objects are ordinary categories and its homotopy
2-category is the usual category of categories, functors, and natural transformations.
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C, respectively. Some basic facts about quasi-categories first proven by Joyal are needed to establish the
corresponding features of general co-cosmoi in Chapter 1. We state all of these results in §1.1 but defer
the proofs that require a lengthy combinatorial digression to Appendix D, where we also introduce
n-complicial sets, a model of (00, 11)-categories for any 0 < n < co. The proofs that many examples of
00-cosmoi appear “in the wild” can be found in Appendix E, where we also present general techniques
that the reader might use to find even more examples. The final appendix addresses a crucial bit of
unfinished business. Importantly, the synthetic theory developed in the co-cosmos of quasi-categories
is fully compatible with the analytic theory developed by Joyal, Lurie, and many others. This is the
subject of Appendix F.
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CHAPTER 1

00-Cosmoi and their homotopy 2-categories

L1. Quasi-categories

Before introducing an axiomatic framework that will allow us to develop co-category theory in
general, we first consider one model in particular: namely, quasi-categories, which were first analyzed

by Joyal in [53] and [54] and in several unpublished draft book manuscripts.

1.1.1. NOTATION (the simplex category). Let A denote the simplex category of finite non-empty ordi-
nals [n] = {0 <1 < --- < n} and order-preserving maps. These include in particular the

clementary face operators [n—1] NICUIIN [7] 0<i<n and the
clementary degeneracy operators [n+1] BN [n] 0<i<n

whose images respectively omit and double up on the element i € [n]. Every morphism in A fac-
tors uniquely as an epimorphism followed by a monomorphism; these epimorphisms, the degeneracy
operators, decompose as composites of elementary degeneracy operators, while the monomorphisms,
the face operators, decompose as composites of elementary face operators.

The category of simplicial sets is the category sSet := Set™™ of presheaves on the simplex category.
We write A[n] for the standard n-simplex, the simplicial set represented by [n1] € A, and A[n] c
dA[n] c A[n] for its k-horn and boundary sphere respectively.

Given a simplicial set X, it is conventional to write X}, for the set of n-simplices, defined by
evaluating at [1] € A. By the Yoneda lemma, each n-simplex x € X, corresponds to a map of simplicial
sets x: A[n] — X. Accordingly, we write x - &' for the ith face of the n-simplex, an (n — 1)-simplex
classified by the composite map

Aln—1] =2 A[n] — X.

Geometrically, x - 0" is the “face opposite the vertex " in the n-simplex x.
Since the morphisms of A are generated by the elementary face and degeneracy operators, the data
of a simplicial set' X is often presented by a diagram

— 03>
<02 — —0y >
— 0= < 01— — 01>
X3 &< 01— X2 — 0> Xl &< 00— Xo,
— 01> < 00— — 00>
&« 00— — 00—
— 00>

identifying the set of nn-simplices for each [11] € A as well as the (contravariant) actions of the elemen-
tary operators, conventionally denoted using subscripts.

"This presentation is also used for more general simplicia] objccrs valued in any category.
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1.1.2. DEFINITION (quasi—category). A quasi-category is a simplicial set A in which any inner horn can
be extended to a simplex, solving the displayed lifting problem:

AN[n] — A n>20<k<n.

A
Ve
s
Ve
s

Aln]

(1.1.3)

Quasi-categories were first introduced by Boardman and Vogt [20] under the name “weak Kan
complexes,” a Kan complex being a simplicial set admitting extensions as in (1.1.3) along all horn
inclusions 1 > 1,0 < k < n. Since any topological space can be encoded as a Kan complex,’ in this
way spaces provide examples of quasi-categories.

Categories also provide examples of quasi-categories via the nerve construction.

1.1.4. DEFINITION (nerve). The category Cat of 1-categories embeds fully faithfully into the category
of simplicial sets via the nerve functor. An n1-simplex in the nerve of a 1-category C is a sequence of n
composable arrows in C, or equally a functor [n] — C from the ordinal category m + 1 = [n] with
objects 0, ..., and a unique arrow i — j just when 7 <.

1.15. REMARK. The nerve of a category C is 2-coskeletal as a simplicial set, meaning that every sphere
dA[n] — C withn > 3 is filled uniquely by an n-simplex in C (see Definition C.5.2). This is because
the simplices in dimension 3 and above witness the associativity of the composition of the path of
composable arrows found a]ong their spine, the 1-skeletal simplicia] subset formed by the edges con-
necting adjacent vertices. In fact, as suggested by the proof of the following proposition, any simplicial
set in which inner horns admit unique fillers is isomorphic to the nerve of a 1-category; see Exercise

1.1.ii.

We decline to introduce explicit notation for the nerve functor, preferring instead to identify
1-categories with their nerves. As we shall discover the theory of 1-categories extends to co-categories
modeled as quasi-categories in such a way that the restriction of each eo-categorical concept along
the nerve embedding recovers the corresponding 1-categorical concept. For instance, the standard
simplex A[n] is the nerve of the ordinal category m + 1, and we frequently adopt the latter notation
— writing 1 := A[0], 2 := A[1], 3 := A[2], and so on — to suggest the correct categorical intuition.

To begin down this path, we must first verify the assertion that has implicitly just been made:

1.1.6. PROPOSITION (nerves are quasi—categories). Nerves of categories are quasi-categories.

PROOF. Via the isomorphism C = cosk, C and the adjunction sk, = cosk, of C.5.2, the required
lifting problem displayed below-left transposes to the one displayed below-right

Af[n] —— C = cosk, C sky Af[n] —C
/7 //
[ o [ .~
A[Tl] Skz A[Tl

*The total singular complex construction defines a functor from topological spaces to simplicial sets that is an equiv-
alence on their respective homotopy categories — weak homotopy types of spaces correspond to homotopy equivalence
classes of Kan complexes.



For 11 > 4, the inclusion sk, AX[11] < sky A[n] is an isomorphism, in which case the lifting problems
on the right admit (unique) solutions. So it remains only to solve the lifting problems on the left in
the casesn =2 and n = 3.

To that end consider

Al[2] —C Al[3] —C A?[3] —C
Al Al Al

An inner horn A'[2] — C defines a composable pair of arrows in C; an extension to a 2-simplex exists
precisely because any composable pair of arrows admits a (unique) composite.

An inner horn A[3] — C specifies the data of three composable arrows in C, as displayed in the
diagram below, together with the composites ¢f, hg, and (hg)f.

C1

N
(he)f

Co C3

LA

()

Because composition is associative, the arrow (hg)f is also the composite of gf followed by h, which
proves that the 2-simplex opposite the vertex ¢y is present in C; by 2-coskeletality, the 3-simplex filling
this boundary sphere is also present in C. The filler for a horn A? [3] — Cisconstructed similarly. [

1.1.7. DEFINITION (homotopy relation on 1-simplices). A parallel pair of 1-simplices f, g in a simplicial
set X are homotopic if there exists a 2-simplex of either of the following forms

f X1 X0 f
/’ \ / \ (1.1.8)
X0 T X1 X0 T Xq

or if f and g are in the same equivalence class generated by this relation.

In a quasi-category, the relation witnessed by any of the types of 2-simplex on display in (1.1.8) is
an equivalence relation and these equivalence relations coincide:

1.1.9. LEMMA (homotopic l—simplices ina quasi—category). Parallel I—simplices f andg in a quasi-category
are homotopic if and only if there exists a 2-simplex of any or equivalently all of the forms displayed in (1.1.8).

ProOOF. Exercise 1.1.1. 0

1.1.10. DEFINITION (the homotopy category). By 1-truncating, any simplicial set X has an underlying
reflexive directed graph
_o
Xl & 00— XO,
_— >
00
the 0-simplices of X defining the “objects” and the 1-simplices defining the “arrows,” by convention
pointing from their Oth vertex (the face opposite 1) to their Ist vertex (the face opposite 0). The free
5



category on this reflexive directed graph has X as its object set, degenerate 1-simplices serving as iden-
tity morphisms, and non-identity morphisms defined to be finite directed paths of non-degenerate
I-simplices. The homotopy category hX of X is the quotient of the free category on its underlying
reflexive directed graph by the congruence’ generated by imposing a composition relation h = g o f
witnessed by 2-simplices

N
Xo ——— %
This implies in particular that homotopic 1-simplices represent the same arrow in the homotopy cat-
egory.
L.111. PROPOSITION. The nerve embedding admits a left adjoint, namely the functor which sends a simplicial

set to its homotopy catego;y:

h
e

Cat 1 sSet
_

PROOF. Using the description of hX as a quotient of the free category on the underlying reflexive
directed graph of X, we argue that the data of a functor hX — C can be extended uniquely to a
simplicial map X — C. Presented as a quotient in this way, the functor hX — C defines a map
from the 1-skeleton of X into C, and since every 2-simplex in X witnesses a composite in hX, this
map extends to the 2-skelecon. Now C is 2-coskeletal, so via the adjunction sk, = cosk, of Definition
C.5.2, this map from the 2-truncation of X into C extends uniquely to a simplicial map X — C. [

The homotopy category of a quasi-category admits a simplified description.

1.1.12. LEMMA (the homotopy category of a quasi-category). If A is a quasi-category then its homotopy
category hA has
® the set of 0-simplices Ay as its objects
® the set of homotopy classes of 1-simplices Ay as its arrows
® the identity arrow at a € Ag represented by the degenerate 1-simplex a - 0y € A
® a composition relation h = g o f in hA if and only if, for any choices of I-simplices representing these
arrows, there exists a 2-simplex with boundary

m
f g
N
a()TIZZ

Proor. Exercise 1.1.11. 0
1.1.13. DEFINITION (isomorphisms in a quasi-category). A l-simplex in a quasi-category is an iso-
morphism just when it represents an isomorphism in the homotopy category. By Lemma 1.1.12 this
means that f: a4 — b is an isomorphism if and only if there exists a 1-simplex f_ll b — a together
with a pair of 2-simplices

b a
NG TN

*A relation on parallel pairs of arrows of a 1-category is a congruence if it is an equivalence relation that is closed

under pre- and post-composition: if‘f ~9 then hfk ~ hgk,
6



The properties of the isomorphisms in a quasi-category are most easily proved by arguing in a
slightly different category where simplicial sets have the additional structure of a “marking” on a spec-
ified subset of the 1-simplices subject to the condition that all degenerate 1-simplices are marked;
maps of these so-called marked simplicial sets must then preserve the markings. Because these objects
will seldom appear outside of the proofs of certain combinatorial lemmas about the isomorphisms in
quasi-categories, we save the details for Appendix D.

Let us now motivate the first of several results proven using marked techniques. Quasi-categories
are defined to have extensions along all inner horns. But if in an outer horn A°[2] — A or A2[2] — A,
the initial or final edges, respectively, are isomorphisms, then intuitively a filler should exist

1

fom e ¢ g
/’ Ny /7' x
ag T) ap ag T) ap
and similarly for the higher-dimensional outer horns.
1.1.14. PROPOSITION (special outer horn ]iﬁing).
(i) Let A be a quasi-category. Then for n > 2 any outer horns
A[n] —2— A A'[n] —— A
[ [
Aln] Aln]

in which the edges gl(o 1y and hly,_1 ) are isomorphisms admit fillers.
(i) Let A and B be quasi-categories and f: A — B a map that lifts against the inner horn inclusions.
Then for n > 2 any outer horns

AO[n] ﬁ A A'[n] L; A
al; [ lf
[n] —— B Al[n] —— B

in which the edges glio 1y and hly,_1 ) are isomorphisms admit fillers.

The proof of Proposition 1.1.14 requires clever combinatorics, due to Joyal, and is deferred to
Proposition D.4.5 and Theorem D.4.19 in Appendix D." Here, we enjoy its myriad consequences. Im-
mediately:

1.1.15. COROLLARY. A quasi-category is a Kan complex if and only if its homotopy category is a groupoid.

PROOF. If the homotopy category of a quasi-category is a groupoid, then all of its 1-simplices are
isomorphisms, and Proposition 1.1.14 then implies that all inner and outer horns have fillers. Thus,
the quasi-category is a Kan complex. Conversely, in a Kan complex, all outer horns can be filled and
in particular fillers for the horns A°[2] and A2[2] can be used to construct left and right inverses for
any 1-simplex of the form displayed in Definition 1.1.13.° O

“The second statement subsumes the first, but the first is typically used to prove the second.
’Ina quasi-category, any left and right inverses to a common 1—simplex are homotopic, but as Corollary 1.1.16 proves,
any isomorphism in fact has a single two-sided inverse.



A quasi-category contains a canonical maximal sub Kan complex, the simplicial subset spanned
by those 1-simplices that are isomorphisms. Just as the arrows in a quasi-category A are represented
by simplicial maps 2 — A whose domain is the nerve of the free-living arrow, the isomorphisms in a
quasi-category are represented by diagrams I — A whose domain is the free-living isomorphism:

1.1.16. COROLLARY. An arrow f in a quasi-category A is an isomorphism if and only if it extends to a homo-
topy coherent isomorphism

21,4
[~
L

PROOF. If f is an isomorphism, the map f: 2 — A lands in the maximal sub Kan complex con-
tained in A. The postulated extension also lands in this maximal sub Kan complex because the inclu-
sion 2 < I can be expressed as a sequential composite of outer horn inclusions; see Exercise 1.1iv. [

The category of simplicial sets, like any category of presheaves, is cartesian closed. By the Yoneda
lemma and the defining adjunction, an n-simplex in the exponential YX corresponds to a simplicial
map X X A[n] — Y, and its faces and degeneracies are computed by precomposing in the simplex
variable. Our aim is now to show that the quasi-categories define an exponential ideal in the simpli-
cially enriched category of simplicial sets: if X is a simplicial set and A is a quasi-category, then AX s
a quasi-category. We will deduce this as a corollary of the “relative” version of this result involving a
class of maps called isofibrations that we now introduce.

1.1.17. DEFINITION (isofibrations between quasi-categories). A simplicial map f: A — B is a isofibra-
tion if it lifts against the inner horn inclusions, as displayed below left, and also against the inclusion
of either vertex into the free-standing isomorphism I.

A[n] — A —

1 A
pal pal
T [ )

T2 B

Aln] —— B —_—
To notationally distinguish the isofibrations, we depict them as arrows “—” with two heads.

By Theorem D.4.19, the isofibrations between quasi-categories can be understood as those maps
that admit fillers for all inner horns as well as special outer horns in dimension # > 1, as opposed to
on]y those horns withn > 2 appearing in the statement of’ Proposition 1.1.14.

1.1.18. OBSERVATION.
(i) For any simplicial set X, the unique map X — * whose codomain is the terminal simplicial

set is an isofibration if and only if X is a quasi-category.

(ii) Any class of maps characterized by a right lifting property is automatically closed under com-
position, product, pullback, retract, and limits of towers; see Lemma C.2.3.

(iii) Combining (i) and (ii), if A = B is an isofibration, and B is a quasi-category, then so is A.

(iv) The isofibrations generalize the eponymous categorical notion. The nerve of any functor
f: A — B between categories defines a map of simplicial sets that lifts against the inner
horn inclusions. This map then defines an isofibration if and only if given any isomorphism in



B and specified object in A lifting cither its domain or codomain, there exists an isomorphism
in A with that domain or codomain lifting the isomorphism in B.
We typically only deploy the term “isofibration” for a map between quasi-categories because our usage
of this class of maps intentionally parallels the classical categorical case.

Much harder to establish is the stability of the class of isofibrations under forming “Leibniz ex-
ponentials” as displayed in (1.1.20). The proof of this result is given in Proposition D.5.1 in Appendix
D.

1.1.19. PrROPOSITION. Ifi: X < Y is a monomorphism and f: A = B is an isofibration, then the induced
Leibniz exponential map

(1.1.20)

BY — BX
Bl
is again an isofibration.’

1.1.21. COROLLARY. If X is a simplicial set and A is a quasi-category, then AXisa quasi-category. Moreover,
a I-simplex in AXis an isomorphism if and only if its components at each vertex of X are isomorphisms in A.

PROOF. The first statement is a special case of Proposition 1.1.19; see Exercise 1.1.vi. The second
statement is proven similarly by arguing with marked simplicial sets. See Corollary D.4.18. O

1.1.22. DEFINITION (equivalences of quasi-categories). A map f: A — B between quasi-categories is
an equivalence if it extends to the data of a “homotopy equivalence” with the free-living isomorphism
I serving as the interval: that is, if there exist maps g B — Aand

/ TO % TO

A—25 Al B —/— B!
A [ \ o
A B

We write “=” to decorate equivalences and A ~ B to indicate the presence of an equivalence A = B.

1.1.23. REMARK. If f: A — B is an equivalence of quasi-categories, then the functor hf: hA — hB
is an equivalence of categories, with equivalence inverse hg: hB — hA and natural isomorphisms
encoded by the composite functors

h
hA —% s h(Al) —— (hA)! hB —% 5 h(BT) —— (hB)!
*Degenerate cases of this result, taking X = @ or B = 1, imply that the other six maps in this diagram are also

isofibrations; see Exercise 1.1.vi.
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1.1.24. DEFINITION. A map f: X — Y between simplicial sets is a trivial fibration if it admics lifts
against the boundary inclusions for all simplices

dA[n] — X n>0
j e lf (1.1.25)

Aln] — Y
We write “=»” to decorate trivial fibrations.

1.1.26. REMARK. The simplex boundary inclusions dA[n] < A[n] “cellularly generate” the monomor-
phisms of simplicial sets — see Definition C.2.4 and Lemma C.5.9. Hence the dual of Lemma C.2.33
implies that trivial fibrations lift against any monomorphism between simplicial sets. In particular,
applying this to the map @ — Y, it follows that any trivial fibration X =» Y is a split epimorphism.

The notation “=»” is suggestive: the trivial fibrations between quasi-categories are exactly those
maps that are both isofibrations and equivalences. This can be proven by a relatively standard although
rather technical argument in simplicial homotopy theory, given as Proposition D.5.2 in Appendix D.
1.1.27. PROPOSITION. For amap f: A — B between quasi-categories the following are equivalent:

(i) f is a trivial fibration

(ii) f is both an isofibration and an equivalence

(iii) f is a split fiber homotopy equivalence: an isofibration admitting a section s that is also an equivalence
inverse via a homotopy from sf to 14 that composes with f to the constant homotopy from f to f.

As a class characterized by a righe lifting property, the trivial fibrations are also closed under
composition, product, pullback, limits of towers, and contain the isomorphisms. The stability of
these maps under Leibniz exponentiation will be verified along with Proposition 1.1.19 in Proposition
D.5.1.

1.1.28. ProrosITION. [fi: X — Y is a monomorphism and f: A — B is an isofibration, then if either f
is a trivial fibration or if i is in the class cellularly generated’ by the inner horn inclusions and the map 1 — 1
then the induced Leibniz exponential map

inf
AY —— BY xyx AX

a trivial fibration.

1.1.29. DIGRESSION (the Joyal model structure). The category of simplicial sets bears a model structure
(see Appendix D) whose fibrant objects are exactly the quasi-categories; all objects are cofibrant. The
fibrations, weak equivalences, and trivial fibrations between fibrant objects are precisely the classes
of isofibrations, equivalences, and trivial fibrations defined above. Proposition 1.1.27 proves that the
trivial fibrations are the intersection of the classes of fibrations and weak equivalences. Propositions

1.1.19 and 1.1.28 reflect the fact that the Joyal model structure is a closed monoidal model category with
respect to the cartesian closed structure on the category ofsimplicia] sets.

We have declined to elaborate on the Joyal model structure for quasi-categories alluded to in Di-
gression 1.1.29 because the only aspects of it that we will need are those described above. The results
proven here suffice to show that the category of quasi-categories defines an co-cosmos, a concept to
which we now turn.

’See Definition C.2.4.
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Exercises.

L.1i. EXERCISE. Consider the set of 1-simplices in a quasi-category with initial vertex a4y and final
vertex ay.

(i) Prove that the relation defined by f ~ g if and only if there exists a 2-simplex with boundary

2
f/’ \ is an equiva]ence relation.

ag < >

(ii) Prove that the relation defined by f ~ g if and only if there exists a 2-simplex with boundary

ap
/ \f‘ is an equivalence relation.

g g >

(iii) Prove that the equivalence relations defined by (i) and (ii) are the same.

This proves Lemma 1.1.9.
L.Lii. EXERCISE. Consider the free category on the reflexive directed graph
61
—
Al < 00— Ao,
—
)
underlying a quasi-category A.

(i) Consider the relation that identifies a pair of sequences of composable 1-simplices with com-
mon source and common target whenever there exists a simplex of A in which the sequences of
1—simp1iees define two paths from its initial vertex to its final vertex. Prove that this relation is
stable under pre- and post-composition with 1-simplices and conclude that its transitive clo-
sure is a congruence: an equivalence relation that is closed under pre- and post-composition.*

(ii) Consider the congruence relation generated by imposing a composition relation h = g o f
witnessed by 2-simplices

a
N
ap " ap

and prove that this coincides with the relation considered in (i).
(iii) In the congruence relations of (i) and (ii), prove that every sequence of composable 1-simplices

in A is equivalent to a single I-simplex. Conclude that every morphism in the quotient of the

free category by this congruence relation is represented by a 1—simp1ex in A.
(iv) Prove that for any triple of 1-simplices f,g,hin A, h = g o f in the quotient category if and

only if there exists a 2-simplex with boundary

a
N
ao T) an
This proves Lemma 1.1.12.

*Given a congruence relation on the hom-sets of a 1-category, the quotient category can be formed by quotienting
cach hom-set; see [69, §I1.8].
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1.1iii. EXERCISE. Show that any quasi-category in which inner horns admit unique fillers is isomorphic
to the nerve of its homotopy category.

1.1.iv. EXERCISE.

(i) Prove that I contains exactly two non-degenerate simplices in each dimension.
(ii) Inductively build T from 2 by expressing the inclusion 2 < I as a sequential composite of
pushouts of outer horn inclusions’ Ao[n] — A[n], one in each dimension starting withn =

2.10

L.Lv. EXERCISE. Prove the relative version of Corollary 1.1.16: for any isofibration p: A - B be-
tween quasi-categories and any f: 2 — A that defines an isomorphism in A any homotopy coherent
isomorphism in B extending pf lifts to a homotopy coherent isomorphism in A extending f.

f

2 —— A

A
b
s/

7

I— B

L.1vi. EXERCISE. Specialize Proposition 1.1.19 to prove the following:
(i) If Ais a quasi-category and X is a simplicial set then AXisa quasi-category.
(ii) If A is a quasi-category and X < Y is a monomorphism then AY > AX s an isofibration.
(iii) If A = B is an isofibration and X is a simplicial set then AX = BX is an isofibration.

1.1vii. EXERCISE. Anticipating Lemma 1.2.17:

(i) Prove that the equivalences defined in Definition 1.1.22 are closed under retracts.
(ii) Prove that the equivalences defined in Definition 1.1.22 satisfy the 2-of-3 property.

L1viii. EXERCISE. Prove that if f: X =» Y is a trivial fibration between quasi-categories then the
functor hf: hX = hY isa surjective equivalence of categories.

1.2. co-Cosmoi

In §1.1, we presented “analytic” proofs of a few of the basic facts about quasi-categories. The
category theory of quasi-categories can be developed in a similar style, but we aim instead to develop
the “synthetic” theory of infinite-dimensional categories, so that our results will apply to many models
at once. To achieve this, our strategy is not to axiomatize what these infinite-dimensional categories
are, but rather axiomatize the “universe” in which they live.

The fb]]owing definition abstracts the properties of the quasi-categories and the classes of isofibra-
tions, equivalences, and trivial fibrations introduced in §1.1. Firstly, the category of quasi-categories
and simplicial maps is enriched over the category of simplicial sets — the set of morphisms from A
to B coincides with the set of vertices of the simplicial set B4 — and moreover these hom-spaces are
all quasi-categories. Secondly, a number of limit constructions that can be defined in the under]ying

(’By dua]ity — the opposite of a simplicial set X is the simplicial set obtained by reindexing along the involution
(=)°P: A — A that reverses the ordering in each ordinal — the outer horn inclusions A*[n] < A[n] can be used instead.

""This decomposition of the inclusion 2 < I reveals which data can always be extended to a homotopy coherent
isomorphism: for instance, the 1- and 2-simplices of Definition 1.1.13 together with a single 3-simplex that has these as its
outer faces with its inner faces degenerate.

12



I-category ofquasi—categories and simplicial maps satisfy universal properties relative to this simpli—
cial enrichment, with the usual isomorphism of sets extending to an isomorphism of simplicial sets.
And finally, the classes of isofibrations, equivalences, and trivial fibrations satisfy properties that are
familiar from abstract homotopy theory. In particular, the use of isofibrations in diagrams guaran-
tees that their strict limits are equivalence invariant, so we can take advantage of up-to-isomorphism
universal properties and strict functoriality of these constructions while still working “homotopically.”

As will be explained in Digression 1.2.10, there are a variety of models of infinite-dimensional
categories for which the category of “co-categories,” as we will call them, and “co-functors” between
them is enriched over quasi-categories and admits classes of isofibrations, equiva]ences, and trivial
fibrations satisfying analogous properties. This motivates the following axiomatization:

1.2.1. DEFINITION (00-cosmoi). An co-cosmos Kis a category — whose objects A, B we call co-categories
and whose morphisms f: A — B we call co-functors — that is enriched over quasi-categories,'' mean-
ing in particular that
e its morphisms f: A — B define the vertices of functor-spaces Fun(A, B), which are quasi-
categories,
that is also equipped with a specified class of maps that we call isofibrations and denote by “=” and
satisfies the following two axioms:

(i) (completeness) The quasi-categorically enriched category K possesses a terminal object, small
products, pullbacks of isofibrations, limits of countable towers of isofibrations, and coten-
sors with all simp]icial sets, each of these limit notions satisf}ring a universal property that is
enriched over simplicial sets."”

(ii) (isofibrations) The class of isofibrations contains all isomorphisms and any map whose codo-
main is the terminal object; is closed under composition, product, pullback, forming inverse
limits of towers, and Leibniz cotensors with monomorphisms of simplicial sets; and has the
property thatif f: A = Bisanisofibration and X is any object then Fun(X, A) - Fun(X, B)
is an isofibration of quasi-categories.

1.2.2. DEFINITION. In an co-cosmos K, we define a morphism f: A — B to be
e an equivalence if and only if the induced map f,: Fun(X, A) = Fun(X, B) on functor-spaces is

an equivalence of quasi-categories for all X € K and
® a crivial fibration just when f is both an isofibration and an equivalence.

These classes are denoted by “=5” and “=»” respectively.

Put more concisely, one might say that an 00-cosmos is a “quasi-categorically enriched category of
fibrant objects.” See Definition C.1.1 and Lemma C.1.3.

1.2.3. DIGRESSION (simplicial categories). A simplicial category A is given by categories (A, with a
common set of objects and whose arrows are called r1-arrows, that assemble into a diagram A°? — Cat
""This is to say Kis a simplicially enriched category whose hom-spaces are all quasi-categories; this will be unpacked

in1.23.
"This will be elaborated upon in 1.2.5.
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of identity—on—objects funcrors

— 03>
<02 — — 0>
— 0> < 01— — 01>
ﬂ3 &« 01— ﬂz — 01> \_7{1 &« 0p— ﬂo, = A (124)
— 01> < 00— — 00>
&« 00— — 00>
— 00>

The data of a simplicial category can equivalently be encoded by a simplicially enriched category
with a set of objects and a simplicial set A(x,y) of morphisms between each ordered pair of ob-
jects: an n-arrow in A, from X to Y corresponds to an n-simplex in A(x, y) (see Exercise 1.2.i). Each
endo-hom-space contains a distinguished identity 0-arrow (the degenerate images of which define the
corresponding identity n-arrows) and composition is required to define a simplicial map

Ay, z) X Ax, y) —— A(x, z)

the single map encoding the compositions in each of the categories A, and also the functoriality of
the diagram (1.2.4). The composition is required to be associative and unital, in a sense expressed by
the commutative diagrams

Ay, z) X Ax,y) X A(w, x) Xy Ax, z) X A(w, x) Alx, y) & Ay, y) X A(x,y)

1| | v | \ |

Ay, z) X A(w, y) - A(w, z) A(x, y) X A(x, x) ——— A(x,y)

the latter making use of natural isomorphisms A(x, y) X 1 = A(x,y) = 1 X A(x,y) in the domain
vertex.

On account of the equivalence between these two presentations, the terms “simplicial catego-
ry” and “simplicially-enriched category” are generally taken to be synonyms.”> The category Ay of
O-arrows is the underlying category of the simplicial category A, which forgets the higher dimen-
sional simplicial structure.

In particular, the underlying category of an co-cosmos K is the category whose objects are the
oo-categories in K and whose morphisms are the 0-arrows in the functor spaces. In all of the examples
to appear below, this recovers the expected category of co-categories in a particular model and functors
between them.

1.2.5. DIGRESSION (simplicially enriched limits). Let A be a simplicial category. The cotensor of an
object A € A by a simplicial set U is characterized by an isomorphism of simplicial sets

AX, AY) = AX, A)Y (1.2.6)
natural in X € A. Assuming such objects exist, the simplicial cotensor defines a bifunctor
sSetP X A —— A
Uu,A) ——— AY
in a unique way making the isomorphism (1.2.6) natural in U and A as well.

YThe phrase “simplicial object in Cat” is reserved for the more general yet less common notion of a diagram A — Cat
that is not necessari]y Comprised ofidentity—on—objects functors.
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The other simplicial limit notions postulated by axiom 1.2.1(i) are conical, which is the term used
for ordinary 1-categorical limit shapes that satisfy an enriched analog of the usual universal property;
see Definition 7.1.14. When these limits exist they correspond to the usual limits in the underlying cat-
egory, but the usual universal property is strengthened. Applying the covariant representable functor
AX,-): Ay — sSet to a limit cone (limje Aj = Aj)jey in Ap, there is natural comparison map

AX,lim A;) — lim AKX, A;) 1.2.7)
e e /

and we say that lim]'ej Aj defines a simplicially enriched limit if and only if (1.2.7) is an isomorphism
of simplicial sets for all X € A.

Considerably more details on the general theory of enriched categories can be found in [61] and
in Appendix A. Enriched limits are the subjects of §A.4 and §A.5.

1.2.8. REMARK (flexible weighted limits in 0o-cosmoi). The axiom 1.2.1(i) implies that any co-cosmos
K admits all flexible limits (see Corollary 7.3.3), a much larger class of simplicially enriched “weighted”
limits that will be introduced in §7.2.

Using the results of Joyal discussed in §1.1, we can easily verify:

1.2.9. PROPOSITION. The full subcategory QCat C sSet of quasi-categories defines an co-cosmos with the
isofibrations, equivalences, and trivial fibrations of Definitions 1.1.17, 1.1.22, and 1.1.24.

PROOF. The subcategory QCat C sSet inherits its simplicial enrichment from the cartesian closed
category of simplicial sets: note that for quasi-categories A and B, Fun(A, B) = BAis again a quasi-
category.

The limits postulated in 1.2.1(i) exist in the ambient category of simplicial sets." The defining
universal property of the simplicial cotensor is satisfied by the exponentials of simplicial sets. We now
argue that the full subcategory of quasi-categories inherits all these limit notions.

Since the quasi-categories are characterized by a right lifting property, it is clear that they are
closed under small products. Similarly, since the class of isofibrations is characterized by a right lifting
property, Lemma C.2.3 implies that the isofibrations are closed under all of the limit constructions
of 1.2.1(ii) except for the last two: Leibniz closure and closure under exponentiation (—)X These last
closure properties are established in Proposition 1.1.19. This completes the proof of 1.2.1(i) and 1.2.1(ii).

It remains to verify that the classes of trivial fibrations and of equivalences coincide with those
defined by 1.1.24 and 1.1.22. By Proposition 1.1.27 the former coincidence follows from the latter,
so it remains only to show that the equivalences of 1.1.22 coincide with the representably-defined
equivalences: those maps of quasi-categories f: A — B for which AX — BXisan equivalence of
quasi-categories in the sense of 1.1.22. Taking X = A[0], we see immediately that representably-
)X

defined equivalences are equivalences, and the converse holds since the exponential (=)* preserves the

data defining a simplicial homotopy. O

We mention a common source of 00-cosmoi found in nature at the outside to help ground the
intuition for readers familiar with Quillen’s model categories, a popular framework for “abstract ho-
motopy theory,” but reassure others that model categories are not needed outside of Appendix E.

"Any category of presheaves is cartesian closed, complete, and cocomplete — a “cosmos” in the sense of Bénabou. Our
00-cosmoi are more similar to the fibrational cosmoi due to Street [100].
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1.2.10. DIGRESSION (a source of co-cosmoi in nature). As explained in Appendix E, certain easily de-
scribed properties of a model category imply that the full subcategory of fibrant objects defines an
o0-cosmos whose isofibrations, equivalences, and trivial fibrations are the fibrations, weak equiva-
lences, and trivial fibrations between fibrant objects. Namely, any model category that is enriched as
such over the Joyal model structure on simplicial sets and with the property that all fibrant objects are
cofibrant has this property. This compatible enrichment in the Joyal model structure can be defined
when the model category is cartesian closed and equipped with a right Quillen adjoint to the Joyal
model structure on simplicial sets whose left adjoint preserves finite products. In this case, the right
adjoint becomes the underlying quasi-category functor (see Proposition 1.3.3(ii)) and the co-cosmoi
so-produced will then be cartesian closed (see Definition 1.2.20). The co-cosmoi listed in Example

1.2.21 all arise in this way.

The following results are consequences of the axioms of Definition 1.2.1. The first of these results
tells us that the trivial fibrations enjoy all of the same stability properties satisfied by the isofibrations.

1.2.11. LEMMA (stability of trivial fibrations). The trivial fibrations in an co-cosmos define a subcategory
containing the isomorphisms; are stable under product, pullback, forming inverse limits of towers; the Leibniz
cotensors of any trivial fibration with a monomorphism of simplicial sets is a trivial fibration as is the Leibniz
cotensor of an isofibration with a map in the class cellularly generated by the inner horn inclusions and the map

1 < I and if E =» B is a trivial fibration then so is Fun(X, E) =» Fun(X, B).

PROOF. We prove these statements in the reverse order. By axiom 1.2.1(ii) and the definition of the
trivial fibrations in an co-cosmos, we know that if E =» B is a trivial fibration then is Fun(X, E) =»
Fun(X, B) is both an isofibration and an equivalence, and hence by Proposition 1.1.27 a trivial fibra-
tion. For stability under the remaining constructions, we know in each case that the maps in ques-
tion are isofibrations in the co-cosmos; it remains to show only that the maps are also equivalences.
The equivalences in an e0-cosmos are defined to be the maps that Fun(X, —) carries to equivalences
of quasi-categories, so it suffices to verify that trivial fibrations of quasi-categories satisfy the corre-
sponding stability properties. This is established in Proposition 1.1.28 and the fact that that class is
characterized by a right lifting property. O

Additionally, every trivial fibration is “split” by a section.
1.2.12. LEMMA (trivial fibrations split). Every trivial fibration admits a section

E

/7‘
s l?
s

B

e

B

PROOF. If p: E =» B is a trivial fibration, then by the final stability property of Lemma 1.2.11, so
is p.: Fun(B, E) - Fun(B, B). By Definition 1.1.24, we may solve the lifting problem

@ = dA[0] —— Fun(B,E)

//7
J: S - ip*
//

A[0] 5 Fun(B, B)
to find a map s: B — E so that ps = idp. O
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A classical construction in abstract homotopy theory proves the following:

1.2.13. LEMMA (Brown factorization lemma). Any functor f: A — B in an 0o-cosmos may be factored
as an equivalence followed by an isofibration, where this equivalence is constructed as a section of a trivial

fibration.
< K (1.2.14)
S

PrOOF. The displayed factorization is constructed by the pullback of an isofibration formed by

the simplicial cotensor of the inclusion 1 + 1 < I into the co-category B.

/\

A7 Pf — B

AXB W BXx B
Note the map ¢ is a pullback of the trivial fibration evy: B! =» B and is hence a crivial fibracion. Its
section 8, constructed by applying the universal property of the pullback to the displayed cone with
summit A, is thus an equivalence. 0

By a Yoneda-style argument, the “homotopy equivalence” characterization of the equivalences in
the 00-cosmos of quasi-categories extends to an analogous characterization of the equivalences in any
00-COSMOS:

1.2.15. LEMMA (equivalences are homotopy equivalences). A map f: A — B between co-categories in
an 0o-cosmos K is an equivalence if and only if it extends to the data of a “homotopy equivalence” with the
free-living isomorphism I serving as the interval: that is, if there exist maps g B — A and

/T 5

A—25 Al BFf . pr

% fl \ £€v1

(1.2.16)

in the 0o-cosmos.

PROOE. By hypothesis, if f: A — B defines an equivalence in the co-cosmos K then the induced
map on post-composition f,: Fun(B, A) = Fun(B, B) is an equivalence of quasi-categories. Evalu-
ating the equivalence inverse g: Fun(B, B) = Fun(B, A) and homotopy 3: Fun(B, B) — Fun(B, B)"
at the O-arrow 1g € Fun(B, B), we obtain a 0-arrow ¢: B — A together with an isomorphism
I — Fun(B, B) from the composite fg to 1g. By the defining universal property of the cotensor,
this isomorphism internalizes to define the map f: B — Blin K displayed on the right of (1.2.16).
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Now the hypothesis that f is an equivalence also provides an equivalence of quasi-categories
f.: Fun(A, A) = Fun(A, B) and the map Bf: A — B! represents an isomorphism in Fun(A, B)
from fgf to f. Since f, is an equivalence, we can conclude that 14 and gf are isomorphic in the
quasi-category Fun(A, A): such an isomorphism may be defined by applying the inverse equivalence
hi: Fun(A,B) — Fun(A, A) and composing with the components at 14,¢f € Fun(A, A) of the
isomorphism @: Fun(A, A) — Fun(A, A)! from Trun(a,4) to Jif.. Now by Corollary 1.1.16 this
isomorphism is represented by a map I — Fun(A, A) from 1,4 to g¢f, which internalizes to a map
a: A— Alin K displayed on the left of (1.2.16).

The converse is easy: the simplicial cotensor construction commutes with Fun(X, —) so homotopy
equivalences are preserved and by Definition 1.1.22 homotopy equivalences of quasi-categories define
equivalences of quasi-categories. O

1.2.17. LEMMA. The class of equivalences in an oo-cosmos are closed under retracts and satisfy the 2-of-3
property.

For the reader who solved Exercise 1.1.vii, demonstrating the equivalences between quasi-categories
are closed under retracts and have the 2-of=3 property, Lemma 1.2.17 follows casily from the repre-
sentable definition of equivalences and functoriality. But for sake of completeness, we give an alternate
proof of this result that makes use of Lemma 1.2.15 and subsumes Exercise 1.1.vii.

PROOF. Let f: A = B be an equivalence equipped with an inverse “homotopy equivalence” as in
(1.2.16) and consider a retract diagram

By Lemma 1.2.15, to prove that h: C — D is an equivalence, it suffices to construct the data of an
inverse homotopy equivalence. To that end define k: D — C to be the composite vgs and then
observe from the commutative diagrams

C
k / X‘
A——>C A——B L S D
S e b
C—tspa_a,ql_ o, cr p—sp—Lt g L ,pl
N Nbob
D B A—5C B—L5D

that vlau: C - Cland tH,BSZ D — DU define the required “homotopies.”
Via Lemma 1.2.15, the 2-0f-3 property for equivalence follows from the fact that the class of iso-
morphisms in a quasi-category is closed under composition. To prove that equivalences are closed
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under composition, consider a composable pair of equivalenees with their equivalence inverses

f g
A ~ "B =z °C
k h

The homotopies of Lemma 1.2.15 define isomorphisms a: id4 = kf € Fun(A, A) and y: idg = hg €
Fun(B, B), the latter of which composes to define kyf: kf = khgf € Fun(B, B). Composing these,
we obtain an isomorphism id, = khgf € Fun(A, A) defining one of the homotopies that witnesses
that kh defines an equivalence inverse of gf. The construction of the other homotopy is dual.

To prove that the equivalences are closed under cancelation, now consider a diagram

£
Af,Bgc
&

with k an inverse equivalence to f and € and inverse equivalence to gf. We will demonstrate that f€
defines an equivalence inverse to §. One of the required homotopies idc = gf ¢ is given already. The
other is obtained by composing three isomorphisms in Fun(B, B)

ok 4
idy — fk —a> flafk ~o> flg
The proof of stability of equivalence under left cancelation is dual. O

1.2.18. REMARK (equivalences satisfy the 2-of-6 property). In fact the class of equivalences in any
0o-cosmos satisfy the stronger 2-0f-6 property: for any composable triple of morphisms

B
VAR
i D

\g/
gf h
C

if ¢f and hg are equivalences then f, g, h, and hgf are too. The proof uses Lemma 1.2.17 together
with the observation that in the case where f: A — B is an equivalence, the map p of (1.2.14) is also
a trivial fibration, and in particular has a section by Lemma 1.2.12. Combining these facts, a result of
Blumberg and Mandell [19, 6.4] reproduced in Proposition C.1.8 applies to prove that the equivalences
have the 2-0f-6 property. See Corollary C.1.9.

One of the key advantages of the co-cosmological approaches to abstract category theory is that
there are a myriad varieties of “fibered” 0o-cosmoi that can be built from a given co-cosmos, which
means that any theorem proven in this axiomatic framework specializes and generalizes to those con-
texts. The most basic of these derived co-cosmos is the co-cosmos of isofibrations over a fixed base,
which we introduce now. Other examples of co-cosmoi will be introduced in Chapter 8, once we have
developed a greater facility with the simplicial limits of axiom 1.2.1(i).

1.2.19. PROPOSITION (sliced 0o-cosmoi). For any co-cosmos K and any oo-category B € K there is an
co-cosmos K)p of isofibrations over B whose
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(i) objects are isofibrations p: E = B with codomain B

(ii) functor-spaces, say fromp: E = Btoq: F = B, are defined by pullback
Fung(p: E - B,q: F » B) —— Fun(E,F)
| s

1 P Fun(E, B)

and abbreviated to Fung(E, F) when the specified isofibrations are clear from context
(i) isofibrations are commutative triangles of isofibrations over B

E—' »TF
L
B
(iv) terminal objectis 1: B = B and products are defined by the pullback along the diagonal
xPE; — L E;

B—2—II,B
(v) pullbacks and limits of towers of isofibrations are created by the forgetful functor 7(/3 - K
(vi) simplicial cotensors p: E = B by U € sSet are denoted U My p and constructed by the pullback

(vii) and in which a map

over B is an equivalence in the 0o-cosmos Kjp if and only if f is an equivalence in K.

PROOF. Note first that the functor spaces are quasi-categories since axiom 1.2.1(ii) asserts that for
any isofibration g: F = B in K the map g,: Fun(E,F) - Fun(E, B) is an isofibration of quasi-
categories. Other parts of this axiom imply that that each of the limit constructions define isofibra-
tions over B. The closure properties of the isofibrations in 7(/3 follow from the corresponding ones
in K. The most complicated of these is the Leibniz cotensor stability of the isofibrations in Kp,

which follows from the corresponding property in K, since for a monomorphism of simplicial sets

i: X = Y and an isofibration 7 over B as above, the map i th 1 is constructed by pulling back 7 hr
along A: B — BY.
The fact that the above constructions define simplicially enriched limits in a simplicially enriched
slice category are standard from enriched category theory. It remains only to verify that the equiva-
lences in the co-cosmos of isofibrations are created by the forgetful functor Kjp — K. First note that
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if f: E — F defines an equivalence in K, then for any isofibration s: A = B the induced equivalence
on functor-spaces in K pulls back to define an equivalence on corresponding functor spaces in Kjp.

Fung(A, E) Fun(A, E)

; f. f.
\ p. \

Fung(A, F) Fun(A, F)

/ Fun(£, Bf%

S

1

This can be verified either by appealing to Lemmas 1.2.11 and 1.2.13 and using standard techniques
from simplicial homotopy theory" or by appealing to Lemma 1.2.15 and using the fact that pullback
along 7 defines a simplicial functor.

For the converse implication, we appeal to Lemma 1.2.15. If f: E — F is an equivalence in Kjp
then it admits a homotopy inverse in K)p. The inverse equivalence g: F — E also defines an inverse
equivalence in K and the required simplicial homotopies in K are defined by composing

E——>TIhgp — E! FL]Ithq—)FH

with the top horizontal leg of the pullback defining the cotensor in Kjp. O

1.2.20. DEFINITION (cartesian closed 00-cosmoi). An 00-cosmos K is cartesian closed if the product
bifunctor = X —: K X K — K extends to a simplicially enriched two-variable adjunction

Fun(A x B, C) = Fun(A, CP) = Fun(B, C%)
in which the right adjoint (-)A preserve the class of isofibrations.

For instance, the co-cosmos of quasi-categories is cartesian closed, with the exponentials defined
as (special cases of) simplicial cotensors. This is one of the reasons that we use the same notation for
cotensor and for exponential."®

1.2.21. EXAMPLE (00-cosmoi of (00, 1)-categories). The following models of (00, 1)-categories define
cartesian closed co-cosmoi:

(i) Rezk’s complete Segal spaces define the objects of an co-cosmos CSS, in which the isofibra-
tions, equivalences, and trivial fibrations are the corresponding classes of the model structure
of [81]."

(ii) The Segal categories defined by Dwyer, Kan, and Smith [38] and developed by Hirschowitz and
Simpson [50] define the objects of an 00-cosmos Segal, in which the isofibrations, equivalences
and trivial fibrations are the corresponding classes of the model structure of [75] and [13]."*

“In more detail: any functor between the 1-categories underlying co-cosmoi that preserves trivial fibrations also
preserves equivalences; see Lemma C.1.10 and Lemma C.1.11.

"*Another reason for this convenient notational conflation will be explained in §2.3.

""Warning: the model category of complete Segal spaces is enriched over simplicial sets in two distinct “directions”
— one enrichment makes the simplicial set of maps between two complete Segal spaces into a Kan complex that probes
the “spacial” structure while another enrichment makes the simplicial set of maps into a quasi-category that probes the
“categorica]” structure [55]. It is this latter enrichment that we want.

"*Here we reserve the term “Segal category” for those simplicial objects with a discrete set of objects that are Reedy
fibrant and satisfy the Segal condition. The traditional definition does not include the Reedy Fibrancy condition because
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(iii) The 1-complicial sets of [110], equivalently the “naturally marked quasi-categories” of [66],
define the objects of an 00-cosmos 1-Comp in which the isofibrations, equivalences and trivial
fibrations are the corresponding classes of the model structure from either of these sources.

Proofs of these facts can be found in Appendix E.

Appendix E also proves that certain models of (00, 11)-categories or even (00, 00)-categories define
00-COSMOi.

1.2.22. ExaMpLE (Cat as an 00-cosmos). The category Cat of 1-categories defines a cartesian closed
co-cosmos, inheriting its structure as a full subcategory Cat — QCat of the co-cosmos of quasi-
categories via the nerve embedding, which preserves all limits and also exponentials: the nerve of the
functor category B4 is the exponential of the nerves.
In the co-cosmos of categories, the isofibrations are the isofibrations: functors satisfying the dis-
played right lifting property:
1— A

L.l

7

I—— B

The equivalences are the equivalences of categories and the trivial fibrations are surjective equiva-
lences: equivalences of categories that are also surjective on objects.

1.2.23. DEFINITION (co-dual 00-cosmoi). There is an identity-on-objects functor (=)°: A — A that
reverses the ordering of the elements in each ordinal [n] € A. The functor (=)° sends a face map
&': [n=1] > [n] to the face map 8" 1 [n=1] > [1] and sends the degeneracy map o' [n+1] - [n]
to the degeneracy map o™ [n+ 1] » [n] Precomposition with this involutive automorphism
induces an involution (=)°P: sSet — sSet that sends a simplicial set X to its opposite simplicial set
X°P, with the orientation of the vertices in each simplex reversed. This construction preserves all
conical limits and colimits and induces an isomorphism (YX)°P = (YPYX™ on exponentials.

For any co-cosmos K, there is a dual co-cosmos K*© with the same objects but with functor spaces
defined by:

Fungeo (A, B) == Fungd(A, B)°P.

The isofibrations, equivalences, and trivial fibrations in K* coincide with those of K.

Conical limits in K* coincide with those in ¥, while the cotensor of A € K with U € sSet is
defined to be AU™.

A justification for this notation is given in Exercise 1.4.iii.

1.2.24. DEFINITION (‘00-categories). An oo-category E in an co-cosmos K'is discrete just when for all
X € K the functor-space Fun(X, E) is a Kan complex.

In the 0o-cosmos of quasi-categories, the discrete co-categories are exactly the Kan complexes: by
Corollary D.3.12 the Kan complexes also define an exponential ideal in the category of simplicial sets.
Similarly, in the 00-cosmoi of Example 1.2.21 whose co-categories are (00, 1)-categories in some model,
the discrete co-categories are the co-groupoids.

it is not satisfied by the simplicial object defined as the nerve of a Kan complex enriched category. Since Kan complex
enriched categories are not among our preferred models of (00, 1)-categories this does not bother us.
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1.2.25. PROPOSITION (00-cosmos of discrete 0o-categories). The full subcategory Disc(K) — K spanned
by the discrete 0o-categories in any 00-cosmos form an ©0-cosmos.

PROOF. We first establish this result for the co-cosmos of quasi-categories. By Proposition 1.1.14
an isofibration between Kan complexes is a Kan fibration: a map with the right lifting property with
respect to all horn inclusions. Conversely, all Kan fibrations define isofibrations. Since Kan com-
plexes are closed under simplicial cotensor (which coincides with exponentiation), It follows that the
full subcategory Kan — QCat is closed under all of the limit constructions of axiom 1.2.1(). The
remaining axiom 1.2.1(ii) is inherited from the analogous properties established for quasi-categories
in Proposition 1.2.9.

In a generic co-cosmos K we need only show that the discrete co-categories are closed in K un-
der the limit constructions of 1.2.1(i). The defining natural isomorphism (1.2.7) characterizing these
simplicial limits expresses the functor-space Fun(X,, lim;ey A;) as an analogous limit of functor space
Fun(X, Aj). If each Aj is discrete then these quasi-categories are Kan complexes and the previous
paragraph then establishes that the limit is a Kan complex as well. This holds for all X € K so it
follows that limjey A;j is discrete as required. O

Exercises.

1.2.i. EXERCISE. Prove that the following are equivalent:
(i) a simplicial category, as in 1.2.3,
(ii) a category enriched over simplicial sets.
1.2.ii. EXERCISE. Elaborate on the proof of Proposition 1.2.9 by proving that the simplicially enriched
category QCat admits conical products satisfying the universal property of Digression 1.2.5. That is:
(i) For quasi-categories A, B, X, form the cartesian product A X B and prove that the projection
maps 714 AX B — Aand g: A X B — B induce an isomorphism of quasi-categories

(Ax B)X —— AX x BX,
(ii) Explain how this relates to the universal property of Digression 1.2.5.
(iii) Express the usual 1-categorical universal property of the product A X B as the “0-dimensional
aspect” of the universal property of (i).

1.2.iii. EXERCISE. Prove that any object in an co-cosmos has a path object

B]I

B 3 BxB

constructed by cotensoring with the free-living isomorphism.

1.2.iv. EXERCISE.

(i) Use Exercise 1.1.iv and results from Appendix D to prove that a quasi-category Q is a Kan
complex if and only if the map Q' - Q? induced by the inclusion 2 < T is a trivial fibration.
(ii) Conclude that an co-category A is discrete if and only if AT =» A2 is a crivial fibration.
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1.3. Cosmological functors

Certain “right adjoint type” constructions define maps between 00-cosmoi that preserve all of
the structures axiomatized in Definition 1.2.1. The simple observation that such constructions define
cosmological functors between 0o-cosmoi will streamline many proofs.

1.3.1. DEFINITION (cosmological functor). A cosmological functor is a simplicial functor F: K — L
that preserves the specified classes of isofibrations and all of the simplicial limits enumerated in 1.2.1(3).

1.3.2. LEMMA. Any cosmological functor also preserves the equivalences and the trivial fibrations.

PROOF. By Lemma 1.2.15 the equivalences in an 0o-cosmos coincide with the homotopy equiva-
lences defined relative to cotensoring with the free-living isomorphism. Since a cosmological functor
preserves simplicial cotensors, it preserves the data displayed in (1.2.16) and hence carries equivalences
to equivalences. The statement about trivial fibrations follows. O

In general, cosmological functors preserve any co-categorical notion that can be characterized
internally to the co-cosmos — for instance, as a property of a certain map — as opposed to externally
— for instance, in a statement that involves a universal quantifier. From Definition 1.2.24 it is not
clear whether cosmological functors preserve discrete objects, but using the internal characterization
of Exercise 1.2.iv — an oo-category A is discrete if and only if Al =» A2 is a trivial fibration — chis
follows casily: cosmological functors preserve simplicial cotensors and trivial fibrations.

1.3.3. PROPOSITION.
(i) For any object A in an 0o-cosmos K, Fun(A,=): K — QCat defines a cosmological functor.

(ii) Specializing, each 0o-cosmos has an underlying quasi-category functor
(=)o == Fun(1,-): K — QCat.
(iii) For any oo-cosmos K and any simplicial set U, the simplicial cotensor defines a cosmological functor
YK - K
(iv) For any object A in a cartesian closed co-cosmos K, exponentiation defines a cosmological functor
4K - K
(v) Foranymap f: A — B inan co-cosmos K, pullback defines a cosmological functor f*: 7(/3 - 7(/ A
(vi) Forany cosmological functor F: K — Landany A € K, the induced map onslices F: Kjy — Lipp

defines a cosmological functor.

PROOF. The first four of these statements are nearly immediate, the preservation of isofibrations
being asserted explicitly as a hypothesis in each case and the preservation of limits following from
standard categorical arguments.

For (v), pullback in an co-cosmos K'is a simplicially enriched limit construction; one consequence
of this is that f*: Kjp — K4 defines a simplicial functor. The action of the functor f* on a 0-arrow
g in K is also defined by a pullback square: since the front and back squares in the displayed diagram
are pullbacks the top square is as well

*EJ—>E X
*(g\)\"‘ P|\|

f'F——F
s by

A——B

f
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Since isofibrations are stable under pullback, it follows that f*: Kjp — K4 preserves isofibrations.
It remains to prove that this functor preserves the simplicial limits constructed in Proposition 1.2.19.
In the case of connected limits, which are created by the forgetful functors to K, this is clear. For
products and simplicial cotensors, this follows from the commutative cubes

Xflf*Ei _— Hl.f*Ei Uty f(p) — (f”E)u
L// ‘ /L L/// ‘ /L
XiBEi Hi Ei u th p EU (f*P)u
4 :L - :L pU
A—=2 I1.A A—=- AU
A =t 7, e
B X Hi B B B
Since the front, back, and right faces are pullbacks, the left is as well, which is what we wanted to
show.
The final statement (vi) is left as Exercise 1.3.1. O

1.3.4. NoN-ExaMPLE. The forgetful functor Kjp — K'is simplicial and preserves the class of isofibra-
tions but does not define a cosmological functor, failing to preserve cotensors and products. However,
by Proposition 1.3.3(v), = X B: K — 7(/3 does define a cosmological functor.

1.3.5. NON-EXAMPLE. By Proposition 1.2.25, the inclusion Kan — QCat is a cosmological functor.
It has a right adjoint core: QCat — Kan that carries each quasi-category to its maximal sub Kan
complex, the simplicial subset containing all n-simplices whose edges are all isomorphisms. Thus
functor preserves isofibrations and 1-categorical limits but is nor cosmological since it is not sim-
plicially enriched: any functor K — Q whose domain is a Kan complex and whose codomain is a
quasi-category factors through the inclusion core(Q) < Q via a unique map K — core(Q) but in
general Fun(K, Q) # Fun(K, core(Q)), since a natural transformation K X A[1] — Q will only factor
through core(Q) < Q in the case where its components are invertible. See Lemma 16.1.14 however.

1.3.6. DEFINITION (biequivalences). A cosmological functor defines a biequivalence F: K = L if ad-
ditionally it
(i) is essentially surjective on objects up to equivalence: for all C € L there exists A € K'so that
FA ~C and
(ii) it defines a local equivalence: for all A, B € K| the action of F on functor quasi-categories
defines an equivalence

Fun(A, B) — Fun(FA, EB).

1.3.7.REMARK. Cosmological biequivalences will be studied more systematically in Chapter 14, where
we think of them as “change-of-model” functors. A basic fact is that any biequivalence of 00-cosmoi
not only preserves equivalences but also creates them: a pair of objects in an co-cosmos are equivalent
if and only if their images in any biequivalent co-cosmos are equivalent (Exercise 1.3.ii). It follows that
the cosmo]ogica] biequiva]ences satisfy the 2-0f=3 property.

1.3.8. EXAMPLE (biequivalences between 0o-cosmoi of (00, 1)-categories).
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(i) The underlying quasi-category functors defined on the co-cosmoi of complete Segal spaces,
Segal categories, and 1-complicial sets
(=)o (=)o (=)o
CSS —— QCat Segal —— QCat 1-Comp —— QCat

are all biequivalences. In the first two cases these are defined by “evaluating at the Octh row”
and in the last case this is defined by “forgetting the markings.”

(ii) There is also a cosmological biequivalence QCat = CSS defined by Joyal and Tierney [55].

(iii) The functor CSS = Segal defined by Bergner [15] that “discretizes” a complete Segal spaces
also defines a cosmological biequivalence.

(iv) There is a further cosmological biequivalence (—)hl QCat = 1-Comp that gives each quasi-
category its “natural marking,” with all invertible 1-simplices and all simplices in dimension
greater than 1 marked.

Proofs of these facts can be found in Appendix E.

1.3.9. REMARK. The underlying quasi-category functor (=)g: K — QCat carries the internal homs
of a cartesian closed co-cosmos K to the corresponding functor spaces: for any co-categories A and B
in K, we have

(B4 := Fun(1, B4) = Fun(A, B).
In the case where the 00-cosmos Kis biequivalent to QCat, we will see in Chapters 14 and 15 that chis
entails no essential loss of categorical information.

Exercises.

1.3.i. EXERCISE. Prove that for any cosmological functor F: K — L and any A € K, the induced
map F: Ky — L4 defines a cosmological functor.

1.3.ii. EXERCISE. Let F: K = L be a cosmological biequivalence and let A, B € K. Sketch a proof
that if FA ~ FB in £ then A ~ B in K (and see Exercise 1.4.i).

1.4. The homotopy 2-category

Small 1-categories define the objects of a strict 2-category'” Cat of categories, functors, and natural
transformations. Many basic categorical notions — those defined in terms of categories, functors,
and natural transformations and their various composition operations — can be defined internally
to the 2-category Cat. This suggests a natural avenue for generalization: reinterpreting these same
definitions in a generic 2-category using its objects in place of small categories, its 1-cells in place of
functors, and its 2-cells in place of natural transformations.

In Chapter 2, we will develop a non-trivial portion of the theory of co-categories in any fixed
00-COSMOS fo]]owing exaetly this outline, Working interna]]y to a strict 2—category that we refer to as
the homotopy 2-category that we associate to any 0o-cosmos. The homotopy 2-category of an co-cosmos
is a quotient of the full co-cosmos, replacing each quasi-categorical functor-space by its homotopy cat-
egory. Surprisingly, this rather destructive quotienting operation preserves quite a lot of information.

YA comprehensive introduction to strict 2-categories appears as /\ppendix B. Succinctly7 in para]lel with Digression
1.2.3, 2-categories can be understood equally as

o “two-dimensional” categories, with objects, O-arrows (typically called 1-cells), and 1-arrows (typically called 2-cells)
e or as categories enriched over Cat.
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Indeed, essentially all of the work in Part I will take place in the homotopy 2-category of an co-cosmos.
This said, we caution the reader against becoming overly seduced by homotopy 2-categories, for that
structure is more of a technical convenience for reducing the complexity of our arguments than a
fundamental notion of co-category theory.

The homotopy 2-category for the co-cosmos of quasi-categories was first introduced by Joyal in
his work on the foundations of quasi-category theory.

1.4.1. DEFINITION (homotopy 2-category). Let K be an co-cosmos. Its homotopy 2-category is the
strict 2-category hK whose
® objects are the co-categories, i.c., the objects A, B of K
e l-cells f: A — B are the 0-arrows in the functor space Fun(A, B) of K| i.c., the co-functors; and
f
o 2-cells A o B are homotopy classes of 1-simplices in Fun(A, B), which we call co-natural
8
transformations.

Put another way hK is the 2-category with the same objects as K and with hom-categories defined by
hFun(A, B) := h(Fun(A, B)),
that is, as the homotopy category of the quasi-category Fun(A, B).

The underlying category of a 2-category is defined by simply forgetting its 2-cells. Note that an
0o-cosmos K and its homotopy 2-category h%K share the same underlying category of co-categories
and oo-functors in K.

1.4.2. DIGRESSION. The homotopy category functor h: sSet — Cat preserves finite products, as of
course does its right adjoint. It follows that the adjunction of Proposition 1.1.11 induces a change-of-

base adjunction
h,
/-\
2-Cat L sSet-Cat
~_

whose left and right adjoints change the enrichment by app]ying the homotopy category functor or
the nerve functor to the hom objects of the enriched category. Here 2-Cat and sSet-Cat can each be
understood as 2-categories — of enriched categories, enriched functors, and enriched natural trans-
formations — and both change of base constructions define 2-functors [22, 6.4.3].

f

1.4.3. OBSERVATION (functors representing (invertible) 2-cells). By definition, every 2-cell A @ B
8

in the homotopy category h% is represented by a map 2 — Fun(A, B) defining a 1-simplex in the
functor space Fun(A, B) and two such maps represent the same 2-cell if and only if their images are
homotopic as 1-simplices in Fun(A, B) in the sense defined by Lemma 1.1.9.

Now a 2-cell in a 2-category is invertible if and only if it defines an isomorphism in the appropriate
hom-category hFun(A, B). By Definition 1.1.13 and Corollary 1.1.16 it follows that each invertible
2-cell in h%Kis represented by a map I — Fun(A, B).

1.4.4. LEMMA. Any simplicial functor F: K — L between 0o-cosmoi induces a 2-functor F: YK — L
between their homotopy 2-categories.
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PrROOF. This follows immediately from the remarks on change of base in Digression 1.4.2 but we
can also argue directly. The action of the induced 2-functor F: YK — hL on objects and 1-cells is
given by the corresponding action of F: K — L; recall an co-cosmos and its homotopy 2-category

have the same underlying 1-category. Each 2-cell in HK is represented by a 1-simplex in Fun(A, B)

which is mapped via
Fun(A, B) SN Fun(FA, FB)
f /F_f\\
A Ua>Br—>FA (Fa FB
Y ~—~"7
Fg

to a I-simplex representing a 2-cell in h.L. Since the action F: Fun(A, B) = Fun(F A, FB) on functor
spaces defines a morphism of simplicial sets, it preserves faces and degeneracies. In particular, homo-
topic 1-simplices in Fun(A, B) are carried to homotopic 1-simplices in Fun(FA, FB) so the action on
2-cells just described is well-defined. The 2-functoriality of these mappings follows from the simplicial
functoriality of the original mapping. O

We now begin to relate the simplicially enriched structures of an co-cosmos to the 2-categorical
structures in its homotopy 2-category. The first result proves that homotopy 2-categories inherit
products from their co-cosmoi, which satisfy a 2-categorical universal property. To illustrate, recall
that the terminal co-category 1 € K has the universal property Fun(X,1) = 1 for all X € K
Applying the homotopy category functor we see that 1 € h% has the universal property hFun(X, 1) =
1 for all X € HK. This 2-categorical universal property has both a 1-dimensional and a 2-dimensional
aspect. Since hFun(X, 1) = 1 is a category with a single object, there exists a unique morphism X — 1
in K. And since hFun(X, 1) = 1 has only a single identity morphism, we see that the only 2-cells in
HHK with codomain 1 are identities.

1.4.5. PROPOSITION (cartesian (closure)).

(i) The homotopy 2-category of any oo-cosmos has 2-categorical products.
(ii) The homotopy 2-category of a cartesian closed 00-cosmos is cartesian closed as a 2-category.

PrOOF. While the functor h: sSet — Cat only preserves finite products, the restricted functor
h: QCat — Cat preserves all products on account of the simplified description of the homotopy
category of a quasi-category given in Lemma 1.1.12. Thus for any set I and family of co-categories
(Aj)ier in K, the homotopy category functor carries the isomorphism of quasi-categories displayed
below left to an isomorphisms of hom-categories displayed below right

Fun(X, [T, A) = II, Fun(X, A) H hFun(X, [T, A;) = II,_ hFun(X, A)).

This proves that the homotopy 2-category h% has products whose universal properties have both a 1-
and 2-dimensional component, as described for terminal objects above.

If K is a cartesian closed co-cosmos, then for any triple of co-categories A, B, C € K there exist
exponential objects C4,CB € K characterized by natural isomorphisms

Fun(A x B, C) = Fun(A, CP) = Fun(B, C4).
Passing to homotopy categories we have natural isomorphisms

hFun(A x B, C) = hFun(A, CB) = hFun(B, C%),
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which demonstrates that H% is cartesian closed as a 1-category: functors A X B — C transpose to
define functors A = CB and B — C4, and 2-cells transpose similarly. O

There is a standard definition of isomorphism between two objects in any 1-category. Similarly,
there is a standard definition of equivalence between two objects in any 2-category:

1.4.6. DEFINITION (equivalence). An equivalence in a 2-category is given by
® a pair of objects A and B
e apairof l-cells f:A—> Bandg: B— A

® a pair of invertible 2-cells

fs
= X
AT =1e YA B =i >B
\/ v

gf

When A and B are equivalent, we write A =~ B and refer to the 1-cells f and g as equivalences, denoted
by “m).vv

In the case of the homotopy 2-category of an 00-cosmos we have a competing definition of equiva-
lence from 1.2.1: namely a 1-cell f: A = B that induces an equivalence f,: Fun(X, A) = Fun(X, B)
on functor-spaces — or equivalently, by Lemma 1.2.15, a homotopy equivalence defined relative to the
interval I Crucially, all three notions of equivalence coincide:

1.4.7. THEOREM (equivalences are equivalences). In any oo-cosmos K, the following are equivalent and
characterize what it means for a functor f: A — B between co-categories to define an equivalence.
(i) For all X € K the post-composition map f.: Fun(X, A) = Fun(X, B) defines an equivalence of
quasi-categories.
(ii) There exists a functor §: B — A and natural isomorphisms o> id4 = gf and B: fg = idp in the
homotopy 2-category.
(iii) There exist maps §: B — A and

/ Teyo / Tevo

A—25 Al B L, pt
x Zl evy \ zl evy
’ A B

in the co-cosmos in K

To continue our theme of comparing 2-categorical and quasi-categorical techniques, rather than
appealing to Lemma 1.2.15, we re-prove it.

PrROOF. For (i)=(ii), if the induced map on post-composition f,: Fun(X, A) = Fun(X, B) de-
fines an equivalence of quasi-categories, then by Remark 1.1.23, f,: hFun(X, A) = hFun(X, B) de-
fines an equivalence of categories. In particular, f,: hFun(B, A) = hFun(B, B) is essentially sur-
jective so there exists ¢ € hFun(B, A) and an isomorphism 8: f¢ = idg € hFun(B, B). Now since
f.«: hFun(A, A) = hFun(A, B) is fully faithful, the isomorphism ff: fgf = f € hFun(A, B) can be
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lifted to define an isomorphism a™!: ¢f = id4 € hFun(A, A). This defines the data of a 2-categorical
equivalence in Definition 1.4.6.
To see that (ii)=(iii) recall from Observation 1.4.3 that the natural isomorphisms a: idy = gf
and B: fg = idg in h%K are represented by maps a: A — A%and B: B — Bl in K as in (1.2.16).
Finally, (iii)=(i) since Fun(X, =) carries the data of (iii) to the data of an equivalence of categories
as in Definition 1.1.22. O

1.4.8. DIGRESSION (on the importance of Theorem 1.4.7). It is hard to overstate the importance of
Theorem 1.4.7 to the work that follows. The categorical constructions that we will introduce for
oo-categories, co-functors, and co-natural transformations are invariant under 2-categorical equiva-
lence in the homotopy 2-category and the universal properties we develop similarly characterize a
2-categorical equivalence class of oo-categories. Theorem 1.4.7 then asserts that such constructions
are “homotopica]ly correct™ both invariant under equiva]ence in the co-cosmos and precisely identi-
fying equivalence classes of objects.

The equivalence invariance of the functor space in the codomain variable is axiomatic, but equiv-
alence invariance in the domain variable is not.”® But using 2-categorical techniques, there is now a
short proof:

1.4.9. COROLLARY. Equivalences of co-categories A” =5 A and B = B’ induce an equivalence of functor
spaces Fun(A, B) = Fun(A’, B').

PrROOF. The simplicial functors Fun(4, -): K — QCat and Fun(—, B): K — QCat induce
2-functors Fun(A, -): hK — hQCat and Fun(—, B): hK®P — HQCat, which preserve the 2-categorical

equivalences of Definition 1.4.6. By Theorem 1.4.7 this is what we wanted to show. O

Similarly, there is a standard 2-categorical notion of an isofibration, defined in the statement
of Proposition 1.4.10 and elaborated upon in Definition B.4.6, and any isofibration in an co-cosmos
defines an isofibration in its homotopy 2-category.!

1.4.10. PROPOSITION (isofibrations define isofibrations). Any isofibration p: E = B in an co-cosmos
K also defines an isofibration in the homotopy 2-category HK: given any invertible 2-cell as displayed below
left abutting to B with a specified lift of one of its boundary 1-cells through p, there exists an invertible 2-cell
abutting to E with this boundary 1-cell as displayed below right that whiskers with p to the original 2-cell.

e
X —°5F X =" E

~—__"T
@ l’“ = Y
b B B

PROOF. Put another way, the universal property of the statement says that the functor
p.: hFun(X, E) - hFun(X, B)
*’Lemma 1.3.2 does not apply since Fun(—, B) is not cosmological.

*'In this case, the converse does not hold, nor is it the case that a representably-defined isofibration of quasi-categories
is necessarily an isofibration in the co-cosmos; consider the case of sliced co-cosmoi for instance.
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is an isofibration of categories in the sense defined in Example 1.2.22. By axiom 1.2.1(ii), since p: E -
B is an isofibration in K, the induced map p,: Fun(X, E) = Fun(X, B) is an isofibration of quasi-
categories. So it suffices to show that the functor h: QCat — Cat carries isofibrations of quasi-
categories to isofibrations of categories.””

So let us now consider an isofibration p: E = B between quasi-categories. By Corollary 1.1.16, ev-
ery isomorphism f in the homotopy category hB of the quasi-category B is represented by a simplicial
map fB: I — B. By Definition 1.1.17, the lifting problem

can be solved, and the map y: I — E so-produced represents a lift of the isomorphism from hB to an
isomorphism in hE with domain e. O

1.4.11. CONVENTION (on “isofibrations” in homotopy 2-categories). Since the converse to Proposition
1.4.10 does not hold, there is a potential ambiguity when using the term “isofibration” to refer to a map
in the homotopy 2-category of an co-cosmos. We adopt the convention that when we declare that a
map in h%is an isofibration we always mean this is the stronger sense of defining an isofibration in
K. This stronger condition gives us access to the 2-categorical lifting property of Proposition 1.4.10
but also to the many homotopical properties axiomatized in Definition 1.2.1, which guarantee that the
strictly defined limits of 1.2.1(i) are automatically equivalence invariant constructions.

The 1- and 2-cells in the homotopy 2-category from the terminal co-category 1 € K to a generic
oo-category A € K define the objects and morphisms in the homotopy category of A.

1.4.12. DEFINITION (homotopy category of an co-category). The homotopy category of an co-category
A in an co-cosmos K is defined to be the homotopy category of its underlying quasi-category, that is:
hA := hFun(1, A) := h(Fun(1, A)).

As we shall discover, homotopy categories generally bear “derived” analogues of structures present
at the level of co-categories. See the remark after the statement Proposition 2.1.7 for an early example

of this.

Exercises.

1.4.i. EXERCISE. Let F: K = L be a cosmological biequivalence and let A,B € K. Prove that if
FA ~ FB in L then A ~ B in K and ruminate on why this exercise is considerably easier than
Exercise 1.3.ii).

1.4.ii. EXERCISE.
(i) What is the homotopy 2-category of the co-cosmos Cat of 1-categories?
(ii) Prove that the nerve defines a 2-functor Cat < hQCat that is locally fully faithful.

L4.iii. EXERCISE. Demonstrate that the homotopy 2-category of the dual cosmos K* of an co-cosmos
K is the co-dual of the homotopy 2-category hK, with the domains and codomains of 2-cells but not

1-cells reversed: in symbols h(K*™) = (hK)<.
**Alternately, argue directly using Observation 1.4.3.
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L4.iv. EXERCISE. Let B be an co-category in the co-cosmos K and let [)7(/3 denote the 2-category
whose

® objects are isofibrations E = B in K with codomain B
e 1-cells are 1-cells in hX over B

e 2-cells are 2-cells in H% over B

in the sense that ga = idp.

Argue that the homotopy 2-category h(K)p) of the sliced co-cosmos has the same underlying 1-category
223

but different 2-cells. How do these compare with the 2-cells of HKp’

A more systematic comparison will be given in Proposition 3.6.3.
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CHAPTER 2

Adjunctions, limits, and colimits I

Heuristically, co-categories generalize ordinary 1-categories by adding in higher dimensional mor-
phisms and weakening the composition law. The dream is that proofs establishing the theory of
1-categories similarly generalize to give proofs for co-categories, just by adding a prefix “co-" every-
where. In this chapter, we make this dream a reality — at least for a library of basic propositions
concerning equivalences, adjunctions, limits, and colimits and the relationships between these no-
tions.

Recall that categories, functors, and natural transformations assemble into a 2-category Cat. Sim-
ilarly, the co-categories, co-functors, and co-natural transformations in any co-cosmos assemble into
a 2-category, namely the homotopy 2-category of the co-cosmos, introduced in §1.4. In fact, by Exer-
cise 1.4.ii, Cat can be regarded as a special case of a homotopy 2-category. In this chapter, we will
use strict 2-categorical techniques' to define adjunctions between co-categories and limits and colimits
of diagrams valued in an co-category and prove that these notions interact in the expected ways. In
the homotopy 2-category of categories, these recover the classical results from 1-category theory. As
these proofs are equally valid in any homotopy 2-category, our arguments also establish the desired

”

generalizations by simply appending the prefix “co-.
2.1. Adjunctions and equivalences

In §1.4, we encountered the definition of an equivalence between a pair of objects in a 2-category.
In the case where the ambient 2-category is the homotopy 2-category of an 0o-cosmos, we observed in
Theorem 1.4.7 that the 2-categorical notion of equivalence precisely recaptures the notion of equiva-
lence introduced in Definition 1.2.1 between co-categories in the full 00-cosmos. In each of the exam-
ples of co-cosmoi we have considered, the representably-defined equivalences in the co-cosmos coin-
cide with the standard notion of equivalences between co-categories as presented in that particular
model.* Thus, the 2-categorical notion of equivalence is the “correct” notion of equivalence between
0o-categories.

Similarly, there is a standard definition of an adjunction between a pair of objects in a 2-category,
which, when interpreted in the homotopy 2-category of eo-categories, functors, and natural transfor-
mations in an co-cosmos, will define the correct notion of adjunction between 0o-categories.

2.1.1. DEFINITION (adjunction). An adjunction between co-categories is comprised of:
® a pair of co-categories A and B,
® a pair of co-functorsu: A — Band f: B — A,
e and a pair of co-natural transformations 17: 1 = uf ande: fu = 14, called the unit and counit
respectively,

'Appendix Band in particular §B.1 are included for the reader who is unfamiliar with the calculus ofpasting diagrams.
*For instance, as outlined in Digression 1.2.10, the equivalences in the co-cosmoi oFExample 1.2.21 recapture the weak

equivalences between fibrant-cofibrant objects in the usual model structure.
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so that the triangle equalities hold:’
B ————8B B B =———8B B
u \ up_Nu 2 f _ fI_\f
Vet e =) NN, =(7)
A=——A A A=——A A
The functor f is called the left adjoint and  is called the right adjoint, a relationship that is denoted
symbolically in text by writing f < u or in a displayed diagram such as*

In the future, we generally drop the prefix “c0”™ from the functors and natural transformations
between co-categories.

2.1.2. DIGRESSION (why this is the right definition). For readers who find Definition 2.1.1 implausible
— perhaps too simple to be trusted — we offer a few words of justification. Firstly, the correct notion
of adjunction between quasi-categories is well established, though the definition appearing in [66, §5.2]
takes a quite different form. In Appendix F, we prove that in the co-cosmos of quasi-categories, our
definition of adjunction precise]y recovers Lurie’s. As exp]ained in Part 1V, each of the models of
(00, 1)-categories described in Example 1.2.21 “has the same category theory,” so Definition 2.1.1 agrees
with the community consensus notion of adjunction between (00, 1)-categories.

But what about those co-cosmoi whose objects model (00,1)- or (00, 00)-categories? For in-
stance in the co-cosmos of complicial sets, the adjunctions defined in the homotopy 2-category are
the “pseudo-style” adjunctions. While these are not the most general adjunctions that might be con-
sidered — for instance, one could have (op)lax units and counits — they are an important class of
adjunctions. One reason for the relevance of Definition 2.1.1 in all co-cosmoi is its formal properties
vis-a-vis the related notion of equivalence, which Theorem 1.4.7 has established is morally “correct,”
and with the notions of limits and colimits to be introduced.

Finally, a reasonable objection is that Definition 2.1.1 appears too “low dimensional,” comprised
of data found entirely in the homotopy 2-category and ignoring the higher dimensional morphisms
in an 00-cosmos. This deficiency will be addressed in Chapter 9, when we prove that any adjunction
between oco-categories extends to a homotopy coherent adjunction, and moreover such extensions are
homotopically unique.

The definition of an adjunction given in Definition 2.1.1 is “equational” in character: stated in
terms of the objects, 1-cells, and 2-cells of a 2-category and their composites. Immediately:

2.1.3. LEMMA. Adjunctions in a 2-category are preserved by any 2-functor. O

Lemma 2.1.3 provides an easy source of examples of adjunctions between quasi-categories. The
2-functors underlying the cosmological functors of Example 1.3.8 then transfer adjunctions defined in
one model of (00, 1)-categories to adjunctions defined in each of the other models.

*The left-hand equality of pasting diagrams asserts the composition relation ue - nu = id, in the hom-category
hFun(A, B), while the right-hand equality asserts thatef - fn = id¢ in hFun(B, A).

*Some authors contort adjunction diagrams so that the left adjoint is always on the left; we instead use the turnstile
symbol “L” to indicate which adjoint is the left adjoint.
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2.1.4. ExaMPLE (adjunctions between 1-categories). Via the nerve embedding Cat < hQCat, any ad-
junction between 1-categories induces an adjunction between their nerves regarded as quasi-categories.

2.1.5. ExAMPLE (adjunctions between topological categories). The homotopy coherent nerve of Defini-
tion 6.3.1 defines a 2-functor N: Kan-Cat — HQCat from the 2-category of Kan complex enriched
categories, simplicially enriched functors, and simplicial natural transformations, to the homotopy
2-category hHQCat. In this way, topologically enriched adjunctions define adjunctions between quasi-
categories.

2.1.6. REMARK. Topologically enriched adjunctions are relatively rare. More prevalent are “up-to-
homotopy” topologically enriched adjunctions, such as those given by Quillen adjunctions between
(simplicial) model categories. These also define adjunctions between quasi-categories; see a proof of

Mazel-Gee [72] or [89, §6.2].
The preservation of adjunctions by 2-functors proves:

f

2.1.7. PROPOSITION. Given any adjunction A I(_L\ B between oo-categories then:
\ujl
(i) for any co-category X,
f)f
/\
Fun(X,A) 1 Fun(X,B)
\_/l

Uy

defines an adjunction between quasi-categories;
(ii) for any co-category X,

f’(‘
/\
hFun(X,A) L hFun(X,B)
\u_/
defines an adjunction between categories;
(iii) for any simplicial set U,
fU
e
AY 1 BY
~—_ "7
U
defines an adjunction between co-categories;
(iv) and if the ambient 0o-cosmos is cartesian closed, then for any oo-category C,
fC
e
A€ 1 B€
~— T
e

defines an adjunction between 0o-categories.

For instance, taking X = 1 in (ii) yields a “derived” adjunction between the homotopy categories
of the co-categories A and B.
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PROOF. Any adjunction f — u in the homotopy 2-category hK is preserved by the 2-functors
Fun(X, -): BK — bQCat, hFun(X,-): hK — Cat, (-)¥: hK — hK, and (-): hKX - hK O

2.1.8. REMARK. There are contravariant versions of each of the adjunction—preservation results of
Proposition 2.1.7, the first of which we explain in detail. Fixing the codomain variable of the functor-
space at any oo-category C € K defines a 2-functor

Fun(—, C): hK*P — hQCat

that is contravariant on 1-cells and covariant on 2-cells.” Similarly, the cotensor or exponential CO) s
contravariant on 1-cells and covariant on 2-cells.® Such 2-functors preserve adjunctions, but exchange
left and right adjoints: for instance, given f = u# in K we obtain an adjunction

*

u

/\
Fun(A,C) L Fun(B,C)
\F/
between the functor-spaces.

2.1.9. PROPOSITION. Adjunctions compose: given adjoint functors

£ f £
C 1 B 1A > c 1A
u uu

the composite functors are adjoint.

PrOOF. Writing n: idg = uf, €: fu = idy, n': id. = uw'f’, and €': f'u’ = idg for the
respective units and counits, the pasting diagrams

Nw LN
\“’7/ / le \f

A
define the unit and counit of f f* - ©'u so that the triang]e equalities
C C C C C C
M, \ ,
fx U’ u Ue\ ff ff /\uelfu Uy’ Z:' u'u u'u
B B = = B B B = =
7‘ f u \
f\/un/u le \1 / le fxllﬁ/:
A A A A A A

*On a strict 2-category, the superscript “op” is used to signal that the 1-cells should be reversed but not the 2-cells, the
superscript “co” is used to signal that the 2-cells should be reversed but not the 1-cells, and the superscript “coop” is used
to signal that both the 1- and 2-cells should be reversed; see Definition B.1.7.

°In the case of the simplicial cotensor, the domain can safely be restricted to the homotopy 2-category of quasi-
categories or can be regarded as an analogously-defined homotopy 2-category of simplicial sets.
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hold. O

An adjoint to a given funcror is unique up to nacural isomorphism:

2.1.10. PROPOSITION (uniqueness of adjoints).

() If f Huand f < u, then f = f'.
(ii) Conversely, if f 4 wand f = f’ then f" 4 u.

PrROOF. Writing 1 idg = uf, e: fu = idy, n': id. = uf’, and €’: f'u = idp for the
respective units and counits, the pasting diagrams
B ——

B—— B B
Au”'/”ﬂue\f f\ U /”te'\f/
yp— A4

define 2-cells f = f" and f* = f. The composites f = f' = fand f' = f = f’ are computed by
pasting these diagrams together horizontally on one side or the other. Applying the triangle equalities
for the adjunctions f < u and f” < u both composites are easily seen to be identities. Hence f = f'
as functors from B to A.

Part (ii) is left as Exercise 2.1.1. O

We will make repeated use of the following standard 2-categorical result, which says that any
equivalence in a 2-category can be promoted to an equivalence that also defines an adjunction:

2.1.11. PROPOSITION (adjoint equivalences). Any equivalence can be promoted to an adjoint equivalence by
modifying one of the 2-cells. That is, the invertible 2-cells in an equivalence can be chosen so as to satisfy the
triangle equalities. Hence, if f and g are inverse equivalences then f 4 g and g - f.

PROOF. Consider an equivalence comprised of functors f: A — Band g: B = A and invertible
2-cells

fs
= X
AT = S A B =15 >B
\_/ v

8f
We will construct an adjunction f — ¢ with unit 1 := a by modifying . The “triangle identity
composite”

o =f <L fof £ f

is an isomorphism, though likely not an identity. Define

¢! B B fa~l
5 fo == idg = fg = fgfg => fg

p

> idp

€= fg
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This “corrects” the counit so that now the composite €f - f1, displayed on the top of the diagram

which agrees with the bottom composite by “naturality of whiskering,” is the identity idf.
Now by another diagram chase, the other triangle composite g€ - ¢ is an idempotent:

g == gfg —=—=¢

Ugﬂ ﬂ'ﬂg f& ﬂﬁg

gfng gfge
gfs =55 ofefe =5 ¢fg

SO bk

8f8 =

By cancelation, any idempotent isomorphism is the identity, proving that ge-ng = idg. ]

One use of Proposition 2.1.11 is to show that adjunctions are equivalence invariant:

2.1.12. PROPOSITION (equivalence-invariance of adjunctions). A functoru: A — B between co-categories
admits a left adjoint if and only if, for any pair of equivalent co-categories A’ ~ A and B" ~ B, the equivalent
functor u”: A" — B’ admits a left adjoint.

PROOF. Exercise 2.1.i. 0

As we will discover, all of co-category theory is equivalence invariant in this way.

2.1.13. LEMMA. For any co-category A, the ‘composition” functor
(_riddom(—))

N
AZX A% —v— A2 (2.1.14)
A
(idcod(—)r_)
admits left and right adjoints, which, respectively, “extend an arrow into a composable pair” by pairing it with
the identities at its domain or its codomain.

PROOF. There is a dual adjunction in Cat whose functors we describe using notation for simplicial
operators introduced in 1.1.1; the full subcategory of Cat spanned by the finite non-empty ordinals is
isomorphic to A.

0 A0
7T N L~
Je—a1—2 ~ A3 s A2
\Ij W
st Asl
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Any oo-category A in an 00-cosmos K defines a 2-functor AC): Cat? —» pK carrying the adjoint
triple disp]ayed above-left to the one disp]ayed above—right.

Now we claim there is a trivial fibration A> =» A? x4 A2 constructed as follows. The pushout
diagram of simplicial sets displayed below-left is carried by the simplicial cotensor AC): s8Set® —» K
toa puﬂback diagram disp]ayed below—right; since the ]egs of the pushout square are monomorphisms,
the legs of the pullback square are isofibrations

A2] — AN s A2
] ]dl l B lcvo

Lemma 1.2.11 tells us that the cotensor of the inner horn inclusion A'[2] < 3 with the co-category A

defines a trivial fibration A3 =» AA2] and the pullback square above-left recognizes its codomain
as the desired co-category of “composable pairs.” Any section s to g: A3 =» A2 x 4 A? can be made
into an equivalence inverse. By Proposition 2.1.11, these functors are both left and right adjoints.
Composing the adjunction ¢ - s - g with the adjunction constructed above defines the desired
adjunction. O

Note that the adjoint functors of (2.1.14) commute with the “endpoint evaluation” functors to
A X A. In fact, the units and counits can similarly be fibered over A X A; see Example 3.6.13.

Exercises.
2.1.i. EXERCISE. Prove Proposition 2.1.10(ii).

f

[~
2.1.ii. EXERCISE. Prove Proposition 2.1.12: given an adjunction A \Lj B andequivalences A ~ A’
u
and B ~ B’ construct an adjunction between A" and B'.

2.2. Initial and terminal elements

Employing the tactic used to define the homotopy category of A in Definition 1.4.12, we use the
terminal co-category 1 to probe inside the co-category A. The objects 4 € hA of the homotopy
category of A were defined to be maps of co-categories a: 1 — A, but to avoid the proliferation of
the term “objects” we refer to maps a: 1 — A as elements of the co-category A instead.

Before introducing limits and colimits of general diagram shapes, we warm up by defining initial
and terminal elements in an co-category A.

2.2.1. DEFINITION (initial/terminal element). An initial element in an co-category A is a left adjoint
to the unique funcror !: A — 1, as displayed below-left, while a terminal element in an co-category

A is a right adjoint, as displayed below-right.

1717 A 11 A

Let us unpack the definition of an initial element; dual remarks apply to terminal elements.
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2.2.2. LEMMA (the minimal data required to present an initial element). To define an initial element in
A, it suffices to specify

e anclementi: 1 — A and

® a natural transformation

1
! ‘
/' le \l|
A eee——————— A
so that the component €i: i = i is the identity in hA.

PROOF. Proposition 1.4.5, whose proofstarts in the paragraph before its statement, demonstrates
that the co-category 1 € K is terminal in the homotopy 2-category hK. The 1-dimensional aspect
of this universal property implies that i defines a section of the unique map A — 1 and from the
2-dimensional aspects, we see that there exist no non-identity 2-cells with codomain 1. In particular,
the unit of the adjunction i H!is necessarily an identity and one of the triangle equalities comes for
free. The data enumerated above is what remains of Definition 2.1.1 in this setting. O

Put more concisely, an initial element i defines a left adjoint right inverse to the functor 1 A — 1.
Such adjunctions are studied more systematically in §B.4. In fact, it suffices to assume that the counit
component €I is an isomorphism, not necessarily the identity; see Lemma B.4.2.

In a cartesian closed co-cosmos, an initial element may also be characterized as a limit for the
identity functor id4 — id 4, with the universal property of the counit €: i! = id 4 transposing across
the 2-adjunction A X — = (=)? to define the limit cone. Corollary 13.5.4 deduces this result as a
special case of more general formal category theory developed there, but it can also be proven directly
as a Z—Categorical pasting diagram calculation; see Exercise 2.2.ii.

2.2.3. REMARK. Applying the 2-functor Fun(X, —): h — HQCat to an initial elementi: 1 — A or
terminal element £: 1 — A of an co-category A € K yields adjunctions

iy |

/\\ I/\
1=Fun(X,1) L Fun(X,A) 1=Fun(X,1) L Fun(X,A)

\/ \_/’

! t,

Via the isomorphisms Fun(X, 1) = 1 that express the universal property of the terminal co-category
1, we see that the constant functor at an initial or terminal element

X—-1—"54 or X—-1-—-154
defines an initial or terminal element, respectively, of the functor-space Fun(X, A). This observation

can be summarized by saying that initial or terminal elements are representably initial or terminal at
the level of the co-cosmos.

This representable universal property is also captured at the level of the homotopy 2-category. The
next lemma shows that the initial elementi: 1 — A s initial among all generalized elements f: X — A
in the following precise sense.

40



2.24. LEMMA. Anelemenci: 1 — A is initial if and only if for all f: X — A there exists a unique 2-cell

with boundary
1
! i
/ IE!
X - S A

PROOF. Ifi: 1 — Aisinitial, then the adjunction of Definition 2.2.1 is preserved by the 2-functor
hFun(X, -): K — Cat, defining an adjunction
ia(-
/\
1=hFun(X,1) L hFun(X,A)
\\_/

!

Via the isomorphism hFun(X, 1) = 1, chis adjunction proves that the elementi!: X — A is initial in
hFun(X, A) and thus has the universal property of the statement.

Conversely, if i: 1 — A satisfies the universal property of the statement, applying this to the
generic element of A (the identity map id4: A — A) easily produces the data of Lemma 2.2.2. O

2.2.5.REMARK. Lemma2.2.4 says thatinitial elements are representably initial in the homotopy 2-category.
Specializing the generalized elements to ordinary elements, we see that initial and terminal elements
in A respectively define initial and terminal elements in the homotopy category hA.

2.2.6. LEMMA. If A has an initial element and A ~ A’ then A’ has an initial element and these elements are
preserved up to isomorphism by the equivalences.

PROOEF. By Proposition 2.1.11, the equivalence A ~ A’ can be promoted to an adjoint equivalence,
which can immediately be composed with the adjunction characterizing an initial element i of A:
i ~
/) ~—
11" A 1 A
~— |

| ~

The composite adjunction provided by Proposition 2.1.9 proves that the image of i defines an initial
clement of A’, which by construction is preserved by the equivalence A = A’.

To see that the equivalenee A = A also preserves initial elements, we can use the invertible
2-cells of the equivalence to see that i is isomorphic to the image of the image of i in A’. In case the
initial objects in mind are not the ones being considered here, we can appeal to the uniqueness of
initial elements proven in Exercise 2.2.ii. O

Exercises.

2.2.i. EXERCISE. Prove that initial elements are preserved by left adjoints and terminal elements are
preserved by right adjoints.

2.2.ii. EXERCISE. Prove that any two initial elements in an co-category A are isomorphic in hA.

2.2.iii. EXERCISE. Prove that in a cartesian closed co-cosmos, initial elements in A may be character-
ized as limits of the identity functor id 4 : A — A by transposing the universal property of the counit
of Definition 2.2.1.
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2.3. Limits and colimits

Our aim is now to introduce limits and colimits of diagram valued inside an co-category A in some
oo-cosmos. We will consider two varieties of diagrams:
® In a generic 00-cosmos K, we shall consider diagrams indexed by a simplicial set | and valued in
an oo-category A.
e In acartesian closed 0o-cosmos K, we shall also consider diagram indexed by an co-category [ and
valued in an co-category A’

2.3.1. DEFINITION (diagram co-categories). For a simplicial set ] — or possibly, in the case of a cartesian
closed co-cosmos, an co-category | — and an oco-category A, we refer to Al as the oo-category of
J-shaped diagrams in A. Both constructions define bifunctors

sSet? X K —— K KPx K —— K
(J,4) —— A J,A) —— A

In either indexing context, there is a terminal object 1 with the property that Al = A for any
oo-category A. Restriction along the unique map !: | — 1, induces the constant diagram funcror

A A— Al

We are deliberately conflating the notation for co-categories of diagrams indexed by a simplicial
set or by another co-category because all of the results we will prove in Part I about the former case
will also apply to the lacter. For economy of language, we refer only to simplicial set indexed diagrams
for the remainder of this section.

2.3.2. DEFINITION. An oo-category A admits all colimits of shape | if the constant diagram functor
A: A — Al admits a left adjoint, while A admits all limits of shape J if the constant diagram functor
admits a right adjoint:
colim
L
Al «r— A
LA
lim
2.3.3. WARNING. Limits or colimits of set-indexed diagrams — the case where the indexing shape is a
coproduct of the terminal object 1 indexed by a set ] — are called products or coproducts, respectively.
In this case the co-category of diagrams itself decomposes as a product A/ = H] A. As the functor
hFun(1,-)
—

HhK Cat

Ar——hA

that carries an co-category to its homotopy category preserves products, when [ is a set there is a chain
of isomorphisms

h(A)) = h(I], A) = I, hA = (hA)

"In Proposition 14.3.4 proven in Part IV, we shall discover that in the case of the co-cosmoi of (00, 1)-categories,
there is no essential difference between these notions: in QCat they are tautologically the same, and in all biequivalent
0o-cosmsoi the co-category of diagrams indexed by an co-category A is equivalent to the co-category of diagrams indexed
by its underlying quasi-category, 1‘egarded asa simplicial set.
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Thus, in this special case the adjunctions of Definition 2.3.2 that define products or Coproducts in an
oco-category descend to the adjunctions that define products or coproducts in its homotopy category.

However, this argument does not extend to more general limit or colimit notions, and such co-cat-
egorical limits or colimits are generally not limits or colimits in the homotopy category.® In §3.2, we
shall see that the homotopy category construction fails to preserve more complicated cotensors, even
in the relatively simple case of | = 2.

The problem with Definition 2.3.2 is that it is insufficiently general: many co-categories will have
certain, but not all, limits of diagrams of a particular indexing shape. So it would be desirable to
re-express Definition 2.3.2 in a form that allows us to define the limit of a single diagram d: 1 — Al
or of a family of diagrams. To achieve this, we make use of the following 2-categorical notion that
op-dualizes the more familiar absolute extension diagrams.

2.3.4. DEFINITION (absolute lifting diagrams). Given a cospan C g A / B ina2-category,
an absolute left lifting of ¢ through f is given by a 1-cell € and 2-cell A as displayed below-left

b

X258 X ——B
/lf L SR
C%A CTA CTA

so that any 2-cell as displayed above-center factors uniquely through (£, A) as displayed above-right.
Dually, an absolute right lifting of ¢ through f is given by a 1-cell 7 and 2-cell p as displayed
below-left

X —5B X#B

! /I
/lf ow o= ol
C—>A CT>A CT>A

so that any 2-cell as displayed above-center factors uniquely through (7, p) as displayed above-right.

The adjectives “left” and “right” refer to the handedness of the adjointness of these construc-
tions: left and right liftings respectively define left and right adjoints to the composition functor
f«: hFun(C,B) — hFun(C, A), with the 2-cells defining the components of the unit and counit of
these adjunctions, respectively, at the object §. The adjective “absolute” refers to the following stability
property.

2.3.5. LEMMA. Absolute left or right lifting diagrams are stable under restriction of their domain object: if
(€, A) defines an absolute left lifting of g through f, then for any c: X — C, the restricted diagram (€c, Ac)

defines an absolute left lifting of gc through f.
B
€
Sl
C A

ProOOF. Exercise 2.3.1. 0

*This sort of behavior is expected in abstract homotopy theory: homotopy limits and colimits are not generally limits
or colimits in the homotopy category.
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Units and counits of adjunctions provide important examples of absolute left and right lifting
diagrams respectively:

2.3.6. LEMMA. A 2-cell 17: idg = uf defines the unit of an adjunction f = u if and only if (f, 1)) defines
an absolute left lifting diagram, displayed below-left.

A B
" Al
B B A A

Dually a 2-cell €: fu = id 4 defines the counit of an adjunction if and only if (u, €) defines an absolute right
lifting diagram, displayed above-right.

PROOF. We prove the universal property of the counit. Given a 2-cell @: fb = a as displayed
below-left

X LN B X ——B
| o o= l
A=——=A
there exists a unique transpose ﬁ: b= ua as displayed above—rlght across the induced adjunction
f«

/‘\
hFun(X,B) L hFun(X, A)

\\_/

Uy

between the hom-categories of the homotopy 2-category; see Proposition 2.1.7(ii). From right to left,
transposes are composed by pasting with the counit; hence the left-hand side above equals the right-
hand side. The converse is left as Exercise 2.3.ii. O

In particular, the unit of the adjunction colim = A of Definition 2.3.2 defines an absolute left

A
colim
e
Al Al

By Lemma 2.3.5, this universal property is retained upon restricting to any subobject of the co-category

lifting diagram

of diagrams. This motivates the following definitions:.

2.3.7. DEFINITION. A colimit of a family of diagrams d: D — A/ indexed by J in an co-category A is

given by an absolute left lifting diagram
A
colim
L

comprised of a colimit functor colim: D — A and a colimit cone 17: d = A colim.
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Dually, a limit of a family of diagrams d: D — A/ indexed by ] in an co-category A is given by an
absolute right lifting diagram

V lA
le

comprised of a limit functor lim: D — A and a limit cone €: Alim = d.

2.3.8. REMARK. If A has all limits of shape J, then Lemma 2.3.5 implies that any family of diagrams
d: D — A has a limit, defined by evaluating the limit functor lim: A - Aacd, e, by restricting
lim along d. In certain co-cosmoi, such as QCat, if every diagram d: 1 — A/ has a limit, then A
has all J-indexed limits, because the quasi-category 1 generates the co-cosmos of quasi-categories in a
suitable sense, but this result is not true for all co-cosmoi. See Corollary 16.2.10.

For example, a 2-categorical lemma enables general proof of a classical result from homotopy the-
ory that computes geometric realizations of “split” simplicial objects. Before proving this, we introduce
the indexing shapes involved.

2.3.9. DEFINITION (split augmented (co)simplicial objects). Recall A is the simplex category of finite
non-empty ordinals and order-preserving maps introduced in 1.1.1. It defines a full subcategory of a
category A, which freely appends the empty ordinal “[—~1]” as an initial object. This in turn defines
a wide subcategory of a category A, which adds an “extra” degeneracy o7l [n+ 1] - [n] between
cach pair of consecutive ordinals, including o 1:[0] -» [-1]. The category A, also defines a wide
subcategory of a category A+, which adds an “extra” degeneracy 6" *1: [n+1] - [1] on the other side
between each pair of consecutive ordinals, including a%: [0] = [-1].

Diagrams indexed by A C A, C A, At are respectively called cosimplicial objects, coaugmented
cosimplicial objects, and split coaugmented cosimplicial objects (in the case of either A} or Aq), if
they are covariant, and simplicial objects, augmented simplicial objects, and split augmented sim-
plicial objects, if they are contravariant. When it is useful to disambiguate between A} and A+ we
refer to the former category as a “bottom splitting” and the latter category as a “top splitting,” but this
terminology is not standard.

. .. . . op . . . . N
A simplicial objectd: 1 — AA" in an oo-category A admits an augmentation or admits a split-
ting, if it lifts along the restriction functors

8 p

AAL

F‘l
B op

B AA+

R
B 7
. Ve
.'. 7z
C s

1 /T> AAOP
where in the case of a top splitting, A is replaced by A¢. The family of simplicial objects admitting an

AOP

Op
augmentation and splitting is then represented by the generic element ADL 5 AAT The following

proposition proves that for any simplicial object admitting a splitting, the augmentation defines the
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colimit cone; dual results apply to colimits of split cosimplicial objects. The limit and colimit cones
are defined by cotensoring with the unique natural transformation

Al A (23.10)

that exists because [-1]: 1 — A, is initial; see Lemma 2.2.4.

2.3.11. PROPOSITION (geometric realizations). Let A be any oo-category. For every cosimplicial object in
A that admits a coaugmentation and a splitting, the coaugmentation defines a limit cone. Dually, for every
simplicial object in A that admits an augmentation and a splitting, the augmentation defines a colimit cone.
That is, there exist absolute right and left lifting diagrams

A A
V1] A V1] lA
U,Av ﬂAVOp
A s AA s AA AP ; AP s AAP
A L res A + res A A + Tres A * res A
A A
V1] A V1] lA
U,Av ﬂAVOp
A s AA s AA AP ; AP s AAP
A T res A + res A A T Tes A * res A

in which the 2-cells are obtained as restrictions of the cotensor of the 2-cell (2.3.10) with A. Moreover, such
limits and colimits are absolute, preserved by any functor f: A — B of co-categories.

PrROOF. By Example B.5.2, the inclusion A < A admits a right adjoint, which can automatically
be regarded as an adjunction “over” 1 since 1 is 2-terminal. The initial element [-1] € A, C A}
defines a left adjoint to the constant functor:

with the counit of this adjunction (2.3.10) defining the colimit cone under the constant functor at
the initial element. These adjunctions are preserved by the 2-functor AC): Cat® - pK. yielding a
diagram

A 5 A 5 A
AL.res Al resA‘A

By Lemma B.5.1 these adjunctions witness the fact that evaluation at [-1] and the 2-cell from (2.3.10)
define an absolute right lifting of the canonical restriction functor AbL 5 AA through the constant
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diagram functor, as claimed. The colimit case is proven similarly by applying the composite 2-functor

N _\op (-
Catr 5 capr A7 )

hK

A similar argument, starting from Example B.5.3, constructs the absolute lifting diagrams from the
top splitting.

Finally, by the 2-functoriality of the simplicial cotensor, any f: A — B commutes with the 2-cells
defined by cotensoring with v or its opposite.

f

A——— B

B
evy lA lA = CVV J,A
LAY LAY
AA+ Tes AA

fA BA AAL fAJ' BAL Tes BA+ Tes E BA

AAL

res

Since the right-hand composite is an absolute right lifting diagram, so is the left-hand composite,
which says that f: A — B preserves the totalization of any split coaugmented cosimplicial object in

A. O
Exercises.
2.3.1. EXERCISE. Prove Lemma 2.3.5.

2.3.ii. EXERCISE. Re-prove the forwards implication of Lemma 2.3.6 by following your nose through a
pasting diagram calculation and prove the converse similarly.

2.4. Preservation of limits and colimits

Famously, right adjoint functors preserve limits and left adjoints preserve colimits. Our aim in
this section is to prove this in the co-categorical context and exhibit the first examples of initial and
final functors, in the sense introduced in Definition 2.4.6 below.

The commutativity of right adjoints and limits is very easily established in the case where the
oo-categories in question admit all limits of a given shape: under these hypotheses, the limit funcror
is right adjoint to the constant diagram functor, which commutes with all functors between the base
oo-categories. Since the left adjoints commute, the uniqueness of adjoints (Proposition 2.1.10) implies
that the right adjoints do as well. This outline gives a hint for Exercise 2.4.1.

A slightly more delicate argument is needed in the general case, involving, say, the preservation of
a single limit diagram without a priori assuming that any other limits exist. This follows easily from
a general lemma about composition and cancelation of absolute lifting diagrams:

2.4.1. LEMMA (composition and cancelation of absolute lifting diagrams). Suppose (, p) defines an ab-

solute right lifting of h through f:

C
S lo lg
B
/rUpJ'f
DT>A
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Then (s, 0) defines an absolute right lifting of r through g if and only if (s, p - fo) defines an absolute right
lifting of h through fg.

PROOF. Exercise 2.4.1i. l
2.4.2. THEOREM (RAPL/LAPC). Right adjoints preserve limits and left adjoints preserve colimits.

The usual argument that right adjoints preserve limits proceeds like this: a cone over a J-shaped
diagram in the image of u transposes across the adjunction f] —~ 1/ to a cone over the original diagram,
which factors through the designated limit cone. This factorization transposes across the adjunction
f = u to define the sought-for unique factorization through the image of the limit cone. The use of
absolute lifting diagrams to express the universal properties of limits and colimits (Definition 2.3.7)
and adjoint transposition (Lemma 2.3.6) allows us to economize on the usual proof by suppressing
consideration of a generic test cone that must be shown to uniquely factor through the limit cone.

PROOF. We prove that right adjoints preserve limits. By taking “co” duals the same argument
demonstrates that left adjoints preserve colimits.

Suppose #: A — B admits a left adjoint f: B — A withunitn: idg = uf and counite: fu =
id4. Our aim is to show that any absolute right lifting diagram as displayed below-left is carried to
an absolute right lifting diagram as displayed below-right:

A A—L 5B
lim A lim A A (243)
Up l Up l l
D— A D Al B/
d d W

The cotensor (=) : B — HK carries the adjunction f = u to an adjunction f/ o w/ with unic r/
and counit €. In particular, by Lemma 2.3.6, (u], 6]) defines an absolute righe lifting of the identity
through f], which is then preserved by restriction along the functor d. Thus, by Lemma 2.4.1, the
diagram on the right of (2.4.3) is an absolute right lifting diagram if and only if the pasted composite
displayed below-left

A—L—>B B B
lim u
Up lA ; lA le lf ulim / |elim lf
D— Al ——p = A A = A
Ué'] i V A A : 7 A
\ lf Up l l A4
Al DI Al — DA

defines an absolute right lifting diagram. Pasting the 2-cell on the right of (2.4.3) with the counit in
this way amounts to transposing the cone under u lim across the adjunction f] — .

We'll now observe that this transposed cone factors through the limit cone (lim, p) in a canonical
way. From the 2-functoriality of the simplicial cotensor in its exponent variable, f]A = Af and
¢/A = Ae. Hence, the pasting diagram displayed above-left equals the one displayed above-center
and hence also, by naturality of whiskering, the diagram above-right.” This latter diagram is a pasted
composite of two absolute right lifting diagrams, and is hence an absolute right lifting diagram in its

’By naturality of whiskering, éd- f]u]p =p- €/ Alim, and since €A = Ae, this composite equals p - A€ lim.
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own right; this universal property says that any cone over d whose summit factors through f factors
uniquely through the limit cone (lim, p) through a map that then transposes along the adjunction
f = u. Hence all of the diagrams in the statement are absolute right lifting diagrams, including in
particular the one on the right-hand side of (2.4.3). O

By combining Theorem 2.4.2 with Proposition 2.1.11, we have immediately that:
2.4.4. COROLLARY. Equivalences preserve limits and colimits. O
We can also prove a more refined result:

2.4.5. PROPOSITION. If A =~ B, then any family of diagrams in A admitting a limit or colimit in B also
admits a limit or colimit in A that is preserved by the equivalence.

PROOF. By Proposition 2.1.11 the equivalence B = A is both left and right adjoint to its equiva-
lence inverse, preserving both limits and colimits of the composite family of diagrams D — Al = B
Via the invertible 2-cells of the equivalence A/ ~ B/ constructed by applying (=) : HK — HK to the
equivalence A ~ B, the preserved diagram D — Al = B = Alis isomorphic to the original family
of diagrams D — Al. Thus, we conclude that a family of diagrams in A has a limit or colimit if and
only if its image in an equivalent co-category B does, and such limits and colimits are preserved by the
equivalence. O

The following definition makes sense between small quasi-categories or equally between arbitrary
oo-categories in a cartesian closed 00-cosmos.
2.4.6. DEFINITION (initial and final functor). A functor k: I — [ is final if J-indexed colimits exist
if and only if; and in such cases coincide with, the restricted I-indexed colimits. Thatis, k: I — Jis
final if and only if for any co-category A, the square

A=—==A
A |
AITAI

preserves and reflects all absolute left lifting diagrams.

Dually a functor k: I — [ is initial if this square preserves and reflects all absolute right lifting
diagrams: or informally, if a generalized element defines a limit of a J-indexed diagram if and only if
it defines a limit of the restricted I-indexed diagrams.

Historically, final functors were called “cofinal” with no obvious name for the dual notion. Our
preferred terminology hinges on the following mnemonic: the inclusion of an initial element defines
an initial functor, while the inclusion of a terminal (aka final) element defines a final functor. These
results are special cases of a more general result we now establish, using exactly the same tactics as
taken to prove Theorem 2.4.2.

2.4.7. PROPOSITION. Leﬁ: adjoints dcfine initial functors and righl: adjoints dcfine final functors.
PrOOF. If k = 7 with unit 1 id; = 7k and counit €: kr = id}, then cotensoring into A yields
an adjunction
AT’
] T Al
A 1L A
~—_ "
Ak
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with unit A: id 4 = Ak A" and counit A¢: ATAF = id 4.
To prove that k is initial we must show that for any (d, lim, p) as displayed below-left,

A A——A

ok sl b

D—— A D— A — Al
A

the left-hand diagram is an absolute right lifting diagram if and only if the right-hand diagram is an
absolute right lifting diagram.
By Lemmas 2.3.6 and 2.4.1, the right-hand diagram is an absolute right lifting diagram if and only

if the pasted composite displayed below-left
— A A
im lim
/ l l Pl
J
y \ l D — A

is also an absolute right lifting diagram. On noting that A”A = A and A°A = id,, the left-hand side
reduces to the right-hand side, which proves the claim. O

Exercises.

2.4.i. EXERCISE. Show that any left adjoint f: B — A between co-categories admitting all J-shaped
colimits preserves them in the sense that the square of functors

B]LAI

coliml x>~ lcolim

B—— A

f

commutes up to isomorphism.
2.4.1i. EXERCISE. Prove Lemma 2.4.1.

2.4.iii. EXERCISE. Give a proof of Theorem 2.4.2 that does not appeal to Lemma 2.4.1 by directly veri-
fying that the diagram on the right of (2.4.3) is an absolute right lifting diagram.

2.4.iv. EXERCISE. Use Lemma 2.4.1 to give a new proofof‘ Proposition 2.1.9.
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CHAPTER 3

Weak 2-limits in the homotopy 2-category

In Chapter 2, we introduced adjunctions between oo-categories and limits and colimits of dia-
grams valued within an co-category through definitions that are particularly expedient for establishing
the expected interrelationships. But neither 2-categorical definition clearly articulates the universal
properties of these notions. Definition 2.3.7 does not obviously express the expected universal prop-
erty of the limit cone: namely, that the limit cone over a diagram d defines the terminal element of
the co-category of cones over d, yet-to-be-defined. Nor have we understood how an adjunction f < u
induces an equivalence on as-yet-to-be-defined hom-spaces Hom 4(fb, a) ~ Homg(b, ua) for a pair of
generalized elements.' In this section, we make use of the completeness axiom in the definition of an
0o-cosmos to exhibit a general construction that will specialize to give a definition of this co-category
of cones and also specialize to define these hom-spaces. This construction will also permit us to rep-
resent a functor between co-categories as an co-category, in dual “left” or “right” fashions. Using this,
we can redefine an adjunction to consist of a pair of functors f: B — A and u: A — B so that the
left representation of f is equivalent to the right representation of u over A X B.

Our vehicle for all of these new definitions is the comma oo-category associated to a cospan

Hom,(f, )
B w l(PLPo)
CxB

Our aim in this chapter is to develop the general theory of comma constructions from the point of

c—3 4t

view of the homotopy 2-category of an co-cosmos. Our first payoff for this work will occur in Chapter
4 where we study the universal properties of adjunctions, limits, and colimits in the sense of the ideas
just outlined. The comma construction will also provide the essential vehicle for establishing the
model-independence of the categorical notions we will introduce throughout this text.

There is a standard definition of a “comma object” that can be stated in any strict 2-category,
defined as a particu]ar Weighted limit (see Example 7.1.17). Comma oo-categories do not satisfy this
universal property in the homotopy 2-category, however. Instead, they satisfy a somewhat peculiar
“weak” variant of the usual 2-categorical universal property that to our knowledge has not been dis-
covered elsewhere in the categorical or homotopical literature, expressed in terms of something we
call a smothering functor. To introduce these universal properties in a concrete rather than abstract
framework, we start in §3.1 by considering smothering functors involving homotopy categories of
quasi-categories. The intrepid and impatient reader may skip the entirety of §3.1 if they wish to in-
stead first encounter these notions in their full generality.

'A 2-categorical version of this result — exhibiting a bijection between sets of 2-cells — appears as Lemma 2.3.6, but
in an co-category we'd hope for a similar equivalence of hom-spaces.
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3.1. Smothering functors

Let Q be a quasi-category. Recall from Lemma 1.1.12 that its homotopy category hQ has
e the elements 1 — Q of Q as its objects;
o the set of homotopy classes of 1-simplices of Q as its arrows, where parallel 1-simplices are homo-
topic just when they bound a 2-simplex with the remaining outer edge degenerate; and
® a composition relation if and only if any chosen 1-simplices representing the three arrows bound
a 2-simplex.
For a 1-category J, it is well-known in classical homotopy theory that the homotopy category of dia-
grams h(QJ) is not equivalent to the category (hQ)/ of diagrams in the homotopy category — except
in very special cases, such as when [ is a set (see Warning 2.3.3). The objects of h(Q]) are homotopy
coherent diagrams of shape J in Q, while the objects of (hQ) are mere homotopy commutative diagrams.
There is, however, a canonical comparison functor

h(Q) — (hQY
defined by applying h: QCat — Cat to the evaluation functor Q/ X ] — Q and then transposing; a
homotopy coherent diagram is in particular homotopy commutative.

Our first aim in this section is to better understand the relationship between the arrows in the
homotopy category hQ and what we'll refer to as the arrows of Q, namely, the 1-simplices in the
quasi-category. To study this we'll be interested in the quasi-category in which the arrows of Q live as
elements, namely Q?, where 2 = A[1] is the nerve of the “walking” arrow. Our notation deliberately
imitates the notation commonly used for the category of arrows: if C is a 1-category, then C2 is the
category whose objects are arrows in C and whose morphisms are commutative squares, regarded as a
morphism from the arrow displayed vertically on the left-hand side to the arrow displayed vertically
on the right-hand side. This notational conflation suggests our first motivating question: how does
the homotopy category of Q2 relate to the category of arrows in the homotopy category of Q?

3.1.1. LemMA. The canonical functor h(Q?) — (hQ)? is
® surjective on objecl:s,
e full, and
® conservative, i.c., reflects invertibility of morphisms,

but not injective on objects nor faichful.

PROOF. Surjectivity on objects asserts that every arrow in the homotopy category hQ is repre-
sented by a 1-simplex in Q. This is the conclusion of Exercise 1.1.ii(iii) which outlines the proof of
Lemma 1.1.12.

To prove fullness, consider a commutative square in hQ and choose arbitrary 1-simplices repre-
senting each morphism and their common composite:

By Lemma 1.1.12, every composition relation in hQ is witnessed by a 2-simplex in Q; choosing a pair
of such 2-simplices defines a diagram 2 — Q2, which represents a morphism from f to g in h(Q?),
proving fullness.
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Surjectivity on objects and fullness of the functor h(Q?) — (hQ)? are special properties having
to do with the diagram shape 2. Conservativity is much more general as a consequence of the second
statement of Corollary 1.1.21. O

The properties of the canonical functor h(Q?) — (hQ)? will reappear frequently so are worth
giving a name:

3.1.2. DEFINITION. A functor f: A — B between 1-categories is smothering if it is surjective on
objects, full, and conservative. That is, a functor is smothering if and only if it has the right lifting
property with respect to the set of functors:

%) I1+1 2

Lol

1 2 I

Some elementary properties of smothering functors are established in Exercise 3.1.i. The most
important of these is:

3.1.3. LEMMA. Each fibre of a smothering functor is a non-empty connected groupoid.
PROOE. Suppose f: A — B is smothering and consider the fiber
Ay — A
[ b
1—-B

over an object b of B. By surjectivity on objects, the fiber is non-empty. Its morphisms are defined
to be arrows between objects in the fiber of b that map to the identity on b. By fullness, any two
objects in the fiber are connected by a morphism, indeed, by morphisms pointing in both directions.
By conservativity, all the morphisms in the fiber are necessarily invertible. O

The argument used to prove Lemma 3.1.1 generalizes to:

3.1.4. LEMMA. [f] is a I-category that is free on a reflexive directed graph and Q is a quasi-category, then the
canonical functor h(Q') — (hQ) is smothering.

PROOF. Exercise 3.1.ii. O

Cotensors are one of the simplicial limit constructions enumerated in axiom 1.2.1(i). Other limit
constructions listed there also give rise to smothering functors.

3.1.5. LEMMA. For any pullback diagram of quasi-categories in which p is an isofibration
A >§ E——E
Lo )
A T> B

the canonical functor h(A >§ E) - hA gé hE is smothering.
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PROOF. Ash: QCat — Cat does not preserve pullbacks, the canonical comparison functor of the
statement is not an isomorphism. It is however bijective on objects since the composite functor

QCat —"— Cat obi Set

is given by evaluation on the set of vertices of each quasi-category, and this functor does preserve
pullbacks.
For fullness, note that a morphism in hA X hE is represented by a pair of 1-simplices a: a — a’
hB

and €: ¢ — ¢’ in A and E whose images in B are homotopic, a condition that implies in particular
that f(a) = p(e) and f(a’") = p(e’). By Lemma 1.1.9, we can arrange this homotopy however we like,

and thus we choose a 2—simplex witness ﬁ so as to define a 1ifting problem

A2l — E ) e e
P I
Al2] —— B 5 o \’j(e’

f (a) f@) =p)

Since p is an isofibration, a solution exists, defining an arrow €: ¢ — ¢’ in E in the same homotopy
class as € so that p(€) = f(a). The pair (@, €) now defines the lifted arrow in h(E Xg A).
Finally, consider an arrow 2 — A >< E whose image in hA X hE is an isomorphism, which is the

case just when the projections to E And A define isomorphisms. By Corollary 1.1.16, we may choose
a homotopy coherent isomorphism I — A extending the given isomorphism 2 — A. This data

2 X E
B -

| 247 b

I: B

which Exercise 1.1.v tells us we can solve. This proves that h(A >B< E) - hA é hE is conservative and

presents us with a lifting problem

hence also smothering. O

A similar argument proves:

3.1.6. LEMMA. For any tower of isofibrations between quasi-categories

E, E,a E, E, Eg

the canonical functor h(lim,, E,;) — lim,, hE,, is smothering.

PROOF. Exercise 3.1.iii. O
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f

3.1.7. LEMMA. For any cospan between quasi-categories C g A B consider the quasi-category

defined by the pullback
Hom,(f,g) —— A?

(perO):L J l(cod,dom)

CxB— AXxA
gxf

The canonical functor hHHom 4(f, ) — Homy 4(hf, hg) is smothering.
PrROOF. Here, the codomain is the category defined by an analogous pullback

Homy,(hf, hg) ——> (hA)?

:L J l(cod,dom)

hC x hB ——— hA X hA
hgxhf

in Cat and the canonical funcror factors as

hHom 4(f,8) — h(A?) Xpaxna (W€ X hB) — (hA)* Xpaxna (hC X hB)

By Lemma 3.1.5 the first of these functors is smothering. By Lemma 3.1.1 the second is a pullback of a
smothering functor. By Exercise 3.1i(i) it follows that the composite functor is smothering. O

In the sections that follow, we will discover that the smothering functors just constructed express
particular “weak” universal properties of arrow, pullback, and comma constructions in the homotopy
2-category of any co-cosmos. It is to the first of these that we now turn.

Exercises.

3.1.i. EXERCISE. Prove that:
(i) The class of smothering functors is closed under composition, retract, product, and pullback.
(ii) The class of smothering functors contains all surjective equivalences of categories.
(iii) All smothering functors are isofibrations, that is, maps that have the right lifting property
with respect to 1 <= 1.
(iv) Prove thatif f and gf are smothering functors, then g is a smothering functor.”

3.1.ii. EXERCISE. Prove Lemma 3.14.

3.1.i1i. EXERCISE. Prove Lemma 3.1.6.

3.2. co-categories of arrows

In chis section, we replicate the discussion from the start of the previous section using an arbitrary
oo-category A in place of the quasi-category Q. The analysis of the previous section could have been
deve]oped native]y in this general setting but at the cost of an extra ]ayer of abstraction and more
confusing notation — with a functor space Fun(X, A) replacing the quasi-category Q.

Recall an element of an co-category is defined to be a functor 1 — A. Tautologically, the elements
of A are the vertices of the underlying quasi-category Fun(1, A) of A. In this section, we will define

"It suffices, in fact, to merely assume that f is surjective on objects and arrows.
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and study an co-category AZ whose elements are the 1-simplices in the underlying quasi-category of
A. We refer to A2 as the co-category of arrows in A and call its elements simply arrows of A.

In fact, we've tacit]y introduced this construction already. Recall 2 is our preferred notation for
the quasi-category A[1], as this coincides with the nerve of the 1-category 2 with a single non-identity
morphism 0 — 1.

3.2.1. DEFINITION (arrow oo-category). Let A be an co-category. The co-category of arrows in A is
the simplicial cotensor A2 together with the canonical endpoint-evaluation isofibration

AZ = AN Y 400 = p A

induced by the inclusion dA[1] < A[1]. For conciseness, we write pg: A% = A for the domain-
evaluation induced by the inclusion 0: 1 < 2 and write p;: A2 —» A for the codomain-evaluation

induced by 1: 1 < 2.

As an object of the homotopy 2-category HK, the co-category of arrows comes equipped with a
canonical 2-cell that we now construct.

3.22. LEMMA. For any oo-category A, the co-category of arrows comes equipped with a canonical 2-cell

Po
A2 /ﬂ? A (3.2.3)
~——1

P1

that we refer to as the generic arrow with codomain A.

PROOF. The simplicial cotensor has a strict universal property described in Digression 1.2.5: namely
A2 is characterized by the natural isomorphism

Fun(X, A?) = Fun(X, A)2. (3.2.4)

By the Yoneda lemma, the data of the natural isomorphism (3.2.4) is encoded by its “universal element”,
which is defined to be the image of the identity at the representing object. Here the identity functor
id: A%2 — A2 is mapped to an element of Fun(A?, A)?, a 1-simplex in Fun(A2, A) which represents
a 2-cell in the homotopy 2-category defining (3.2.3).

To see that its source and target must be the domain-evaluation and codomain-evaluation maps,
note that the action of the simplicial cotensor A on morphisms of simplicial sets is defined so that
the isomorphism (3.2.4) is natural in the cotensor variable as well. Thus, by restricting along the
endpoint inclusion 1 + 1 < 2, we may regard the isomorphism (3.2.4) as lying over Fun(X, AX A) =
Fun(X, A) X Fun(X, A). O

There is a 2-categorical limit notion that is analogous to Definition 3.2.1, which constructs, for
any object A, the universal 2-cell with codomain A: namely the cotensor with the 1-category 2. Its
universal property is analogous to (3.2.4) but with the hom-categories of the 2-category in place of the
functor spaces. In Cat this constructs the arrow category associated to a 1-category.

In the homotopy 2-category h'K, by the Yoneda lemma again, the data (3.2.3) encodes a natural
transformation

hFun(X, A%2) — hFun(X, A)?
of categories but this is not a natural isomorphism, nor even a natural equivalence of categories but
does express the arrow co-category as a “weak” arrow object with a universal property of the following
form:
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3.2.5. PROPOSITION (the weak universal property of the arrow co-category). The generic arrow (3.2.3)
with codomain A has a weak universal property in the homotopy 2-category given by three operations:

(i) 1-cell induction: Given a 2-cell over A as below-left

X

24

tl <
Q;

A

there exists a I-cella: X — A? so that 8 = poa, t = p1a, and a = xa.
(ii) 2-cell induction: Given a pair of functorsa,a’: X =3 A2 and a pair of 2-cells Tg and Ty so that

X X
‘y X‘ % X‘
71 ()
- .
A P1 A? = A? Po A?
K K
D N
A Po pP1 A
there exists a 2-cell T: a = a’ so that
X X
a [ \a ‘V X
&
/ \ | ( ) (=) i}
2 — and Az — A2 P AZ
\ o l’” o N
A A A

(iii) 2-cell conservativity: Any 2-cell
X
MgTda
=
AZ
with the property that both pyT and pyT are isomorphisms is an isomorphism.

PrROOF. Let Q = Fun(X, A) and apply Lemma 3.1.1 to observe that the natural map of hom-

categories

hFun(X, A?) hFun(X, A)?
((P1)+(P0).) m
hFun(X, A) X hFun(X, A)

over hFun(X, A X A) = hFun(X, A) X hFun(X, A) is a smothering functor. Surjectivity on objects is
expressed by 1-cell induction, fullness by 2-cell induction, and conservativity by 2-cell conservativity.

O
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Note that the functors X — AZ that represent a fixed 2-cell with domain X and codomain A are
not unique. However, they are unique up to “fibered” isomorphisms that whisker with (p1, pg): A% —»
A X A to an identity 2-cell:

3.2.6. PROPOSITION. Whiskering with (3.2.3) induces a bijection berween 2-cells with domain X and codomain
A as displayed below-left

t
X@A - /lax

/=
and fibered isomorphism classes of functors X — A2 g5 displayed above-right, where the fibered isomorphisms
are given by invertible 2-cells

so that pyy = idg and p1y = id,.

PROOF. Lemma 3.1.3 proves that the fibers of the smothering functor of Proposition 3.2.5 are con-
nected groupoids. The objects of these fibers are functors X — AZ and the morphisms are invertible
2-cells that whisker with (p1,pg): A2 » A X A to an identity 2-cell. The action of the smothering
functor defines a bijection between the objects of its codomain and their corresponding fibers. [

Our final task is to observe that the universal property of Proposition 3.2.5 is also enjoyed by any
object (e1,€9): E - A X A that is equivalent to the arrow co-category (p1,pg): A2 » A X A in
the slice co-cosmos K44 4. We have special terminology to allow us to concisely express the type of
equivalence we have in mind.

3.2.7. DEFINITION (fibered equivalence). A fibered equivalence over an co-category B in an co-cosmos
K is an equivalence

~

E———F

Ny (3.2.8)
B

in the sliced co-cosmos K. We write E ~p F to indicate that that specified isofibrations with these
domains are equivalent over B.

By Proposition 1.2.19(vii), a fibered equivalence is just a map between a pair of isofibrations over a
common base that defines an equivalence in the underlying co-cosmos: the forgetful functor Kjp — K
preserves and reflects equivalences. Note, however, that it does not create them: it is possible for two
oo-categories E and F to be equivalent without there existing any equivalence compatible with a pair

of specified isofibration E = B and F - B.
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3.2.9. REMARK. At this point, there is some ambiguity about the 2-categorical data that presents a
fibered equivalence related to the question posed in Exercise 1.4.iv. But since Proposition 1.2.19(vii)
tells us that a mere equivalence in K involving a functor of the form (3.2.8) is sufficient to guarantee
that this as-yet-unspecified 2-categorical data exists, we defer a careful analysis of this issue to §3.6.

3.2.10. PROPOSITION (uniqueness of arrow oo-categories). For any isofibration (e1,€9): E - A X A
equipped with a fibered equivalence e: E = A2, the corresponding 2-cell
e
/4
E e A
~—7
er
satisfies the weak universal property of Proposition 3.2.5. Conversely, if (d1,dy): D = AXAand(eq1,eq): E -
A X A are equipped with 2-cells

do €0
— /4
D W A and E le A
\d)ﬁ \El_)ﬁ
1

satisfying the weak universal property of Proposition 3.2.5, then D and E are fibered equivalent over A X A.

PROOF. We prove the first stacement. By the definition equation of 1-cell induction € = xe, where
« is the canonical 2-cell of (3.2.3). Hence, pasting with € induces a functor

hFun(X, E) ———— hFun(X, A2) ——— hFun(X, A)?

(P P0)-) m

hFun(X, A) X hFun(X, A)

and our task is to prove that this composite functor is smothering. We see that the first functor,
defined by post-composing with the equivalence e: E — A2 isan equivalence of categories, and the
second functor is smothering. Thus, the composite is clearly full and conservative. To see that it is
also surjective on objects, note first that by 1-cell induction any 2-cell
S
X el A
~

is represented by a functora: X — A2 over A X A. Composing with any fibered inverse equivalence

e’ to e yields a functor
X—% 542 % ,F
wpo)l /
(t5) (e1,€0)

AXA

whose image after post-composing with e is isomorphic to 2 over A X A. Because this isomorphism is
fibered (see Proposition 3.2.6), the image of a¢’” under the functor hFun(X, E) — hFun(X, A)? returns
the 2-cell a. This proves that this mapping is surjective on objects and hence defines a smothering

funcror as claimed.
The converse is left to Exercise 3.2.ii and proven in a more general context in Proposition 3.4.11.

0
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3.2.11. CONVENTION. On account ofProposition 3.2.10, we extend the appellation “oo-category of ar-
rows” from the strict model constructed in Definition 3.2.1 to any co-category that is fibered equivalent
to it.

Via Lemma 3.1.4, the discussion of this section extends to establish corresponding weak universal
properties for the cotensors A/ of an co-category A with a free category J. We leave the exploration
of this to the reader.

Exercises.

3.2.i. EXERCISE.

(i) Prove that a parallel pair of 1-simplices in a quasi-category Q are homotopic if and only if
they are isomorphic as elements of Q2 via an isomorphism that projects to an identity along
(p1,p0): Q* » QxQ.

(i) Conclude thata parallel pair of 1-arrows in the functor space Fun(X, A) between two co-categories
X and A in any co-cosmos represent the same natural transformation if and only if they are
isomorphic as elements of Fun(X, A)? = Fun(X, A?) via an isomorphism whose domain and
codomain components are an identity.

(iii) Conclude that a parallel pair of 1-arrows in the functor space Fun(X, A), which may be en-
coded as funcrors X =3 A2, represent the same natural transformation if and only if they are
connected by a fibered isomorphism:

S

X 20 A2

Mﬁo)

AXA

3.2.ii. EXERCISE. Prove the second statement of Proposition 3.2.10.

3.3. Pullbacks and limits of towers

Pullbacks in an 0o-cosmos also have a weak 2-dimensional universal property in the homotopy
2-category. For the most part, we won't make heavy use of this, preferring to exploit the strict uni-
versal property of the simplicially enriched limit instead. However, the weak 2-dimensional universal
property can be used to prove that equivalences pull back along isofibrations to equivalence and gen-
eralize our previous results about the equivalence-invariance of pullbacks in an co-cosmos.

3.3.1. PROPOSITION (the weak universal property of the pullback). The pullback of an isofibration along
a functor in an ©0-cosmos
AXE LENY
T
A—— B

f

has a weak universal property in the homotopy 2-category given by three operations:
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(i) 1-cell induction: Commutative squares pe = fa over the cospan underlying a pullback diagram factor
uniquely through the pullback square

A——B

(i) 2-cell induction: Given a pair of functors x,x": X =3 AE and a pair of 2-cells a: qx = gx’ and

€: gx = gx’ as below-left so that pe = fa there exists a 2-cell T: x = x" as below-right so that
gt =aand §T = €.

X gx X x
€y EIT/
a \g¥' E ¥ AXE 25 E
AN B
qx qx J
% p ql lp

(iii) 2-cell conservativity: Any 2-cell

X

o 3
X 1 AXE
NN B

x/
with the property that both qT and §T are isomorphisms is an isomorphism.

PROOF. Apply Lemma 3.1.5 to the pullback diagram of quasi-categories

Fun(X, A X E) LN >

R ¢

A——>8B

f*

to observe that the natural map of hom-categories

hFun(X, A X E) —— hFun(X,A) X hFun(X,E)
B hFun(X,B)

is a bijective-on-objects smothering functor. Bijectivity on objects is expressed by 1-cell induction,

fullness by 2-cell induction, and conservativity by 2-cell conservativity. O

Using the weak 2-categorical universal property of the pullback, we can show that co-cosmoi are

right proper, meaning that the pullback of any equivalence along an isofibration defines an equiva-

lence.

61



3.3.2. LEMMA. In any 0o-cosmos, the pullback of an equivalence along an isofibration is an equivalence.

F%E
1)

A—— B

PROOE. By Proposition 2.1.11, we may choose an inverse adjoint equivalence to f and pick invert-
ible 2-cells @: idy = f1f and B: ff~! = idp satisfying the triangle equalities. It is for this reason
that we work with the 2-categorical universal property of the pullback rather than the simplicially
enriched universal property. Now since the map p is an isofibration, we may use Proposition 1.4.10
to lift the isomorphism Bp: ff1p = p along p to define an isomorphism €: e = idg with codomain
idg: E — E. By construction pe = ff7!p, so by 1-cell induction the pair (f1p,e) induces a map
¢ 1 E— Fsothatgg™ = flpand g¢™! = e. In this way we obtain an isomorphism €: ¢¢™! = idy
with pe = fp.

Now by 2-cell induction and conservativity of Proposition 3.3.1, to define an isomorphism idp
g_lg, it suffices to exhibit a pair of isomorphisms ag: q = f_lfq = f_lpg = qg_lg and €_1g: g
99 1¢ so that faq = peg. This laccer equation holds because pe~l¢ = B7lpg = B~ fq = fagq by the
triang]e equality ﬁf 'foz = idf for the adjoint equiva]ence f — f_l. Thus, we may lift the data of an

e 1R

inverse equivalence to f to define an inverse equivalence to its pullback g.

As a consequence of right properness, we can show that pullback is an equivalence invariant con-
struction in any 00-cosmos.

3.3.3. PROPOSITION. Given a diagram of isofibrations and equivalences in any 0o-cosmos

C—25 A&l B
| —r
C— A«— B
g 7

the induced map C X 4 B — C X 3 B between the pullbacks of the horizontal rows is again an equivalence.

PROOF. By factoring via Lemma 1.2.13, we can replace the map g by an isofibration. By the 2-0f-3
property and the right properness of Lemma 3.3.2, the pullback of this isofibration along the equiva-
lence p is equivalent to the map g

->P—>» A

A

By right properness again, the pullback of P = A along f is equivalent to the pullback of C — A
along f and similarly for the lower-horizontal maps. So without loss of generality, we may assume
that the maps ¢ and § of the statement are fibrations and the left-hand square is a pullback.
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Under these new hypothesis, the top, bottom, and front faces of the cube are pullback squares:

CxB———»B

C_, |g A | q
N
A , lp
L )
C z A

so by pullback composition and cancelation, the back face is a pullback square as well. Now the
induced map C X4 B — C X3 B is the pullback of the equivalence g along an isofibration and hence
is an equivalence by Lemma 3.3.2. O

Exercises.

3.3.i. EXERCISE. State and prove an analogous result to Proposition 3.3.1 that describes the weak
2-categorical universal property of limits of towers of isofibrations.

3.4. The comma construction

The comma oo-category is defined by restricting the domain and codomain of the co-category of
arrows A2 along specified functors with codomain A.

f

3.4.1. DEFINITION (comma oo-category). Let C £, A B be a diagram of co-categories.

The comma co-category is constructed as a pullback of the simplicial cotensor A2 along g X f
Hom,(f, ) _? a2
(m,po)l : l(mm)

CxB—— AXA
gxf

This construction equips the comma co-category with a specified isofibration (p1, pg) : Hom4(f, g) =
C X B and a canonical 2-cell

(34.2)

Hom,(f,g)

/ \‘ (3.4.3)
\ A

in t]’l€ homotopy 2—Categ0ry Called the comma cone.

3.4.4. EXAMPLE (arrow oo-categories as comma 0o-categories). The arrow co-category arises as a spe-
cial case of the comma construction applied to the identity span. This provides us with alternate
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notation for the generic arrow of (3.2.3), which may be regarded as a particular instance of a comma
cone.
Hom 4

Ay?—l%/x
N

A

The following proposition encodes the homotopical properties of the comma construction. The
first statement is a special case of Proposition 3.3.3. The proof of the remaining statements is by a
standard argument in abstract homotopy theory, which appears as Proposition C.1.12. A hint for this
proof is given in Exercise 3.4.i.

3.4.5. PROPOSITION (maps between commas). A commutative diagmm

cS5al B

rl lp lq

c2,4al B

induces a map between the comma oo-categories
Homp(q,r) _
Hom 4 (f,8) ———> Homx(f,3)
(PLPO)l l(r’llpo)
rxq

CxB——> CxB
Moreover, if p, g, and 1 are all

(i) equivalences,
(i) isofibrations, or
(iii) trivial fibrations

then the induced map is again an equivalence, isofibration, or trivial fibration, respectively.

There is a Z—Categorica] limit notion that is ana]ogous to Definition 3.4.1, which constructs the
universal 2-cell inhabiting a square over a specified cospan. In Cat the category so-constructed is
referred to as a comma category, from when we borrow the name. As with the case of co-categories of
arrow, comma oo-categories do not satisfy this 2-universal property strictly. Instead:

3.4.6. PROPOSITION (the weak universal property of the comma co-category). The comma cone (3.4.3)
has a weak universal property in the homotopy 2-category given by three operations:
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(i) 1-cell induction: Given a 2-cell over C g A f

c<é>3 @A(i
4 \ e

there exists a I-cella: X — Hom4(f, g) so that b = pga, ¢ = p1a, and a = ¢a.
(ii) 2-cell induction: Given a pair of functors a,a’: X = Hom 4(f, g) and a pair of 2-cells Ty and 7 so

that
X X
V X‘ V X‘
71 70

Homu(f,g) < Homyu(f,g) = Hom,(f,g) < Homy(f,g)

NN N A
N N A

there exists a 2-cell T: @ = a’ so that

X X X
. \ ) () VN
Homu(f,g) < Homu(f,g)=Hom(f,g) Homu(f,g)=Homs(f,g) & Homu(f,g)

C B

B as below-left

(iii) 2-cell conservativity: Any 2-cell

, X
a (éla
Hom4(f, )

with the property that both pyT and pyT are isomorphisms is an isomorphism.
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PROOF. The cosmological functor Fun(X, —=): K — QCat carries the pullback (3.4.2) to a pull-
back

Fun(X, Hom (f,8)) = Homeyncx 4 (FUN(X, ), Fun(X, §)) —— > Fun(X, A)?

(Plfpo)l ; l(PLPo)
Fun(X, C) X Fun(X, B) Fun(X, A) X Fun(X, A)

Fun(X,g)xFun(X,f)

ofquasi—categories. Now Lemma 3.1.7 demonstrates that the canonical 2-cell (3.4.3) induces a natural
map of hom-categories

hFun(X, Hom4(f, g)) Hompeun(x, 4)(hFun(X, £), hFun(X, g))
((p1)er(p0).) m
hFun(X, C) X hFun(X, B)

over hFun(X, CxB) = hFun(X, C)xhFun(X, B) that is a smothering functor. The properties of 1-cell
induction, 2-cell induction, and 2-cell conservativity follow from surjectivity on objects, fullness, and
conservativity of this smothering functor respectively. O

The 1-cells X — Homu(f,g) that are induced by a fixed 2-cell a: fb = gc are unique up to
fibered isomorphism over C X B.

3.4.7. PROPOSITION. Whiskering with the comma cone (3.4.3) induces a bijection between 2-cells as displayed
below-left

N C
R« A / El\HomA(f/g)/pZ N

and fibered isomorphism classes of maps of spans from C to B as displayed above-right, where the fibered

isomorphisms are given by invertible 2-cells

B

I /)[a\b

SV L

HomA(f/g)
so that pyy = idy and p1y = id,.

PROOF. Lemma 3.1.3 proves that the fibers of the smothering functor of Proposition 3.4.6 are
connected groupoids. The objects of these fibers are functors X — Hom4(f, ) and the morphisms
are invertible 2-cells that whisker with

(P1,Po): Homu(f,8) » C X B
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to an identity 2-cell. The action of the smothering functor defines a bijection between the objects of
its codomain and their corresponding fibers. O

The construction of the comma co-category is also pseudo-functorial in lax maps defined in the

homotopy 2-category:
3.4.8. OBSERVATION. By 1-cell induction a diagram
g A f

C B
rl 2V l” 7B l‘?
C— A«——B
induces a map between comma co-categories as displayed below-right:

Homy(f,g) HomA (f,9)

0 lﬁw
rp qpro
Hom z(f ‘)
f/ \

\/

that is well-defined and functorial up to fibered isomorphism.

R

N4

W'?m
|

A

=

O——0
/,\/ *\E\
~ oq

One of many uses of comma oo-categories is to define the internal mapping spaces between two
clements of an co-category A. This is one motivation for our notation “Hom 4.

3.4.9. DEFINITION. For any two elements x,7: 1 = A of an co-category A, their mapping space is
the comma co-category Hom 4(x, v) defined by the pullback diagram

Hom 4 (x, ) AN

.l

(pwo)l l(m,rio)

1] — AXA
(y,x)

The mapping spaces in any 0o-category are discrete in the sense of Definition 1.2.24.

3.4.10. PROPOSITION (internal mapping spaces are discrete). For any pair of elements x,y: 1 = A of an
oo-category A, the mapping space Hom 4(x, y) is discrete.

PROOF. Our task is to prove that for any co-category X, the functor space Fun(X, Hom4(x, v))
is a Kan complex. This is so just when hFun(X, Hom 4(x, y)) is a groupoid, i.e., when any 2-cell with
codomain Hom 4(x, y) is invertible. By 2-cell conservativity, a 2-cell with codomain Hom 4(x, ) is
invertible just when its whiskered composite with the isofibration (p1, pg): Hom4(x,y) - 1 X 1 is
an invertible 2-cell, but in fact this whiskered composite is an identity since 1 is terminal. O
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As in our convention for 0o-categories of arrows, it will be convenient to weaken the meaning of
“comma oco-category” to extend this appellation to any object of Kjcyp that is fibered equivalent (see
Definition 3.2.7) to the strict model (p1, pg): Hom4(f,g) = C X B defined by 3.4.1. This is justified
because such objects satisfy the weak universal property of Proposition 3.4.6 and conversely any two
objects satisfying this weak universal property are equivalent over C X B.

3.4.11. PROPOSITION (uniqueness of comma oco-categories). For any isofibration (e1,€y): E » C X B
that is fibered equivalent to Hom 4(f, g) = C X B the 2-cell

E
V Yg
C & B
~ T
A

encoded by the equivalence E = Hom 4(f, §) satisfies the weak universal property of Proposition 3.4.6. Con-
versely, if (d1,dg): D = C X B and (e, ep): E = C X B are equipped with 2-cells

D E
C & B and C & B
~ T ~ T
A A

satisfying the weak universal property of Proposition 3.4.6, then D and E are fibered equivalent over C X B.

(3.4.12)

PROOF. The proof of the first statement proceeds exactly as in the special case of Proposition
3.2.10. We prove the converse, solving Exercise 3.2.ii.

Consider a pair of 2-cells (3.4.12) satisfying the weak universal properties enumerated in Proposi-
tion 3.4.6. 1-cell induction supplies maps of spans

D E
D dq \I/d do E €1 \Le €0
d d e e
cé/b\koB = e&/E\R and Ci/f\boB = éD\ZO
= =
N C & B N c & B
’ N ’ N
A A
with the property that ede = € and ded = 6. By Proposition 3.4.7 it follows that de = idg over C X B
and ed = idp over C X B. This defines the data of a fibered equivalence D ~ E* O

d

3.4.13. CONVENTION. Onaccount of Proposition 3.4.11, we extend the appellation “comma co-category’
from the strict model constructed in Definition 3.4.1 to any oo-category that is fibered equivalent to
it and refer to its accompanying 2-cell as the “comma cone.”

*For the reader uncomfortable with Remark 3.2.9, Proposition 3.6.3 and Lemma 3.6.4 provides a small boost to finish

the proof.
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For example, in §4.3 we define the co-category of cones over a fixed diagram as a comma co-category.
Proposition 3.4.11 gives us the flexibility to use multiple models for this co-category, which will be use-
ful in characterizing the universal properties of limits and colimits.

Exercises.

3.4.i. EXERCISE. Prove Proposition 3.4.5 by observing that the map Hom, (g, 7) factors as a pullback of
the Leibniz cotensor of dA[1] < A[1] with p followed by a pullback of 7 X g.

3.4.ii. EXERCISE. Use Proposition 3.4.7 to justify the pseudofunctoriality of the comma construction
in lax morphisms described in Observation 3.4.8.

3.5. Representable comma co-categories

Definition 3.4.1 constructs a comma 0o-category for any cospan. Ofparticular importance, are the
special cases of this construction where one of the legs of the cospan is an identity:

3.5.1. DEFINITION (left and right representations). Any functor f: A — B admits a left representa-
tion and a right representation as a comma co-category, displayed below-left and below-right respec-
tively:

HomB(f/ B) HomB(B f)

B 2 A

B
To save space, we typically depict the left comma cone over p d1sp1ayed above-left and the right comma
cone over p displayed above-right as inhabiting triangles rather than squares.

By Proposition 3.4.11, the weak universal property of the comma cone characterizes the comma
span up to fibered equivalence over the product of the codomain objects. Thus:

3.5.2. DEFINITION. A comma oo-category Hom4(f,g) » C X B is

e left representable if there exists a functor £: B — C so that Homy(f,g) =~ Hom¢(¢, C) over
C X Band

e right representable if there exists a functor #: C — B so that Hom4(f,g) ~ Homg(B, r) over
CxB.

In this section, we prove the first ofmany representabi]ity theorems: demonstrating that a functor
g: C — A admits an absolute right lifting along f: B — A if and only if the comma co-category
Hom(f, ) is right representable, the representing functor then defining the postulated lifting. We
prove this over the course of three theorems, each strengthening the previous statement. The first

A

C—>A

theorem characterizes 2-cells
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that define absolute right lifting diagrams via an induced equivalence Homg(B, r) ~cyg Hom4(f,g)
between comma co-categories. The second theorem proves that a functor 7 defines an absolute right
lifting of ¢ through f just when Hom 4(f, g) is right-represented by 7; the difference is that no 2-cell
p: fr = gneed be postulated a priori to exist. The final theorem gives a general right-representability
criterion that can be applied to construct a right representation to Hom 4(f, g) without a priori spec-
ifying the representing functor 7.

3.5.3. THEOREM. The triangle below-left defines an absolute right lifting diagram if and only if the induced
1-cell below-right

Homg(B, 1)
Homg(B, 1) :y

Po v p1
T A N A
Up
C— 4 \ / C 2 B
XA/

defines a fibered equivalence Homg(B, r) ~ Hom 4(f, ) over C X B.

In [104], Street and Walters interpret the equivalence Homg(B,r) ~ Hom4(f,g) encoding an
absolute right lifting diagram as asserting that “f is left adjoint to 7 relative to g7 This notion of
relative adjunction, first studied by Ulmer [107], should be compared with the definition of adjunction
given in Proposition 4.1.1.

PROOE. Suppose that (7, p) defines an absolute right lifting of ¢ through f and consider the cor-
responding unique factorization of the comma cone under Hom4(f, ) through p as displayed below-
center

HomA(f /8 )

Hom,(f,$) Hom,(f,$) E

1 \Z

P
RN NN Homy(B, 7)
C & B T C : B

— e
N A TS

(3.5.5)
By 1-cell induction, the 2-cell C factors through the right comma cone over r as displayed above-
right. Substituting the right-hand side of (3.5.4) into the bottom portion of the above-right diagram,
we see that yz: Homy(f,g) — Homy(f, ) is a 1-cell that factors the comma cone for Hom4(f, )
through itself. Applying the universal property of Proposition 3.4.7, it follows that there is a fibered
isomorphism yz = idyom , (7 ¢) over C X B.
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To prove that zy = idyemyp,) it suffices to argue similarly thac the right comma cone over r
restricts along zy to itself. Since p is absolute right lifting, it suffices to verify the equality pzy = ¢
after pasting below with p. But now reversing the order of the equalities in (3.5.5) and (3.5.4) we have

HomB(B, 7’) HOmB(B/ 7")

|
w v Homg(B, 1)
p1

Po p1 Po
Hom 4(f/ 8) Hom 4(f,8) / \
P Po =
/ rl B / 2 \ B x i /f
A

X:/f RA/f

which is exactly what we wanted to show. Thus, we see that if (¥, p) is an absolute right lifting of ¢
through f, then the induced map (3.5.4) defines a fibered equivalence Homp(B, 1) ~ Hom4(f, ).

Now, conversely, suppose the 1-cell ¥ defined by (3.5.4) is a fibered equivalence and let us argue
that (r, p) is an absolute right lifting of ¢ through f. By Proposition 3.4.11, via this fibered equivalence
the 2-cell displayed on the left-hand side of (3.5.4) inherits the weak universal property of a comma
cone from Hom4(f, g). So Proposition 3.4.7 supplies a bijection displayed below-left-center

X
c b c X
C/&\B w C<la\/bﬁB w /zx
X A / & Homg(B, 1) & C r B

between 2-cells over the cospan and fibered isomorphism classes of maps of spans that is implemented,
from center to left, by whiskering with the 2-cell pp; - f@: fpy = gpp in the center of (3.5.4).

Proposition 3.4.7 also applies to the right comma cone ¢ over 7: C — B giving us a second bijection,

/=

displayed above center-right between the same fibered isomorphism classes of maps of spans and
2-cells over 7. This second bijection is implemented, from center to right, by pasting with the right
comma cone ¢: pg = rp;. Combining these yields a bijection between the 2-cells displayed on
the right and the 2-cells displayed on the left implemented by pasting with p, which is precisely the
universal property that characterizes absolute right ]ifting diagrams. O

As a specia] case of this result, we can now present several equiva]ent characterizations of ﬁﬂ]y
faithful functors between co-categories.

3.5.6. COROLLARY. The following are equivalent, and define what it means for a functor f: A — B between
oo-categories to be fully faithful:
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(i) The identity defines an absolute right lifting diagmm:

A

A—>B

(ii) The identity defines an absolute left lifting dzagmm:

A

A—>B

(iii) For all X € K, the induced functor
f.: hFun(X, A) — hFun(X, B)

is a fully faithful functor of I-categories.
(iv) The functor induced by the identity 2-cell 1df is an equivalence

PROOF. The statement (iii) is an unpacking of the meaning of both (i) and (ii). Theorem 3.5.3
specializes to prove (i)&(iv) or dually (i) & (iv). O

It is not surprising that post-composition with a fully faithful functor of co-categories should
induce a fully-faithful functor of hom-categories in the homotopy 2-category. What is surprising is
that this definition is strong enough. This result, together with the general case of Theorem 3.5.3
should be provide some retroactive justification for our use of absolute lifting diagrams in Chapter 2.

Having proven Theorem 3.5.3 our immediate aim is to strengthen it to show that a fibered equiv-
alence Homg(B, 1) ~ Hom 4(f, g) over C X B implies that 7: C — B defines an absolute right lifting
of ¢ through f without a previously specified 2-cell p: fr = g.

3.5.7. THEOREM. Givena trio of functorsr: C — B, f: B — A, andg: C — A there s a bijection between
2-cells as displayed below-left and fibered isomorphism classes of maps of spans as displayed below-right

Homg(B, 1)

- Zf/ ly\pfl
/lf Cfﬁ\ /;ZB

Hom(f,g)

C—>A
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that is constructed by pasting the right comma cone over ¥ and then applying 1-cell induction to factor through
the comma cone for Hom 4(f, ).

Homg(B, 1)

< > ) ;m(fi\&
\ e

Moreover, a 2-cell p: fr = g displays r as an absolute right lifting of & through f if and only if the corre-
sponding map of spans y: Homg(B, r) — Hom4(f, ) is an equivalence.

The second clause is the statement of Theorem 3.5.3, so it remains only to prove the first. We show
the claimed construction is a bijection by exhibiting its inverse, the construction of which involves a
rather mysterious lemma the significance of which will gradually reveal itself. For instance, Lemma
3.5.8 figures prominently in the proof of the external Yoneda lemma in §5.5 and is also the main
ingredient in a “cheap” version of the Yoneda lemma appearing as Corollary 3.5.10.

3.5.8. LEMMA. Let f: A — B be any functor and denote the right comma cone over f by

Homg(B, f)
P1 Po
e N
A 7 B

Then the codomain-projection functor py: Homg(B, f) = A admits a right adjoint right inverse" induced
from the identity 2-cell id £ defining an adjunction

P1

A /J_\HomB(B,f)

X

\\ /7
! A

A
over A whose counit is an identity and whose unic 113 id = ipy satisfies the conditions ni = id;, p1n = id,,
and pot] = .
‘A functor admits a right adjoint right inverse just when it admits a right adjoint in an adjunction whose counit is

the identity. When the original functor is an isofibration, as is the case here, it suffices to merely assume that the counit is
invertible; see Lemma B.4.7 and Appendix B.
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PrROOF. This adjunction will be constructed using the weak universal properties of the right comma
cone over f. The identity 2-cell id £ induces a 1-cell over the right comma cone over f:

A
N 4

2

Homg(B, f) = / _ \f‘

Note that pyi = id4, so we may take the counit to be the identity 2-cell. Since i = idf, we have a
pasting equality:

Homg(B, f)

n/
Homgp(B, f)

A\ﬁ

Homg(B,f) = Homg(B, f) Homg(B, f)
N e 7N

A 7 B A 7 B

while allows us to induce a 2-cell 771 id = ip; with defining equations py7 = id,, and pon = ¢. The
first of these conditions ensures one triangle identity; for the other, we must verify that ni = id;. By

2-cell conservativity, 7i is an isomorphism since p17i = id 4 and poni = ¢i = idf are both invertible.
By naturality of whiskering, we have

.o .

flilil ﬂqi

1
p1m
and since p17) = id,, the bottom edge is an identity. So 7i - 7i = 1i and since 7i is an isomorphism
cancelation implies that 77i = id; as required. O
One interpretation of Lemma 3.5.8 is best revealed though a special case:

3.5.9. COROLLARY. Forany element b: 1 — B, the identity at b defines a terminal element in Homg(B, b).

PROOF. By Lemma 3.5.8, the codomain-projection from the right representation of any functor ad-
mits a right adjoint right inverse induced from its identity 2-cell. In this case, the codomain-projection
is the unique functor !: Homg(B, b) — 1, so by Definition 2.2.1, this right adjoint identifies a terminal
element of Homg(B, b) corresponding to the identity morphism id in the homotopy categoryhB. [

The general version of Lemma 3.5.8 has a similar interpretation: in the sliced co-cosmos K4, the
identity functor at A defines the terminal object, and Lemma 3.5.8 asserts that idf induces a terminal
clement of Homg(B, f) “over A
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PROOF OF THEOREM 3.5.7. The inverse to the function that takes a 2-cell fr = ¢ and produces
an isomorphism class of maps Homp(B,7) — Homy(f,g) over C X B is constructed by applying
Lemma 3.5.8 to the functor 7: C — B: given a map of spans, restrict along the right adjointi: C —
Homg(B, r) and paste with the comma cone for Hom4(f, g) to define a 2-cell fr = g.

Starting from a 2-cell p: fr = g, the composite of these two functions constructs the 2-cell

displayed below-left

1
v |
Homg(B, 1) li
| r r
/ y Homg(B, )
B
7

8

V4

S o~ e
\

D> ﬂ‘D =

which equals the above-center pasted composite by the definition of ¥ from p, and equals the above-
right composite since @i = id,. Thus, when a 2-cell p: fr = gis encoded as a map y: Homg(B, 1) —
Hom 4(f,g) over C X B, and then re-converted into a 2-cell, the original 2-cell p is recovered.

For the converse, starting with a map z: Homg(B, ) — Hom4(f, g) over C X B, the composite
of these two functions constructs an isomorphism class of maps of spans w displayed below-left by
applying 1-cell induction for the comma cone Hom 4(f, ) to the composite 2-cell pasted below-center-
left:

Homg(B, 1) Homg(B, 1)
P1 p1
Homg(B, r) C pa c’r¢> Homp(B, 7)
/ 3 \ i\ Po i / lz \
" Homa(f,g) % Hormy(B, 1 Homy(B, 1 " Homa(f,g) %
R RN A AN Ve NI )
C ¢ B PU Homu(f,g) ™ PU Homu(f,g) C ¢ B
DI FZRNY I F RN N
A C & B C & B A
N4 N s
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Applying Lemma 3.5.8, there exists a 2-cell 171 id = ip;y so that pgn = ¢ — this gives the pasting
equality above center — and p11 = id — which gives the pasting equality above right. Proposition
3.4.7 now implies that w = z over C X B. U

A dual version of Theorem 3.5.7 represents 2-cells § = f{ as fibered isomorphism classes of maps
Homgp(¢, B) = Hom4(g, f) over B X C. Specializing these results to the case where one of f or g is
the identity, we immediately recover a “cheap” form of the Yoneda lemma:

3.5.10. COROLLARY. Given a parallel pair of functors, f,g: A =3 B, there are bijections between 2-cells as
displaycd below-center and fibered isomorphism classes of maps between their left and right representations as
comma oo-categories, as displayed below-left and below-right, respectively:

Homjg(g, B) ; Homg(B, f)
P1 Po P Po
B / lu \ A > A @ B S A / la \ B
A 2 AT
Homgp(f, B) Hompg(B, g)
/E /5
that are constructed by pasting with the left comma cone over § and right comma cone over f, respectively:
Homg(g, B) Homg(B, f)
Homg(g, B) ia Homgp(B, f) iu
_ M Po _ M Po
Z/ 3 Yz B Homg(f, B) Z/ ¢ YZ - Homg(B, g)
Be—3 A / \\’”Z A— f— 5B / \
S fle_~ S~ o~
f B % A g A — B

and then applying 1-cell induction to factor through the left comma cone over f in the former case or the right
comma cone over g in the latter. O

Combining the results of this section, we prove one final representability theorem that allows
us to recognize when a comma co-category is right representable in the absence of a predetermined
representing functor. This result specializes to give existence theorems for adjoint functors and limits
and colimits in the next chapter.

B is

3.5.11. THEOREM. The comma oo-category Hom 4(f, g) associated to a cospan C £, A /
right representable if and only if its codomain-projection functor admits a right adjoint right inverse

Hom,(f,g)

N

P

_—

in which case the composite pgi: C — B defines the representing functor and the 2-cell represented by the
functor i: C — Hom4(f, g) defines an absolute right lifting of g through f.
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PrROOF. If Hom4(f, g) is represented on the right by a functor #: C — B, then Homu(f,g) =~
Homg(B, ) over C X B and the codomain-projection functor is equivalent to p;: Homg(B, 1) = C,
which admits a right adjoint right inverse 7 by Lemma 3.5.8. The proof of Theorem 3.5.3 then shows
that i represents an absolute right lifting diagram. Thus, it remains only to prove the converse.

To that end, suppose we are given a right adjoint right inverse adjunction p; = i. Unpacking the
definition, this provides an adjunction

P1

L Homy(f,8)

N

over C whose counit is an identity and whose unit 7: id = ip; satisfies the conditions 77i = id; and
pin = id, . By Theorem 3.5.7, to construct the fibered equivalence Homp(B, 1) ~cxp Hom,(f,g)
with r = py, it suffices to demonstrate that the 2-cell defined by restricting the comma cone for

Hom(f, g) along i
ﬂm(ﬂg)
V \

A
defines an absolute right lifting diagram.
By 1-cell induction any 2-cell as displayed below-left induces a 1-cell m as displayed below-center:

b b

/\ /\
1(_”13 > Hom(f,9) w7 B X 52 Homu(f,8) = Hom,(f,g) s l
f= p1 U \\ p1 p1 v |f
C—> A \\C—>A l/ (l:—>A

Inserting the triangle equality p17) = id,, as displayed above-right constructs the desired factorization
ponm: b = rc of x through ¢i.

In fact, by 2-cell induction for the comma cone ¢, any 2-cell T¢: b = rc defining a factorization
of x: fb = gc through ¢i must have the form 75 = pg7 for some 2-cell 7: m = ic so that myT =
id.. The pair (g, id,) satisfies the compatibility condition of Proposition 3.4.6(ii) to induce a 2-cell
T: m = ic. We'll argue that the 2-cell 7 is unique, proving that the factorization pgt: b = rc is also
unique.

To see this, note that the adjunction p; - i over C exhibits the right adjoint as a terminal element
of the object py: Hom4(f,g) = C in the slice 2-category (hK)c. It follows, as in Lemma 2.2.4, that
for any object c: X — C and any morphism m: X — Hom 4(f, g) over C, there exists a unique 2-cell
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m = ic over C. Thus, there is a unique 2-cell T: m = ic with the property that p;T = id., and so the
factorization pgT: b = rc of x through @i must also be unique. U

More concisely, Theorem 3.5.11 shows that a comma co-category Hom 4(f, ) is right representable
just when its codomain-projection functor p1: Homy4(f,g) = C admits a terminal element as an
object of the sliced co-cosmos Kjc; dually, Hom4(f, ) is left representable just when its domain-
projection functor admits an initial element as an object of the sliced co-cosmos Kjp; see Corollary
3.6.11. There is a small gap between this statement and the version proven in Theorem 3.5.11 having
to do with the discrepancy between the homotopy 2-category of K¢ and the slice of the homotopy
2-category h over C. This is the subject to which we now turn.

Exercises.

3.5.i. EXERCISE. How might one encode the existence of an adjunction f = u# between a given oppos-
ing pair of functors using comma co-categories?

3.6. Sliced homotopy 2-categories and fibered equivalences

The co-category A2 of arrows in A together with its domain- and codomain-evaluation functors
(Po,p1): A% » A X A satisfies a weak universal property in the homotopy 2-category that charac-
terizes the 0O-category up to equiva]ence over A X A: see Proposition 3.2.10. Similarly the comma
co-category is characterized up to fibered equivalence, as defined in Definition 3.2.7.

As commented upon in Remark 3.2.9 there is some ambiguity regarding the 2-categorical data
required to specify a fibered equivalence, that we shall now address head-on. The issue is that, for
an oco-category B in an co-cosmos K, the homotopy 2-category H(K)p) of the sliced 00-cosmos of
Proposition 1.2.19 is not isomorphic to the 2-category (hK)p of isofibrations, functors, and 2-cells
over B in the homotopy 2-category hK of K, see Exercise 1.4.iv.

However, there is a canonical comparison functor relating this pair of 2-categories that satisfies a
property we now introduce:

3.6.1. DEFINITION (smothering 2-functor). A 2-functor F: A — B is smothering if it is
e surjective on O-cells;
e full on 1-cells: for any pair of objects A, A" in A and 1-cell k: FA — FA’ in B, there exists
fiA—=> A inAwithFf =k
Ff

s
e full on 2-cells: for any parallel pair f,g: A =3 A" in Aand 2-cell FA U8 FA’ in B, there
xpgz
exists a 2-cell : f = g in A with Fa = f8; and

e conservative on 2-cells: for any 2-cell & in A if Fav is invertible in B then & is invertible in A.

3.6.2. REMARK. Note that smothering 2-functors are surjective on objects 2-functors that are “locally
smothering”™ meaning that the action on hom-categories is by a smothering functor, as defined in
3.1.2.

The prototypical example of a smothering 2-functor solves Exercise 1.4.iv.

3.6.3. PROPOSITION. Let B be an co-category in an co-cosmos K. There is a canonical 2-functor

H(Kp) — (OK)p
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from the homotopy 2-category of the sliced 00-cosmos K to the 2-category of isofibrations, functors, and 2-cells
over B in YK and this 2-functor is smothering.

This follows more-or-less immediately from Lemma 3.1.5 but we spell out the details nonetheless.

PROOF. The 2-categories h(K)p) and (H%),p have the same objects — isofibrations with codomain
B — and 1-cells — functors between the “total spaces” that commute with these isofibrations to B —
so the canonical mapping may be defined to act as the identity on underlying 1-categories.

By the definition of the sliced co-cosmos given in Proposition 1.2.19, a 2-cell between functors
f,8E 3 Ffromp: E - Btog: F - B isahomotopy class of 1-simplices in the quasi-category
defined by the pullback of simplicial sets below-left

Fung(E, F) —— Fun(E, F) (hFun)g(E, F) —— hFun(E, F)
Lo L b
1 — Fun(E, B) 1 — hFun(E, B)

Unpacking, a 2-cell a: f = g is represented by a 1-simplex @: f — g in Fun(E, F) that whiskers
with ¢ to the degenerate 1-simplex on the vertex p € Fun(E, B), and two such 1-simplices represent
the same 2-cell if and only if they bound a 2-simplex of the form displayed in (1.1.8) that also whiskers
with g to the degenerate 2-simplex on p.

By contrast, a 2-cell in (§K)/p is a morphism in the category defined by the pullback of categories
above-right. Such 2-cells are represented by 1-simplices @ f — g in Fun(E, F) that whisker with g to
L-simplices in Fun(E, B) that are homotopic to the degenerate 1-simplex on p, and two such 1-simplices
represent the same 2-cell if and only if they are homotopic in Fun(E, F).

Applying the homotopy category functor h: QCat — Cat to the above-left pullback produces a

cone over the above—right pul]back, inducing a canonical map
h(Fung(E, F)) — (hFun)/B(E,F),

which is the action on homs of the canonical 2-functor H(Kp) — (HK)3.

The 2-functor just constructed is bijective on 0- and 1-cells. To see that it is full on 2-cells we must
show that any 1-simplex a: f — g in Fun(E, F), for which ga: p — p is homotopic top-0%: p — p
in Fun(E, B), is homotopic in Fun(E, F) to a I-simplex from f to ¢ over p - 6°. By Lemma 1.1.9, any
such a defines a lifting problem

Al[2] —— Fun(E,F 5 7N
2] — Fun(E, Y
T

A[2] —— Fun(E, B) 5 N

p=—p

A solution exists since q,: Fun(E, F) - Fun(E, B) is an isofibration, proving that h(Kp) — (hK)p
is full on 2-cells.

Now suppose a: f — ¢ represents a 2-cell in Fung(E, F) whose image in (hFun),g(E, F) is an
isomorphism. A map in a 1-category defined by a pullback is invertible if and only if its projections
along the legs of the pullback cone are isomorphisms. Thus the image of @ is invertible if and only if
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a: f — g defines an isomorphism in hFun(E, F), which by Definition 1.1.13 is the case if and only if
a: f — g represents an isomorphism in Fun(E, F). Since a is fibered over the degenerate 1-simplex
at p, this presents us with a lifting problem

2 —% Fung(E,F) —> Fun(E,F)

2 i
/&/’/ l *

-

[ === 1 Fun(E, B)

which Exercise 1.1v tells us we can solve. This proves that H(Kjp) — (hK)p reflects invertibility of
2-cells and hence defines a smothering 2-functor. 0J

Smothering 2-functors are not strictly speaking invertible, but nevertheless 2-categorical struc-
tures from the codomain can be lifted to the domain:

3.6.4. LEMMA. Smothering 2-functors reflect equivalences: for any smothering 2-functor F: A — B and
Icel f: A= Bin A if Ff: FA = FB is an equivalence in B then f is an equivalence in A.

PROOE. By fullness on 1-cells, an equivalence inverse §': FB = FA to Ff liftstoa l-cell g: B —
Ain A. By fullness on 2-cells, the isomorphisms idpy = ¢’ o Ff and Ff 0 g’ = idpp also lift to A and

by conservativity on 2-cells these lifted 2-cells are also invertible. O

Applying Lemma 3.6.4 to the smothering 2-functor
H(Kjp) = (HK)sp

we resolve the ambiguity about the 2-categorical data of a fibered equivalence.

3.6.5. PROPOSITION.

(i) Any equivalence in (§%),p lifts to an equivalence in )(Kp). That is, fibered equivalences over B may
be specified by defining an opposing pair of I-cells f: E — F and g: F — E over B together with
invertible 2-cells idg = gf and fg = idp that lie over B in hK.

(ii) Moreover, if f: E — F is a map between isofibrations over B that admits an not-necessarily fibered
equivalence inverse g F — E with not-necessarily fibered 2-cells idg = gf and fg = idp, then this
data is isomorphic to a genuine fibered equivalence.

PROOF. The first statement is proven by Lemma 3.6.4 and Proposition 3.6.3. The second statement
asserts that the forgetful 2-funcror (hK)p — HHK reflects equivalences. Exercise 3.6.i shows that for
any map between isofibrations over B that admits an equivalence inverse in the underlying 2-category,
the inverse equivalence and invertible 2-cells can be lifted to also lie over B. O

This gives a 2-categorical proof of Proposition 1.2.19(vii), that for any co-category B in an 00-cosmos
K, the forgetful functor Kjp — K preserves and reflects equivalences.
The smothering 2-funcror H(Kp) — (HK)/p can also be used to lift adjunctions that are fibered

2-categorically over B to adjunctions in the sliced co-cosmos Kp.
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3.6.6. DEFINITION (fibered adjunction). A fibered adjunction over an co-category B in an co-cosmos
K is an adjunction
f
E 1 F

in the sliced co-cosmos 7(/3. We write f =g u to indicate that specified maps over B are adjoint over

B.

3.6.7. LEMMA (pullback and pushforward of fibered adjunctions).
(i) A fibered adjunction over B can be pulled back along any functor k: A — B to define a fibered

adjunction over A.
(ii) A fibered adjunction over A can be pushed forward along any isofibration p: A = B to define a
fibered adjunction over B.

PROOF. By Proposition 1.3.3(v), pullback defines a cosmological functor k*: Kjp — K4, which
descends to a 2-functor k*: H(K)p) — H(K)4) that carries fibered adjunctions over B to fibered ad-
junctions over A. This proves (i).

Composition with an isofibration p: A — B also defines a 2-functor p,: H(K)4) — H(Kjp); the
reason we ask pto be an isofibration is due to our convention that the objects in the sliced co-cosmoi
are isofibrations over a fixed base. Thus, composition with an isofibration carries a fibered adjunction
over A to a fibered adjunction over B proving (ii). OJ

In analogy with Lemma 3.6.4, we have:

3.6.8. LEMMA. If F: A — B is a smothering 2-functor, then any adjunction in B may be lifted to an
adjunction in A.

PrOOF. Exercise 3.6.1i. 0

3.6.9. REMARK. A direct proof of Lemma 3.6.8 proceeds as follows: since a smothering 2-functor is
surjective on objects and full on both 1- and 2-cells, the data of an adjunction in 8 may be lifted to an
adjunction in A. Since smothering 2-functors are not in general faithful at the level of 2-cells, there is
no reason why the triangle identity composites should be identities, but by 2-cell conservativity they
are both invertible. Now either the unit or counit may be modified as in the proof of Proposition
2.1.11 by composing with the inverse of one of these triangle identity composite isomorphisms. Now
that triang]e equality holds and the other triangie identity composite is an idempotent isomorphism
and hence also an identity.

John Bourke pointed out that this proof invokes a recharacterization of adjunctions that makes
the conclusion of Lemma 3.6.8 obvious: a pair of 1-cells f: B — A and u: A — B in a 2-category
form an adjoint pair f — u if and only if there exist 2-cells idg = uf and fu = id, so that the
composites f = fuf = fand u = ufu = u are both invertible.

Many of the examples of fibered adjunctions we will encounter are right adjoint right inverses or
left adjoint right inverses to a given isofibration. The next result shows that whenever an isofibration

p: E = B admits a left adjoint with unit an isomorphism, then this left adjoint may be modified so
as to define a left adjoint right inverse, making the adjunction fibered over B. The dual also holds:
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3.6.10. LEMMA. Let p: E = B be any isofibration that admits a right adjoint ¥': B — E with counit
€: pr’ = idp an isomorphism. Then 1’ is isomorphic to a functor r that lies strictly over B and defines a right
adjoint right inverse to p. Thus any such p defines a fibered adjunction

in Kp whose right adjoint 1 lies strictly over B, whose counit is the identity 2-cell, and in which the unic 1) lies
over B in the sense that pn = idp.

PROOF. Exercise 3.6.iii. 0

Since the identity on B defines the terminal object of the sliced co-cosmos Kjp, Lemma B.4.7 can
be summarized more compactly as follows:

3.6.11. COROLLARY. An isofibration p: E = B admits a right adjoint right inverse if and only if it admits
a terminal element as an object of Kjp. Dually, p: E — B admirs a left adjoint right inverse if and only if it
admits an initial element as an object of Kp

3.6.12. EXAMPLE. Lemma 3.5.8 constructs an adjunction in the sliced 2-category % 4. Lemma 3.6.8
now allows us to lift it to a genuine adjunction

P1

A /J_\HomB(B,f)

in the sliced co-cosmos K 4. By Corollary 3.6.11 this situation may be summarized by saying that
p1: Homg(B, f) - A admits a terminal element over A.
By Lemma 3.6.7(i), we may pull back the fibered adjunction along any elementa: 1 — A to obtain
an adjunction
|

1 mmB(B,fa)
\\\5_—//7
ia

that identifies a terminal element in the fiber Homg(B, fa) of p;: Homg(B, f) = A over a. This
generalizes the result of Corollary 3.5.9.
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3.6.13. EXAMPLE (the fibered adjoints to composition). For any co-category A, the adjoints to the
“composition” functor o: A% x A2 > AZ constructed in Lemma 2.1.13 may be constructed by com-

A
posing a triple of adjoint functors that are fibered over the endpoint-evaluation functors

0

AS
/N .
A3 A il AZ

1
(evp,evp) o A/CVO)

AXA

with an adjoint equivalence involving a functor A2 =» A% x A2 which also lies over A X A. Lemma

A
B.4.7 and its dual implies that these adjoint equivalences can be lifted to fibered adjoint equivalences
over A X A, and now both adjoint trip]es and hence also the composite adjunctions

(_Iiddom(—))
A% x A? ® A?

\J'/

(idcod(—)/_)
(eva,evp) (ev1,ev0)

AXA

liC in V(/AXA-

This fibered adjunction figures in the proof of a result that will allow us to convert limit and
colimit diagrams into right and left Kan extension diagrams in the next chapter.

3.6.14. PROPOSITION. A cospan as displayed below-left admits an absolute right lifting if and only if the cospan
displayed below-right admits an absolute right lifting

B Homy(f, A)
r /;l l i //?
///Up f //// le lﬁ’l

in which case the 2-cell € is necessarily an isomorphism and can be chosen to be an identity.

PROOF. By Theorem 3.5.11, a cospan admits an absolute right lifting if and only if the codomain-
projection functor from the associated comma co-category admits a right adjoint right inverse. Our
task is thus to show that this right adjoint right inverse exists for Hom4(f, g) if and only if this right
adjoint right inverse exists for Hom 4(p1, g).
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From the defining pullback (3.4.2) that constructs the comma co-category Hom4(py,g) repro-
duced below-left, we have the below-right pullback square

Hom 4(p1,g) ——> Homy(A,g) ——> A?

(m,po)l ) (pwo)l ) l Hom(p1,8) —> Hom,(A4,g)
CxHomA(f,A)WCxAWAxA e l : lﬁo
! g Hom,(f, A) ——5— A
Homs(f, A) ———— A
(3.6.15)

By Lemma 3.6.7, the composition-identity fibered adjunction of Example 3.6.13 pulls back along ¢ X
f: CxXB — AX A todefine a fibered adjunction

— T

Hom 4(p1,g) = Hom4(A, g) f Hom(f, A) o—— Homu(f,g)

\J/
m (p1.p0)

CxB

which then pushes forward along the projection 7: C X B = C to a fibered adjunction over C

/T\
Hom 4(p1, 8) ° Hom 4(f, 8)

\i/
C

between the codomain-projection for Hom4(py, ) and the codomain projection for Hom4(f, ).
Now by Corollary 3.6.11, p1: Hom4(f,g) = C admits a right adjoint right inverse just when the
object on the right admits a terminal element, while p1: Hom4(p1,g) = C similarly admits a right
adjoint right inverse just when the object on the left admits a terminal element. By Theorem 2.4.2, a

terminal element on either side is carried by the appropriate right adjoint to a terminal element on
the other side. This proves the equivalence of these conditions.

It remains only to prove that the 2-cell for the absolute right lifting of ¢ through p; is invertible. By
Theorem 3.5.11, this 2-cell is constructed as by restricting the comma cone along the terminal element,
so it is given by the composite

Po
=\
C —— Hom Q) —— A% Ik A
lp1,8) L
1

where the left-hand map is the terminal element just constructed and the middle one comes comes
from the defining pullback diagram displayed on the left of (3.6.15). As just argued, that terminal
clement may be chosen to be in the image of the right adjoint Hom,(f,g) — Homu(A,g) X4
Hom(f, A) = Hom,(p1,8), whose component on the left factor is the identity. Simultancously,
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the pullback defining the map Hom 4(p1,g) — A2 factors through the projection onto the left factor,
so we see that the 2-cell in the absolute right lifting diagram is represented by the composite

Po
j ideod(-)— > < N

Cc > HomA(f,g)(L)HomA(A,g) X Hom 4(f, A) —— Hom(A,g) —> A? \Ux)ﬂ A
P1

and hence that this cell is invertible. O

Exercises.
3.6.i. EXERCISE. Let B be an object in a 2-category C and consider a map

f

E——F

N
B

between isofibrations over B. Prove that if f is an equivalence in C then f is also an equivalence in the
slice 2-category C/B of isofibrations over B, 1-cells that form commutative triangles over B, and 2-cells
that lie over B in the sense that they whisker with the codomain isofibration to the identity 2-cell on
the domain isofibration.

3.6.ii. EXERCISE. Let F: A — B be a smothering 2-functor. Show that any adjunction in B can be
lifted to an adjunction in A. Demonstrate furthermore that if we have previously specified a lift of
the objects, 1-cells, and either the unit or counit of the adjunction in B, then there is a lift of the

remaining 2-cell that combines with the previously specified data to define an adjunction in A. This
proves a more precise version of Lemma 3.6.8.

3.6.iii. EXERCISE. Prove Lemma B.4.7.
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CHAPTER 4

Adjunctions, limits, and colimits 11

Comma oo-categories provide a vehicle for encoding the universal properties of categorical con-
structions that restrict to define equivalences between the internal mapping spaces introduced in Def-
inition 3.4.9 between suitable pairs of elements. Using the theory developed in Chapter 3, we quickly
prove a variety of results of this type first for adjunctions in §4.1 and then for limits and colimits in
§4.3. In an interlude in §4.2, we introduce the co-categories of cones over or under a diagram as a
comma oo-category and then give a second model for these co-categories of cones in the case of dia-
grams indexed by simplicial sets built from Joyal’s join construction. Then we conclude in §4.4 with
an application, constructing the loops = suspension adjunction for pointed 0o-categories, containing
an element that is both initial and terminal.

4.1. The universal property of adjunctions

Our first result shows that an adjunction between an opposing pair of functors can equally be en-
coded by a “transposing equivalence” between their left and right representations as comma co-categories.

4.1.1. PROPOSITION. An opposing pair of functors u: A — Band f: B — A define an adjunction f < u
if and only if Hom 4(f, A) ~ Homg(B, u) over A X B.

PROOF. This is a special case of Theorem 3.5.7. If f — u, then Lemma 2.3.6 tells us that its counit
€: fu = id, defines an absolute right lifting diagram. Theorem 3.5.7 then tells us that the 1-cell
induced by the left-hand pasted composite

Rd
AN

HomB(B u)
Homg(B, u) €°f( )
P1
OmA(f A)

~
% \

> o= 1S

/\

A

defines a fibered equivalence Homg(B, 1) = Homy(f, A) over A X B. We interpret this result as
saying that in the presence of an adjunction f — u, the right comma cone over u transposes to define
the left comma cone over f.'

"If desired, an inverse equivalence can be constructed by applying the dual of Theorem 3.5.7 to the absolute left lifting
diagram presented by the unit.

87



Conversely, Theorem 3.5.7 tells us that from a fibered equivalence Homg(B, 1) = Homy(f, A)
over A X B one can extract a 2-cell that defines an absolute right lifting diagram

B
il
A A

Lemma 2.3.6 then tells us that this 2-cell defines the counit of an adjunction f - u. O

4.1.2. OBSERVATION (the transposing equivalence). To justify referring to the induced functor
"€ o f(—)": Homg(B, u) = Hom,4(f, A)

as a transposing equivalence, recall that the transpose of a 2-cell x: b = ua across the adjunction

f = u is computed by the left-hand pasting diagram below:

By the weak universal property of the right comma cone over u, the 2-cell x is represented by the
induced functor X — Homg(B, u), which then composes with the transposing equivalence to define
afunctor X — Homy(f, A) that represents the transpose of x, by the pasting diagram equalities from
right to left. This observation also justifies our notation, in which we name the fibered equivalence
"€ o f(—)" after the formula for adjoint transposition.

f
4.1.3. COROLLARY. An adjunction B S A induces an equivalence Hom 4(fb,a) ~ Homg(b, ua)

u
over X XY for any pair of generalized elementsa: X — Aandb: Y — B.

PROOF. By the pullbaek construction of comma oo-categories given in (3.4.2), the equivalence
Hom,(f, A) =~ Homg(B, u) in K 4p pulls back alongaxb: X XY — AXB to define an equivalence
Hom,(fb,a) ~ Homg(b, ua) in Kyxy. O

In particular, the equivalence of Proposition 4.1.1 pulls back to define an equivalence of internal
mapping spaces, introduced in 3.4.9.

4.1.4. PROPOSITION (the universal property of units and counits). Consider an adjunction

B 1 A with unit n: idg = uf and counit€: fu = id,.
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Then for each element a: 1 — A, the component €a defines a terminal element of Hom 4(f, a), and for each
element b: 1 — B, the component nb defines an initial element of Homg(b, u).

PrROOE. By Corollary 4.1.3, the fibered equivalence Hom 4(f, A) ~ 445 Homg(B, 1) of Proposition
4.1.1 pulls back to define equivalences

Hom 4(f,a) ~g Homg(B, ua) and Hom4(fb, A) ~4 Homg(b, u).

By Corollary 3.5.9, id,,; induces a terminal element of Hompg(B, ua) and by Observation 4.1.2 its image
across the equivalence Hompg(B, ua) = Hom 4(f, a) is again a terminal element, which represents the
transposed 2-cell: the component of the counit € at the element a. The proof that the unit component
defines a terminal element of Homg(b, u) is dual. O

A more sophisticated formulation of the universal property of unit and counit components will
appear in Proposition 9.3.2 where it will form a key step in the proof that any adjunction extends to
a homotopy coherent adjunction.

The universal property of unit and counit components captured in Proposition 4.1.4 gives the main
idea behind the adjoint functor theorems: a functor f: B — A admits a right adjoint just when for
cach elementa: 1 — A, the co-category Hom4(f,a) admits a terminal element. The image of this
terminal element under the domain-projection functor py: Hom 4(f,a) = B then defines the element
ua: 1 — B and the comma cone defines the component of the counit at a. The universal property of
these unit components is then used to extend the mapping on elements to a functor u: A — B.

The result just stated is true in the co-cosmos of quasi-categories and in other co-cosmoi where
universal properties are generated by the terminal 0O-category 1; see Corollary 16.2.7.> What is true in
all co-cosmoi is the version of the result just stated where the quantifier “for each elementa: 1 — A”
is replaced with “for each generalized element a: X — A" in which case the meaning of “termi-
nal element” should be enhanced to “terminal element over X”; see the remark after Corollary 3.5.9.
Since every generalized element factors through the universal generalized element, namely the identity
functor at A, it suffices to prove:

4.1.5. PROPOSITION. A functor f: B — A admits a right adjoint if and only if Hom 4(f, A) admits a
terminal element over A. Dually, f: B — A admits a left adjoint if and only if Hom 4(A, f) admits an

initial element over A.

PROOE. By Proposition4.1.1, f: B — A admits aright adjoint if and only if the comma co-category
Hom4(f, A) is right representable. Theorem 3.5.11 specializes to tell us that this is the case if and only
if the codomain-projection functor py: Hom4(f, A) = A admits a right adjoint right inverse, which
by Corollary 3.6.11 is equivalent to postulating a terminal element over A. O

The same suite of results from §3.5 specialize to theorems that encode the universal properties
of limits and colimits. Before proving these, we first construct the 00-category of cones over a fixed
diagram and also construct alternate models for the co-categories of cones over varying J-indexed
diagrams, in the case where [ is a simplicial set.

*We delay the discussion of “analytically—proven” theorems about quasi-categories until we demonstrate in Part IV
that such results apply also in biequivalent co-cosmoi. Various “pointwise-determined” universal properties that hold in
00-cosmoi whose objects are (00, 1)-categories are established in §16.2.
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Exercises.

4.1.i. EXERCISE. Prove that the transposing equivalence of Proposition 4.1.1, as elaborated upon in
Observation 4.1.2, is natural with respect to pre-composing with a 2-cell : b" = b or post-composing
with a 2-cell a: a = a’.

4.2. oco-categories of cones

4.2.1. DEFINITION (the oo-category of cones). Letd: 1 — Al be a J-shaped diagram in an co-category
A. The co-category of cones over d is the comma co-category Hom ,(A, d) with comma cone displayed
below-left, while the co-category of cones under d is the comma co-category Hom 4;(d, A) with comma
cone displayed below-right:

HomA;(A, d) HomA](d A)

By replacing the “d” leg of the cospans, Definition 4.2.1 can be modified to allow d: D — Al to
be a family of diagrams or to define co-categories of cones over any diagram of shape J: an element of
Hom (A, Al)is a cone with any summit over any J-indexed diagram.

In the case where the indexing shape ] is a simplicial set (and not an co-category in a cartesian
closed 00-cosmos), there is another model of the co-categories of cones over or under a diagram that
may be constructed using Joyal’s join construction. The reason for the equivalence is that joins of
simplicial sets are known to be equivalent to so-called “fat joins” of simplicial sets, and a particular

instance of the fat join construction gives the shape of the cones appearing in Definition 4.2.1. We
now introduce these notions.

4.2.2. DEFINITION (fat join). The fat join of simplicial sets I and ] is the simplicial set constructed by
the following pushout:

Ix))UIx]) —> U]

| -

[ X2X] ——1¢]

from which it follows that
(e = Lo CTT LixJ) U
[n]>(1]
Note there is a natural map I ¢ ] = 2 induced by the projection 7: I X 2 X | = 2 so that [ is the
fiber over 0 and  is the fiber over 1:

[U] — 1]
n%mﬂé
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4.2.3. LEMMA. For any simplicial set | and 00-category A we have natural isomorphisms
Hom (A, Ay = AV and HomA](A], A) = AT,

PROOF. The simplicial cotensor A sSet® — K carries the pushout of Definition 4.2.2 to the
pullback squares that define the left and right representations of At A — Al as a comma 0o-category:

AV — 5 (A))? AT 5 (A)?
l l(PlzPO) l l(pwo) 0
AIxA —— AIx A AXA —— AIx A
id XA AXxid

4.2.4. DEFINITION (join). The join of simplicial sets I and [ is the simplicial sec I % |
IU]——>1Ix%]

1+1 %,

with

U= Ly U (T Boea X Ji) U
0<k<n
and with the vertices of these n-simplices oriented so that there is a canonical map I % | — 2 so that

I'is the fiber over 0 and ] is the fiber over 1. See Definitions D.2.2 and D.2.3 or the original [53, §3] for

more details.

The join functor — % [: sSet — sSet preserves connected colimits but not the initial object or
other Coproducts, but this issue can be rectified by rep]acing the codomain by the slice category under
J; see Lemma D.2.7 for a precise statement in proof. Contextualized in this way, the join admits a right
adjoint, defined by Joyal's slice construction:

4.2.5. PROPOSITION. The join functors admit right adjoints

ITx— —xJ
— — 3
sSet 1 1sSet sSet 1 J/sSet
v v

,/_ —/,

defined by the natural bijections

RN e{A[n]—ﬂ/X} and AN E{A[n]—>X/k}.
I % Aln] — X Aln] % ] —— X

PROOF. As in the statement, the simplicial set X is defined to have n-simplices corresponding
to maps A[n] % | — X under ], with the right action by the simplicial operators [m] — [n] given by
pre-composition with A[m] — A[n]. Since the join functor — % J: sSet — I/5Set preserves colimits,

this extends to a bijection between maps I — X and maps I % | — X under | that is natural in I
andink: ] - X. 0
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4.2.6. NOTATION. For any simplicial set ], we write
J9=1%] and JF =] %1

and write L for the cone vertex of [¥ and T for the cone vertex of J”. These simplicial sets are
equipped with canonical inclusions

JPTe— ] —]"

4.2.7. PROPOSITION (join vs fat join). For any simplicial sets I and | and any oo-category A, there is a

natural equivalence

AI uy

AI*] Alo]

PROOF. There is a canonical map of simp]icia] sets

IxDudx) 21y

[ AN

IX2X] ——s T[] ———> [ %]

~Lb

that commutes with the inclusions of the fibers I LI | over the endpoints of 2. This dashed map dis-
played above is defined on those n-simplices over I ¢ | that map surjectively onto 2 to send a triple
(a: [n] » [1],0 € I, T € ],,) representing an n1-simplex of I ¢ ] to the pair (olyg 5y € Ik, Tlks1,..n) €
Jp—k-1) representing an n-simplex of I ], where k € [n] is the maximal vertex in @71(0). Proposi-
tion D.6.4 of Appendix D proves that this map induces a natural equivalence Q™ = Q'/ of quasi-
categories over Q/ X QL. Taking Q to be the functor space Fun(X, A) proves the claimed equivalence
for general co-categories. O

By Lemma 4.2.3 Hom 4;(A, A) = AY and Hom 4 (A, A) = AJ'L. Thus Proposition 4.2.7 special-

izes to give an alternate model for the co-categories of cones over or under a diagram.

4.2.8. COROLLARY. In particular, there are comma squares
Al” Al
&N 2N
Al i A A i Al
NG A N
Al Al

which pullback over a diagram d: 1 — Al to define alternate models for the co-categories of cones over or

under d.

J

(4.2.9)
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PROOF. By Lemma 4.2.3, AY and A/'T are comma oo-categories. Thus, Proposition 3.4.11 implies

that the fibered equivalence of Proposition 4.2.7 equips Al and AT with comma cone squares. The

2-cells in (4.2.9) are represented by the maps
JujJ —»1uj

[N

Jx2 —» 1] === J*

NS

Aev,

which yield 2-cells

;
;

Juj —sJul

[ I

JX2 — Joll -—=-> %

N

res

/‘\ /\
. p— .U . — .U
N N
p1 pP1
res Aevr
upon cotensoring into A. [l

4.2.10. WARNING. By Lemma4.2.3, the fibers of AV = Al and A/T - Al overa diagramd: 1 — Al
are isomorphic to the co-categories of cones Hom 4(A,d) and Hom 4(d, A). In the co-cosmos of
quasi-categories, it is tempting to believe that the fibers of the equivalent isofibrations AT > A
and A" —» Al over d recover Joyal’s slice quasi-categories Ay and YA, but from a direct comparison
of the defining universal properties left as Exercise 4.2.i, this can easily be seen not to be the case.
However, the fiber of A/ - Al over d is equivalent to Ay and the fiber of A" > Alis equivalent

to YA. Proposition D.6.5 will prove that in the co-cosmos of quasi-categories that Ay =~ Hom 4;(A, d)
and YA ~ Hom 4;(d, A) over A.

Exercises.

4.2.i. EXERCISE. Compute A[n] % A[m] and A[n] ¢ A[m] and define a section
Aln] % Alm] — Aln] o A[m]

to the map constructed in the proof of Proposition 4.2.7.

4.2.ii. EXERCISE. Compute the fiber of AI" = Al overd: 1 — A/ in the co-cosmos of quasi-categories
and prove that this quasi-category is not isomorphic to Ay.

4.3. The universal property of limits and colimits

We now return to the general context of Definition 2.3.1, simultancously considering diagrams
valued in an co-category A that are indexed either by a simplicial set or by another co-category in the
case where the ambient 0o-cosmos is cartesian closed. As was the case for Proposition 4.1.1, Theorem
3.5.7 specializes immediately to prove:
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4.3.1. PROPOSITION (co/limits represent cones). A family of diagrams d: D — Al admits a limit if and
only if the co-category of cones Hom 4;(A, d) over d is right representable

Hom 4 (A, d) ~py 4 Hom4(A, ),

in which case the representing functor £: D — A defines the limit functor. Dually, d: D — Al admits a
colimit if and only if the co-category of cones Hom 4;(d, A) under d is left representable

Hom 4(d, A) ~4xp Homy(c, A),
in which case the representing functor ¢: D — A defines the colimit functor. O

Theorem 3.5.11 now specializes to tell us that such representations can be encoded by terminal
or initial elements, a result which is easiest to interpret in the case of a single diagram rather than a

family of diagrams.

4.3.2. PROPOSITION (limits as terminal elements). Consider a diagram d: 1 — Al of shape | in an
oo-category A.
(i) If d admits a limit, then the I-cell 1 — Hom 4(A, d) induced by the limit cone €: A€ = d defines
a terminal element of the co-category of cones.
(ii) Conversely, if the co-category of cones Hom 4j(A, d) admits a terminal element, then the cone repre-
sented by this element defines a limit cone.

Dually d admits a colimit if and only if the co-category Hom 4;(d, A) of cones under d admits an initial
element, in which case the initial element defines the colimit cone.

PROOF. By Definition 2.3.7, a limit cone defines an absolute right lifting diagram, which by Theo-
rem 3.5.3, induces an equivalence Hom 4 (A, €) = Hom 4;(A, d) over A. By Corollary 3.5.9, the identity
at € induces a terminal element of Hom 4 (A, £) which the equivalence carries to a terminal element of
the co-category of cones, this being the element that represents the limit cone €: Al = d.

Conversely, if Hom 4j(A, d) admits a terminal element, this defines a right adjoint right inverse to
the codomain-projection functor Hom 4;(A, d). Theorem 3.5.11 then tells us that the cone represented
by this element 1 — Hom 4j(A, d) defines an absolute right lifting of d through A. U

4.3.3. REMARK. The proof of Proposition 4.3.2 extends without change to the case of a family of di-
agrams d: D — Al in place of a single diagram since Theorem 3.5.11 applies at this level of gen-
era]ity. For a family of diagrams d parametrized by D, the 00-category of cones defines an object
p1: Hom (A, d) - D of the sliced co-cosmos K)pp and the terminal elements referred to in both (i)
and (ii) should be interpreted as terminal elements in 7(/D-

4.3.4. PROPOSITION. An oo-category A admits a limit of a family of diagrams d: D — Al indexed by a
simplicial set’ | if and only if there exists an absolute right lifting of d through the restriction functor

Al”
A’ :chs

*We have stated this result for diagrams indexed by simp]icia] sets because its means is easiest to interpret, but we
actually prove it with the codomain-projection functor p;: Hom (A, A)) = Al in place of the equivalent isofibration
A" » Al and this proof applies equally in the case of diagrams indexed by co-categories J in cartesian closed co-cosmoi
that may or may not have a join operation available.
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When these equivalent conditions hold, € is necessarily an isomorphism and may be chosen to be the identity.

PROOF. By Definition 2.3.7, the family of diagrams admits a limit if and only if d admits an absolute
right lifting through A: A — Al By Proposition 3.6.14, such an absolute lifting diagram exists if and
only if d admits an absolute right lifting through codomain-projection functor p; : Hom (A, Al) —»
Al in which case the 2-cell of this latter absolute right lifting diagram is invertible. By Corollary
4.2.8, the restriction functor res: AIQ —-» Alis equiva]ent to this Codomain—projection functor, so
absolute right liftings of d through p; are equivalent to absolute right liftings of d through res. If this
absolute lifting diagram is inhabited by an invertible 2-cell, the isomorphism lifting property of the
isofibration proven in Proposition 1.4.10 can be used to replace the functor ran: D — A with an
isomorphic functor making the triangle commute strictly. O

Recall from Lemma 2.3.6 that absolute 1ifting diagrams can be used to encode the existence of
adjoint functors. Combining this with Definition 2.3.2, Proposition 4.3.4 specializes to prove:

4.3.5. COROLLARY. An oo-category A admits all limits indexed by a simplicial set ] if and only if the restriction

functor
res
>\
1A
(\ - 7
ran

Al°

admits a right adjoint. Dually, an co-category A admits all colimits indexed by a simplicial set | if and only if
the restriction functor

lzm

AT LW
~——11

res

admits a left adjoint. O

4.3.6. REMARK. Since the restriction functor is an isofibration, Lemma B.4.7 applies and the adjunc-
tions of Corollary 4.3.5 can be defined so as to be fibered over the co-category of diagrams Al

The adjunctions of Corollary 4.3.5 are particular useful in the case of pullbacks and pushouts.

4.3.7. DEFINITION (pushouts and pullbacks). A pushout in an co-category A is a colimit indexed by
the simplicial set

= AY[2].
Dually, a pullback in an co-category A is a limit indexed by the simplicial set
2= A?[2].

Cones over diagrams of shape = or cones under diagrams of shape = define commutative squares,
diagrams of shape
o= A[1] X A[1] =rP=a,

A pullback square in an co-category A is an element of A® in the essential image of the functor
ran of Proposition 4.3.4 for some diagram of shape 4. When A admits all pullbacks, these are exactly
those elements of A® at which the component of the unit of the adjunction res < ran of Corollary
4.3.5 is an isomorphism. Dually, a pushout square in A is an element in the essential image of the dual
functor lan for some diagram of shape 7, i.c., those elements for which the component of the counit
of the adjunction lan H res is an isomorphism.
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An X-indexed commutative square in A is a diagram X — A", or equivalently, an element of

Fun(X, A)®. We label the 0- and 1-simplex components as follows:

d—2L>5b
vl Ny lf € Fun(X, A)
N
C T) a
The diagram also determines a pair of 2-simplices that witness commutativity fu = w = gv in

hFun(X, A), but the names of these witnesses won’t matter for this discussion.

4.3.8. LEMMA. An X-indexed commutative square valued in an 0o-category A in K as below-left is a pullback
square if and only if the induced 2-cell below-right is an absolute right lifting diagram in Kjx:

d—2>b Hom 4 (A, b)
\‘ (1 ﬂ/.z').)'.“ *
c——a X - = "Hom (A, a)
. '.. .'.'.b. Rl,“'v"
“a,, < L‘_L‘L p1

c

//
The statement requires some exp]anation. The 1—simp]exg: C — arepresentsa 2-cell X \ll_g), A,

a
inducing the map "¢": 1 — Hom4(A, a). The map "u": X — Hom4(A, D) is defined similarly. The
map " f,”: Hom4(A, b) = Hom4(A, a) is characterized by the pasting diagram

Hom 4(A, b)
Hom 4(A, b) ! o
v

_ P1 Po

y ¢ K = Hom 4(A, a)
b P1 o Po

X—/ ¥V 34 2

? X A

a

By Proposition 3.4.7, the composite " f," "1™ is isomorphic to " fu”. By 2-cell induction, the 2-cell may

be constructed by specifying its domain and codomain components, the former of which we take to
d

be X L A and the lacter of which we take to be id,. Note that the 2-cell just constructed lies

C
in hx and so can be lifted to H(%x) by Proposition 3.6.3.

PROOF. We prove the result in the case X = 1 and then deduce the result for families of pullback
diagrams from this case. By Coro]lary 4.2.8, the pul]back

v T A

Tk



is equivalent to the 0O-category of cones over the cospan diagram gV f By Proposition 4.3.2, to
show that the commutative square defines a pullback diagram is to show that (1,7, f,g): 1 — gE]V £

defines a terminal element in the pullback. We will show that this pullback Agmv f is also equivalent to

i e |

the comma co-category Homyom . (a0 ("f.", "8"). By Theorem 3.5.11, the pair ("u”, (id,, v)) detines an
absolute right lifting if and only if it represents a terminal element in this comma co-category, which
will prove the claimed equivalence.

To see this first consider the diagram, which induces a map between the two pullbacks

A/f A3 Po1 Az
Pf g a p?f/
%/
Hom 4(A, a) —|> A2 P12 p1
l / X ~ | A? = 4
X / A P1

a

Since A% ~ AA1[2], the right-hand back square is equivalent to a pullback. Composing the pullback
squares in the back face of the diagram, we obtain an equivalence A;r = Hom4(A, b) and by in-
spection see that the map pr: Ajp - Homy(A,a) is equivalent to the map "f.": Hom (A, b) —
Hom 4 (A, a) over Hom 4(A, a).
By applying ()2 to the pullback diagram that defines Hom 4(A, a) we obrain a pullback square
that factors as:
Hom4(A,a)? —— A?1T —— A2X2
A
1 : A—b2— A%
By the equivalence AZL o AZXL o Corollary 4.2.8, the left-hand pullback square shows that Hom 4 (4, n)?
is equivalent to the pullback of py: A3 - A alonga: 1 — A. Modulo this equivalence, the map
po: Hom 4(A,a)? - Hom 4(A, a) is the pullback of the fibered map

A3 P02 A2
P2 Q/Pl
A
alonga: 1 = A and the codomain projection is similarly the pullback of the fibered map p15: A% —»
A?.
Putting this together, it follows that the pullback
HoMpom ,aa)("f+ ", Hom 4 (A, a)) —— Hom 4(A, a)?
l i :LPO

Hom 4(A, b) Hom 4 (A, a)
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is equivalently computed by forming the limit
o — > AU A3 P12 A2
: :L i :Lpoz

A3 — 5 A2

The codomain projection py 1 HoMygm (4 o) ("f.", Hom (A, a)) - Hom 4 (A, a) is the pullback of the
top-horizontal composite in the above diagram along Hom 4(A, a) — AZ. So we see that the comma
oo-category HOMyom (a0 ("f+", ") is equivalently computed by the limic below-left, or equivalently
by the limit below right, exactly as we claimed:

° ° 1
a lg
A A v T A
lPOZ l - :Lles
3 55 2 B
A P02 A 1 W A
P12

The same computation proves the general case for X # 1 when the comma co-category is con-
structed in 7(/X9 see Proposition 1.2.19 for a description of the simplicial limits in sliced co-cosmoi.
Alternatively, a diagram s: X — A" in K also defines a X-indexed diagram in the co-cosmos K
valued in the co-category 11 A X X — X. This takes the form of a functor (d,idy): X — AY x X
over X. It’s easy to verify that a diagram valued in m: A X X —» X whose component at X is the
identity has a limit in Kx if and only if the A-component of the diagram has a limit in K. Since idy
is the terminal object of K)x, this object is the co-category 1 € K, so the proof just give applies to
prove the general case of X-indexed families of commutative squares.

There is an automorphism of the simplicial set 2 X 2 that swaps the “intermediate” vertices (0, 1)
and (1, 0), which induces a “transposition” automorphism of A¥. By symmetry, a commutative square
in A is a pullback if and only if its transposed square is a pullback. This gives a dual form of Lemma
4.3.8 with the roles of f and g and of # and v interchanged. As a corollary, we can easily prove that
pullback squares compose both “vertically” and “horizontally” and can be cancelled from the “right”
and “bottom™

4.3.9. PROPOSITION (composition and cancelation of pullback squares). Given a composable pair of
X-indexed commutative squares in A and their composite rectangle defined via the equivalence A2 o
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AY x A®
A2

h 8

if the right-hand square is a pullback, then the left-hand square is a pullback if and only if the composite rectangle
is a pullback.

PROOF. By Lemma 4.3.8, we are given an absolute right lifting diagram in K)x

Hom 4(A, ¢)

S
Uid,u) )

X T> Hom 4(A, a)

By Lemma 2.4.1, the composite diagram

Hom 4 (A, e)

ll’h*'|
1d x)

Hom 4(A, ¢)

i 5

X — HomA(A a)

l-f-|
is an absolute right lifting diagram in Ky if and only if the top triangle is an absolute right lifting
diagram in K)x. By Lemma 4.3.8, this is exactly what we wanted to show. O

Terminal elements are special cases of limits where the diagram shape is empty. For any co-category
A, the co-category of diagrams A? = 1, which tells us that there is a unique @-indexed diagram in A.
In this context, the co-categories of cones over or under the unique diagram constructed in Definition
4.2.1 are isomorphic to A. In the case of cones over an empty diagram, the domain-evaluation functor,
carrying a cone to its summit, is the identity on A, while in the case of cones under the empty diagram,
the codomain-evaluation functor, carrying a cone to its nadir, is the identity on A. The following
characterization of terminal elements can be deduced as a special case of Proposition 4.3.1, though we
find it easier to argue from Proposition 4.1.1.

4.3.10. PROPOSITION. For an element t: 1 — A of an co-category A,

(i) t defines a terminal element of A if and only if the domain-projection functor py: Hom 4(A, t) » A
is a trivial fibration.
(ii) t defines an initial element of A if and only if the codomain-projection functor p1: Homy(t, A) = A

is a trivial fibration.

PROOF. Recall from Definition 2.2.1, that an element is terminal if and only if it is right adjoint
to the unique functor



By Proposition 4.1.1, ! — t if and only if there is an equivalence Homy(!,1) ~4 Hom (A, t). By the
defining pullback (3.4.2) for the comma co-category, the left representation of 1: A — 1 is A icself,
with domain-projection functor the identity. So the component of the equivalence Hom 4 (A, ) = A
over A must be the domain projection functor py: Homy(A,t) - A, and we conclude that f is a
terminal element if and only if this isofibration is a trivial fibration. 0J

4.3.11. DIGRESSION (terminal elements of a quasi-category). In the co-cosmos of quasi-categories, the
isofibration py: Hom 4(A, t) - A is equivalent over A to the slice quasi-category Ay, defined as a right
adjoint to the join construction of Definition 4.2.4. Proposition 4.3.10 proves that t is terminal if and
only if the projection Ay = A is a trivial fibration in the sense of Definition 1.1.24, which transposes
to Joyal's original definition of a terminal element of a quasi-category. See Appendix F for a full proof.

We conclude with two results that could have been proven in Chapter 2, were it not for one small
step of the argument, as we explain. A functor f: A — B preserves limits if the image of a limit cone
in A also defines a limit cone in B. In the other direction, a functor f: A — B reflects limits if a cone
in A that defines a limit cone in B is also a limit cone in A.

4.3.12. PROPOSITION. A fully faithful functor f: A — B reflects any limits or colimits that exist in B.

PROOF. The statement for limits asserts that given any family of diagrams d: D — Al of shape
Jin A, any functor £: D — A and cone p: Al = d as below-left so that the whiskered composite
with f]: Al - B displayed below is an absolute right lifting diagram

A— B
%lA lA
D — Al r B/

then (¢, p) defines an absolute right lifting of d: D — A/ through A: A — AJ. Our proof strategy
mirrors the results of §2.4. By Corollary 3.5.6(i), to say that f is fully faichful is to say thatid4: A — A
defines an absolute right lifting of f through itself. So by Lemma 2.4.1 and the hypothesis just stated,
the composite diagram below-left is an absolute right lifting diagram, and by 2-functoriality of the
simplicial cotensor with ], the diagram below-left coincides with the diagram below-right:

A A

. b

A——B = ¢ Al
RN R
D— A F B D— A 5 B

By Corollary 3.5.6(iv) to say that f is fully faichful is to say that '-idf-' t A2 = Homg(f, f) is a fibered
equivalence over A X A. Applying (=) : K — K, this maps to a fibered equivalence ridf]-' D (A)? =
HomB;(f],f]) over Al x A, proving that if f: A — B is fully faithful, then f]: A - Blisalso!
Hence by Corollary 3.5.6(i), id 4 Al = Al defines an absolute right lifting of f] through itself.

*This is the statement that we could not yet prove in Chapter 2.
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Applying Lemma 2.4.1 again, we now conclude that (£, p) is an absolute right lifting of d through A
as required. OJ

An alternate approach to proving this result is suggested as Exercise 4.3.iii.

Our final result, proves that, for I and | simplicial sets, whenever we are given a J-indexed diagram
valued in the co-category Al of Iindexed diagrams in A, its limit may be computed pointwise in the
vertices of I as the limit of the corresponding J-indexed diagram in A. Our argument requires the
following representable characterization of absolute lifting diagrams whose proof again makes use of
the fact that they are preserved by cosmological functors.

4.3.13. PROPOSITION. A natural transformation defined in an co-cosmos K as below-left is an absolute right
lifting diagram if and only if its “externalization” displayed below-right defines a right lifting diagram in QCat

B Fun(C, B)
r
Up lf st % lf*
C — A 1 — Fun(C, A)

that is preserved by precomposition with any functor c: X — C in K in the sense that the diagram below is
also right lifting:

Fun(C, B) —~— Fun(X, B) Fun(X, B)
o b = e b
1 — Fun(C, A) — Fun(X, A) 1 — Fun(X,C)

Moreover the externalized right lifting diagrams in QCat are in fact absolute.

PrROOF. Since Fun(ll, —): QCat — QCat is naturally isomorphic to the identity functor, for any
oo-categories X, A € K we have Fun(X, A) = Fun(l, Fun(X, A)) and hence

hFun(X, A) = hFun(1, Fun(X, A)). (4.3.14)

This justifies our use of the same name p for the 2-cell in hK and the 2-cell in hQCat in the scatement.

To say that (7, p) defines a righe lifting of ¢ through f in H asserts a bijection between 2-cells
in hFun(C, B) with codomain 7 and 2-cells in hFun(C, A) with codomain ¢ and domain factoring
through f implemented by pasting with p. Under the correspondence of (4.3.14), this asserts equally
that 7 defines a right lifting of ¢ through f, in hQCat. To say that (r, p) defines an absolute right
lifting of ¢ through f is to assert the analogous right lifting property for the pair (rc, pc) defined by
restricting along any ¢: X — C. This is exactly the first claim of the statement.

[t remains only to argue that if (r, p) is an absolute right lifting diagram in %, then its externalized
right lifting diagram of quasi-categories is also absolute. To see this, first note that the cosmological
functor Fun(C, -): K — QCat preserves this absolute right lifting diagram, yielding an absolute
right lifting diagram of quasi-categories as below left:

Fun(C, B) Fun(C, B) Fun(C, B)
r —
%C p) lf A lf* - de %un(c 0) lf
Fun(C, C) —— Fun(C, A) 1 — Fun(C, A) 1 — Fun(C,C) —~ Fun(C, A)
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We obtain the desired absolute right lifting diagram by evaluating at the identity. O

4.3.15. PROPOSITION. Let I and | be simplicial sets and let A be an 0o-category. Then a diagram as below-left
is an absolute right lifting diagram

Al Al T A
A A
D T> AIXI D T> AIXI C—V1> A]

if for each vertex i € I, the diagram above right is an absolute right lifting diagram.

Note this statement is not a biconditional. Even in the case of strict 1-categories, there may exist
coincidental limits of diagram valued in functor categories that are not defined poincwise [21, 2.17.10].

PROOF. By Proposition 4.3.13, we may externalize and instead show that the diagram of quasi-
categories displayed below left

Fun(D, A)! Fun(D, AYY —— Fun(D, A)
lim I lim I
o b e b Js
1 ~—— Fun(D, AYXI 1 —— Fun(D, AP —— Fun(D, A)

is absolute righe lifting lifting if the diagrams above-right are for each vertex i € I. By naturality of
our methods, our proof will show that the absolute right lifting diagrams on the left are preserved by
postcomposition with the restriction functors induced by d: X — D it the same is true on the right.

We simplify our notation and write Q for the quasi-category Fun(D, A) and assume that for each
i € I the diagram

Q——Q

g b b

is absolute right lifting. By 2-adjunction (= X I) 4 (=), a diagram as below-left is absolute right
lifting if and only if the transposed diagram below-right is a right lifting diagram and this remains the
case upon restricting along functors of the form m: X X I — I’

% lAI o / l (4.3.16)

1—— Q™ 1—>Qf

We'll argue that this right-hand diagram is in fact absolute right lifting, which implies that the left-
hand diagram is absolute right lifting as well, as desired.

’If the reader is concerned that I is not a quasi-category, there are two ways to proceed. One is to replace I by a
quasi-category I’ by inductively attaching fillers for inner horns; note that I and I’ will have the same sets of vertices.
By Proposition 1.1.28, the diagram quasi-categories Q' and Q! are equivalent. The other option is to observe that it
doesn’t matter if I is a quasi-category or not, because we may define hFun(I, Q) = h(Q") and by Corollary 1.1.21 Q' is a
quasi-category regardless of whether I is.
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To see this we appeal to Theorem 16.2.9, which tells us that universal properties in QCat are
detected pointwise. Specifically, this tells us that the triangle above right is an absolute right lifting
diagram if and only if the restricted diagram is absolute righe lifting for each vertexi € 1

and this is exactly what we have assumed in (4.3.16). O
Exercises.

43.i. EXERCISE. Prove that if A has a terminal element ¢ then for any element a che mapping space
Hom 4(a, t) is contractible, i.c., is equivalent to the terminal co-category 1.

4.3.ii. EXERCISE. Prove that a square in A is a pullback if and only if its “cransposed” square, defined
by composing with the involution A¥ = A¥ induced from the automorphism of 2 X 2 that swaps the
“off-diagonal” elements, is a pulllback square.

4.3.ii. EXERCISE ([105, 3.7]). Use Theorem 3.5.3 and Corollary 3.5.6(iv) to prove that a fully faichful

functor f: A — B reflects all limits or colimits that exist in A. Why does this argument not also
show that f: A — B preserves them?

4.4. Loops and suspension in pointed 0o-categories

4.4.1. DEFINITION (pointed oo-categories). An co-category A is pointed if it admits a zero element:
an element *: 1 — A that is both initial and terminal.

The counit of the adjunction * —! that witnesses the initiality of the zero element defines a natural
transformation p: *! = id4 that we refer to as the family of points of A. Dually, the unit of the
adjunction !  * that witnesses the terminality of the zero element defines a natural transformation
&: idy = #! that we refer to as the family of copoints.

Cospans and spans in an co-category A may be defined by gluing together a pair of arrows along
their codomains or domains respectively:

A 33 AZ AT 33 AZ

l : lpl l : lpo

A2 — 5 A A2 — 5 A
p1 Po

For instance, the family of points in a pointed co-category A is represented by a functor p: A — A2
whose domain-component is constant at * and whose codomain component is id 4. Gluing two copies
of this map along their codomain defines a diagram p: A — A”. Dually, there is a diagram é: A—>
A" defined by gluing the functor £: A — A2 that represents the family of copoints to itself along

their domains.
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4.4.2. DEFINITION (loops and suspension). A pointed co-category A admits loops if it admits a limit
of the family of diagrams

in which case the limit functor Q: A — A is called the loops functor. Dually, a pointed co-category
A admits suspensions if it admits a colimit of the family of diagrams

A

A1
P2 A

o0
A —é> AF
in which case the colimit functor X: A — A is called the suspension functor.

Importantly, if A admits loops and suspensions, then the loops and suspension functors are adjoint:

4.4.3. PROPOSITION (the loops-suspension adjunction). If A is a pointed oo-category that admits loops
and suspensions, then the loops functor is right adjoint to the suspension functor

The main idea of the proof is easy to describe. If A admits all pullbacks and all pushouts, then
Corollary 4.3.5 supplies adjunctions

/res\ lan
A 1 A" 1 A"
\_/ \_/
ran res

that are fibered over A X A upon evaluating at the intermediate vertices of the commutative square.
By pulling back along (*,#): 1 — A X A, we can pin these vertices at the zero element. Since the
zero element is initial and terminal, the co-categories of pullback and pushout diagrams of this form
are both equivalent to A and the pulled-back adjoints now coincide with the loops and suspension
functors.

The only subtlety in the proof that follows is that we have assumed weaker hypotheses: that A
admits only loops and suspensions, but perhaps not all pullbacks and pushouts.
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PROOF. The diagram g lands in a subobject A} of A” defined below-left that is comprised of those

pullback diagrams whose source elements are pinned at the zero element * of A.

pVp

Al —— A?
1W>AXA HomA(*,A)T”l»A
From a second construction of A; displayed above-right and the characterization of initiality given
in Proposition 4.3.10, we may apply the 2-of-3 property of equivalences to conclude first thac p: A =
Hom 4(*, A) and then that the induced diagram g,: A = A are equivalences. Dually, the diagram
E: A > A" defines an equivalence &1 A = AT when its codomain is restricted to the subobject of
pushout diagrams whose target elements are pinned at the zero element *.

By Proposition 4.3.4, a pointed co-category A admits loops or admits suspensions if and only if
there exist absolute lifting diagrams as below-left and below-right respectively:

A" A"
ran /;l lan /;l
-, res , Tes
L7 =] 7 =1
A —ﬁ> A* A —€> A"
G

By Theorem 3.5.3 the absolute right lifting diagram defines a right representation Hom 4= (A¥, ran) ~
Hom y.(res, P), this being a fibered equivalence over AXA®. The represented comma co-category may
be pulled back along the inclusion of the subobject AY < A" of commurtative squares in A whose
intermediate vertices are pinned at the zero object:

Hom 4.(res, P) (A%)?
/ | ’ /

Hom 4:(res, p.) (Af)Z

l ABx A P l A? x A?
l/

A /
AP x A A X A

res X,

The right-hand face of this commutative cube is not strictly a pullback but the universal property of
the zero element implies that the induced map from (AZ)? to the pullback is an equivalence. It follows
that Hom 4:(res, f.) is equivalent over AP X A to the pullback of Hom 4.(res, p) along this inclusion
and so the fibered equivalence pulls back to define a right representation for Hom 4:(res, f,). Dually,
the left representation for HomA:(é, res) pulls back to a left representation for HomA;(é*, res). By
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Theorem 3.5.7 these unpack to define absolute lifting diagrams:

AP Af AP A
§ 2 2 . 2
ran// U res  MD mj//u res ian// 1 Tes N ldf//ﬂ res
7z = = ) =
Vs 7 V2 Vs
* *

Restricting along the inverse equivalences Ay = A and A] = A and pasting with the invertible
2-cell we obtain absolute iifting diagrams whose bottom edge is the identity.
By Lemma 2.3.6, these 1ifting diagrams define ad]'unctions:

res lan

/\/—\

A~ A 1 AY L Al ~ A
ran \II‘S/
which compose to the desired adjunction £ - Q. O

4.4.4. DEFINITION. An arrow f:1 — A2 from x to Y in a pointed co-category A admits a fiber if A
admits a pullback of the diagram defined by gluing f to the component py of the family of points. By
Proposition 4.3.4 such pullbacks give rise to a pullback square

AE|
A lrcs
1— A°
pyvf

that is referred to as the fiber sequence for f. Dually, f admits a cofiber if A admits a pushout of the
diagram defined by gluing f to the component Ex of the family of copoints, in which case the pushout

AE|
;

1 ExVf

squarce

defines the cofiber sequence for f.

Fiber and cofiber sequences define commutative squares in A whose lower-left vertex is the zero
clement *. The data of such squares is given by a commutative triangle in A — an element of A3
— together with a nu]lhomotopy of the diagona] edge, a witness that this edge factors through the
zero element in hA. Borrowing a classical term from homological algebra, a commutative square in A
whose lower-left vertex is the zero element is referred to as a triangle in A.

4.4.5. DEFINITION (stable w—category). A stable oo-category is a pointed 0O-category A in which

(i) every morphism admits a fiber and a cofiber: that is, there exist absolute lifting diagrams

AH A"

ran _ lan res

= i ‘ =) i

AZ —s A AZ — AF
pVvid &vid
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(ii) and a triangle in A defines a fiber sequence if and only if it also defines a cofiber sequence.
Such triangles are called exact.

A stable co-category admits loops and admits suspensions, formed by taking fibers of the arrows
in the family of points and cofibers of arrows in the family of copoints respectively.

4.4.6. PROPOSITION. If A is a stable co-category, then = — € are inverse equivalences.

PROOF. In the proof of Proposition 4.4.3, the adjunction £ - € is constructed as a composite of
adjunctions

res lan

/\ /—\
A=~ Al 1 AP L AT~ A

~_ 7 ~

ran res
that construct fiber and cofiber sequences. By Proposition 2.1.9, the unit and counit of this composite
adjunction are given by

By Definition 4.3.7, the unit of res = ran restricts to an isomorphism on the subobject of pushout
I ble co-c he cofib in the i flan: A AH 1back
squares. In a stable co-category, the cofiber sequences in the image of lan: A — AY are pullbac
squares, so this tells us that nlan is an isomorphism. Dually, the fiber sequences in the image of
ran: A — AY are pushout squares, which tells us that € ran is an isomorphism. Hence, the unit and
counit of X = € are invertible, so these functors define an adjoint equivalence. O

4.4.7. PROPOSITION (finite limits and colimits in stable co-categories). A stable co-category admits all
pushouts and all pullbacks, and moreover, a square is pushout if and only if it is a pullback.

PROOF. Givena cospang V f: X — A” in A, form the cofiber of f followed by the fiber of the
composite map ¢ — a4 — coker f:

ker(gg) ——=>b ———> =

o T i

| r v
C—F—a-—> coker(f)

By Definition 4.4.5(ii), the cofiber sequence b — a — ker f is also a fiber sequence. By the pullback
cancelation result of Proposition 4.3.9, we conclude that ker(gg) computes the pullback of the cospan

gV f.

To see that this pullback square is also a pushout, form the fiber of the map v:
ker(v) ---> ker(gg) —— b
| a4 a
; L

c 3 a
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By the pullback composition result of Proposition 4.3.9, ker(v) is also the fiber of the map f. By Def-
inition 4.4.5(ii), the fiber sequences ker(v) — ker(qg) — ¢ and ker(v) — b — a are also cofiber
sequences. Now by the pushout cancelation result of Proposition 4.3.9, we see that the right-hand
pullback square is also a pushout square. A dual argument proves that pushouts coincide with pull-

backs. O
Exercises.

4.4.1. EXERCISE. Arguing in the homotopy category, show that if an co-category A

e admits an initial element i,
e admits a terminal element £, and
e there exists an arrow £ — 1

then A is a pointed co-category.
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CHAPTER 5

Fibrations and Yoneda’s lemma

The fibers Ej of an isofibration p: E = B over an element b: 1 — B are necessarily co-categories,
so it is natural to ask where the isofibration also encodes the data of functors between the fibers in this
family of co-categories. Roughly speaking, an isofibration defines a cartesian fibration just when the
arrows of B act contravariantly functorially on the fibers and a cocartesian fibration when the arrows
of B act covariantly functorially on the fibers. This action is not strict but rather pseudofunctorial in a
sense explored in Exercise 5.1.iii. A complete proof of pseudofunctoriality requires the verification of
certain conditions, which in this context extend to higher dimensions. In Chapter 17 when we study
the comprehension construction, we will construct a homotopy coherent functor from the underlying
quasi-category of B to the 00-cosmos XK, vastly generalizing the pseudofunctoriality described here.

One of the properties that characterizes cocartesian fibrations is an axiom that says that for any
2-cell with codomain B and specified lift of its source 1-cell, there is a lifted 2-cell with codomain E
with that one cell as its source. In particular, this lifting property can be applied in the case where the
2-cell in question is a whiskered composite of an arrow in the homotopy category of B as below-left
and the lift of the source 1-cell is the canonical inclusion of its fiber:

l, b
E N E E, /U)([g\\ E
J ﬁ:’g- ........ Bula) e
. B, (5.0.1)
a J
e
~_
; b

In this case the codomain B.(£,) of the lifted cell xg displayed above right lies strictly above the co-
domain of the original 2-cell, and thus factors through the pullback defining its fiber. This defines a
functor B,: E; = E, the “action” of the arrow f on the fibers of p. The pseudofunctoriality of these
action maps arises from a universal property required of the specified lifted 2-cells, namely that they
are cartesian in a sense we now define.

5.1. The 2-category theory of cartesian fibrations

There is a standard notion of cartesian fibration in a 2-category developed by Street [97] that
recovers the Grothendieck fibrations when specialized to the 2-category Cat. This is not the correct
notion of cartesian fibration between co-categories as the universal property the usual notion demands
of lifted 2-cells is too strict. Instead of referring to the notions defined here as “weak,” we would prefer
to refer to the classical notion of cartesian fibration in a 2-category as “strict” were we to refer to it
again, which we largely will not.
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To remind the reader of the interpretation of the data in the homotopy 2-category of an co-cosmos,
we refer to 1- and 2-cells as “functors” and “natural transformations.” Before defining the notion of
cartesian fibration we describe the weak universal property enjoyed by a certain class of “upstairs”
natural transformations.

5.1.1. DEFINITION (p-cartesian transformations). Let p: E = B be an isofibration. A natural trans-

el

formation X _ Ux _ E with codomain E is p-cartesian if
~
e

/7

e/’ pe
(i) induction: Given any natural transformations X Ut _ E and X Uy _ B so thatpt =
~— "7 ~— "7
e ’
pe

el/

pX -V, there exists a lift X @ E ofysothatt = x-y.

e

7 7 € hFun(X, E)
I p.
" == pe
Pe S ~ P € hFun(X, B)
V4 pe, px

el

(ii) conservativity: Any fibered endomorphism of x is invertible: if X @ E is any natural

el

transformation so that x - C = y and pC = idpez then C is invertible.
5.1.2. REMARK (why “cartesian”). The induction property for a p-cartesian natural transformation
X: e = esays that for any e”: X — E, there is a surjective function from the set hFun(X, E)(e”, ¢’)
of natural transformations from €” to €’ to the pullback induced in the commutative square

hFun(X, E)(e”,¢’) ——— hFun(X, E)(¢”, e)

i i
hFun(X, B)(pe”, pe’) —= hFun(X, B)(pe”, pe)

Were the induction property strict and not weak, this square would be a pul]back, ie., a “cartesian”
square.

It follows that p-cartesian lifts of a given 2-cell with specified codomain are unique up to fibered
isomorphism:
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el gll

5.1.3. LEMMA (uniqueness of cartesian lifts). If X /lE(\\ E and X /U?\ E are p-cartesian lifts of
~ NG

e e

ell

a common 2-cell px, then there exists an invertible 2-cell X @ E sothat Y’ = x-Candpl =id. O

e

PROOF. By induction, there exists 2-cells C: ¢” = ¢’ and I': ¢/ = ¢” so that ¥’ = x - Cand
X =X+ withpC = pl’ = id. The composites C - C" and C’ - C are then fibered automorphisms of x
and Y’ and thus invertible by conservativity. Now the 2-0f-6 property for isomorphisms implies that
C and C’ are also isomorphisms (though perhaps not inverses). O

We frequently make use of the isomorphism stability of the p-cartesian transformations given by
the following suite of observations:

5.1.4. LEMMA. Letp: E = B be an isofibration.

(i) Isomorphisms define p-cartesian transformations.
(ii) Any p-cartesian lift of an identity is a natural isomorphism.
(iii) The class of p-cartesian transformations is closed under pre- and post-composition with natural isomor-

phisms.
PROOF. Exercise 5.1.1. 0
Furthermore:
5.1.5. LEMMA (more conservativity). If X U _ E, X U _ E,and X U _ E are 2-cells so
~—_" ~— "7 ~—_"
e e o

that x and X" are p-cartesian, X' = x - C, and pC is invertible, then C is invertible.

PROOF. Given the data in the statement we can use the induction property for x” applied to the
pair (x,pC!) to induce a candidate inverse C for C and then apply the conservativity property to
conclude that C - C and C - C are both isomorphisms. By the 2-0f-6 property, C is an isomorphism, as
desired. O

We now introduce the class of cartesian fibrations.

5.1.6. DEFINITION (cartesian fibration). An isofibration p: E = B is a cartesian fibration if
(i) Any natural transformation : b = pe as below-left admits a p-cartesian liftl)(ﬂi pe = eas
below-right:

e e
X ™~ E

x~ 7E T
\{ lp - pre lp
b B B

"To ask that xg: f'e = eis a lift of B: b = pe asserts that pxg = f and hence pfe = b.
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e/

(ii) The class of p-cartesian transformations is closed under restriction: that is, if X \U_X)I E is
e
ef
p-cartesian and f: Y — X is any functor then Y \U)_(fj E is p-cartesian.
ef

The lifting property (i) implies that a p-cartesian transformation x: ¢’ = e is the “universal
natural transformation over px with codomain €” in the following weak sense: any transformation
P e’ = e factors through a p-cartesian lift xy 1 (pY)'e = e of pip viaa 2-cell y: &’ = (py)e over
an identity, and moreover ¢ is p-cartesian if and only if this factorization ) is invertible.

The reason for condition (ii) will become clearer in §5.3. For now, note that since all p-cartesian
lifts of a given 2-cell f are isomorphic and the class of p-cartesian cells is stable under isomorphism,
to verify the condition (ii) it suffices to show that for any functor f: Y — X there is some p-cartesian
lift of B that restricts along f to another p-cartesian transformation.

5.1.7. LEMMA (composites of cartesian fibrations). If p: E = Band q: B = A are cartesian fibrations,

e/

then sois qp: E = A. Moreover, a natural transformation X \u_X/, E is gp-cartesian if and only if x is
e
p-cartesian and pX is g-cartesian.

PROOF. The first claim follows immediately from the second, for the lifts required by Definition
5.1.6(i) can be constructed by first taking a g-carcesian lift xg and then taking a p-cartesian lift Xxg of
this lifted cell.

x~ E x~ E X @ E
B lp Mg lp pre lp

B = b B = B
N Jr b
A A A

and the stability condition 5.1.6(ii) is then inherited from the stability of p- and g-cartesian transfor-

mations.

e/

To prove the second claim, first consider a natural transformation X &(ji E thatis p-cartesian

e
/"

e” qpe
and so that py is g-cartesian. Given any natural transformations X Ut _ E and X Uy~ A so
~—_"7 ~—"T
e ’
qpe

ell

that gpT = gpx - ), g-cartesianness of px induces a lift X @ B of y so that pt = px - 7.

e

ell

Now p-cartesianness of x induces a further lift X @ E of § so that T = x - ¥. Moreover, if

el
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e/

X @ E is any natural transformation so that x - C = x and gpC = id then px - pC = px and by

e/

conservativity for px, pC is invertible. Applying Lemma 5.1.5, we conclude that C is invertible. This
proves that x is gp-cartesian.

Conversely, if x is gp-cartesian, then Lemma 5.1.3 implies it is isomorphic to all other gp-cartesian
lifts of gpx. The construction given above produces a gp-cartesian lift of any 2-cell that is p-cartesian
and whose image under p is g-cartesian. By the isomomorphism stability of p- and g-cartesian trans-
formations of Lemma 5.1.4, ¥ must also have these properties. O

The following lemma proves that cartesian fibrations come equipped with a “generic p-cartesian
transformation.”

5.1.8. LEMMA. An isofibration p: E = B is a cartesian fibration if and only if the right comma cone over p
displayed below-left admits a lift x as displayed below-right:

P1 p1
HomB(B,pT_\'l E HomB(B,pT_aJ E
flo lp _ — lp (5.1.9)
Po B B

with the property that the restriction of x along any X — Homg(B, p) is a p-cartesian transformation.

PROOF. Ifp: E - Bis cartesian, then the right comma cone ¢ admits a p-cartesian lift x: r = p;
by 5.1.6(i), which by 5.1.6(ii) has the property that the restriction of this p-cartesian transformation
along any X — Homg(B, p) is also p-cartesian.

For the converse, suppose we are given the generic p-cartesian transformation x: r = p; of the
statement and consider a 2-cell B: b = pe as below-left.

e e
e
X~ *FE X = > Homg(B,p) —r1> E X 27 > Homg(B,p) — E
Q lp = “ lp i &M lp
Po

By 1-cell induction f = ¢"B" for some functor "5 : X — Homg(B, p) as above- center. By substitut-
ing the equation (5.1.9) as above-right, we see that x"f" is a lift of f whose codomain is p;"f" = e,
as required. The hypothesis that restrictions of x are p-cartesian implies that this lift is a p-cartesian
transformation.

Now Lemma 5.1.3 imp]ies that any p-cartesian natural transformation is isomorphic to a restric-
tion of x. Thus restrictions of p-cartesian transformations are isomorphic to restrictions of x, and it
follows from Lemma 5.1.4 that the class of p-cartesian transformation is closed under restriction. [J

The first major result of this section is an internal characterization of cartesian fibrations inspired
by a similar result of Street [97, 101, 102], which in turn was inspired by previous work of Gray [46];
see also [112]. Before stating this result, recall from Lemma 3.5.8 that from a functor p: E - B, we
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can build a fibered adjunction p; - i, where the right adjoint is induced from the identity 2-cell idp:

E /El\
i E E 1 Homg(B,p)

— N~ Py
HomyBp) \ = N w S

Similarly, 1-cell induction for the right comma cone over p applied to the generic arrow for E induces
a functor

E2 E?
|
k
Plgélpo pP1 ‘JI’ pPpPo
E = Homg(B, p) (5.1.10)
P1 Po
:LP / <4=) \
B E g B

5.1.11. THEOREM (an internal characterization of cartesian fibrations). For an isofibration p: E —» B
the following are equivalent:

(i) p: E = B defines a cartesian fibration.

(ii) The functor i: E — Homg(B, p) admits a right adjoint over B:

1

T

E 1 Homg(B,p)
p \7%
B

(iii) The functor k: E2 > Homg(B, p) admits a right adjoint with invertible counit:
k

E27 1 Homy(B,p)
< oM /P

\\_—

7
e/

—
When these equivalent conditions hold, then for a natural transformation X \ll_l,b}l E the following are

e
equivalent:

(iv) Y is p-cartesian.
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(v) Y factors through a restriction of the 2-cell p1€, where € is the counit of the adjunction i < 7, via a
natural isomorphism y so that py = id:

e

e
=
X W E = X 747> Homg(B, p) fe :\y E

~—"T ~
e ~. Eﬂ)‘/ r\ E /i

~ - _—

(vi) The component

LR —
X -5 27 B2
\_kj
2

of the unit for k = 7 is invertible; that is, 1 is in the essential image of the right adjoint.

The right adjoint of (ii) is the domain-component of the generic cartesian lift of (5.1.9); that cart-
esian transformation is then recovered as py€, where € is the counit of the fibered adjunctioni — 7.
This explains the statement of (v). By 1-cell induction, the generic cartesian lift ¥ can be represented
by a functor 7: Homg(B, p) — E? and this defines the right adjoint of (iii) and explains the stacement
of (vi).

Before proving Theorem 5.1.11 we make two further remarks on these postulated adjunctions.

5.1.12. REMARK. By Lemma 3.5.8, the functori: E — Homg(B, p) is itself a right adjoint over B to the
codomain-projection functor. Since the counit of the adjunction p; = i is an isomorphism, it follows
formally that the unit of the adjunction 7 = ¥ must also be an isomorphism, whenever the adjunction
postulated in (ii) exists; see Lemma B.3.8.

5.1.13. REMARK. In the case where the co-categories E? and Homg(B,p) are defined by the strict
simplicial limits of Definitions 3.2.1 and 3.4.1, the 1-cell k induced in (5.1.10) can be modeled by an
isofibration:

E——>»8B

namely the Leibniz cotensor of the codomain inclusion 1: 1 < 2 and the isofibration p: E - B.
Now Lemma B.4.7 can be used to rectify the adjunction k - 7 of (iii) to a right adjoint right inverse
adjunction, that is then fibered over Homp(B, p). So when Theorem 5.1.11(iii) holds, we may model
the postulated adjunction by a right adjoint right inverse to the isofibration k.

Proor. We'll prove (i)=(iii)=(ii))=(i) and demonstrate the equivalences (iv)&(vi) and (iv)&(v)
in parallel.
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(i)=(iii): If p: E - B is cartesian, then the right comma cone over p admits a cartesian lift along

p7
P1 p1
Homg(B,p) > E Homy(B,p) x> E
p _ o |p
Po B B

defining a functor r: Homg(B, p) — E over B together with a p-cartesian transformation x: r = p;.
By 1-cell induction, this generic cartesian transformation is represented by a functor

r Po
HomB(B,pT_}| E = Homy(B,p) ---> E? e
\_/ \ﬁ
p1

which we take as our definition of the putative right adjoint 7. By the definition (5.1.10) of k, ok =
pKT = px = @, so Proposition 3.4.7 supplies a fibered isomorphism €: k7 = id with pp€ = id,, and
Plé = idpl'

To prove that k - 7, it remains to define the unit 2-cell 77, which we do by 2-cell induction from a
pair given by an identity 2-cell p17] = id,,, and a 2-cell pof] that remains to be specified. The required
compatibility condition of Proposition 3.4.6(ii) asserts that this pyf] must define a factorization of the
generic arrow

ponl} lp17=id (5.1.14)
potk = rk = p1k

through x7k = xk. Note px = ¢k has xk as its p-cartesian lift, so we define pgf] by the induction prop-
erty for the cartesian transformation xk applied to the generic arrow x: pg = p;. By construction
ppof = id.

By Lemma B.4.2, once we verify that k7] and fJF are invertible, then this data this together with
€: k7 = id defines an adjunction with invertible counit.* We prove k7] is invertible by 2-cell conser-
vativity: p1kf] = p17] = id and pokf] = ppof} = id.

Simi]arly, by 2-cell conservativity, to conclude that N7 is invertible, it suffices to prove that Pofir
is an isomorphism. Restricting (5.1.14) along 7, we see that pofjF defines a fibered isomorphism of
p-cartesian transformations

X
r > P1
Poﬁx /in"
potk = rk
so this follows from Lemma 5.1.5.

Finally note that a transformation ¢: ¢’ = e is p-cartesian if and only if its factorization through
the generic p-cartesian lift of pi is invertible. This factorization may be constructed by restricting
the 2-cells of (5.1.14) along "™ : X — EZ since K"YP" = 1, so we see that 1 is p-cartesian if and only
it pof] Y is invertible. By 2-cell conservativity, 779" is invertible if and only if its domain component
is invertible. This proves that (iv)&(vi).

By Remark B.4.3, we can make € the unit of this adjunction at the cost of modifying the counit by an isomorphism.
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(iii)=(ii): By Remark 5.1.13, we can model the left adjoint of (iii) by an isofibration k: E2 —»
Homgp(B, p) and use Lemma B.4.7 to rectify the adjunction k < 7 with invertible counit into a right
adjoint right inverse adjunction, that is then fibered over Homg(B, p). Composing with the projection
po: Homg(B, p) - B, Lemma 3.6.7(ii) then gives us a fibered adjunction over B

k

R
EZ 1 HomB(B, p)

PPo ?A

B
By the dual of Lemma 3.5.8, the 1-cell j: E — E? induced by the identity defines a left adjoint right

inverse to the domain projection

Xt S p2 (5.1.15)
L ~

Po
supplying a fibered adjunction j 4 pg over E that we push forward along p: E = B to a fibered

adjunction over B:
EZ

B

This pair of fibered adjunctions composes to define a fibered adjunction over B with left adjoint kj
and right adjoint 7 := pg7. Proposition 3.4.7 supplies a fibered isomorphism i & kj since both i and kj
define functors E = Homg(B, p) are induced by the identity id,, over the right comma cone over p.
Composing with this fibered isomorphism, we can replace the left adjoint of the composite adjunction

by i

j i

3 /\,\
EZ L B2 1L Homy(Bp) - E 1 Homy(B, p)
~ _
Po lppo 7 > r
Po
P po B
proving (ii).

(i))=(i): Now suppose given a fibered adjunction
i

E /I\H\omB(B, p)

B
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We will show that the codomain component of the counit

Homg(B, p) Ne Homg(B, p) E

satisfies the conditions of the generic p-cartesian transformation described in Lemma 5.1.8. This will
then also demonstrate the equivalence (iv)&(v).

The first thing to check is that py€ defines a lift of the right comma cone along p. To see this,
consider the horizontal composite:

no
=
Homg(B, p) Ne Homg(B,p) 1¢

NE/ZIZ PO\5

Naturality of whiskering provides a commutative square
poir =

Po
Qir ﬂ(p
ppiir === pp1

méTm

0€

in which ppe = id, as a fibered counit, and ¢ir = id, since ¢i = idp. Thus pp1€ = ¢ and we see that
p1€ is a lift of ¢ along p.

It remains only to verify that the restriction of py€ along any functor defines a p-cartesian trans-
formation. To that end, consider "f7: X — Homg(B, p) representing a 2-cell f: b = pe; our task
is to verify that p1€"B” is p-cartesian. Note that pp1e"f" = ¢"B" = B, so to prove the induction
property, consider a 2-cell 7: ¢” = e and a factorization pt = B - y for some y: pe” = b. Our task
is to define a 2-cell : €” = r"B” so that the pasted composite

—
X = Homg(B, p) e

B

is T. Transposing across the adjunction i - 7, it suffices instead to define a 2-cell 1 ie” = "B so that
p17 = T. We define by 2-cell induction from this condition and pyJ = y, a pair which satisfies the
2-cell induction compatibility condition

4 4

pe” = pe
r=po?l) {eri=pe
b =5 pe

precisely on account of the postulated factorization pt = f8 - . This verifies the induction condition

of Definition 5.1.1().
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Now consider an endomorphism C: rﬁA = VB so thatp1€"B"-C = p1€"f" and pC = id},. Write 7 =
"p1€”: Homp(B,p) — E2? for the functor induced by 1-cell induction from the generic p-cartesian
transformation. Now the conditions defining C allow us to induce a 2-cell C: 7B = 7" satistying
POC = Cand plz = id. To prove that C is invertible, will make use of the naturality of whiskering
square for the horizontal composite

Homg(B, p) i por B’ RALN rkF "
B r /_\ AN ’ §
X / ; \7‘ EZ Uy E C:poiﬂ ||1ﬂrkz
N / \ / .

; AR A
Homp(B,p) ¢ Homg(B, p) ' por B gy kP

where 7 is a special case of the 2-cell just given this name to be described momentarily for which
we will demonstrate that P7 is an isomorphism. The composite kC is a 2-cell induced from pokz =
PPOC = pC = id and plkZ = Plz = id, so by 2-cell conservativity, this is an isomorphism. Now C is a
composite of three isomorphisms and hence is invertible.

To complete the proof, we must define ¥ and prove that 7 is invertible. Specializing the construc-
tion just given, we define ¥ to be the induced 2-cell satisfying py = id and k¥ = py€k - . Transposing
across the fibered adjunction i — 7, it suffices to define the transposed 2-cell §: ipy = k so that
p17 = & and ppP = id. And we may transpose once more along an adjunction j o pg of (5.1.15) con-
structed by the dual of Lemma 3.5.8. The counit v: jpy = id of this adjunction satisfied the defining
conditions that pgv = id and p1v = «, so to construct P satisfying the conditions just described, it
suffices to define instead a 2-cell £: i = kj satistying the conditions p1& = id and pp& = id. These
conditions are satisfied by the fibered isomorphism £: 7 = kj that arises by Proposition 3.4.7 since
both 1-cells E 3 Homp(B, p) are induced by the identity id,. Unpacking these transpositions, j is
defined to be the composite

1= py == ripy

To verify that $7 is invertible, it thus suftices to demonstrate that 7kv7 is invertible. To see this,
we consider another pasting diagram

/“E\ /po/u

Homg(B, p) ——— Homg(B, p) —> E2 ——— E2 % Homy(B,p) 5 E
—
By the definition (5.1.10) of k, k7 = pxT = px = @, so Proposition 3.4.7 supplies a fibered isomorph-
ism €: k7 = id with pg€ = id, and py€ = id,,
Now naturality of whiskering supplies a commutative diagram of 2-cells

114 ] Eaa

> rkjpy =——= B

. _.  rkvrir, = reir, .
rkjpoFir > rkFir === rir
rkjreﬂll? ﬂrk?e zuﬂre‘
T’k]p o" kv rk? e

Since € is the counit of an adjunction i  r with invertible unit, 7€ is an isomorphism, so we see that
rkv? is an isomorphism if and only if rkv7ir is. And this is the case since kv7i is an isomorphism by
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2-cell conservativity: pokvri = idp, while p1kv7i = py€i, which is an isomorphism again because € is
the counit of an adjunction i H r with invertible unit. 0

One of the myriad applications of Theorem 5.1.11 is:

5.1.16. COROLLARY. Cosmological functors preserve cartesian fibrations and cartesian natural transforma-
tions.

PROOF. By Theorem 5.1.11(i) & (iii), an isofibration p: E = B in an co-cosmos K is cartesian if
and only if the isofibration k: E? — Hompg(B, p) defined in Remark 5.1.13 admits a right adjoint
right inverse. A cosmological functor F: K — L preserves the class of isofibrations and the simpli-
cial limits that define the domain and codomain of this k. Moreover, cosmological functors preserve
adjunctions and natural isomorphisms, so if this adjoint exists in K it also does in L. Similarly, the
internal characterization of p-cartesian natural transformations given by Theorem 5.1.11(iv) & (vi) is
also preserved by cosmological functors. O

Another application of Theorem 5.1.11 is that it allows us to conclude that cartesianness is an
equivalence-invariant property of isofibrations.

5.1.17. COROLLARY. Consider a commutative square between isofibrations whose horizontals are equivalences

8

1| b
A—=>B

Then p is a cartesian fibration if and only if q is a cartesian fibration in which case § preserves and reflects
cartesian transformations: X is g-cartesian if and only if gx is p-cartesian.

PROOF. The commutative square of the statement induces a commutative square up to isomorph—
ism whose horizontals are equivalences

F?—— > E?

kl = lk
Hom 4(A,q) — Homg(B, p)
Hom(f,g)
By the equivalence-invariance of adjunctions, the left-hand vertical admits a right adjoint with invert-
ible counit if and only if the right-hand vertical does, these adjunctions being defined in such a way
that the mate of the given square is an isomorphism built by composing with the natural isomorphisms
of the horizontal equivalences (see Proposition B.3.9). By Theorem 5.1.11(i) & (iii), it follows that p is
cartesian if and only if g is cartesian.

Supposing the postulated adjoints exist, via their construction, the whiskered composites gzr] and
T]gZ of the units of the respective adjunctions are isomorphic. Hence the component at an element
"X': X — F?of gZT] is invertible if and only if the component of T]gz is invertible; since gz is
an equivalence, the former is the case if and only if the component of 7 is invertible. By Theorem
5.1.11(iv) & (vi), this proves that x is p-cartesian if and only if gx is g-cartesian. 0
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In terminology we now introduce, the square defined by the equivalences and also the square
defined by their inverses’, defines a cartesian functor from g to p.

5.1.18. DEFINITION (cartesian functor). Let p: E = B and q: F = A be cartesian fibrations. A
commutative square

F SN E

q p

A—— B

f

defines a cartesian funcror if § preserves cartesian transformations: if x is g-cartesian then gyx is
p-cartesian.

The internal characterization of cartesian functors makes use of a map between right representable
comma oo-categories induced by the commutative square fq = pg defined by Proposition 3.4.5.

5.1.19. THEOREM (an internal characterization of cartesian functors). For a commutative square

FLE

qﬁ_} f

f

between cartesian fibrations the following are equivalent:

(i) The square (g, f) defines a cartesian functor from g to p.
(ii) The mate of the canonical isomorphism

F g E F g E

T b . 1~
Hom (A, q)Hm)HomB(B,p) Hom (4, q)Hm)HomB(B, p)

in the diagram of functors over f: A — B is an isomorphism.
(iii) The mate of the canonical isomorphism

P2 & g P2 & p

kl 4 lk ~ ?T =\ T?
Hom 4 (A, q)HWg)HomB(B,p) Hom (A, q)Hm)HomB(B, p)

in the diagram of functors is an isomorphism.

ProoF. We will prove (i) (ii) and (i) (iii). The idea in each case is similar. Conditions (ii) and
(iii) imply that g preserves the explicitly chosen cartesian lifts up to isomorphism, which by Lemma
5.1.3 implies that g preserves all cartesian lifts. Conversely, assuming (i), we need to show that a
whiskered copy of the counit of i - 7 and of the unit of k H 7 are isomorphisms. The counit of i o r

*For any inverse equivalences g’ and f” to g and f, there is a natural isomorphism q¢” = f'fq¢’ = f'pgg’ = f'p.

Using the isofibration property of q of Proposition 1.4.10, g’ may be replaced by an isomorphic functor g”, which also
defines an inverse equivalence to § and for which the square gg” = f’p commutes strictly.
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and unit of k < 7 each encode the data of the factorizations of a natural transformation through the
cartesian lift of its projection. It will follow from (i) that the cells in question are cartesian and the
factorizations live over identities, so Lemma 5.1.5 will imply that these natural transformations are
invertible.

(i) (ii): For convenience, we take the functors k to be the isofibrations of Remark 5.1.13, so
the square on the left hand side of (iii) commutes strictly and its mate is the 2-cell ﬁgz?. By Theorem
5.1.11(iv) ©(vi), this component of 7] is invertible if and only if g x is p-cartesian, where x is the generic
g-cartesian lift of Lemma 5.1.8 for the cartesian fibration g: F = A; recall 7 = "x". By that lemma
again, gX is p-cartesian it and on]y if‘g preserves cartesian transformations, since the other canonical
g-cartesian lifts are constructed as restrictions of .

(i) (i): Let us write g for Homf(f, Q) to save space. Since the unit of 7 = 7 is an isomorphism
by Remark 5.1.12, the mate of the isomorphism on the left hand side of (ii) is isomorphic to 7Z€, so
our task is to show that this natural transformation is invertible if and only if ¢ defines a cartesian
functor. Recall from the proof of Theorem 5.1.11(i1)=(i) that p;€ defines the generic g-cartesian lift of
Lemma 5.1.8 for the cartesian fibration g: F - A, whiskering with g := Hom(f, g): Homy4(4,9) —
Homg(B, p) carries this to a 2-cell whose projection with py is an identity, since pge = id, and whose
projection along pq is gp1€, by the commutativity of the left-hand portion of the diagram below.

/\\ TN

Hom 4 (A, q) Hom 4 (A, 9) -3 Homg(B, p) Homg(B, p)
Pll lﬁl lm
F 2 E E

Now naturality of whiskering provides a commutative square of natural transformations:

.. ro€ _
p1irigr =g> rg

pleigrﬂzn ﬂ'pl €g

pi8ir === p18

where we've simplified some of the names since p1i = id. Since € is the counit of an adjunctioni o r
with invertible unit, €i is an isomorphism. Note prge = ppge = id and the right-hand vertical p,€7 is
a p-cartesian lift of the restriction of @3, this ¢ being the right comma cone over p, which equals the
whiskered right comma cone f @, this ¢ being the right comma cone over g, by the definition of 3. The
bottom horizontal p; e is similarly a lift of f¢p = ¢Z. So if ¢ is a cartesian functor, the right-hand
vertical and bottom horizontal are both p-cartesian lifts of a common 2-cell and the conservativity
property implies that 7€ is invertible. Conversely, if g€ is invertible, the p1 g€ = gp1€ is isomorphic
to a p-cartesian transformation and is Consequently p-cartesian. Since Lemma 5.1.8 constructs the
other canonical g-cartesian lifts as restrictions of py€, this is the case if and only if g is a cartesian
functor. 0
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5.1.20. PROPOSITION (pullback stability). If
L} E

p

|.”

)
eH

N

o

—— B
f

is a pullback square and p is a cartesian fibration then q is a cartesian fibration. Moreover, a natural transfor-

mation X with codomain F is g-cartesian if and only if gx is p-cartesian, and in particular the pullback square
defines a cartesian functor.

PrROOF. We apply Theorem 5.1.11(1)=(iii) in the form described in Remark 5.1.13 to the cartesian
fibration p, which yields a fibered adjunction

.

T
E2 1 Homg(B,p)

X; - _—//” (5.1.21)

Homg(B, p)

We will now argue that this functor k pulls back to the corresponding functor for g. To that end,
first note that the top face of the following cube is a pullback since the front, back, and bottom faces
are.

The right adjoint (—)2 preserves pullbacks, so F?is the pullback of‘p2 along fz, and since this pullback
square factors through the top face of the cube along the square inducing the maps k, we conclude that
this last square is a pullback, as claimed.

Now pullback defines a cosmological functor Homf(f, 8" Kirtomp®p) = KiHom ,(a,q) that car-
ries the fibered adjunction (5.1.21) to a fibered adjunction

k

1 Homyu(A4,9)

A

Hom 4(A, q)
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which by Theorem 5.1.11(iii)= (i) proves that ¢ is a cartesian fibration. Moreover, by construction of
the adjunction k = 7 as a pullback of the adjunction k < 7, both of the mates in Theorem 5.1.19(iii)
are identities, proving that (g, f) defines a cartesian functor.

To see that (g, f) creates cartesian natural transformations, note that a natural cransformation x
with codomain F is represented by an element "™ X — F2 and gy is represented by the image of this
element under the functor g2: F2 — E2, By Theorem 5.1.11(iv) & (vi), x is g-cartesian just when the
component 7" X" of the unit of k 4 7. This unit component " x is the pullback of the corresponding
unit component 7¢2"x" indexed by gx, and by conservativity of the smothering functor

hFun(X, F2) — hFun(X, Hom ,(A, s PunC, £
Un( ) — un( OmA( Q)) hFun(X,Homg(B,p)) un( )

it T]gz "x" is invertible, then so is "X 0

Pullback squares provide a key instance of cartesian functors. Another is given by the following
lemma, which can be proven using Theorem 5.1.19.

5.1.22. LEMMA. If
F g E

N

B

is a functor between cartesian fibrations that admits a left adjoint over B, then § defines a cartesian functor.

PROOF. If € —p g, then the cosmological funcror pj: Kjp — Kjpz carries this fibered adjunction
to a fibered adjunction
HomidB(idB,f)
/\
Homg(B,q) L Homg(B,p)
~____
Hom;q, (idp.g)
Now both horizontal functors in the commutative square

N S

| = ¢

Hom,4(4, q)HWg)HomB(B/ p)
admit left adjoints and a standard result from the calculus of mates tells us that the mate with respect
to the vertical adjunctions k - 7is an isomorphism if and only if the mate with respect to the horizon-
tal adjunctions is an isomorphism, the latter natural transformation between left adjoints being the
transpose of the former natural transformation between their right adjoints. This is the case because
the mate with respect to the left adjoints lies is the fiber of the smothering functor of Proposition 3.2.5
for F2. O

Examples of cartesian fibrations are overdue.
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5.1.23. PROPOSITION (domain projection). For any 0o-category A, the domain-projection functor py: A% >
A defines a cartesian fibration. Moreover, a natural transformation x with codomain A2 is py-cartesian if and

only if p1x is invertible.

Before giving the proof, we explain the idea. A 2-cell
r‘B-|

7 42
fla |po
N
A
defines a composable pair of 2-cells @: a = x and f: x = y in hFun(X, A). Composing these we

rﬁoaﬂ

— 3
induce a 2-cell X \Ui(z A2 representing the commutative square

>
1 ="= x

ﬁoaﬂ ﬂﬁ

y=—7—1Y

so that pox = @, as required, and p1x = id."

PROOF. We use Theorem 5.1.11(1) ¢ (iii) and prove that py is cartesian by constructing an appro-
priate adjoint to the functor

Hom (A, pg) —» A?

p1l J lm
AZ T» A

N— ®
|=\<T>N

—
0

defined by cotensoring with the 1-categories displayed above right.’

To construct a right adjoint with invertible counit to the map k, it suffices to construct a left
adjoint left inverse to the inclusion of 1-categories 3 < 2 X 2 with image (0,0) — (0,1) — (1,1).
The left adjoint £: 2 X 2 — 3 is a left inverse on the image of 3 and sends (1,0) to the terminal

“While the weak universal property of the arrow co-category can be used to induce 2-cells with codomain AZ it cannot
be used to prove equations between the induced 2-cells, as required to demonstrate that induction condition of Definition
5.1.1. Thus, some sort of co-cosmos-level argument is necessary to establish this result.

*The cotensor A®) carries pushouts of‘simplicia] sets to pullbacks of oo-categories, and the pushout of 2 Up 2 of
simplicial sets is A'[2], not 3 = A[2]. However, on account of the equivalence of co-categories A% ~ AN 16 harm
comes from making the indicated substitution.
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element of 3:

0,00 — (0,1)
2X253 l l —

l

N —— =

€3

N —— O

(1,00 — (1,1)

Now
k

N
(A?)* 1L A% =~Homy(A, po)
L _-

~— -

Al
defines the desired right adjoint with invertible counit.
The characterization of py-cartesian transformations now follows from Theorem 5.1.11(iv) & (vi).
A cell x with codomain A? is pg-cartesian if and only if it its representing element of (A%)? is in the
essential image of the right adjoint Al A% — AZ%2, Clearly if x is in the essential image then its
codomain component must be invertible.
Conversely, suppose the codomain component

CV(l,_) AZ
represents a natural isomorphism. Applying Lemma 1.1.12 to Fun(X, A) one can build a diagram in
Fun(X, A)®*2 = Fun(X, A%*2) whose top edge is the given isomorphism, whose vertical edges are
isomorphisms, and whose bottom edge is an identity. This glues onto x to define a diagram X —
AA1[2]><2

X R A2X2

and now the composite

1 c L,
X s AA2IX2 _~  A3x2 A s A2X2x2

where c: 2X2 — 3 is the surjective functor that sends (0, 0) and (0, 1) to 0, witnesses an isomorphism
between "x" and a diagram in the image of Al whose codomain component is the identity. O

The same argument proves that for any g: C — A, the domain-projection pg: Hom (A, g) —»
A is a cartesian fibration. For f: B — A, the domain-projections pg: Hom,(f, A) - B and
po: Hom,(f,8) = B are obtained by pullback via Proposition 5.1.20. These cartesian fibrations
figures in a final important lemma about the class of p-cartesian transformations.

5.1.24. LEMMA. Let p: E = B be a cartesian fibration and consider a composable pair of natural transfor-

/ 4

e
mations X /ll?\ E and X /UF E with codomain E.
~_ N

e 3/
(i) If Y and Y’ are p-cartesian, then sois ¢ - Y’.
(i) If Y and ¢ - " are p-cartesian, then so is Y.
PROOF. For (i), recall from the proof of Lemma 5.1.8 that a p-cartesian lift of p1 is given by the
composite

e

r

r A

x HomB(B,@ E
P1
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with the natural transformation x: ¥ = p; of (5.1.9) whose domain  is the right adjoint of Theorem
5.1.11(ii). Since we are assuming that 1 is p-cartesian, 1 is isomorphic to this whiskered natural trans-
formation so we may redefine ¢ to equal it and redefine ¢’ to absorb the isomorphism. By Lemma
5.1.4, this new ¢’ is still p-cartesian since we've assumed 1P’ is. This modification does not change the
composition transformation ¢ - ¢ that we desire to show is p-cartesian.

Now by 2-cell induction, the diagram as below-left defines a 2-cell as below-right:

n PV PYyY’
>
h f X mm (B,p)
U Y 7
P(ll”l’)ﬂ ﬂva N,
pe pe Py’

By the generalization of Proposition 5.1.23, y is a pp-cartesian cell. By Lemma 5.1.22, the fibered right
adjoinc r

Homg(B, p) 1 E
Po r P

carries Y to a p-cartesian transformation ry.
Now the horizontal composite

rPW% r

X b Homg(Bp) > E
}_2 \p/’
> 1

provides a commutative diagram of natural transformations

.
P —Ls ¢

XP(IP'W)ﬂ ﬂ¢
e e

In particular, the composite ¢ - 7y is a p-cartesian natural transformation. Since pry = poyy = py’,
ry is a p-cartesian lift of the cartesian transformation ¢, so ¢" and ry are isomorphic. But now
P -’ is isomorphic to the p-cartesian transformation Xp(y.y), and Lemma 5.1.4 proves that i - ¢ is
p-cartesian.

Now for (ii) suppose 1 and ¢ - 1" are p-cartesian and let Y’: € = €’ denote a p-cartesian lift of
py’. Consider the factorization " = x’ - 0 of ¢’ through its p-cartesian lift with p@ = id. Now
part (i) implies that ¢ - X" is p-cartesian and ¢ - ' = 1 - ¥’ - 0, so Lemma 5.1.5 implies that 0 is
an isomorphism. Now 1 is isomorphic to a p-cartesian cell so Lemma 5.1.4 implies that ¢ must be
p-cartesian. ]

This result allows us to strengthen the conclusion of Lemma 5.1.4(ii).

5.1.25. COROLLARY. Let p: E = B be a cartesian fibration. Then any p-cartesian lift of an isomorphism is
an isomorphism.
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PROOF. Let x: €’ = e be a p-cartesian lift of an isomorphism : b’ = b. Applying the induction
property of x, we obtain a lift of x’: e = ¢’ of 7! so that x - ¥’ = id,. Since x and id, are both
p-cartesian, Lemma 5.1.24(ii) tells us that Y’ is as well. Now by Lemma 5.1.24(i), X’ - x is a p-cartesian
lift of idy and hence by Lemma 5.1.4(ii) this composite is also an isomorphism. Therefore, we conclude
that x is invertible. O

For co-categories admitting pullbacks, the codomain-projection functor also defines a cartesian
fibration:

5.1.26. PROPOSITION (codomain projection). Let A be an co-category that admits pullbacks in the sense
of Definition 4.3.7. Then the codomain-projection functor p1: A2 —» A is a cartesian fibration and the
p1-cartesian arrows are just those 2-cells that represent pullback squares.

PROOF. Via Theorem 5.1.11(i) & (iii), we desire a right adjoint right inverse to the functor k defined
below-left applying A~ to the diagram of simplicial sets appearing below-right:

Hom4(4, pr) — A2

Pll J lﬁl
AZ T» A

This is done in Coro]lary 43.5:

(A%)? =A% 1 A*=Hom,(4,py) -

ran

Exercises.
5.1.i. EXERCISE. Prove Lemma 5.1.4.

5.Lii. EXERCISE. Attempt to prove directly from Definition 5.1.6 that cosmological functors preserve
cartesian fibrations and explain what goes wrong.

5.1.iii. EXERCISE. Show that a cartesian fibration p: E = B defines an “incoherent pseudofunctor”
E: hB°? ~» hK given by the data:

® a mapping on objects b € hB +— E;, € h’K;

e a mappingon l-cells f:a — b e€hB+ f*: E, = E; € hK defined by

fb gb
E, T E,” tg  E
- ﬁ:’;_y I ﬁ*(fb)/ ,17\
l b p = l Ell _—_— [a p (5127)
l/ .l
1 @ B 1 B
\/
a a
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—
e an invertible 2-cell E, e E, € bhXKtoreachb € hB;and
~_
idj,
e an invertible 2-cell

/"‘ﬁ yi=

\_/
()’

in hK for each composable pair of morphisms in hB.
The coherence conditions present in the full definition of a pseudo-functor, which appears as Defini-
tion 14.4.1, are not evidently satisfied here, but do follow from the extension of this construction to

a homotopy coherent diagram indexed by the underlying quasi-category of B. This will be proven in
Chapter 17.

5.Liv. EXERCISE. Categorify the intuition that cartesian fibrations p: E = B and q: F - B define
“contravariant B-indexed functors valued in co-categories” by proving that a cartesian functor

ELF

P

defines a “natural transformation™ show that there exists a natural isomorphism in the square of fibers

EbL)Pb

ﬁ*l = lﬁ*

ELITF{Z

where the action of an arrow ﬁ in the homotopy category of B on the fibers is defined by Factoring the
domain of a p- or g-cartesian lift of § as displayed in (5.1.27).

5.1.v. EXERCISE. Use Proposition 5.1.20 to prove that cartesian functors pull back.

5.2. Cocartesian fibrations and bifibrations

By the dual of Proposition 5.1.23, the codomain-projection functor is also a cocartesian fibration,
a notion we now introduce.

5.2.1. DEFINITION (p-cocartesian transformations). Letp: E = B be an isofibration. A natural trans-
e

~ . - . . . . .
formation X \u_X/, E with codomain E is p-cocartesian if

e/
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e pe’

/N /N

(i) induction: Given any natural transformations X Ut _ E and X _ Uy _ B so thatpt =
~—“"7 ~—“"7

pe

/! 4

e

/

e
Y - pX, there exists a lift X \@ E ofysothatt =79 x.

e —> e”
N T
A Y € hFun(X, E)
I lp*
pT N Va4
pe N pe € hFun(X, B)
%y
pe

el

(ii) conservativity: Any fibered endomorphism of x is invertible: if X @ E is any natural

el

transformation so that C- x = x and pC = idpe/ then C is invertible.

5.2.2. DEFINITION (cocartesian fibration). An isofibration p: E = B is a cocartesian fibration if
(i) Any natural cransformation : pe = b as below-left admits a lift Xpie= f.€ as below-right

e e

x~ 7E e
\U\ﬁ lp - pie lp
b B B

that is a p-cartesian transformation so that px = .
(ii) The class ofp—cocartesian transformations is closed under restriction along any functor: that

e ef
is,if X _Ux _ E isp-cocartesianand f: Y — Xisanyfunctorthen Y _Uxf_ E isp-cocartesian.
~—"T ~—_—_~7
4 e’f

The dual to Theorem 5.1.11 asks for left adjoints to i: E — Homg(p, B) and k: E? — Homg(p, B)
in place of right adjoints. See Exercise 5.2.i. This result can be deduced immediately by considering
the isofibration p: E = B as a map in the dual co-cosmos of Definition 1.2.23. Recall that for any
co-cosmos K there is a dual 00-cosmos K with the same objects but with functor spaces defined by:

Fungeo (A, B) == Fungd(A, B)°P.
The isofibrations, equivalences, and trivial fibrations in K* coincide with those of K. Conical limits
in K coincide with those in K while the cotensor of A € K with U € sSet is defined to be AU™.

. . . . >op . .
In particular, the cotensor of an co-category with 2 is defined to be A% which exchanges the domain
and codomain projections from arrow and comma co-categories.

5.2.3. DEFINITION. An isofibration p: E = B defines a bifibration if p is both a cartesian fibration
and a cocartesian fibration.
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Projections give trivial examples of bifibrations.

5.2.4. EXAMPLE. For any co-categories A and B the projection functor m: AX B = B is a bifibration,
in which a 2-cell with codomain A X B is 7t-cocartesian or 7t-cartesian if and only if its composite with
the projection 1: A X B = A is an isomorphism.

a

5.2.5. PROPOSITION. Let p: E = B be a bifibration. Then any arrow X @ B induces a fibered

b
adjunction
‘B*
/\ 4
E, L E, E, Y Ec F,
Pa Ny P A pal lp lph
X X——8B p X

between the fibers of p over a and .

As will be remarked upon following the proof of this result, the left adjoint f, is the covariantly
pseudofunctorial action of the arrow § on the fibers of p defined in (5.0.1), while the right adjoint *

is the dual contravariantly pseudofunctorial action.

PrROOF. Write "f': X — B2 for the functor induced by B. Note that the pullbacks defining the

fibers over its domain edge @ and codomain edge b factor as:

L, 14
/\ /_\
E, = Homg(p, B) —3 E &5 — Homg(B,p) «—— L,

LT )

a b

Now via Remark 5.1.13, Theorem 5.1.11(1)=(iii) and its dual provide a right adjoint right inverse
to k: E2 — Homg(B,p) and a left adjoint right inverse to k: E? — Homg(p, B). Composing
the former fibered adjunction with g: Homg(B,p) —» B? and the latter fibered adjunction with
q: Homg(p, B) » B2 we obtain a composable pair of adjunctions

4 k
- N~
Homg(p,B) L E? 1 Homg(B,p)
s
q BZ q
fibered over B2; note in both cases that gk = pz. Pulling back the composite adjunction along
B X - B2 yields the fibered adjunction of the statement. O

5.2.6. REMARK (action of arrows on the fibers of a co/cartesian fibration). Ifp: E = Bisa cocartesian
fibration but not a cartesian fibration, the construction in the proof of Proposition 5.2.5 still defines
the functor B,: E; — Ej. Examining the details of this construction, we see that it produces the
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functor given this name in (5.0.1). The functor just constructed as the pullback over "7 of k€ is
induced by the composite commutative square

E, — > Homg(p,B) 25 E

pal ql lrf
2
X 7 B o B

which defines a cone over the pullback defining Ej. The top-horizontal functor takes the codomain-
component of the p-cocartesian lift of f with domain €,. This recovers the description given at the
start of this chapter.

Exercises.

5.2.i. EXERCISE. Formulate the dual to Theorem 5.1.11, providing an internal characterization of co-
cartesian fibrations.

5.2.ii. EXERCISE. Prove that for any co-category A, the codomain-projection functor py: A2 -» A
defines a cocartesian fibration.

5.3. The quasi-category theory of cartesian fibrations

In this section, we reinterpret the notion of cartesian fibration and cartesian natural transforma-
tion from the point of view of the co-cosmos XK, rather than its quotient homotopy 2-category hK.
In doing so, we recall that the functors e: X — E between oo-categories are precisely the vertices,
or O-arrows, in the quasi-categorical functor space Fun(X, E). The 1-simplices, or I-arrows, x: ¢’ — e

E,

. /_N .
of Fun(X, E) represent natural transformations X W E . Every natural transformation from e’
e
to e is represented by a 1-arrow € — e and a parallel pair of 1-arrows represent the same natural

transformation if and only if they are homotopic, bounding a 2-arrow in Fun(X, E) whose Oth or 2nd
edge is degenerate.

Before analyzing the 0- and 1-arrows in the functor spaces in particular, we consider the collection
of functor spaces of an co-cosmos globally and prove another important corollary of the internal
characterization of cartesian fibrations. The notion of cartesian fibrations are representably defined
in the following sense:

5.3.1. PROPOSITION. Let p: E = B be an isofibration between oo-categories in an 0o-cosmos K. Then p is
a cartesian fibmtion if and only 1f
(i) Forall X € K, the isofibration p.: Fun(X, E) = Fun(X, B) is a cartesian fibration between quasi-

categories.

(i) Forall f: Y — X € K the square

Fun(X,E) ——s Fun(Y,E)

3l 2

Fun(X, B) T Fun(Y, B)

is a cartesian functor.
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PROOF. If p: E = B is a cartesian fibration, then Theorem 5.1.11(1)=(iii) constructs a right ad-
joint right inverse to k: E2 - Homg(B, p). The simplicial bifunctor Fun(—, =): K° X K — QCat
defines a 2-functor Fun(—, =) : hK*? X hK — HQCat, which transposes to a Yoneda-type embedding
Fun(-,-): hK — bQCatb(th from the homotopy 2-category of K to the 2-category of 2-functors,
2-natural transformations, and modifications. This 2-functor carries the adjunction k 4 7 to an ad-
junction in the 2-category bQC’atb(}m. This latcer adjunction defines, for each X € K, a right adjoint
right inverse adjunction

k.
/_99
Fun(X,E)* = Fun(X,E?) _ L  Fun(X,Homg(B,p)) = Homgx g (Fun(X,B),p.)

[

and for each f: Y — Xin K, a strict adjunction morphism® commuting strictly with the left adjoints
and with the right adjoints:

Fun(X, E)? = Fun(X, E?) £ Fun(Y, E?) = Fun(Y, E)?

7. Q—lk* ki—c} 7s
Hom(Fun(X, B), p.) = Fun(X, Homg(B, p)) et Fun(Y, Homg(B, p)) = Hom(Fun(Y, B), p..)

(5.3.2)
By Theorems 5.1.11(iii)=(i) and 5.1.19(iii)=(i), this demonstrates the two conditions of the statement.
Conversely, supposing p: E - B satisfies conditions (i) and (ii) by Theorems 5.1.11(i)=(iii) and
5.1.19(1)=>(iii) there is a commutative square k, f* = f*k, where both verticals k, admit right adjoint
right inverses k, = 7 and the mate of the identity k,f* = f*k, defines an isomorphism f*7 = 7f™.
By Proposition B.6.2 in Appendix B, this data suffices to internalize the right adjoints to the repre-
sentable functors k,: Fun(X, E?) — Fun(X,Homg(B,p)) to a functor 7,: Fun(X,Homg(B,p)) —
Fun(X, E?) arising from post-composition with some 7: Homg(B,p) — EZ. This right adjoint 7 is
extracted as the image of the identity element

Fun(Homg(B, p), Homg(B, p)) SN Fun(Homg(B, p), E?)

id | 7
and the unit and counit are internalized similarly; the condition on mates is used to verify the triangle

equalities that demonstrate that k 4 7. Now Theorem 5.1.11(iii)=(i) proves that p: E = Bis a
cartesian fibration. O

An easier argument along the same lines demonstrates:

°A strict adjunction morphism is given by a pair of functors, the horizontals of (5.3.2), that define strictly commutative
squares with both the left and with the right adjoints and so that the units of each adjunction whisker along these functors
to each other and the counits of each adjunction whisker along these functors to each other. See Proposition B.6.2 for

more.
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5.3.3. COROLLARY. A commutative square between cartesian fibrations as displayed below-left

F—2E Fun(X,F) —=— Fun(X, E)
Ubow )
A T> B Fun(X, A) T> Fun(X, B)

defines a cartesian functor in an co-cosmos K if and only if for all X € K, the square displayed above right

defines a cartesian functor between cartesian fibmtions ofquasi—categories.

PROOF. Exercise 5.3.1. [l

Our aim is now to characterize those 1-arrows in Fun(X, E) that represent p-cartesian natural
transformation for some cartesian fibration p: E = B. Recall that the 1-arrows in Fun(X, E) are in
bijection with the 0-arrows of Fun(X, E)? = Fun(X, E?).

5.3.4. DEFINITION (p-cartesian 1-arrow). Letp: E = Bbe a cartesian fibration and consider a 1-arrow
x in Fun(X, E), defining an element x € Fun(X, E)? = Fun(X, E?). Say x is a p-cartesian 1-arrow if

it is isomorphic to some object in the image of the right adjoint right inverse functor

Fun(X, Hom(B, p)) —— Fun(X, E2)
of Theorem 5.1.11(iii).

The new notion of p-cartesian 1-arrow coincides exactly with the previous notion of p-cartesian
natural transformation:

5.3.5. LEMMA. Consider a cartesian fibration p: E = B between co-categories. For a I-arrow x: €’ — ein
Fun(X, E), the following are equivalent:

(i) x is a p-cartesian I-arrow.
/

4

(ii) x represents a p-cartesian natural transformation X _Ux _ E .
~
e
(iii) X represents a natural transformation

el

1 5 Fun(X,E)
\6_2

that is cartesian for p,: Fun(X, E) - Fun(X, B).

el

Conversely, a natural transformation X \U_Xj E is p-cartesian if and only if any representing l-arrow
e
"x": X — EZ satisfies all of these equivalent conditions.

PROOF. We start with the final clause. Note from Exercise 3.2.i that homotopic 1-arrows are iso-
morphic as objects of Fun(X, E?) so if some l-arrow representing a p-cartesian transformation is a
p-cartesian 1-arrow then all representatives of that natural transformation are.
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Now the equivalence (i) & (ii) follows from Theorem 5.1.11(iv) & (vi) once we establish that a 1-arrow
of Fun(X, E), when encoded as a functor x: X — E2 is in the essential image of 7, if and only if the
component X of the unit of k < 7 is invertible.

If x: ¢ — eisap-cartesian 1-arrow, then by definition there exists some f: X — Homg(B, p)

and an invertible 2-cell
X
X — > E2
ﬁ\ U= /7
Homg(B, p)

The unit 7] of the adjunction k = 7 of Theorem 5.1.11(iii) has the property that 77 is invertible, so the
component 7B is invertible and so fx is also invertible. By Theorem 5.1.11(vi)=>(iv), this implies that
X tepresents a p-cartesian natural transformation.

Conversely, if x defines a p-cartesian natural transformation then Theorem 5.1.11(iv)=(vi) tells
us that for any representing l-arrow "y 7: X — E?, the component 7' X" is an isomorphism. In
particular, "} is isomorphic to 7k"x", which proves that "x7 is in the essential image of 7, and thus
defines a p-cartesian I-arrow.

Finally, via the characterization of cartesian transformations given in Theorem (vi) and the fact
that the adjunction k < 7 in h induces an adjunction k, < 7, in bQCat, the conditions (ii) and
(iii) are tautologically equivalent. The former refers to the adjunction between categories hFun(X, E)
and hFun(X, B), while the latter refers to the adjunction between categories hFun(ll, Fun(X, E)) and
hFun(1, Fun(X, B)) and these are isomorphic. O

Combining Lemma 5.3.5 with Proposition 5.3.1 we arrive at a new equivalent definition of cartesian
fibrations.

5.3.6. COROLLARY. An isofibration p: E = B is a cartesian fibration if and only if

(i) Any I-arrow with codomain B admits a p-cartesian lift with specified codomain 0-arrow.
(ii) p-cartesian 1-arrows are stable under precomposition with 0-arrows. O

5.3.7. LEMMA. Let p: E = B be a cartesian fibration and consider a 2-arrow

, e
Y o \\I|P
e” T e
in Fun(X, E).
(i) If Y and Y’ are p-cartesian I-arrows, so is P”.
(i) If  and " are p-cartesian I-arrows, so is Y.
(iii) If Y and " are p-cartesian 1-arrows and py’ is invertible, then V" is invertible.

PROOF. Via Lemma 5.3.5, (i) and (ii) are Lemmas 5.1.24(i) and (ii), while (iii) is Lemma 5.1.5. O
5.3.8. LEMMA. A 2-cell as below left

/ / ,

e e eq

~ 2 — 2
Q W Fun(X,E) 1—7 Q W Fun(X,E) “ X /ﬂ)? E
\6_2 \6_2 \eqj

is p.-cartesian if and only if each of its components xq is p-cartesian.
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PROOF. If x is p.-cartesian, then so is the restriction Xq along any element g:1 - Q. By Lemma
5.3.5 this tells us that xgq defines a p-cartesian transformation.

Conversely, if xq is a p-cartesian transformation, then Lemma 5.3.5 tells us that xq is a p,-cartesian
transformation. Now consider the factorization x = x,+0 through p,-cartesian lift x, of p, x. Because
the components xq of x are p,-cartesian, the components 09 of 0 are isomorphisms. By Lemma 16.2.1,
an arrow in an exponetial Fun(X, E)Qisan isomorphism if and only if it is a pointwise isomorphism,
so this implies that x. By isomorphism stability of cartesian transformations, we thus conclude that
X is p.-cartesian. U

Exercises.

5.3.i. EXERCISE. Prove Corollary 5.3.3.

5.4. Discrete cartesian fibrations

Recall from Definition 1.2.24 that an object E in an co-cosmos K is discrete if for all X € K
the functor-space Fun(X, E) is a Kan complex. Since a quasi-category is a Kan complex just when its
homotopy category is a groupoid (see Corollary 1.1.15), equivalently, E is discrete if and only if every
natural transformation with codomain E is invertible.

From this definition it follows that an isofibration p: E = B, considered as an object 0f7(/B, is
discrete if and only if any 2-cell with codomain E that whiskers with p to an identity is invertible. In
fact, the discrete objects are exactly those isofibrations that define conservative functors in HK.

5.4.1. LEMMA. Anisofibrationp: E —» B is a discrete object of Kp if and only if p: E = B is a conservative

a
TR
functor: meaning any X &//’ E for which py is an isomorphism is invertible.
b

PROOF. Exercise 5.4.i. O

Our aim in this section is to study a special class of cartesian fibrations and cocartesian fibrations:

5.4.2. DEFINITION. An isofibration p: E - B is a discrete cartesian fibration if it is a cartesian fibra-
tion and if it is discrete as an object of‘K/B. Dually, an isofibration p: E = B is a discrete cocartesian
fibration if it is a cocartesian fibration and if it is discrete as an object of Kjp

The fibers of a discrete object p: E - B in Kjp are discrete co-categories. In fact, in 00-cosmoi
K whose objects model (00, 1)-categories, an isofibration p: E = B defines a discrete object in Kjp
if and only if its fibers are discrete co-categories, as will be proven in Proposition 16.2.3. Thus, in
such co-cosmoi, the discrete cartesian fibrations and discrete cocartesian fibrations are “co-groupoid-
valued pseudofunctors.”

There is also a direct 2-categorical characterization of the discrete cartesian fibrations, which
reveals that, unlike the case for cartesian and cocartesian fibrations, for their discrete ana]ogues, there
are no special classes of p-cartesian or p-cocartesian cells.

5.4.3. PROPOSITION.

(i) If p: E = B is a discrete cartesian fibration, every natural transformation with codomain E is
p-cartesian.
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(i) An isofibration p: E = B is a discrete cartesian fibration if and only if every 2-cell B: b = pe has
an essentially unique lift: given x: €’ = eand . €” = e so that px = py = B, then there exists
an isomorphism y: " = e’ with x - y = 1 and py = id.

Note that (i) implies immediately that any commutative square

FLE

qﬁ - ip

f

from a cartesian fibration g to a discrete cartesian fibration p defines a cartesian functor.

PROOF. By the definition of cartesian fibration, any 2-cell 1 with codomain E factors through a
p-cartesian lift of pi along a 2-cell y so that py = id. The discrete objects 0?7(/3 are exactly those
isofibrations with the property that any 2-cell with codomain E that whiskers with p to an identity is
invertible. Inparticular, y is an isomorphism, and now 1 is isomorphic to a p-cartesian transformation
and hence by Lemma 5.1.4 itself p-cartesian.

By (i) and Lemma 5.1.3, it’s now clear that if p: E — B is a discrete cartesian fibration, then
any 2-cell B: b = pe has an essentially unique lift. For the converse, note first that any p: E - B
satisfying this hypothesis is a discrete object: if : ¢’ = e is so that pyp = id, thenid: e = eis
another lift ofpl[) and essential uniqueness provides an inverse isomorphism ¢_1 e=¢.

To complete the proof, we now show that any 2-cell x: ¢/ = e is cartesian for p and to that end
consider a pair 7: ¢” = eand y: pe” = pe’ so that pt = px - . By the hypothesis that every 2-cell
admits an essentially unique lift, we can construct a lift yu: € = €’ so that py = . Now T and x - u
are two lifts of pT with the same codomain, so there exists an isomorphism 0: ¢” = & with p0 = id.

The composite i - O then defines the desired lift of y to a cell so thatt = x - - 0. O

5.4.4. EXAMPLE (domain projection from an element). Foranelementb: 1 — B, the domain-projection

functor pg: Homg(B, b) = B is a discrete cartesian fibration. Cartesianness was established in Propo-
a

- 3
sition 5.1.23 and discreteness follows immediately from 2-cell conservativity. If X Uy Homg(B, b)
~—_

b
is a natural transformation for which pyy is an identity, then since p1) is also an identity, y must be
invertible.
Dually, the codomain-projection functor py : Hompg(b, B) = B is a discrete cocartesian fibration.

5.4.5. LEMMA (pullback stability). If

FLE

-

q p

A—— B

f

is a pullback square and p is a discrete cartesian fibration then q is a discrete cartesian fibration.
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PROOF. In 1ight OfProposition 5.1.20 it remains only to Verify that q is discrete. Consider a 2-cell
X/f“z-“~h is invertible. Th = pey is invertible and conservativity of p implies
\7/} so that gy is invertible. en fq)/ = pgy is invertible and conservativity of p implies

b
that gy is invertible.
By Lemma 3.1.5, the pullback square of functor spaces

Fun(X, F) —=— Fun(X, E)

Fun(X, A) T Fun(X, B)

induces a smothering functor
hFun(X,F) — hFun(X,E) X hFun(X, A)
hFun(X,B)
We've just verified that the image of y is an isomorphism, so conservativity implies that y is also
invertible. O

In analogy with Theorem 5.1.11, there is an internal characterization of discrete cartesian fibra-
tions, which in the discrete case takes a much simp]er form. Recall any functor p: E — B induces
functors k: E? — Homg(B, p) and k: E? — Homg(p, B) as in (5.1.10) by applying p to the generic

arrow for E.

5.4.6. PROPOSITION (internal characterization of discrete fibrations). An isofibration p: E = Bisa
discrete cartesian fibration if and only if the functor k: E? — Homg(B, p) is an equivalence and a discrete
cocartesian fibration if and only if the functor k: E2 — Homg(p, B) is an equivalence.

Recall from Theorem 5.1.11(iii) that p: E = B defines a cartesian fibration if and only if k: E2 -
Homg(p, B) admits a right adjoint with invertible counit. Proposition 5.4.6 asserts that p defines a dis-
crete cartesian fibration if and only if the unit of that adjunction, a natural transformation that defines
the factorization of any natural transformation with codomain E through the canonical p-cartesian lift
of its image under p, is an isomorphism, in which case that adjunction defines an adjoint equivalence
and all natural transformations with codomain E are p-cartesian.

PROOF. Assume first that p: E = B is a discrete cartesian fibration. By Theorem 5.1.11(1)= (iii),
k: E? — Homg(B,p) then admits a right adjoint 7 with invertible counit €: k7 = id. We will show
that in this case the unit 7]: id = 7k is also invertible, proving that k < 7 defines an adjoint equiva-
lence.

Since the counit of k = 7 is invertible, k7] is an isomorphism. Thus p1kf] = p17] and pokf] = ppof]
are both isomorphisms. By conservativity of the discrete fibration p: E = B proven in Lemma 5.4.1,
this implies that py] is invertible and now 2-cell conservativity for E2 reveals that 7] is an isomorphism.

Conversely, ifk: E? = Homg(B, p) is an equivalence, by Proposition 2.1.11, we may choose a right
adjoint equivalence inverse 7. The counit of this adjoint equivalence is necessarily an isomorphism,
so by Theorem 5.1.11(iii)=(i) we know that p: E = B is a cartesian fibration. Since the unit of
k — 7 is also an isomorphism, Theorem 5.1.19(vi)=(iv) tells us that every natural transformation
with codomain E is p-cartesian, and now the conservativity property for cartesian transformations of
Lemma 5.1.5 tells us that p: E = B defines a conservative fun ctor, and in particular is discrete.  [J
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Since equivalences and simplicial limits in an 00-cosmos are representably-defined notions, it fol-
lows immediately from Proposition 5.4.6 that:

5.4.7. PROPOSITION. An isofibration p: E = B in an co-cosmos K defines a discrete cartesian fibration if
and only if for all X € K the functor p,: Fun(X, E) = Fun(X, B) defines a discrete cartesian fibration of

quasi-categories. [l

Using the internal characterization, it is straightforward to verify that discrete cartesian fibrations
compose and cancel on the left:

5.4.8. LEMMA.
(i) Ifp: E - Bandq: B - A are discrete cartesian fibrations, so is qp: E - A.

(i) If p: E = B is an isofibration and q: B = A and qp: E = A are discrete cartesian fibrations,
then so isp: E > B.

PROOF. By considering the defining pullback diagrams, the map E? - Hom (A, gp) that tests
whether gp: E - A is a discrete cartesian fibration factors as the map E? — Homg(B, p) that
tests whether p: E = B is a discrete cartesian fibration followed by a pullback of the map B? —»
Hom 4(A, q) that tests whether g: B = A is a discrete cartesian fibration:

EZ
Homg(B, p) B? s A?
B\D, P \ AN /
Ty — %
1 " Hom 4 (A, gp) ——— Homy(A, q) m
/ - Pll / .
E 5 B 7 A
Both parts now follow from the 2-of-3 property. O

The internal characterization of discrete cartesian fibrations is useful for establishing further ex-
amples.

5.4.9. LEMMA. A trivial fibration p: E =» B is a discrete bifibration.

PROOF. Recall from Remark 5.1.13, that the canonical funcrorsk: E? - Homg(B, p) and k: E2 —»
Homg(p, B) can be constructed as the Leibniz cotensor of the monomorphism 1: 11 < 2 in the first
casc and 0: 11 < 2 in the second with the trivial fibration p: E =» B. By Lemma 1.2.11, both maps
are trivial fibrations and in particu]ar equiva]ences. Now Proposition 5.4.6 proves that pisa discrete
cartesian fibration and also a discrete cocartesian fibration. O

A final important family of examples of discrete cartesian fibrations are worth establishing. Propo-
sition 5.1.23 proves that for any co-category A, the domain-projection functor pg: A2 - A defines
a cartesian fibration. Thus functor does nor define a discrete cartesian fibration in the co-cosmos %K,
but recall that pp-cartesian lifts can be constructed to project to identity arrows along p : A? » A.
This suggests that we might productively consider the domain-projection functor as a map over A, in
which case we have the following result:
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5.4.10. PROPOSITION. The functor

AZ (p1.p0) Ax A

(5.4.11)
m\h A z/n

defines a discrete cartesian fibration in the slice 00-cosmos K 4.

PROOF. Note that 2-cell conservativity implies that (5.4.11) is a discrete object in (Kja)/n: Axa»a =
%K) axa, so it remains only to prove that this functor defines a cartesian fibration. We prove this using
Theorem 5.1.11(1) & (ii). The first step is to compute the right representable comma object for the
functor (5.4.11) by interpreting the formula (3.4.2) in the slice co-cosmos (K/A using Proposition 1.2.19.
The 2-cotensor of the object m: AX A - Ais: AX A% —» A, so this right representable comma
is computed by the left-hand pullback in K4 below:

Hom 4(A, po) AXA2Z T, 2
l JPz / lidA xp1 lpl
pz - o AXA— T 4

A

Pasting with the right-hand pullback in K we recognize that the co-category so-constructed coincides
with the right representable comma object for the functor pg: A? - A considered as a map in
K. Under the equivalence Hom 4(A, pg) =~ A3 established in the proof of Proposition 5.1.23, the
isofibration pp: Hom4(A, pg) = A is evaluation at the final element 2 € 3 in the composable pair of
arrows. Similarly, the canonical funcror i: A2 — Hom 4(A, pg) induced by id,, in K coincides with
the canonical functor i: A2 — Hom 4(A, po) over A induced by id(p, po) in Kja-

Now applying Proposition 5.1.23 and Theorem 5.1.11())=(ii) in /K, this functor i admits a right
adjoint 1 over the domain-projection functor

AZ L HomA(A/ pO)

By the proofs of Theorem 5.1.11(iii)=>(ii) and Proposition 5.1.23 this adjunction can be constructed by
cotensoring A the composite adjunction of categories

0

o
i
N ——
2 T 2x2 T _3 A A? 1 A3
%0 1 ~v¢ \_/
r
1+1 AXA
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where € = k is described in the proof of Proposition 5.1.23. The composite right adjoint is the functor
0%: 3 = 2 that sends 0 and 1 to 0 and 2 to 1, while the composite left adjoint is the functor ol: 2
3 that sends 0 to 0 and 1 to 2. In particular, this adjunction lies in the strict slice 2-category under
the inclusion of the “endpoints” of 2 and 3.

It follows that upon cotensoring into A, we obtain a fibered adjunction over A X A, which by
Theorem 5.1.11(i1))=(i) implies that (5.4.11) is a cartesian fibration in 7(/A» completing the proof. [J

Combining Propositions 5.1.23 and Proposition 5.4.10, we can now genera]ize both results to ar-
bitrary comma 00-categories.

5.4.12. COROLLARY. For any functors C g A f

B between 00-categories in an ©9-cosmos XK
(i) The domain-projection functor pg: Hom 4(f,g) = B is a cartesian fibration. Moreover, a natural
transformation X with codomain Hom 4(f, g) is pg-cartesian if and only if p1 X is invertible.
(ii) The codomain-projection functor py: Hom4(f,g) = C is a cocartesian fibration. Moreover, a natu-
ral transformation x with codomain Hom 4(f, §) is py-cartesian if and only if pox is invertible.
(iii) The functor

Hom(f,8) o) CxB

N

C

defines a discrete cartesian fibration in 7</C~
(iv) The functor

Hom(f,g) _) s cxB

Po\s é/ﬂ
B
defines a discrete cocartesian fibration in Kjp.

PROOF. We prove (i) and (iii) and leave the dualizations to the reader. For (iii), we first use the
cosmological functor g*: K4 — Kjc, which preserves discrete cartesian fibrations, to establish that

Hom (A, g) —2%5 € x A

T

defines a discrete cartesian fibration in Kjc; this argument works because py: Homy(A,g) - Cis
the pullback of p: A%2 - A along g. Now

HomA(f/g) j HomA(Alg)
(m,po)l y V l(m,po)
Cxf
CxB CxA

is a pullback square in K¢, so Lemma 5.4.5 now implies that the pullback is also a discrete cartesian
fibration.
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Using (iii) we can now prove (i). This follows directly from a general claim that if

E—" , cxB

P LT

defines a cartesian fibration in K¢ then p: E — B defines a cartesian fibration in K. By Theorem
5.1.11(1)) & (ii), this functor defines a cartesian fibration in 7(/C if and only if the functor i

i

A

E 1 Homg(B, p)
@p) ' z%]ﬂo)
CXxB

admits a right adjoint r over C X B. Composing with 7t: C X B —» B, this fibered adjunction defines
an adjunction over B, and Theorem 5.1.11(1)& (ii) applied this time in K allows us to conclude that
p: E = B is a cartesian fibration. U

Note that the domain projection pg: Hom4(f, A) = B is the pullback of py: A2 - A along
f: B — A, so Proposition 5.1.20 proves directly from Proposition 5.1.23 that this functor is a cartesian
fibration, but pg: Hom4(A,g) = A is not similarly a pullback of pg: A% - A. This is why a more

circuitous argument to the general result is needed.
Exercises.

5.4.1. EXERCISE. Prove Lemma 5.4.1.

5.5. The external Yoneda lemma

Letb: 1 — B be an element of an co-category B and consider its right representation Homg(B, b)
as a comma oo-category. In this case, there is no additional data given by the codomain-projection
functor, but Example 5.4.4 observes that the domain-projection functor py: Homg(B,b) — B has
a special property: it defines a discrete cartesian fibration. The fibers of this map over an element
a:1 — B are the internal mapping spaces Hompg(a, b) of Definition 3.4.9. In this way, the right
representation of the element b encodes the contravariant functor represented by b, which is why all
along we've been referring to the comma co-categories Homg(B, b) as “representable.”

Our aim in this section is to state and prove the Yoneda lemma in this setting, where contravari-
ant representable functors are encoded as discrete cartesian fibrations. A dual statement applies to
covariant representable functors encoded as discrete cocartesian fibration p; : Homg(b, B) - B, but
for ease of exposition we leave the dualization to the reader. Informally, the Yoneda lemma asserts that
“evaluation at the identity defines an equivalence,” so the first step towards the statement of the Yoneda
lemma is to introduce this identity element, which in fact is something we've already encountered.

The identity arrow id;, induces an element "id,": 1 — Homg(B, b) which Corollary 3.5.9 proves
is terminal in the co-category Homg(B, b) of arrows in B with codomain b. The identity element
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inclusion defines a functor over B

\ (5.5.1)
b Po

Technically, this functor does not live in the sliced 00-cosmos Kjp because the domain objectb: 1 — B
is not an isofibration but nevertheless for any isofibration p: E = B, restriction along "id," induces
a functor between sliced quasi-categorical functor spaces

Po p EVridy” b p
Fung(Homg(B, b) —» B, E—» B) — Fung(1 — B,E—» B)
Here the codomain is the quasi-category defined by the pullback
Fung(b,p) —— Fun(1,E)

L
1 ——— Fun(1,B)

which is isomorphic to Fun(1, Ey), the underlying quasi-category of the fiber Ej of p: E = B over b.

If a discrete cartesian fibration over B is thought of as a B-indexed discrete co-category valued
contravariant functor, then maps of discrete cartesian fibrations over B are “natural transformations™
the “naturality in B” arises because we only allow functors over B. This leads to our first statement of
the fibrational Yoneda lemma:

5.5.2. THEOREM (external Yoneda lemma, discrete case). If p: E = B is a discrete cartesian fibration,
then

evrid, b
Fung(Homp(B, b) 2% B, E 2» B) — Funy(1 — B, E» B) = Fun(1, E,)

is an equivalence of Kan complexes.

Theorem 5.5.2 is subsumed by a generalization that allows p: E = B to be any cartesian fibra-
tion, not necessarily discrete. In this case, p encodes an “co-category-valued contravariant B-indexed
functor,” as does py: Homg(B, b) = B. The correct notion of “natural transformation” between two
such functors is now given by a cartesian functor over B; see Exercise 5.1.iv. To that end, for a pair of
cartesian fibration g: F = B and p: E - B, we write

. q p q p

Fung"™(F— B,E—» B) C Fung(F— B, E —» B) (5.5.3)
for the sub quasi-category containing all those simplices whose vertices define cartesian functors from
grop’
5.5.4. THEOREM (external Yoneda lemma). Ifp: E = B is a cartesian fibration, then

cart Po P idy” b P ~
Fung"*(Homg(B,b) — B, E —» B) —— Fung(1 — B,E—» B) = Fun(1, E})

is an equivalence of quasi-categories.

"For any quasi-category Q and any subset S of its vertices, there is a “full” sub-quasi-category Qs C Q containing
exactly those vertices and all the simplices of Q that they span.
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The proofs of these theorems overlap significantly and we develop them in parallel. The basic
idea is to use the universal property of "id," as a terminal element of Homp(B, b) to define a right
adjoint to evrg » and prove that when p: E - B is discrete or when the domain is restricted to the
sub-quasi-category of cartesian functors, this adjunction defines an adjoint equivalence. Note that the
functor evryg - is the image of the functor "id," under the 2-functor Fung(—, p): H(K)p)°P — QCat. If
the adjunction ! < "id;," lived in the slice co-cosmos 7</B, this would directly construct a right adjoint
to evrig, ». The main technical difficulty in following the outline just given is that the adjunction thac
witnesses the terminality of "id, " does not live in the slice of the homotopy 2-category H% g but rather
in a lax slice of the homotopy 2-category, that we now introduce.

5.5.5. DEFINITION. Consider a 2-category h% and an object B € HK. The lax slice 2-category HK 5

is the strict 2—Categ0ry whose

® objects are maps f: X — B in hK with codomain B;

e 1-cells are diagrams
X —k 5y
@ 5.5.6
No /e 5:56)
B
in h%; and

o 2-cells from the 1-cell displayed above to the 1-cell below-right are 2-cells 6: k = k’ so that

k/
/\

x =2 3y X—¥ oy
a a’
NoJs = NS4

B B

5.5.7. LEMMA. The identity functor (5.5.1) is right adjoint to the right comma cone
Homg(B, b) — ' 1
s s /)
B

in b?(//B

PROOF. Since 1 is the terminal co-category, we take the counit of the postulated adjunction to be
the identity. By Definition 5.5.5 to define the unit, we must provide a 2-cell:

"id, ™!
N -
Homg(B, b) —— Homg(B, b) Homg(B,b) —> 1 —% Homg(B, b)
_ =9 lb /
Po Po Po Po
B B

so that pgn = ¢. This is the defining property of the unit in Lemma 3.5.8. The forgetful 2-functor
bK g — H%K is faithful on 1- and 2-cells, so the verification of the triangle equalities in Lemma 3.5.8
proves that they also hold in H% . O
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Using somewhat non-standard 2-categorical techniques, we will transfer the adjunction of Lemma
5.5.7 to an adjunction between the quasi-categories Fung(b, p) and Fung(pg, p); see Proposition 5.5.14.
Because our initial adjunction lives in the lax rather than the strict slice, the construction will be
somewhat delicate, passing through a pair of auxiliary 2-categories that we now introduce.

5.5.8. DEFINITION. Let h be the homotopy 2-category of an 0o-cosmos and write hK* for the strict
2-category whose

L] objects are cospans

A-Lsped E
in which p is a cartesian fibration;
o 1-cells are diagrams of the form
o Lp
al ¢ lb le (5.5.9)
A 7 B g E

e and whose 2-cells consist of triples a: a = a, B: b = b, and €: e = & between the verticals of
parallel 1-cell diagrams so that pe = Bp’ and ¢ - far = Bf” - ¢.
5.5.10. DEFINITION. Let h be the homotopy 2-category of an co-cosmos and write hK™ for the strict
2-category whose

e objects are pullback squares

F—2SE
L0
A——> B
f
whose verticals are cartesian fibrations;
e 1-cells are cubes
F a E
e
X M p,\
q FJ r E
l (5.5.11)
q i
A B’ p
b
NRE \
A
f

whose vertical faces commute and in which x: g€ = eg’ is a p-cartesian lift of ¢g’; and
o whose 2-cells are given by quadruplesa:a = a,5: b = b.e:e =2 and A: £ = €in which e
and A are, respectively, lifts of fp’” and ag” and so that - fa = ff’' - pand Y- gA = €9’ - x.

These definitions are arranged so that there is an evident forgetful 2-functor hK® — HK*.

5.5.12. LEMMA. The forgetful 2-functor hK® — HK* is a smothering 2-functor.
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PROOF. Proposition 5.1.20 tells us that hK® — HK™ is surjective on objects. To see that it is full
on 1-cells, first form the pullbacks of the cospans in (5.5.9), then define x to be any p-cartesian lift of
¢q’ with codomain eg’. By construction, the domain of x lies strictly over fag” and so this functor
factors uniquely through the pullback leg ¢ defining the map € of (5.5.11).

To prove that hPK® — HK* is full on 2-cells, consider a parallel pair of 1-cells in HK™. For one
of these we use the notation of (5.5.11) and for the other we denote the diagonal functors by 4, b,e,
and € and denote the 2-cells by ¢ and f; the requirement that these 1-cells be parallel implies that che
pullback faces are necessarily the same. Now consider a triplea:a = a4,: b = b,ande:e = ¢
satisfying the conditions of Definition 5.5.8. Our task is to define a fourth 2-cell A: ¢ = € so that
gA =aq and ¥ -gA = €9’ - x.

To achieve this, we first define a 2-cell y: g€ = gz using the induction property of the p-cartesian
cell f: g€ = 2¢" applied to the composite 2-cell €¢” - x: g€ = ¢’ and the factorization peg’ - px =
¢q’ - fag'. By construction py = fagq’ so the pair ag’ and y induces a 2-cell A1 € = € so that
gA = aq’ and gA = y. The quadruple (o, B, €, A) now defines the required 2-cell in HK™.

Finally, for 2-cell conservativity, suppose &, f, and € as above are isomorphisms. By the conser-
vativity property for pullbacks to show that A is an isomorphism, it suffices to prove that gA = ag’
is, which we know a]ready, and that g)\ =7Yis invertible. But Y was constructed as a factorization
€g’ - x = x -y withpy = faq'. Since € is an isomorphism, €¢’ - x is p-cartesian, so Lemma 5.1.5
proves that  is an isomorphism. O

5.5.13. REMARK. While we cannot directly define a pullback 2-functor h* — HhK in the homotopy
2-category because the 2-categorical universal property of pullbacks in K is weak and not strict, the
zig zag of 2-functors hK* < hK®” — H%K in which the backwards map is a smothering 2-functor and

the forwards map evaluates at the pullback vertex, defines a reasonable replacement.
Using Lemma 5.5.12, we can now construct the desired adjunction:

5.5.14. PROPOSITION. For any element b: 1 — B and any cartesian fibration p: E = B, the evaluation at
the identity functor admits a right adjoint
evrig,”
/\
Fung(po,p) L Fung(b,p)
=~ -

~—_ -

R

defined by the domain-component of the p,-cartesian lift of the right comma cone over b:

Fung(b,p) Fun(1, E) .
4 o M |p* T~
Fung(po, p) i Fun(Homg(B, b), E) 5515
1 b Fun(1, B) . p
1 m Fun(Homg(B, b), B)
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The idea will be to transfer the adjunction of Lemma 5.5.7 through a sequence of 2-functors

HQCat" —I> HQCat

|

b //PB E— bQCﬂtJ
using Lemma 3.6.8 to lift along the middle smothering 2-functor.

PROOF. Fixing a cartesian fibration p: E = B in K| we define a 2-functor® 7(?/% — HQCat” that
carries a 1-cell (5.5.6) to

1 —— Fun(Y, B) «=— Fun(Y, E)

| - L [
1 T> Fun(X, B) “H— Fun(X,E)

and a 2-cell O: k = k" to the 2-cell that acts via pre-whiskering with 0 in its two non-identity
components. By Corollary 5.1.16, the functors p, are cartesian fibration of quasi-categories.

We now apply the 2-functor //% — HQCat” to the adjunction of Lemma 5.5.7 to obtain an
adjunction in HQCat” and then use the smothering 2-functor of Lemma 5.5.12 and Lemma 3.6.8 to lift
this to an adjunction in HQCat"™. As elaborated on in Exercise 3.6.ii, the lifred adjunction in HQCat"
can be constructed using any lifts of the objects, 1-cells, and either the unit or counit of the adjunction
in hQCat”.

In particular, we may take the left adjoint of the lifted adjunction in HQCat” to be any lift of the
image in HQCat™ of the right adjoint of the adjunction ! - "id}," in HKp, and so our left adjoint is

FUHB(PO, P) Fun(HomB(B/ b)/ E) "dy™
evrid -'\\A - Ps
Fung(b,p) - i Fun(1,E)
1 Fo Fun(Homg(B,b),B) _ .. |-
_ 1dp
\ — \
1 ; Fun(1, B)

We may also take the right adjoint to be any lift of the image of the right adjoint of the adjunction.
This proves that the right adjoint is defined by (5.5.15). Since the counit of I 4 "id,” is an identity,
the counit of the lifted adjunction may also be taken to be an identity.

Finally, we compose with the forgetful 2-functor HQCat” — HQCat that evaluates at the pullback
vertex to project our adjunction in HQCat" to the desired adjunction in hQCat. O

The proof of the discrete case of the Yoneda lemma is now one line.

PROOF OF THEOREM 5.5.2. If p: E = B is discrete, then Fung(pg, p) and Fung(b, p) are Kan com-
p]exes, so the adjunction defined in Proposition 5.5.14 is an adjoint equiva]ence. O

*To explain the variance, recall that the 2-functor Fun(—, B): HK*® — HQCat is contravariant on 1-cells but covariant
on 2-cells. Such 2-functors, like all 2-functors, preserve adjuncti()ns, though in this case the left and right adjoints are
interchanged, while the units and counits retain the same roles.
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Specializing to the case of two right representabie discrete cartesian fibrations, we conclude that
the Kan complex of natural transformations is equivalent to the underlying quasi-category of their
internal mapping space.

5.5.16. COROLLARY (external Yoneda embedding). For any elements x,y: 1 =3 A in an co-category A,
evaluation at the identity of X induces an equivalence of Kan complexes

evrig,”
Fun,(Hom 4(A, x), Hom 4(A, y)) —— Fun(l,Hom,(x,y)) O

It remains to prove the general case of Theorem 5.5.4. The next step is to observe that the right
adjoint in the adjunction of Proposition 5.5.14 lands in the sub quasi-category of cartesian functors
from pg to p. Lemma 5.5.17 proves this after which it is short work to complete the proof of Theorem
5.5.4 by arguing that this restricted adjunction defines an adjoint equivalence.

5.5.17. LEMMA. For each vertex in Fung(b, p) below-left
R
Fung(b,p)) ———— Fung(po, p)

1—% S E Homg(B,b) —X E
N Q/P = po\g Q/P
B B
the map Re in Fung(py, p) above-right defines a cartesian functor in Kyp.

PROOF. From the definition of the right adjoint in (5.5.15) and Lemma 5.3.5, we see that Re is the
domain component of a p-cartesian lift x of the composite natural transformation below-left

e!

Homg(B,b) = 1 —“— E Homg (B, b) D
o ib/ = m /
Po B B

Since po: Homg(B, b) = B is discrete, every natural transformation ¢ with codomain Homg(B, b) is
Po-cartesian, so to prove that Re defines a cartesian functor, we must show that Reyl) is p-cartesian.
To that end, consider the horizontal composite

P

Y e!
X 1 HomyBD) m E
S~S— \R/
e

By naturality of whiskering, we have xy - Rey = el - yx = xx, since 1 is the terminal co-category
and hence el is an identity. Now Lemma 5.1.24(ii) implies that Rei) is p-cartesian. OJ

PROOF OF THEOREM 5.5.4. By Lemma 5.5.17, the adjunction of Proposition 5.5.14 restricts to de-
fine an adjunction
evrig,”

/\
Fun‘”*“(po,p) 1 Fung(b,p)



Since the counit of the original adjunction ! o "id," is an isomorphism and smothering 2-functors
are conservative on 2-cells, the counit of the adjunction of Proposition 5.5.14 and hence also of the
restricted adjunction is an isomorphism. As in the proof of Theorem 5.5.2, we will prove that evryy -~
is an equivalence by demonstrating that the unit of the restricted adjunction is also invertible. By
Lemma 16.2.1, it suffices to verify this elementwise, proving that the component of the unit indexed
by a cartesian functor

Homy(B,b) — L E

is an isomorphism.
Unpacking the proof of Proposition 5.5.14, the unit f] of evriy - o Riis defined to be a factorization

Fung(pe, p) ——> Fun(Homp(B, b), E) — s Fun(1, E)

TFun(n,E)
// \ l!x—

Fung(po, ) —%s Fung(b, p) ——> Fun(l, E) Fun(Homg(B, b), E)

N lR fix l!*

Fung(po, p) — Fun(Homg(B,b),E)

of the pre-whiskering 2-cell Fun(7, E) through the p,-cartesian lift x. The component of the pre-
whiskering 2-cell Fun(1, E) at the cartesian functor f is f1. Since py: Homg(B, b) = B is a discrete
cartesian fibration, any 2-cell, such as 1, which has codomain Homg(B, ) is py-cartesian, and since f
is a cartesian functor, we then see that f17) is p-cartesian.

By Lemma 5.3.8, the components of the p,-cartesian cell x define p-cartesian natural transforma-
tions in K. As 7] is a natural transformation with codomain Fung(pg, p) its components project along
p to the identity. In this way, we see that f]f is a factorization of the p-cartesian transformation f1n
through a p-cartesian lift of ¢ over an identity, and Lemma 5.1.5 proves that fjf is an isomorphism, as

desired. O

Theorem 5.5.4 implies the following generalization, replacing the elements b: 1 — B by a gener-
alized element b: X — B.

5.5.18. PROPOSITION. For any cartesian fibration p: E = B and map b: X — B, restricting along the
canonical induced functor

X _ Homg(B, b)
o 5 “T

defines an equivalence of quasi—categories-

Funs™(Homg (B, b) oy B, XL B) BN FunB(X—> B, EL B).
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PROOF. Theorem 5.5.4 applies in K)x to the cartesian fibration p X X: E X X — B X X and the
element (b, X): X — B X X to define an equivalence
. (p1.,v0) evrid K b, X
Fungyx(Homg(B, p) 0, B x X,pxX) X Fung,x(X 22, BxX,pxX)
Al Al

Fun™ (Homg(B, b) 2% B,E t» B) — ", Funy(X > B,E 2> B)

which transposes under the adjunction

to the equivalence of the statement. OJ

Later we will interpret the result ofProposition 5.5.18 as deﬁning a left biadjoint to the inclusion

Cart(K);p = K by the functor (b: X — B) = (py: Homg(B, b) - B).
Exercises.

5.5.i. EXERCISE. Given an element f: 1 — Hom 4(x, v) in the internal mapping space between a pair
of elements in an co-category A, use the explicit description of the inverse equivalence to the map of
Corollary 5.5.16 to construct a map

Hom 4(A, x) —— 2=~ Hom (A, 1)

P

which represents the “natural transformation” defined by post-composing with f.9

Hint: this construction is a special case of the construction given in the first half of the proof of Lemma 5.5.17.
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CHAPTER 6
Homotopy coherent diagrams

Consider adiagramd: 1 — Al in an co-category A indexed by a 1-category J. Via the isomorphism
Fun(1, A)) = Fun(1, AY, an element in the co-category of diagrams A/ equally defines a functor
d: ] — Fun(l, A) valued in the underlying quasi-category of A. Applying h: QCat — Cat, this
descends to a diagram hd: | — hA of shape | in the homotopy category of A; such diagrams are
called homotopy commutative. But the original diagram d has a much richer property, defining what is
called a homotopy coherent diagram of shape | in the quasi-category Fun(1, A).

To make the data involved in defining a homotopy coherent diagram most explicit, we first in-
troduce a general notion of homotopy coherent diagram as a simplicial functor valued in a simplicial
category whose hom-spaces are Kan complexes. What makes such diagrams “homotopy coherent” and
not just “simplicially enriched” is that their domains are required to be “free” simplicial categories of
a particular form that we refer to by the name simplicial computads. Because every quasi-category can
be presented up to equivalence by a Kan-complex enriched category, it will follow that “all diagrams
valued in quasi-categories are homotopy coherent.”

To build intuition for the general notion of a homotopy coherent diagram, it is helpful to consider
a speciai case of‘diagrams indexed by the category

w = 0 1 2 3

whose objects are finite ordinals and with a morphism j — k if and only if j < k and valued in the
Kan-complex enriched category of spaces Space. A w-shaped graph in Space is comprised of spaces
Xi tor each k € @ rogether with continuous maps f;r: X; — Xj whenever j < k.' This data defines
a homotopy commutative diagram just when fi,k o~ fj,k o fi,j whenever i <j < k.

To extend this data to a homotopy coherent diagram w — Space requires:

e Chosen homotopies 1t fix = fix © fi; whenever i <j < k. This amounts to specifying a path
in Map(X;, X) from the vertex f; to the vertex fj o f; i, which is obtained as the composite of
the two vertices f;; € Map(X;, X;) and f;x € Map(X;;, Xi).

'To simplify somewhat we adopt the convention that f]-,]- is the identity, making this data into a reflexive directed
graph with implicitly designated identities.

“This data defines a strictly commutative diagram (aka a functor @ — Space) jusc when f;x = f;x o f;; whenever
i <j < k. Serictly commutative diagrams are certainly homotopy commutative. Homotopy coherent category theory
arose from the search for conditions under which something like the converse implication held: a homotopy commutative
diagram is realized by (i.e., naturaliy isomorphic to up to homotopy) a strictly commutative diagram7 if and on]y if it
extends to a homotopy coherent diagram [38, 2.5].
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e Fori <j <k <, the chosen homotopies provide four paths in Map(X;, X)

hije
fi,{’ — fk,f ofi,k

freohijk

fieofij =——— freo fixe fij

hijeofij

hije

We then specify a higher homotopy — a 2-homotopy — filling in this square.

e Fori < j < k < € < m, the previous choices provide 12 paths and six 2-homotopies in
Map(X;, X;;) that assemble into the boundary of a cube. We then specify a 3-homotopy, a ho-
motopy between homotopies between homotopies, filling in this cube.

e Erc.

Even in this simple case of the category @, this data is a bit unwieldy. Our task is to define a
category to index this homotopy coherent data arising from @: the objects Xj, the functions X; — Xj,
the I-homotopies h; i, the 2-homotopies, and so on. This data will assemble into a simplicial category
whose objects are the same as the objects of @ but which will have #n-morphisms in each dimension
n > 0, to index the n-homotopies. Importantly, this simplicial category will be “freely generated” from
a much smaller collection of data. We begin by studying such “freely generated” simplicia] categories
under the name simplicial computads.

6.1. Simplicial computads

6.1.1. DEFINITION (free categories and atomic arrows). An arrowf in a 1-category is atomic if it is not
an identity and if it admits no non-trivial factorizations: i.c., if whenever f = goh, either g or b is an
identity.

A l-category is free if every arrow may be expressed uniquely as a composite of atomic arrows,
with the convention that empty composites correspond to identity arrows.’

6.1.2. DIGRESSION (on free categories and reflexive directed graphs). The category of presheaves on
the truncation
S
= @ &< — e = =
Ay ; is=1it=id

defines the category Gph of (reflexive, directed) graphs: for us, a graph consists of a set of vertices, a
set of edges each with a specified source and target vertex, and a distinguished “identity” endo-edge
for each vertex. Any category has an underlying reflexive directed graph, and this forgetful functor
admits a left adjoint, defining the free category whose atomic and identity arrows are the arrows in
the given graph:

F
ke

Cat L Gph
Y

Recall, from Digression 1.2.3, that a simplicial category A may be presented by a family of 1-categories
A, of n-arrows, forn > 0, ecach with a common set of objects, that assemble into a diagram A, : AP —

*Alternatively, a 1-category is free if every non-identity arrow may be expressed uniquely as a non-empty composite
of atomic arrows and if identity arrows admit no non-trivial factorizations.
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Cat comprised of identity-on-objects functors. The notion of “free” simplicial category was first in-

troduced by Dwyer and Kan [39, 4.5].

6.1.3. DEFINITION (simplicial computad). A simplicial category A is a simplicial computad if and only
it
e Each category A, of n-arrows is freely generated by the graph of acomic n-arrows.
° Iff is an atomic n-arrow in A, and g [m] - [n] is an epimorphism in A, then the degenerated
m-arrow f - 0 is atomic in A,,.

By the Eilenberg-Zilber lemma’, a simplicial category A is a simplicial computad if and only if all
of its non-identity arrows can be expressed uniquely as a composite

f=U1-a)e(fa-ar)o-o(fe-ap)

in which each f; is non-degenerate and atomic and each @; is a degeneracy operator in A.

6.1.4. EXAMPLE. A l-category A may be regarded as a simplicial category A, in which A, = A for
all n. In the construction, the hom-spaces of A coincide with the hom-sets of A. Such “constant”
simplicial categories define simplicial computads if and only if the 1-category A is free.

6.1.5. ExaMPLE. For any simplicial set U, let 2[U] denote the simplicial category with two objects
“~"and “+” and with hom-spaces defined by

2[U](+,-) =2, 2[U]+,+):=1=2[U]l--), 2[U]l-+):=U.

This simplicial category is a simplicial computad because there are no composable sequences of arrows
in 2[U] containing more than one non-identity arrow. Every arrow from — to + is atomic.

6.1.6. DEFINITION. A simplicial functor G: A — B berween simplicial computads defines a sim-
plicial computad morphism if it maps every atomic arrow f in A to an arrow Gf which is either
atomic or an identity in 8. Write sSet-Cptd C sSet-Cat for the non-full subcategory of simplicial
computads and their morphisms.

The axioms of Definition 6.1.3 assert that the atomic and identity n-arrows of a simplicial com-

(8}

putad assemble into a diagram in Gph™" and a simplicial computad morphism restricts to define a

[8) . . . . .
e}Ei—mdexed graphs of atomic and identity arrows; in

natural transformation between the underlying A
. o : : . . - AP
this way, restricting to the atomic or identity arrows defines a functor atom: sSet-Cptd — Gph™'.

The next lemma tells us that the category sSet-Cptd is canonically isomorphic to the intersection of

op

Ay . A
Gph~" and sSet-Cat in Cat™".

6.1.7. LEMMA. The functor that carries a simplicial computad to its underlying diagram of atomic and identity
arrows and the inclusion of simplicial computads into simplicial categories define the legs of a pullback cone:

sSet-Cptd —— sSet-Cat

]
atom

AP
Op o OP
Gph ET Cap

“The Eilbenberg-Zilber lemma asserts that any degenerate simplex in a simplicial set may be uniquely expressed as a
degenerated image of a non-degenerate simplex; see [42, 11.3.1, pp. 26-27].
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. A . AP AP
Moreover since sSet-Cat and gph P have COllm1L’S, the functors to Cat™ <! preserve them, and F~ is an
OP

isofibration, it follows that sSet-Cptd has colimits created by either of the functors to sSet-Cat or to QphA“Pi.

PROOF. If A is a simplicial category, presented as a simplicial object Ay : AP — Cat, then A is
a simplicial computad if and only if there exists a dotted lift as below-left

—_—

o J op 7
Aegi -==> Gph Aegi \F!z Gph
ﬂ /_N
AP — Cat A°® UG Qat
\B_j

in which case this lift is necessarily unique. Correspondingly, as simplicial functor G: A — B de-
fines a computad morphism if and only if the restricted natural transformation above-right also lifts
through the free category functor, again necessarily uniquely. These facts verify that the category

sSet-Cptd is captured as the stated pullback.

op

Now consider a diagram D: | — sSet-Cptd and form its colimit cone in sSet-Cat and in QphA“Pi.

0] p

The functors to Cat™ carry these to a pair of isomorphic colimit cones under the same diagram and

) AY .~ : : } . .. ar
since F7P' is an isofibration (any category isomorphic to a free category is itself a free category and
this isomorphism necessarily restricts to underlying graphs of acomic arrows), there exists a colimit

cone under D in QphAeg‘ whose image under F e is equal to the image of the colimit cone under D
in sSet-Cat. Now the universal property of the pullback allows us to lift this cone to sSet-Cptd, and
a similar argument using the Z—Categorica] universal property of the pu]]bac]( diagram of categories
demonstrates that the lifted cone is a colimit cone. ]

6.1.8. DEFINITION (simplicial subcomputads). A simplicial computad morphism A < B that is in-
jective on objects and faithful displays A as a simplicial subcomputad of B.
The simplicial subcomputad S generated by a set of arrows S in a simplicial computad A is the

smallest simplicial subcomputad of A containing those arrows. The objects of S are those objects
that appear as domains or codomains of arrows in S and its set of morphisms is the smallest subset of
morphisms containing S that have the fo”owing closure properties:

eiffeSanda: [n] — [m] €A, then f-a €S,
o If f,g €S are composable then f o g € S.
Lemma 6.1.7 proves that simplicial computads and computad morphisms are closed under colimits

formed in the category of simplicial categories. For certain special colimit shapes, the property of being
a simplicial subcomputad is also preserved:

6.1.9. LEMMA. A simplicial subcategory A — B of a simplicial computad B displays A as a simplicial
subcomputad of B just when A is closed under factorizations: if f and g are composable arrows of B and

fog € Athen f and g are in A.
PrROOF. Exercise 6.1.1. [l

6.1.10. LEMMA. Simplicial subcomputads are closed under coproduct, pushout, and colimit of countable se-
quences.
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PrROOF. Simplicial subcomputad inclusions are precisely those morphisms in sSet-Cptd whose
A%
images in Qph P! are pointwise monomorphisms. Lemma 6.1.7 proves that colimits in sSet-Cptd are

Op
created in gph i, As colimits in this presheaf category are formed pointwise and as monomorphisms
are stable under coproduct, pushout, and colimit of countable sequences, the result follows. O

6.1.11. DEFINITION (relative simplicial computad). The class of all relative simplicial computads is the
class of all simplicial functors that can be expressed as a countable composite of pushouts of coproducts
of

e the unique simplicial functor @ < 1 and

e the simplicial subcomputad inclusion 2[dA[n]] = 2[A[n]] for n > 0.

The next lemma reveals that relative simplicial computads differ from simplicial subcomputad
inclusions only in the fact that the domains of relative simplicial computads need not be simplicial
computads — but when they are, the codomain is also a simplicial computad and the map is a simplicial
subcomputad inclusion.

6.1.12. LEMMA. If A is a simplicial computad, then an inclusion of simplicial categories A — Bis a simplicial
computad inclusion if and only if it is a relative simplicial computad. In particular, a simplicial category B is
a simplicial computad if and only if @ — B is a relative simplicial computad.

PROOF. First note that @ < 1 and 2[dA[n]] = 2[A[n]] are simplicial subcomputad inclusions:
the first case is trivial and for the latter, all the non-identity arrows in 2[U] atomic. By Lemma 6.1.10,
to prove that any relative simplicial computad A — B whose domain is a simplicial computad is a
subcomputad inclusion, it suffices to prove that for any simplicial computad A and any simplicial
functor f: 2[dA[n]] = A, not necessarily a computad morphism, the pushout of 2[dA[n]] <
2[A[n]] along f is a simplicial computad containing A as a simplicial subcomputad.

The subcomputad inclusion 2[dA[n]] < 2[A[n]] is full on r-arrows for ¥ < n; for r > n, the
codomain is constructed by adjoining one atomic arrow from — to + for each epimorphism [r] = [n].
It follows that the pushout A — A’ is similarly full on r-arrows for r < n, and for ¥ > n, the category
of r-arrows of A’ is obtained from that of A by adjoining one atomic r-arrow for each degeneracy
operator [r] = [n] with boundary specified by the attaching map f. If we adjoin an arrow to a free
category along its boundary we get a free category with that arrow as an extra generator, so each of
the categories of r-arrows of A’ are freely generated, and it is clear from this description that on
degenerating one of these extra adjoined arrows we just map it to one of the generating arrows we've
adjoined at a higher dimension. This proves that A < A’ is a simplicial subcomputad inclusion
as claimed. It follows inductively that the codomain of a relative simplicial computad is a simplicial
computad whenever its domain is, in which case the inclusion is a subcomputad inclusion.

For the converse, we inductively present any simplicial subcomputad inclusion A < B as a
sequential composite of pushouts of coproducts of the maps @ <= 1 and 2[dA[n]] <= 2[A[n]]. Note
that 2[A[n]] contains a single non-degenerate atomic arrow not present in 2[dA[n]], namely the
unique non-degenerate n-arrow representing the #-simplex.

At stage “=1.” use the inclusion @ < 1 to attach any object in B\A to A. At stage “0,” use
the inclusion 2[@] < 2[A[0]] to attach each atomic 0-arrows of B that is not in A. Iteratively, at
stage “r,” use the inclusion 2[dA[r]] < 2[A[r]] to attach each atomic r-arrows of B that is not in A.
There is a canonical map from the codomain of the relative simplicial computad defined in this way
to B, which by construction is bijective on objects and sends the unique atomic arrow attached by
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each cell to an atomic arrow in B; in particular this comparison functor, which by construction lies
in sSet-Cptd is in fact a simplicial subcomputad inclusion. The comparison is surjective on atomic
n-arrows by construction and hence surjective on all arrows, because the unique factorization any ar-
row into non-degenerate atomics is present in the colimit at the stage corresponding to the dimension
of that arrow. Thus, we have presented A < B as a relative simplicial computad inclusion. O

The morphisms listed in Definition 6.1.11 are the generating cofibrations in the Bergner model
structure on simplicial categories [14]. Hence, the relative simplicial computads are precisely the cel-
lular cofibrations, those that are built as sequential composites of pushouts of coproducts of generating
cofibrations (without closing under retracts). For non-cofibrant domains, the notion of Bergner cofi-
bration is more general than the notion of relative simplicia] Computad. However:

6.1.13. LEMMA. Every retract of a simplicial computad is a simplicial computad.

PROOF. A simplicial category A is a retract of a simplicial computad B if there exist simplicial
functors
AL B8 -L5 A
so that RS = id. The category A is then recovered as the coequalizer (or the equalizer) of SR and

the identity, so if we knew that this idempotent defined a computad morphism, we could appeal to
Lemma 6.1.7 and be done; but we do not know this, so we must argue further.

First we demonstrate that every retract of a free category is free. To sce this, we'll first show that
the inclusion A,, = B, satisfies the “2-0f-3” property: of f and g are composable morphisms of B,
so that two of three of f, g, and f o g lie in A,;, then so does the third. This is clear in the case where
f,8 € A, sosuppose that f, fog € A,. Then f and f og are fixed points for the idempotent SR and
sowe have f o g = SR(f o g) = SR(f) o SR(g) = f o SR(g). In the free category B,,, all morphisms
are both monic and epic, so § = SR(Q) lies in A,, as well. Now by induction it is easy to verify that
every arrow in A, factors uniquely as a product of composites of atomic arrows in 8B, with each of
these composites defining an atomic arrow in A,,.

This verifies the first condition of Definition 6.1.3. It remains only to verify that degenerate images
of atomic arrows in A, are atomic. To that end consider an epimorphism a: [m] = [n] and an
atomic n-arrow f in A,. If f - @ = g o h is a non-trivial factorization in A,, = B,, then since B
is a simplicial computad we must have S(f) = ¢’ o i’ with ¢’ - a = S(g) and i’ - @ = S(h). Since
f = RS(f) = Rg’' o RK’ is atomic, we must have Rg” or Rh’ an identity, but then Rg’"-a = RS(g) = ¢
or Rh' - a = RS(h) = h is an identity, and so the factorization f - @ = g o h is trivial after all. O

Consequently:

6.1.14. COROLLARY. The simplicial computads are precisely the cofibrant simplicial categories in the Bergner
model structure. O

6.1.15. DIGRESSION. The category of simplicial categories bears a model structure whose cofibrant
objects are the simplicial computads, by Corollary 6.1.14, and whose fibrant objects are the Kan com-
plex enriched categories that will feature prominently in §6.3. The weak equivalences, called DK-
equivalences after Dwyer and Kan, are simplicial functors F: C — D whose action on homs

Fyy: C(x,y) = D(Fx, Fy)
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is via weak homotopy equivalences of simplicial sets and which induce equivalences of homotopy
categories.’

The fibrations are defined by a similar pair of conditions: these are simplicial functors F: C — D
whose action on homs

Foy: C(x,y) » D(Fx, Fy)

is via a Kan fibration of simplicial sets and which have the property that a 0-arrow f: Fc — d that
defines an isomorphism in the homotopy category of D may be lifted to a 0-arrow g: ¢ — ¢’ that
defines an isomorphism in the homotopy category of C. More details can be found in the original (14]
or in the survey text [16].

Exercises.
6.1.1. EXERCISE. Prove Lemma 6.1.9.

6.Lii. EXERCISE. Prove that the -skeleton of a simplicial computad, defined by discarding all arrows of
dimension® greater than 7, is the simplicial subcomputad generated by the atomic arrows of dimension
r.

6.2. Free resolutions and homotopy coherent simplices

The original example of a simplicial computad, also due to Dwyer and Kan [39], is given by the
free resolution of a 1-category C.

6.2.1. DEFINITION (free resolutions). Write F = U for the free category and underlying graph functors
of Digression 6.1.2. Note that the components of the counit and comultiplication of the comonad

(FU: Cat — Cat,e: FU = id, FnU: FU = FUFU)

define identity-on-objects functors.

For any 1-category C, we will define a simplicial category FU,C with the same objects and with
the category of 11-arrows defined to be (FU)**1C. A 0-arrow is a sequence of composable arrows in
C. A non-identity n-arrow is a sequence of composable arrows in C with each arrow in the sequence
enclosed in exactly 7 pairs of well-formed parentheses.

The simplicial object A°P — Cat is formed by evaluating the comonad resolution at C € Cat:

“K—— —
“K—— >
FUC — (FU)?C «— (FU)*C — (FU)*C (6.2.2)
“K—— >

“«

For j > 1, the face maps

(FU)ke(FUY : (FU)*IC — (FU)IC
remove the parentheses that are contained in exactly k others, while FU --- FUe€ composes the mor-
phisms inside the innermost parentheses. For j > 1, the degeneracy maps

F(UF)*n(UFyU: (FU)1C — (FU)*IC

*The homotopy category of a simplicially enriched category is defined by applying the path components functor
y: sSet — Set to the hom-spaces. In fact, by the local homotopically fully faithfulness property, it suffices to assume
essential surjectivity on homotopy categories.

*An n-arrow f in a simplicial category A has dimension 7 if there exists a non-degenerate r-arrow g and an epimor-

phism a: [n] = [r] so that f =g - a.
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double up the parentheses that are contained in exactly k others, while F --- UFnU inserts parentheses
around each individual morphism.

6.2.3. EXAMPLE (free resolution of a group). A classically important special case is given by the free
resolution of a 1-object groupoid, whose automorphisms are the elements of a discrete group G. In
this case, each category of n-arrows is again a 1-object groupoid. The category of 0-arrows is the group
of words in the non-identity elements of G. The category of 1-arrows is the group of words of words,
and so on.

We now explain the sense in which free resolutions are “resolutions” of the original 1-category. As
discussed in Example 6.1.4, a 1-category C can be regarded as a constant simplicial category C,, whose
hom-spaces coincide with the hom-sets of C. There is a canonical “augmentation”mape: FU,C — C
in sSet-Cat that is determined by its degree zero component €: FUC — C which is just given by
composition in C.

6.2.4. PROPOSITION. The functor €: FU4C — C is a local homotopy equivalence of simplicial sets. That is,
for any pair of objects x,y € C, the map €: FU,C(x,y) — C(x,v) is a simplicial homotopy equivalence:
FU,C(x,y) is homotopy equivalent to the discrete set C(x,y) of arrows in C from x to y.

PROOF. The augmented simplicial object

(%
“K— —
“«— —_ “«—
C «— (FU)C — (FU)*C «— (FU)’C »— (FU)*C
\\___? \6%/ W T 4 \ “K—— -
T ST N />
- S~

is split at the level of reflexive directed graphs (i.c., after applying U). These splittings are not functors,
but that won’t matter. These directed graph morphisms displayed here are all identity on objects,
which means that for any X,y € C thereisa split augmented simp]icial set

6&
6& >—>

Clx,y) « (FU)Cx,y) > s (FUPC(, }/) «— (FU)’C(x 3/) >—> (FU)*C(x,y) -

and now some classical simp]icial homotopy theory OFMeyer [73] reviewed in Appendix C proves that
€: FU,C(x,y) = C(x,y) is a simplicial homotopy equivalence. U

As the name suggests, free resolutions are simplicial eomputads:

6.2.5. PROPOSITION (free resolutions are simplicial computads). The free resolution of any I-category
defines a simplicial computad in which the atomic n-arrows are those enclosed in precisely one pair of outermost
parentheses.

PROOF. In the free resolution of a 1-category C, the category of n-arrows is (FU)"*1C. The cate-
gory FUC is the free category on the underlying graph of C. Its arrows are sequences of composable
non—identity arrows of C; the atomic 0-arrows are the non—identity arrows of C. An n-arrow is a
sequence of composable arrows in C with each arrow in the sequence enclosed in exactly 1 pairs of
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parentheses. The atomic n-arrows are those enclosed in precisely one pair of parentheses on the out-
side. Since composition in a free Lategory is by concatenation, the unique factorization property is
clear. Since degeneracy arrows “double up” on parentheses, these preserve atomics as required. O

The atomic n-arrows in the free resolution of a 1-category index the generating n-homotopies in
a homotopy coherent diagram, such as enumerated for the homotopy coherent w-simplex at the start

of this chapter.

6.2.6. DEFINITION (the homotopy coherent w-simplex). The homotopy coherent w-simplex CA[w]
is a simplicial category defined to be the free resolution of the category

W = 0 1 2 3

The objects of CA[w] are natural numbers k > 0. Unpacking Definition 6.2.1 we can completely
describe its arrows:

® A non-identity 0-arrow from j to k is a sequence of non-identity composable morphisms from j
to k, the data of which is uniquely determined by the objects being passed through. In particular,
there are no 0-arrows from j to k if j > k, and the only O-arrow from k to k is the identity. Ifj <k,
the non-identity 0-arrows from j to k correspond to subsets

{j,k} c T® C [j, k]

of the closed interval [j, k] = {t € w | j < t < k} containing both endpoints.
® A l-arrow from j to k is a once bracketed sequence of non-identity composable morphisms from

j to k. This data is specified by two nested subsets
{j,k} cT® c Tt C [j, k]
the larger one T1 specifying the underlying unbracketed sequence and the smaller one TY speci-
fying the placement of the brackets.
® A r-arrow from j to k is an 7 times bracketed sequence of non-identity composable morphisms
from j to k, the data of which is specified by nested subsets
{j,k} C TOc..-cT'c [j, k] (6.2.7)
indicating the locations of all of the parentheses.”
The face and degeneracy maps of (6.2.2) are the obvious ones, either duplicating or omitting one of
the sets T*. In particular, the r-arrows just enumerated are non-degenerate if and only if cach of the
inclusions TO C ---  T" is proper.
We now describe the geometry of the mapping spaces CA[w](j, k).
6.2.8. LEMMA (homs in the homotopy coherent w-simplex are cubes). The mapping spaces of the homo-
topy coherent w-simplex are defined for j, k € w by
%) j>k
CAlw](j, k) = { A[0] k=jork=j+1
A1 j <k
"The nesting is because parenthezations should be “well formed™ with open brackets closed in the reverse order to that
in which they were opened.
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PROOF. Because @ has no arrows from j to k when j > k these hom-spaces of €A[w] are similarly
empty. When k = jork = j+ 1 we have {j, k} = [}, k], using the notation of Definition 6.2.6, so
CA[w](j, k) = A[O] is comprised of a single point.

Fork > j, there are k—j—1 elements of [}, k] excluding the endpoints and so we see that CA[w](j, k)
has 2571 vertices. The r-simplices of CA[w](j, k) are given by specifying #+1 vertices — each a subset
{j,k} € T C [, k] — that respect the ordering of subsets relation. From this we see that

CA[w](j, k) = A[1]F

is the nerve of the poset of subsets {j,k} € T C [j, k] ordered by inclusion, as displayed for instance
in the casej = 0 and k = 4:

04 — 01,4
{0,3,4} —— —— {0,1,3, 4}~
CA[w](0,4) := l 0
024 (0,1,2,4]
0,2,3,4) 0,1,2,3,4)

Proposition 6.2.5 proves that the homotopy coherent w-simplex is a simplicial compurtad and its
proof identifies its atomic arrows.

6.2.9. LEMMA. The simplicial category CA[w] is a simplicial computad whose atomic r-arrows are those with
a single outermost parenthesis: i.e., those sequences of subsets

j,k}=T°c-- cT" C[j k]

for which TO = {j, k). Geometrically, the atomic arrows from j to k are precisely the simplices in the hom-cube

CAlw](j, k) = A[11571 thae contain the initial vertex {j, k}. O

The finite ordinals define full subcategories of @. In this way, the homotopy coherent w-simplex
restricts to define homotopy coherent simplices in each finite dimension.

6.2.10. DEFINITION (the homotopy coherent #1-simplex). The homotopy coherent n-simplex CA[#]
is the full subcategory of the homotopy coherent w-simplex €A[w] spanned by the objects 0, ..., 1.
Equivalently, it is the free resolution of the ordinal category with 11 + 1 objects.
Explicitly the homotopy coherent #-simplex has mapping spaces given for j, k € [1] by cubes
%) j>k
CA[n](j, k) = {A[0] k=jork=j+1

A1 <k

cach of which may be understood as the nerve of the poset of subsets {j,k} € T C [j, k] ordered by

inclusion. An r-arrow may be represented as a nested sequence of subsets

i,k}cT®c--- c T C[j,k]
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The homotopy coherent n-simplex is a simplicial computad whose atomic r-arrows are those se-
quences for which T = {j, k} or those simplices that contain the initial vertex in the hom-cube.

Exercises.

6.2.i. EXERCISE. Compute the free resolution of the commutative square category 2 X 2 and compare
it with the product €A[1] X CA[1] of two copies of the free resolution of 2. This computation
implies that the functor €: sSet — sSet-Cptd to be introduced in Definition 6.3.2 does not preserve
products.

6.3. Homotopy coherent realization and the homotopy coherent nerve

Our aim now is to introduce the homotopy coherent realization of any simplicial set X, which will
define a simplicial computad €X whose objects are the vertices of X. The homotopy coherent real-
ization of A[n] will be the homotopy coherent n-simplex €A[n] of Definition 6.2.10. The homotopy
coherent realization of X will be defined by “gluing together” homotopy coherent n-simplices in a
canonical way: succinctly, €X is defined as a colimit in sSet-Cptd of a diagram of homotopy coherent
simplices indexed by the category of simplices of X. We will then leverage Lemma 6.2.9 into an explicit
presentation of €X as a simplicial computad stated as Theorem 6.3.10, recovering a result of Dugger
and Spivak.

The homotopy coherent realization and homotopy coherent nerve functors are determined by the
cosimplicial object

A &['k sSet-Cat

[n] ——— CA[n]

where a simplicial operator a: [n] — [m] acts on an r-arrow from j to k, as described in Definition
6.2.10, by taking the direct image of the sequence of subsets (6.2.7).

We introduce these functors in turn.
6.3.1. DEFINITION (homotopy coherent nerve). The homotopy coherent nerve of a simplicial category
A is the simplicial set WA whose n-simplices
NA,, = sSet-Cat(CA[n], A)
are defined to be diagrams CA[n] — A; the simplicial operators act contravariantly on WA by pre-
composition.
Explicitly, a homotopy coherent n-simplex in (A is given by:
® a sequence of objects 4y, ... ,a, € A and
® a sequence of:simp]icia] maps

a;j: A1 — Aay, ar)
foreachO0<j<k<n
e satisfying the simplicial functoriality condition:
. . v .
A[1]F771 x A[1J71 —Ls A[1]F#2

aj,kxailjl lal-,k

Alaj, ar) X Ala;, a;) ——> Ala;, ar)
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Where

A[1]FL s A[IJ-1 = A2 ¢ Vi A[1]F1
2 2
CA[n](j, k) x CA[n](i,j) ——— CA[n](i, k)

is the map that sends a pair of‘r—simplices
{i,jtcS¥c - cS clijl and j,ktcTc--- cT" C[jk]

to their union

i,kjcSPUTOc ... cS"UT" C[ik].
If the {0, 1}-valued coordinates of the cube A[1]¥7*! are indexed by integersi < t < k, then the image
of Vjis the j = 1 face of the cube.

6.3.2. DEFINITION (homotopy coherent realization). The homotopy coherent realization functor € is
the pointwise left Kan extension of the cosimplicial object €A[e] along the Yoneda embedding:

sSet
B3 RN
= RS
A N sSet-Cat

The value of a pointwise left Kan extension at an object X € sSet can be computed as a colimit
indexed by the comma category Homsset(cli, X) (86, 6.2.1]. This comma category is better know as
the category of simplices of X, whose objects are simplices of X and in which a morphism from an
n-simplex X to an m-simplex y is a simplicial operator a: [n] — [m] so that y - @ = x. In this case,
the colimit formula gives

CX = colim CA[n].
[n]eA xeX,

By general abstract nonsense:

6.3.3. PROPOSITION. The homotopy coherent realization functor is left adjoint to the homotopy coherent nerve:

(O
7

sSet L1 sSet-Cat

~_
N

PROOF. The homotopy coherent nerve was defined so that this adjoint correspondence would hold
for the standard simplices and the general result follows since every simplicial set is a colimit, indexed
by its category of simplices, of standard simplices. See [86, 6.5.9] for more details. O

6.3.4. LEMMA. The homotopy coherent realization functor takes its values in the subcategory of simplicial
computads and computad morphisms.

sSet - ¢ sSet-Cat
S~y /
sSet-Cptd

~
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PROOF. By Lemma 6.1.7, which proves that the category of simplicial computads is closed under
colimits in the category of simplicial categories, it suffices to demonstrate that the cosimplicial object
CA[e] is valued in the subcategory of simplicial computads and simplicial computad morphisms. We
know already that the homotopy coherent simplices are simplicial computads, so we need only verify
that the simplicial operators act by computad morphisms.

A simplicial operator a: [n] — [m] acts on the r-arrow from j to k described in Definition 6.2.10
by taking the direct image of the sequence of subsets (6.2.7). The condition that characterizes the
atomic arrows, {j, k} = TO, is preserved by direct images, so we see that @ defines a computad mor-
phism Ca: €A[n] — CA[m]. As the subcategory sSet-Cptd — sSet-Cat is closed under colimits,
it follows that every homotopy coherent realization is a simplicial computad and any simplicial map

X — Y induces a morphism of simplicial computads €X — €Y. O

6.3.5. LEMMA. For any inclusion X < Y of simplicial sets, the morphism €X — QY is a simplicial subcom-
putad inclusion. Moreover, in the case of X < A[n], an atomic r-arrow

i,k}=Tc--- cT" C[j,k]

from j to k of €A[n] lies in the subcomputad €X if and only if the simplex spanned by the vertices of T" lies
in X.

PROOF. Recall that every monomorphism of simplicial sets X < Y admits a canonical decomposi-
tion as a sequential composite of pushouts of coproducts of the simplex boundary inclusions dA[n] <
Aln]. Since all colimits are preserved by the left adjoint € and Lemma 6.1.10 proves that simplicial
subcomputads are closed under colimits of this form, it suffices to prove that €dA[n] — CA[n] is
a simplicial subcomputad inclusion. We'll argue more generally that for X C A[n], €X < CA[n]
is a simplicial subcomputad inclusion where the atomic arrows of €X are as described in the second
clause of the statement.

We argue using ideas from Reedy category theory reviewed in Appendix C; see in particular Lemma
C.5.20. Our task is to show that the image of X < A[n] under the functor

sSet —=— sSet-Cptd s gphAsgi

O . . . . . . .
P _indexed graph of atomic and identity arrows is a pointwise mono-
€pl é’ p y p

that takes a simplicial set to its A
morphism.
The simplicial subset X C A[n] can be described as a colimit of certain faces of A[n] glued along

their common faces; the functor just described preserves these colimits. Our claim asserts that the

composite cosimplicial object CA[®]: A — sSet — sSet-Cptd — gphA"Ei is Reedy monomorphic:
meaning that every atomic 7-arrow T'® in the homotopy coherent n-simplex is uniquely expressible in
the form a - S® where a: [m] > [1] is a monomorphism in A and S° is “non-co-degenerate,” i.e., not
in the image of any monomorphism. This is clear: take m = |[T”| = 1 and define a: [m] > [n] to
be the inclusion with image T" C [n]. Then take S°® to be the atomic -arrow from 0 to m in CA[m]
whose direct image under a is T®. It is clear that §® is not in the image of any smaller face map. This
argument also reveals that the atomic 7-arrows T® of €A[n] that are present in the subcompurad €X
are exactly those for which the vertices of T® are contained in one of its faces. O

Lemma 6.3.5 allows us to compute the following subcomputads of the homotopy coherent sim-
plex. Before stating the results of these computations, we introduce notation that suggests the correct
geometric intuition:
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6.3.6. NOTATION (cubes, boundaries, and cubical horns). We introduce special notation for the fol-
lowing simplicial sets:
e Write (¥ for the simplicial cube A[1]F.
e Write I for the boundary of the k-cube. Formally, A is the domain of the iterated Leibniz
product (JA[1] <= A[1])*. If an r-simplex in Ok is represented by a k-tuple of maps p;: [r] —
[1], then that r-simplex lies in JOK if and only if there is some i for which p; is constant at either
vertex of [1].
e Write I—Ilg'] c Jd for the cubical horn containing only the face e € [1] in direction1 < j < k.

Formally, I_Ilec'j is the domain of the iterated Leibniz product
(QA[1] = A[IH1K(A[0] = A[)K(IA[1] = A[1])*.

An r-simplex in m represented by a k-tuple of maps p;: [r] — [1] lies in ng(,j if and only if for
some i # | the map p; is constant or pjis the constant operator at e € [1].

6.3.7. LEMMA (coherent subsimplices). The homotopy coherent realizations of the simplicial sphere and inner
and outer horns define subcomputads of the homotopy coherent n-simplex containing all of the objects and

defined on homs by:
(i) spheres: €JdA[n] — C€A[n] is full on all arrows except those from 0 to 1 and has

CIA[n](0,n) —— CA[n](0,n)
dl Al
&Dn—l P 5 Dn—l

(i) inner horns: For 0 < k < n, €Af[n] — CA[n] is full on all arrows except those from O to n and
has
CA¥[1](0,n) —— CA[n](0,n)
Al Al
|—|7il_1/k ¢ 5 |:|i’l—1
(iii) outer horns: CA"[n] <= CA[n] is full on all arrows except those from O to n — 1 or n and has

CA"[n](0,n —1) —> CA[n](0,n 1) CA"[1n](0,n) —> CA[1](0,n)
AUl AUl Al Al
&Dn—2 ¢ Dn—Z |—|g—1/n—1 ¢ 5 Dn—l

Similarly, €A [n] & CA[n] is full on all arrows except those from 0 or 1 to 11 and has

CA[n](1,n) —— GCA[n](1,n) CA[n](0,n) —— CA[n](0,n)
Al Al Al Al
J2 > ]2 |—|61—1/1 . > 1

PROOF. For (i), the only non-degenerate simplex of A[#] that is not present in dA[n] is the top
dimensional n-simplex. Consequently, the only atomic 7-arrows T that are not present in €dA[n] are
those with T" = [0, 1]. The atomic r-arrows must also have T? = {0, 1} and consequently correspond
precisely to those r-simplices of the cube [0"1 that contain both the first and last vertex. Thus, we

see that € A[n](0, 1) is isomorphic to the cubical boundary JC1" 1.
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For (ii), the only non-degenerate simplex of dA[n] that is not present in an inner horn AX[n] is
the k-th face of the top dimensional simplex. Consequently, the only atomic r-arrows T*® that are not
present in CAM[n] but are present in €JA[n] are those with T" = [0, n]\{k}. The acomic r-arrows
must also have T = {0,711} and consequently correspond precisely to those -simplices of the cube
[0"1 that contain both the first vertex and last vertex of the k = 0 face of the cube ("1, Thus, we
see that €AK[1](0, 1) is isomorphic to the cubical horn I_Irll_l’k.

For (iii), the only non-degenerate simplex of d A[n] that is not present in the outer horn A"[n] is
the n-th face of the top dimensional simp]ex. Consequent]y, the only atomic r-arrows 1 ® that are not
present in €A"[1] but are present in €dA[n] are those with T" = [0, n — 1]; note that the source of
such 7-arrows is 0 and the target is 1—1. The atomic r-arrows must also have TO = {0,n—1}, and so, as
in the proof of (i), this identifies the inclusion €A"[1](0, n—1) = €A[n](0,n—1) as JI""2 — "2,
The subcomputad €A"[n] is also missing non-atomic r-arrows that are present in €JA[n], namely
those composites of the unique arrow from 1 — 1 to 1 with the atomic r-arrows from 0 to 1 — 1 just
described. Such non-atomic r-arrows are represented by sets of inclusions with T = {0,71— 1,1} and
T" = [0, n] and thus are found in the 1 =1 = 1 face of the cube (0", Thus, we see that €A"[12](0, n)
is isomorphic to the cubical horn I_Ig_l’n_l. O
6.3.8. DEFINITION (bead shapes). We call the acomic r-arrows of €A[n](0, 1) that are not present in
€dA[n](0,n) bead shapes. By Lemma 6.3.7, an r-dimensional bead shape corresponds to a sequence
of subsets

0,n=TcTlc---cT1cT =[0,n] (63.9)

and is non-degenerate if and only if each of the inclusions is proper.

Putting this together we can now explicitly present the simplicial computad structure on the ho-
motopy coherent realization of any simplicial set.

6.3.10. THEOREM (homotopy coherent realizations, explicitly). For any simplicial set X, the homotopy
coherent realization €X is a simplicial computad in which:

® The objects of €X are the vertices of the simplicial set X.

® The atomic 0-arrows are non-degenerate I-simplices of X, with the initial vertex of the simplex defining
the source of the 0-arrow and the final vertex of the simplex defining the target of the 0-arrow.

The atomic 1-arrows are non-degenerate n-simplices of X, with the initial vertex of the simplex defining
the source of the 0-arrow and the final vertex of the simplex defining the target of the 0-arrow.

The atomic k-arrows are pairs comprised of a non-degenerate n-simplex in X together with a k-dimensional
bead shape in €A[n]. This source of this k-arrow is the initial vertex of the n-simplex, while the target
is the final vertex of the n-simplex, and the arrow is non-degenerate if and only if the bead shape is non-

degenerate.

Note that the description of atomic k-arrows subsumes those of the atomic 0-arrows and atomic
l-arrows as there is a unique 1-dimensional bead shape in €A[n] and a 0-dimensional bead shape exists
only in the case 1 = 1. The data of a non-degenerate atomic k-arrow from x to y in €X is given by
a “bead,” that is a non-degenerate n-simplex in X from x to ¥, together with the additional data of a
“bead shape”: sequence ofproper subset inclusions (6.3.9), which Dugger and Spivak refer to as a “ﬂag
of vertex data” [36]. Non-atomic k-arrows are then “necklaces,” that is strings of beads in X joined
head to tail, together with accompanying “vertex data” for each simplex.
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PROOF. As observed in the proof of Lemma 6.3.5, using the canonical skeletal decomposition of
the simplicial set X

I JA[n] —— 11 Aln]

Xn\LnX X\l X
@ — skg X < e sk,_1 X —— sk, X ¢ e colim = X

the homotopy coherent realization €X is constructed iteratively by a process that adjoints one copy
of €A[n] along a map of its boundary €JA[n] for each non-degenerate n-simplex of X. Thus, each
atomic k-arrow arises from a unique pushout of this form, as the image of an atomic k-arrow in CA[n]

that is not present in the subcomputad €JA[n]. O

6.3.11. REMARK. From the description of Theorem 6.3.10, the subcomputad inclusions €X — QY
induced by monomorphisms of simplicial sets X < Y are easily understood: an r-arrow in €Y lies in
CX if and only if each bead in its representing necklace in Y lies in X. This generalizes the description
given to subcomputads of homotopy coherent simplices in Lemma 6.3.5.

Our convention is to identify 1-categories with their nerves. The homotopy coherent realization
of these simplicial sets then produces a simplicial computad. But we have already encountered a way
to produce a simplicial computad from a 1-category: namely via the free resolution of Definition 6.2.1.
This would lead to a potential source of ambiguity were it not for the happy coincidence that these
two constructions are isomorphic:®

6.3.12. PROPOSITION (free resolutions are homotopy coherent realizations). For any I-category, the free
resolution is naturally isomorphic to the homotopy coherent realization of its nerve.

PROOF. Proposition 6.2.5 and Theorem 6.3.10 present both simplicia] categories as simp]icial com-
putads. We will argue that they have the same objects and non-degenerate atomic k-arrows.

Both have the same set of objects, the objects of the 1-category coinciding with the vertices in its
nerve. Atomic O-arrows of the free resolution are morphisms in the category; while atomic 0-arrows
in the coherent realization are non-degenerate 1-simplices of the nerve — these are the same thing.
Atomic non-degenerate 1-arrows of the free resolution are sequences of at least two morphisms (en-
closed in a single set of outer parentheses), while acomic 1-arrows of the coherent realization are non-
degenerate simplices of dimension at least two — again these are the same. Finally a non-degenerate
atomic k-arrow is a sequence of 11 composable morphisms with (k — 1) non-repeating bracketings; this
non—degeneracy necessitates 7 > k. This data defines a n—simplex in the nerve together with a non-
degenerate atomic k-arrow in €A[n](0, 1), i.c., an atomic k-arrow in the coherent realization. ]

We now exploit the description of the subcomputads of the homotopy coherent n-simplex in
Lemma 6.3.7 to prove a key source of examples of quasi-categories, a result first stated in this form in

(30].

*Note the isomorphism between the homotopy coherent realization of the n—simplex and the free resolution of the
ordinal category [1] is tautologous The left Kan extension along the Yoneda embedding is defined so as to agree with
CA[e]: A — sSet-Cptd on the subcategory of representables. Many arguments involving simplicial sets can be reduced
to a check on representables, with the extension to the general case following formally by “taking colimits.” This result,
however, is not one of them since we are trying to prove something for all categories and the embedding Cat — sSet does

not preserve colimits.
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6.3.13. THEOREM. The homotopy coherent nerve NS of a Kan-complex enriched category S is a quasi-
category.

PROOF. By adjunction, to extend along an inner horn inclusion A¥[n] = Aln] mapping into the
homotopy coherent nerve NS is to extend along simplicial subcomputad inclusions CAM[n] = CA[n]

mapping into the Kan complex enriched category S. By Lemma 6.3.7(ii), the only missing r-arrows
are in the mapping space from 0 to 7, so we are asked to solve a single lifting problem

CA (0, n) = My —— Map(Xy, X,,)

-7
.
-
-
—
—
-

CA[n](0,n) = O"1
Cubical horn inclusions can be filled in the Kan complex Map(Xj, X},), completing the proof. O

The same techniques can be used to prove a result along similar lines.

6.3.14. LEMMA. If Q: 8 — T is a simplicial functor between Kan complex enriched categories that is sur-
jective on objects and defines a local trivial fibration then NQ: NS =» NT is a trivial fibration of quasi-
categories.

PROOF. Exercise 6.3.iv. U

6.3.15. REMARK. More genera”y, the homotopy coherent nerve carries DK—equivalences between Kan
complex enriched categories to equivalences of quasi-categories. This result follows from Lemma 6.3.14
by applying Ken Brown’s lemma C.1.10 in the context of the Bergner model structure of Digression

6.1.15. An alternate direct proof of this fact appears as Proposition 16.2.18.
We conclude by giving a precise meaning to the notion that motivated this chapeer.

6.3.16. DEFINITION. Let X be a simplicia] set. A homotopy coherent diagram of shape X in a Kan
Complex enriched category Sisa simplicial functor €X — & from the homotopy coherent realization

of Xto S.

Exercise 6.2.i reveals that there are two possible notions of natural transformation between homo-
topy coherent diagram. We opt for the more structured of the twor

6.3.17. DEFINITION. Let F,G: €X = & be homotopy coherent diagrams of shape X in a Kan com-
plex enriched category S. A homotopy coherent natural transformation a: F = G is a homotopy
coherent diagram of shape X X 2

D¢

0| X

C¢Xx2) > S8

1] /
(09¢
that restricts to F and to G along the edges of the cylinder.
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These notions are originally due to Boardman and Vogt in [20] who observed that homotopy coher-
ent natural transformations do not define a the morphisms of a 1-category. Instead, as they observed,
they define the 1-arrows of a quasi-category.

6.3.18. COROLLARY. Homotopy coherent diagmms of shapc X valued in a Kan complcx enriched category
S and homotopy coherent natural transformations between them define the objects and 1-arrows of a quasi-

category Coh(X, S) whose n-simplices are homotopy coherent diagram €&(X X A[n]) — S.
PROOF. By adjunction € o N, the simplicial set Coh(X, S) is isomorphic to (RS)X. As the quasi-

categories form an exponential ideal in the category of simplicial sets, this follows immediately from

Theorem 6.3.13. O

6.3.19. REMARK (all diagrams in homotopy coherent nerves are homotopy coherent). Corollary 6.3.18
explains that any homotopy coherent diagram €X — & of shape X in a Kan complex enriched cat-
egory S transposes to define a map of simplicial sets X — NS valued in the quasi-category defined
as the homotopy coherent nerve of S. While not every quasi-category is isomorphic to a homotopy
coherent nerve of a Kan complex enriched category, one consequence of the internal Yoneda lemma,
to be proven much later, is that every quasi-category is equivalent to a homotopy coherent nerve. This
explains the slogan introduced at the beginning of this chapter and the title for this part of the book:
all diagrams in quasi-categories are homotopy coherent, thus quasi-category theory can be understood
as “homotopy coherent category theory.”

Exercises.

6.3.i. EXERCISE. Compare the simplicial computad structure of the homotopy coherent w-simplex as
given by Theorem 6.3.10 with the simplicial computad structure of Lemma 6.2.9.

6.3.ii. EXERCISE. Let | be a free 1-category on an underlying graph G < | of “atomic” arrows. Re-
garding the graph G as a 1-skeletal simplicial set, show that the homotopy coherent realization €G is
isomorphic to ], regarded as a simplicial category with discrete hom-sets.

6.3.iii. EXERCISE. Let S be a Kan complex enriched category. Show that the homotopy category of the
quasi-category NS, characterized by Lemma 1.1.12, is equiva]ent to the homotopy category of a Kan
Complex enriched category described in Digression 6.1.15.

6.3.iv. EXERCISE. Prove Lemma 6.3.14.

6.4. Homotopy coherent realizations of joins

We've just discovered that a simplicial set indexed diagram X — NS in the quasi-category defined
as the homotopy coherent nerve of a Kan complex enriched category S represents a homotopy coher-
ent diagram €X — . Similarly, by Proposition F.2.1, a cone X * A[0] — NS under an X-shaped
diagram corresponds to a homotopy coherent diagram (X * A[0]) — S. By Proposition 4.3.2, the
cone defines a colimit cone in the quasi-category NS just when it represents an initial element in the
quasi-category of cones. In the model of Proposition F.2.1(v), the Y-shaped generalized elements of
the quasi-category of cones correspond to homotopy coherent diagrams €(X * Y) — S. Thus, to
calculate limits and colimits in homotopy coherent nerves, we are motivated to study homotopy co-
herent realizations of joins. In this section, we establish an alternate characterization of the simplicial
computad €(X % Y) that we exploit in Theorems 7.4.2 and 16.4.20 to characterize limits and colimits
in homotopy coherent nerves.
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To explain the idea of this characterization, note that the join of the unique maps !: X — A[0]
and |1 Y — A[0] defines a canonical map X * Y — A[1] with the property that the fiber over
the vertex 0 is X and the fiber over the vertex 1 is Y. Applying the homotopy coherent nerve we
may regard the simplicial category €&(X * Y) as an object in the category SS€t—Cptd/2, the discrete
simplicial category 2 arising as the homotopy coherent nerve of the 1-simplex. Since € is a left adjoint,
once again €X is the fiber over the object 0 and €Y is the fiber over 1 in 2. In Theorem 6.4.8 we will
show that the simplicial computad €(X * Y) decomposes as a pullback of simplicial compurtads

C(X * Y)
X! C(1xY)
\
E(X % A[0]) C(A[0] * Y) (6.4.1)

(1% A[0]) K//@$;>
2

In the proof, it will be convenient to identify €(X % A[0]) and €(A[0] % Y) as objects of categories

we now introduce.

6.4.2. DEFINITION. Let sSet—Cat/E and SS€t—Cat/T2 denote the full subcategories of the slice category
SS€t—Cat/2 sp:mned by those simplicia] categories A — 2 whose fiber over 0 or 1, respective]y, is
isomorphic to 1. Define

sSet—Cptd; = sSet—Cat/E NsSet-Cptd  and sSet—Cptd/; = sSet—Cat/E N sSet-Cptd.

IfAe SSet—Cat/;, we write “T” for the unique object in the fiber over 1, and if A € sSet—Cat/LZ,
we write “L” for the unique object in the fiber over 0.

6.4.3. OBSERVATION. For any A € SSet—Cat;Z and B € SS(Zt—Cat/Ji, the fiber of A Xy B over 0 is
isomorphic to A, while the fiber over 1 is isomorphic to B. It follows that we can give the following
simplified concrete description of A X5 B. Its

® objects are the disjoint union of the objects of A and B,

® hom spaces are defined by

Axy B@,a) = A@,a) Axy Bb,V) = B0b,V)
A x, Bla,b) = Ala, T) x B(L, b),

® with composition defined in the manifest way in A or in B.

Over the next series of lemmas we give explicit descriptions of the functors that we will demon-
strate are naturally isomorphic and establish some properties that will facilitate the proof.

6.4.4. LEMMA.

(i) There is a canonical bifunctor
G (g
sSet x sSet —— sSet-Cptd P

which preserves connected colimits in each variable separately.

171



(ii) There is a canonical bifunctor

E(—*A[O])XE(A

[0]%-) ~Xo-
sSet X sSet sSet—Cptd/; X sSet—Cptd/Z 2 sSet-Cat,

(iii) The projection maps displayed in (6.4.1) induce a comparison map
Dy y = (C(X!), C(! % Y)): C(X x Y) — (X x A[0]) >2f CA[0] % Y)

natural in X and Y, defining the components of a natural transformation

E(=%-)
/\
sSet X sSet o sSet-Cat,

C(—xA[0])X2E(A[0]*~)

PROOF. To see the functoriality of the construction in (i) note that a pair of simplicial maps
f: X = X" andg: Y — Y’ gives rise to a commutative triangle of simplicial categories

X % Y) —2 5 (X’ % Y)

By Lemma 6.3.4, this diagram lies in the full subcategory sSet-Cptd — sSet-Cat of simplicial com-
putads and computad morphisms. Finally, since the join preserves connected components in each
variable, the left adjoint € preserves all colimits, colimits in the slice category SSet—Cptd/2 are cre-
ated by the forgetful functor to sSet-Cptd, and colimits in sSet-Cptd are created in sSet-Cat — this
last fact by Lemma 6.1.7 — the bifunctor of (i) preserves connected components in each variable, as
claimed.

The bifunctor in (ii) is constructed by fixing one of the variables in the bifunctor of (i), yielding
simplicial categories €(X x A[0]) € SSet—Cptd/TZ and C(A[0] % Y) € sSet—C’ptd/J‘Z respectively, and
then composing with the product bifunctor — X — in sSet-Cat . Later, in Lemma 6.4.5, we will
observe that this functor actually takes values in SS€t—Cptd/2 as well.

Finally, the components of the comparison natural transformation of (iii) are defined by applying
the bifunctor €(— % =) to the unique maps 1 Y — A[0] and 1 X — A[0]. Naturality of @ follows
casily from the bifunctoriality established in (i). OJ

The properties claimed for the domain functor of @ in (i) also hold for the codomain functor
constructed in (ii) as a consequence of the following lemma:

6.4.5. LEMMA. The (fibered) product bifunctor on sSet-Cat 1 Testricts to give a bifunctor

T L —X2—
sSet-Cptd PR sSet-Cptd o sSet-Cptd P
which preserves connected colimits in each variable separately.

PrROOF. We first show that for any A € SSet—Cat/E and B € SSet—Cat/E the fiber product
AXy B insSet-Cat y lies in the subcategory SSet—Cptd/Z. Recall from Lemma 6.1.7 that the category

op

p op
sSet-Cptd is defined as the intersection of sSet-Cat and QphAePi in Cat™ . The category sSet-Cat
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is closed in CLZIEA“’:‘i under all limits and in particular under fibered products, and limits in C'EltA“;’i are
constructed objectwise in Cat. So our task is to show that the fiber products being constructed here
lie in the subcategory Gph <= Cat.

IfAe sSet—Cat/E this means that each of the graphs (A, in the corresponding diagram

As: Aoy = Gph — Cat

of free categories has the property that the fiber of A, — 2 over 1 is L. Dually of course to say that
B e SSEt—Cat/Ji means that each of the graphs 8B, has the property that the fiber of B, — 2 over
0is 1. So dropping the subscripts to declutter notation our task is now to show that if A — 2 and
B — 2 are objects of Gph 1 with the property that the fibers of the former over 1 and the latter over
0 are 1, then A Xy B € Caty lies in the subcategory gph/z.

To begin, recall from Observation 6.4.3 that the fiber of A X5 B over 0 is A while the fiber
over 1is B. These are both free categories and the inclusions AU B < A X, B preserve atomic
arrows. Next observe that the arrows in A X, B that are not in one of the fibers have the form
(f,9): (a,L) = (T,b) witha € Aand b € B, and are casily seen to be atomic if and only if f is
atomic in A and g is acomic in B. This proves that the simplicial category A X5 B is a simplicial
computad: given an arrow (f,g): (4, L) = (T, b), factor f = f, 0o fyandg = g, 0 -+~ 0 gy in the

free categories generated by the graphs A and B to obtain the manifest atomic decomposition

(f/g) = (idT/gm) 00 (idT/gZ) °© (fn/gl) ° (fn—lr idJ_) e 0 (fl/ idJ_)'
This proves that the codomain of the fiber product bifunctor of the statement restricts to sSet-Cptd P

[t remains to argue that this functor preserves connected colimits in each variable. First note that
the subcategories SSet—Cat/; and sSet—Cat/J‘z introduced in Definition 6.4.2 are closed in SSet—Cat/Z
under connected colimits. One way to see this is to observe that the funcror (-)!: sSet-Cat,, —
sSet-Cat that carries a simplicial category over 2 to its fiber over 1 has a right adjoint. This colimit-
preserving functor then carries a connected colimit ofdiagrams in sSet—Cat/; to a connected colimit
of a diagram in sSet-Cat constant at 1, and this colimit is again . By Lemma 6.1.7 it follows that
SSet—Cptd/; and sSet—Cptd/J‘Z are similarly closed in Sset—Cptd/Z under connected colimits.

Op.
By Lemma 6.1.7 again, colimits in sSet-Cptd 1p are computed in Qph/ch‘. By the argument just
Op
made the same can be said for connected colimits in SSet—Cptd/; and SS€t—Cptd/;. Since gphACPi is a
Up‘
presheaf category, its slice Qph/zep' is cartesian closed, and thus the product functor — X5 — is the left

adjoint of a two-variable adjunction, and thus preserves colimits in each variable separately. O

Arguing along the lines of Lemmas 6.4.4 and 6.4.5, we can show that the components of the com-
parison natural transformation @ are computad morphisms.
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6.4.6. COROLLARY. The natural transformation introduced in Lemma 6.4.4 restricts along sSet-Cptd 2 €

SSet—Cat/Z to define a natural transformation

C(—%—)
/\
sSet X sSet Lo sSet-Cptd »

C(—*A[0])x2E(A[0]*-)

PROOF. The component @y y of the comparison natural transformation is induced by a pair of
simplicial computad morphisms €(X*!) and €(! * Y) under the universal property of the fibered
product &(X * A[0]) X €(A[0] * Y) in sSet-Cat ,. But since Lemma 6.4.5 tells us that SSet—Cptd/Z

is closed in sSet-Cat , under this fibered product, we may infer that the induced morphism ®y y is
actually a simplicial computad morphism as claimed. O

We're now prepared to show that the natural transformation defined in Corollary 6.4.6 is a nat-
ural isomorphism. We demonstrate this first in the case where X and Y are simplices and then take
advantage of the cocontinuity of our two bifunctors to extend to the general case. To streamline our
notation in what follows we let A[-1] denote the empty simplicial set.

6.4.7. PROPOSITION. Forn,m > —1 the simplicial computad morphism

C(A[n] x A[m]) M C(A[n] » A[0]) x5 C(A[0] % A[m])
is an isomorphism.

PrROOE. Since A[n] * A[m] = A[n + 1 + m], the domain of @, ,,, := Dy A is the homotopy
coherent simplex €A[n+1+m], while the codomain is CA[n+1] X, CA[m +1]. We shall simplify our
notation in the following argument by identifying €CA[m+1] with the full subcategory of €A[n+1+m]
spanned by the objects 7, ..., + 1 + m. Under these identifications, €A[n + 1 + m] is fibered over
2 by the unique functor that acts on objects to map 0, ... ,n = 0andn +1,..,n+1+m 1, and
the full subcategories €A[n + 1] and €A[m + 1] are fibered by restricting that functor. In particular,
®D,, ,, is bijective on objects.

With respect to these presentations, the component ®@,, ,,, may be described in terms of a pair of
simplicial operators @, B: [n + 1+ m] — [n + 1 + m] defined by

Nt i<mn, N _Jn j<n
a(l)_{n+1 izn+1 ﬁ(])_{f jzn+1.

Note that the image of & lies in the full subcategory €A[n] < C€A[n +1+m] while the image of 8 lies
in the full subcategory €A[m] — C€A[n + 1 + m]. Hence the codomains of this pair of maps restrict
to define a simplicial computad morphism

D, = (Ca,Ch): CAln +1+m] —— CA[n + 1] X, CA[m + 1]

and it’s evident from the construction given in Lemma 6.4.4(iii) that the resulting morphism is Dy -

The objects of €A[n + 1] X5 €A[m + 1] are pairs of integers of the form (i,7) for 0 < i < nor
(n+1,j)forn+1 <j<n+1+m. Recall from Definition 6.2.6 that the 0-arrows in CA[n + 1 + m]
from k to € correspond to subsets T C [k, ] = {t € w | k < t < €} containing both elements.
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Consequently, the 0-arrows in €A[n + 1] X, CA[m + 1] correspond to pairs (S, T) of O-arrows in
CA[n + 1 4+ m] of one of the following three forms:
e (5,T): (i,n) = (i’,n) in which case S: i — i’ is a 0-arrow and T = {n}: n — n is the identity,
e (5,T): (n+1,j) » (n+1,j’) inwhichcase T: j = j’ isa0-arrowand S = {n+1}: n+1 - n+1
is the identity, or
e (5T): (i,n) = (n+1,j), in which case S: i = n + 1 is a 0-arrow and T: n — j is a 0-arrow.
Given such a 0-arrow (S, T) in €A[n + 1] X €A[m + 1], it is casily checked for each of the cases
catalogued above, that the set

S®T = (S\in +1}) U (T\{n)

defines a 0-arrow in €A[n + 1 +m], which goes from i to 7’ in the first case, from j to j” in the second,
and from i to j in the third.

Note further, by construction, that @, ,,(S & T) = (a(S), B(T)) = (S, T). In fact, recalling that
the simplicial operators @, f: [n + 1 + m] — [n + 1 4+ m] act on O-arrows in €A[n + 1 + m] by
taking their direct image, it is easy to verify that every 0-arrow U in €A[n + 1 + m] coincides with
U = a(l) ® B(T). In this way, we sce that S @ T is the unique 0-arrow of €A[n + 1 + m] that is
mapped to the 0-arrow (S, T) in €A[n + 1] X, CA[m + 1]; thus @, ,,, acts bijectively on 0-arrows.

Lemma 6.2.8 reveals that the hom—spaces in the homotopy coherent simp]ices are nerves ofposets;
in particular, the 7-arrows in these simplicial categories are uniquely determined by the ordered se-
quences of 0-arrows that comprise their vertices. Since a, B, and @ all preserve the subset inclusion
ordering between 0-arrows, we may infer from the fact that ®@,, ,,, acts bijectively on 0-arrows that it
acts bijectively on r-arrows as well. Thus, we conclude that @, ,, defines an isomorphism of simplicial
computads, as required. O

6.4.8. THEOREM. For any simplicial sets X and Y, the simplicial computad morphism
Dy y: E(X *Y) —— E(X % A[0]) X CA[0] % Y)

is an isomorphism.

PROOF. For any simplicial set Z, let el(Z) denote its category of elements, the comma category
associated to the cospan
el(Z)
N
1 & A
N
sSet

It follows from the coYoneda lemma that we may canonically present Z as a colimit of the diagram

dy: l(Z) =2 A —2 sSet

of standard simplices; see [86, 6.5.7]. Indeed, we may express Z as a connected component of standard
simplices by means of the following trick. First, we form a connected category el(Z), by adjoining
an initial object L to el(Z) and extend d to a diagram on el(Z), by mapping L to the initial object
A[-1] = @ in sSet. Since A[-1] is initial, any cocone under the original diagram extends uniquely
to a cocone under the extended diagram, and consequently the colimits of the original and extended
diagrams coincide.
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In this way, the simplicial sets X and Y may be expressed as connected colimits of diagrams
dy: el(X), — sSet and dy: el(Y), — sSet of standard simplices. Composing these diagrams

with the natural transformation @ we obrtain a natural transformation

C(—*-)
/\
(X)), X el(Y), — U Set x sSet 1o sSet-Cptd,, (6.4.9)

C(—xA[0])X2E(A[0]*-)

whose components are instances of the morphisms that Proposition 6.4.7 demonstrates are isomor-
phisms.

From Lemma 6.4.4 and Lemma 6.4.5 we know that the domain and codomain functors of ®
preserve connected colimits in each variable. Consequently, the colimit of the domain diagram of
(6.4.9) is isomorphic to €&(X * Y), while the colimit of the codomain diagram is isomorphic to
C(X x A[0]) X5 €(A[0] % Y). Further, as a consequence of naturality of @, the morphism induced by
(6.4.9) between these colimits is isomorphic to the component @y y, which is therefore an isomorph-
ism as postulated. O

Exercises.

6.4.i. EXERCISE. Use Theorem 6.4.8 to enumerate the data required to define a simplicial functor
F: &(X % Y) — S restricting to a given pair of homotopy coherent diagrams Fy: €X — S and
Fy: €Y — 8. The exercise heralds applications of Theorem 6.4.8 that appear as Proposition 7.4.4.

6.5. Hom spaces in quasi-categories

Recall from Definition 3.4.9 that the internal mapping space between a pair of elementsa,b: 1 =3
A in an co-category is the comma co-category associated to this cospan, which may be constructed by

the following pullback diagram

Hom 4(a,b) —2— A2

(m,po)l : l(PlzPO)

1—— AXA
(b,a)

Proposition 3.4.10 reveals that internal mapping spaces are always discrete co-categories.

In the case where A = NA is a quasi-category defined, via Theorem 6.3.13, as the homotopy
coherent nerve of a Kan complex enriched category (A, it is natural to ask whether the Kan complex
Homg, #(a, b) coincides with the Kan complex A(a, b), which we refer to as the external mapping
space between the objects 4,b € A. The aim in this section, achieved in Corollary 6.5.12, is to prove
that these Kan complexes are equivalent. This result shows that the internal mapping space “has the
correct homotopy type” to capture the mapping spaces in a Kan complex enriched category.

Our proof of this equivalence relates these hom-spaces to two additional models for the hom-space
between a pair of elements in a quasi-category that we now introduce.

6.5.1. DEFINITION (right and left hom-spaces). Given elements a4, b in a quasi-category A, define the
right hom-space Homﬁ(a, b) froma to b to be the simplicial set with n1-simplices given by n+1-simplices
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o0 in A with the property that the final vertex is b and the initial face is degenerate at a.

A[n] ——— A[0]

6n+1l l

A[n] —<— HomX (a, b) 9 Aln+1] —o— A
{n+1}T /
A[0]

A simplicial operator a: [m] — [n] acts by restriction along the map ax A[0]: A[m+1] — A[n+1].

Dually, define the left hom-space Hom%(a, b) from a to b to be the simplicial set with n-simplices
given by n+ 1—simplices o in A with the property that the initial vertex is @ and the final face is
degenerate at b.

A[0]
{0} X
A[n] —Z— Homb(a, b) o Aln+1] —o— A

A simplicial operator a: [m] — [n] acts by restriction along the map A[0] % a: A[m+1] — A[n+1].

Alternatively, the left and right hom-spaces can be constructed as pullbacks of the slice quasi-
categories defined in Proposition 4.2.5.

6.5.2. LEMMA. Given elements a,b in a quasi-category A, the left and right hom-spaces arise as fibers of the
canonical projections from the slice quasi-categories:

Homk (a, b)) —— 9A Hom® (a,b) —— Ay,
i I i I
A[0] — A Al0)] ——— A

Consequently, when A is a quasi-category, both Hoqu(a, b) and Homﬁ(a, b) are Kan complexes.

PROOF. The characterization of’ Homi(u, b) and Homﬁ(a, b) as fibers follows directly from trans-
posing Definition 6.5.1 across the adjunction of Proposition 4.2.5, and is left to the reader.

To see that Homi(a, b) is a Kan complex when A is a quasi-category, we first show that the pro-
jection TT: YA - Ais a left fibration, a map with the right lifting property against the left horn
inclusions AX[n] = A[n] forn > 1and 0 < k < n. This lifting property follows by adjunction; the
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lifting problem below-left transposes to the lifting problem below-right

Af[n] —<— 9A A[0] x AF[n] U A[n] =55 A
A Aln+1] T
[ 7L - [
Aln] —— A Aln + 1]

under the “Leibniz adjunction” associated to the join-slice adjunction of Proposition 4.2.5; see Propo-
sition C.2.9(ii). Here A[0] % AF[n] Uan+1] Aln] is the simplicial subset of A[n + 1] formed by gluing
the final 8%-face A[n] to A[0] % Af[n]. As observed in Lemma D.2.11, this produces the inner horn
inclusion A**1[n +1] — A[n+1]. Since Aisa quasi-category, the right-hand lifting problem can be
solved, and hence so can the left-hand one.

By pullback stability of lifting properties (see Lemma C.2.3), the map Homi(u, b) - A[0] is
also a left fibration; in particular HomILq(a, b). Additionally, this is enough to show that the homotopy
category of the quasi-category Hom%(a, b), characterized in Lemma 1.1.12, is a groupoid: lifting against
left horn inclusions A°[2] < A[2] shows that every arrow admits a left inverse, which then admits a
further left inverse. By Corollary 1.1.15 we conclude that Homi(a, b) is a Kan complex.

Dually, the projection 7t: Aj, = A is a right fibration, and so Homﬁ(a, b) is a Kan complex as
well. O

We now show that the left and right hom-spaces are equivalent to the internal mapping spaces of
a quasi-category.

6.5.3. PROPOSITION (relating hom-spaces). Suppose a and b are elements of a quasi-category A. Then there
exist canonical equivalences of Kan complexes

Hom[A(a, b) —— Homy(a,b) «—— Homlj(a, b)

One way to see this is to outsource the work to Appendix D. Corollary D.6.6 proves for any element
x:1 — A of a quasi-category A, that there are canonical equivalences A, = Hom4(A, x) and
YA = Hom,(x, A) over A. These then pull back over another element y: 1 — A to define the
canonical equivalences postulated in Proposition 6.5.3. However, the Corollary D.6.6 relies upon the
general equivalence between slice and comma quasi-categories of cones proven as Proposition D.6.5,
which in turn relies upon the equivalence between the join and fat join constructions sketched in
Proposition 4.2.7 and proven in Proposition D.6.4. Rather than take such a circuitous route, we give
a direct proof, via a mild reinterpretation of an argument first developed by Dugger and Spivak (35,
§4.3].

PROOF. The two equiva]ences are dual under the involution that reverses the ordering of the ver-
tices in every simplex in a simplicial set, so we focus on the latter. For a simplicial set U, a map
U — Homy(a, b) corresponds to a cylinder U X A[1] — A whose endpoints are constant at @ and
b, while a map U — Homlj(a, b) corresponds to a map U % A[0] = A where the subcomplex U is
mapped to the vertex @ and the final vertex is mapped to b. This observation leads us to consider the
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following pushouts

U—— A[0] U+ U —* A[0] + A[0] u—— A[0]
A[0] x U — TLUu U x A[1] —> u U x A[0)] — ZRU
(6.5.4)

Note that all three simplicial sets LU, zU, and ZRU have exactly two vertices, which we call — and
+, and moreover every non-degenerate 1-simplex has source — and target +, so we may regard these
constructions as defining objects in the category sSet, , = AlOI+AIV5 St of doubly-pointed simplicial
sets.

As noted above, the simplicial sets LU, U, and ZRU describe the “shapes” in a doubly-pointed

simplicial set A that correspond to U-shaped diagrams in Hom%(a, b), Hom 4(a, b), and Homﬁ(u, b),
a relationship that is codified by the following of adjunctions:

ZL Yy ZR
e~ e~ e~
sSet,, L1 sSet sSet,, L sSet sSet,, L sSet (6.5.5)
HomL Hom HomR

It follows that we can define the natural comparison Homi(a, b) — Hom,(a,b) « Homﬁ(a, b) by
taking the mates of the natural transformations
vL
Z or N
sSet —r.— sSet, ,
N
vR
under these adjunctions. As left adjoints, both of the functors £ and YR are left Kan extensions of
their restrictions along the Yoneda embedding &: A < s8et, so it suffices to specify the natural
transformation vg: £ = LR on the standard simplices and then left Kan extend up to the category
of simplicial sets.
With this in mind, observe that there exist order preserving maps

(1] % [1] —L [ +1] (1] % [1] =% [ +1]
(#,0) ———— 0 (1,0) ————— i
G1) ——i+1 1) ———>n+1

Taking nerves, these define families of maps, natural in [n] € A, which induce the desired natural
transformation components upon passing to the quotients:

Aln+1] <o Al x A[1] =85 A[n +1]

.
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By definition, n-simplex in Hom 4(a, b), HomILq(a, b), or Homﬁ(u, b) correspond to maps from
YA[n], ZLA[n], or ZRA[n], respectively, to {a, b): A[0] + A[0] = A in SSet*,*. The corresponding
component of the mates Uy : Hom® — Hom and vz : Hom® — Hom acts on n-simplices by pre-
composing with the maps v} : L[n] — Y LA[n] and VR ZA[n] = YRA[n]. Since these maps are
epimorphisms, the comparisons Homﬁ(a, b) = Homy(a, b) < Homﬁ(ﬂ, b) are injective.

The technical heart of the proof'is the following lemma, which shows that vg: ZA[e] — YLA[e]
and vg: ZA[e] — ZRA[e] define pointwise Joyal weak equivalences between Reedy cofibrant cosim-
plicial objects. Then Lemma C.5.22, which encodes a general Reedy category theory trick, tells us
that when we then map from such a natural transformation into a fibrant object (a,b): A[0] +
A[0] — A in the slice Joyal model structure on sSet, ,, the resulting map of simplicial sets, in chis
case Up: Homﬁ(a, b) — Homy(a,b) or Dg: Homlj(a, b) — Homy(a, b), is then an equivalence of
quasi-categories. 0]

6.5.6. LEMMA. The natural transformations
TLA[e]
A Rop
A xAle] sSet,,
Nwa
TRA[e]
are pointwise Joyal weak equivalences between Reedy cofibrant cosimplicial objects.

A[0l+AIOVs Set . and con sequently

PROOF. Recall the category sSet, , is defined as a slice category
inherits a sliced version of the Joyal model structure of Digression 1.1.29; a bisimplicial set is cofibrant
just when its two chosen basepoints are distinct. To prove that YLA[e], ZRA[e], and ZA[e] are Reedy
cofibrant, we appeal to Lemma C.5.20, which tells that we need only verify that the equalizer of the
face maps 82,61 ZA[0] = ZA[1], &%, 6% : ZRA[0] =3 ZEA[1], and 6%, 61 : ZRA[0] = ZRA[1] are
the initial object, and in each case we compute that these equalizers are isomorphic to the simplicial
set dA[1], as desired.

Now to see that the components v : ZLA[n] — TA[n] and v} ZA[n] — ZRA[n] are weak
Joyal equivalences, we appeal to the 2-0f-3 property and verify that the canonical endpoint-preserving
maps LLA[n] — A[1], ZRA[n] — A[1], and ZA[n] — A[1], which commute with these maps, are
weak Joyal equivalences. Hence, YLA[e], ZRA[e], and ZA[e] can be understood as three cosimplicial
resolutions of A[1] € sSet, ,. These arguments are originally due to Dugger and Spivak in [35, 9.3-4].

We start by demonstrating that YEA[n] — A[1] is a weak categorical equivalence; the argument
for ZRA[n] — A[1]is dual. Write A[nlj|iz1 for the quotient of A[n] which collapses the face spanned
by the vertices {0 --- i} to a point and the face spanned by the vertices {i +1--- 11} to a point. This
simplicial set has two vertices and has a non-degenerate k-simplex for each non-degenerate k-simplex
of A[n] whose image surjects onto A[1]. As usual, we identify non-degenerate simplices in A[n] with
their vertices {7y ... Ug}. Simplices with vy < 7and v > i correspond bijectively to the non-degenerate
simplices of A[n];;41 so we assign the same labeling to the latter. Note that YEA[n] == Aln + 1op-

To prove that v} : YEA[n] — A[1] is a weak Joyal equivalence, we demonstrate that a section
01
A[1] u> A[n + 1]p)q is inner anodyne by factoring this inclusion as
Al =X X? o .. s XM = Aln + 1o (6.5.7)
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and showing that each X/ < XI*1isinner anodyne. In chis filcration, X/ is defined to be the simplicial
subset of A[n + 1]p1 that contains all non-degenerate j-simplices that contain the edge {0, 1}. That
is, these simplicial subsets can be constructed by forming the unions
X2 = U {01}, X3= U {01ij}, X*= U {014k}
1<i<n+1 1<i<j<n+1 I<i<j<k<n+1

and so on. Now each stage in this filtration is canonically a pushout of a coproduct of inner horns

I Aljl —— I Afj]

1<ip<---<ijg<n+1 1<ip<---<ijg<n+1
l. r l‘
X/ = X

which demonstrates that the composite inclusion A[1] < A[n + 1]g|q is inner anodyne as claimed.
Thus the retraction ZEA[n] = Aln + 1Jog — A[1] is a weak categorical equivalence. A dual
argument establishes the same result for Z"A[n] :== Aln + 1],,,,41 — A[1].

To establish the weak equivalence ZA[n] — A[1], we first characterize the simplices of the do-
main in terms of the quotient map A[n] X A[1] — XA[n]. To condense notation, write {0, 1, ..., n}
and {0’, 1’, ..., n’} for the vertices spanned by A[n] X {0} and A[n] X {1} in A[n] X A[1], respectively,
using the prime as shorthand for the second coordinate. In this notation, non-degenerate simplices in
A[n] x A[1] correspond to sequences {7 - UjU]{+1 --- U1} of elements of [1] such that the v; and v} are
strictly increasing and with v; < U;+1. Non-degenerate simplices containing at least one primed vertex
and one unprimed one correspond bijective]y to non—degenerate simp]ices in the quotient YA[n].

Let o' be the (n + 1)-simplex {01 --- (i — 1)ii’ (i + 1)’ -+- n’}, the “ith shuffle” of the cylinder. Its
quotient in LA[n] is a simplex of shape A[n + 1];;;11. We will show that the weak categorical equiv-
alence ZEA[n] — Al factors through XA[n] — A[1] along a filtration

LEA] = A = Y0 o Y o o o YT = BA[H],
in which Y?is defined to be the union of Y1 with the simplex o' in ZA[n]. Note that the intersection
of Y=l and o' in ZA[n] is the n-simplex {01 +++ (i — 1)’ --- n’}, which has shape A[n]i_1};. The map
8%: A[n] = Aln +1] induces a map A[n];_1;; = A[n + 1];i11 over A[1]. In this way we see that the
inclusion Y1 < Y may be described via a pushout

Alnli.q)i — Aln + 1)1

| -

Yi—l f s Yi
Our next task is to argue that the horizontal inclusions are inner anodyne, so that we can conclude
that the pushouts Y1 < Y7 are as well. As before, we factor this map as

Alnlig)i= 2" & 7% < - = 72" = A[n + 1]
and show each step is inner anodyne. Let

z2=7'v | J o), z2=22v J oyk, z=22u ] (0L, .

i<j<n+1 1<j<k<n+1,i<k 1<j<k<I<n+1,i<l
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Each Z/ is obtained by attaching the non-degenerate j-simplices that contain the edge [01] to 71 As
above, the attaching maps are inner horn inclusions A[j] = A[j], and consequently 7t 7 may
be expressed as a pushout of a coproduct of maps of this form. Note that in this case if some of the
intermediate vertices are less than or equal to 7, the last few faces of the Al [/]-horn will be degenerate
ac 0.

This shows that the inclusion A[n];_1;; < A[n + 1];;41 is inner anodyne, and hence that the
inclusion ZLA[n] < LA[n] is inner anodyne. A dual construction proves that YRA[n] = ZA[n] is
inner anodyne as well. If we like, we can conclude now that the canonical map XA[n] — A[1] is a
weak Joyal equivalence, but in fact these maps are sections of v} and v} so the conclusion follows by
the 2-of-3 property. O

6.5.8. REMARK. As just observed in the proof of Lemma 6.5.6, the natural maps

TLA[e] « i T A[e] —Xs5 TRA[e]
defined in the proof of Proposition 6.5.3 have pointwise-defined sections
YLA[n] === TA[n] <=~ ZRA[n]

that including the 7 + 1-simplices whose quotients define YEA[n] and ZRA[#] as the first and last
shuffles of the cylinder A[n] X A[1] whose quotient defines ZA[n]. These sections are inner anodyne
extensions, which explain why their retractions are weak Joyal equivalences. However, these sections
do not assemble into a cosimplicial object in sSet, ,.

6.5.9. PROPOSITION (relating hom-spaces and function complexes). For any pair of objects a, b in a Kan
complex enriched category (A, there exists a canonical trivial cofibration

A(a, b) >=— Hom& 4(a,b)

between the external mapping space from a to b and the right hom space from a to b in the homotopy coherent

nerve NA.

PROOF. Recall from Example 6.1.5 the construction of a bipointed simplicial category (=, +): 1L +
1 — 2[U] from a simplicial set U. Maps out of 2[U] in the category sSet-Cat, , = 1+1/s Set-Cat
correspond to diagrams of shape U in a specified mapping space, which is to say there is an adjunction
2[-]
PR
sSet-Cat,, 1 sSet
\_/’
Map
whose right adjoint sends a bipointed simplicial category {a,b): 1 + 1 — A to the mapping space
Ala,b).
We obtain a second adjunction between the same pair of categories by composing the right-hand
adjunction of (6.5.5) with the adjunction of Proposition 6.3.3:

¢ ZR
PR T
sSet-Cat,, L sSet,, 1 sSet
~__ IR
N HomR
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Now as in the proof of Proposition 6.5.3, we may define the natural comparison map A(a, b) —
Homffm(a, b) as the mate of a corresponding natural transformation w: CZR = 2[-].
To that end, given a simplicial set U form the following diagram of simplicial categories

CU) —— 1

]

C(U % A[0]) —— CZRU

U 2[U]

The pushout square is obtained by applying the left adjoint € to the pushout (6.5.4) that defines
YRU. The natural map 4 (U % A[0]) — 2[U], defined in Lemma 6.5.10 below sends every
object of (U % A[0]) except the cocone vertex to — € 2[U] and carries the cone vertex to + € 2[U].
This is enough to imply commutativity of the outer square, inducing the desired simplicial functor
wY: CXRU — 2[U], which inherits naturality in U from the naturality of 7: €(-)” = 2[-].

By adjunction, n-simplices in A(a, b) and in Hom{fm(a, b) correspond, respectively, to simpli-
cial functors 2[A[n]] = A and CZRA[n] = A in sSet-Cat, ,. Furthermore, the corresponding
component @ : Aa, b) — Homﬁﬂ(a, b) of the mate of w: €ZR — 2[~] acts on n-simplices by pre-
composition with w™: €LRA[n] — 2[A[n]]. Since the maps @™ are epimorphisms, the comparison
@: Aa,b) > Homf}m(a, b) is injective.

Finally, to see that @ is an equivalence, it suffices by Lemma C.5.22 to show that the simplicial
functors w™: CZRA[n] — 2[A[n]] define pointwise weak equivalences between Reedy cofibrant
cosimplicial objects in sSet-Cat, ,. Furthermore, by Remark C.5.23, we need not establish the full
Bergner model structure of Digression 6.1.15 to make this argument. Indeed, all of the objects under
consideration are two—object simplicia] categories with only one non-trivial hom—space, pointing in
the same direction, so the notions of cofibration, fibrant, and weak equivalence, all reduce to the
corresponding notions in Quillen’s model structure for Kan complexes on simplicial sets.

Lemma 6.5.6 shows that the cosimplicial object YRA[e] € sSetﬁ* is Reedy cofibrant. By Lemma
6.3.5, the same is then true of ELRA[e] € sSet-Cat, . Similarly, Example C.5.21 observes that the
Yoneda embedding A[e] € sSet™ is Reedy cofibrant. Since 2[-]: sSet — SSeif—C'Elt*,,e preserves
monomorphisms and colimits, it follows that 2[A[e]] € sSet—Cat*A/* is too.

It remains only to to show that w": CZRA[M] — 2[A[n]] is a DK-equivalence of simplicial
categories, as defined in Digression 6.1.15. The DK-equivalences satisfy the 2-of-3 property, so we
prove this by showing that two canonical quotient maps

CXRA[] —<— 2[A[1]]
\ ) /

to the discrete simplicial category 2 are DK-equivalences.

The map 2[A[n]] — 2 is clearly a DK-equivalence since A[n] — A[0] is a weak homotopy
equivalence of simplicial sets and the functor acts as the identity on homotopy categories of these
simplicial categories.
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For the remaining case, observe that the quotient map €ZRA[n] — 2 is defined by applying
the homotopy coherent realization functor € to the quotient map ZRA[n] — A[1] considered in
the proof of Lemma 6.5.6. There we constructed a section, displayed in (6.5.7) in the dual case of
YLA[n] - A[1] and showed that this map is an inner anodyne extension, a sequential of pushouts of
inner horn inclusions. The homotopy coherent realization functor carries this diagram to a sequential
composite of pushouts of simplicial subcomputad inclusions CAL [[1 =& CA[j]for2 <j<n+1,
described explicitly in Lemma 6.3.7(ii). These maps are evidently DK-equivalences, since they act
bijectively on objects and act via anodyne extensions on homs; in fact, recall that only one of these
maps on homs is not an identity. And since the simplicia] sets in the filtration (6.5.7) have only twWo
objects and all non-degenerate 1-simplices pointing in the same direction, the transfinite composite
2 — CXRA[n] again acts bijectively on objects and acts via an anodyne extension on its only non-
trivial hom. Since its section is a DK-equivalence, the simplicial functor CXZRA[n] — 2 is as well.
This completes the proof. U

Recall from Example 6.1.5 the simplicial category 2[X] with with two objects “=” and “+” and
with hom-spaces defined by

2[X[(+,-) =9, 2[X](++)=1=2[X](-,-), 2[X](-+):=X.
6.5.10. LEMMA. There is a natural transformation

(e
~
sSet Ut sSet-Cptd
\_j

2[-]
whose components U: CU> — 2[U] act on objects by mapping every vertex of U to — and mapping the
cocone point of U” := U * A[0] o +.

PROOF. We actually define 7 as a natural transformation valued in pointed simplicial computads:
(-~

>
sSet Ut VsSet-Cptd (6.5.11)
~_
2[-]
First to explain the codomain of (6.5.11), recall from Theorem 6.3.10 and Example 6.1.5 that both ho-
motopy coherent realizations and directed suspensions define simplicial computads, which we regard
as pointed simplicial computads under the cone point T: 1 — €X” and +: 1 — 2[X]. The advan-
tage of fixing one object is this makes both functors €(—)> and 2[~] cocontinuous, and consequently
they may be recovered as the left Kan extensions of their restrictions to the full subcategory of rep-
resentables. Accordingly, to define the natural transformation (6.5.11), it suftices to define a natural

transformation
e
A~ Ut YsSet-Cptd
N>
2[A[e]]

and then take the left Kan extension along the Yoneda embedding &£: A — sSet.
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For [n] € A, the component 7": CA[n + 1] — 2[A[n]] maps the objects O, ..., 7 to — and
maps 71 + 1 to +. Its action on arrows is easily described upon recalling from Lemma 6.2.8 that the
hom-spaces in €A[n + 1] and 2[A[n]] are both nerves of posets; thus, all that is required is to define
an order-preserving mapping on atomic O-arrows. Indeed, since only one of the mapping spaces of
2[A[n]] is non-trivial, we need only specify the images of the atomic 0-arrows in €A[n + 1] from i
to 1 + 1 for each 0 < i < n. With this in mind, we define 7" to map the unique atomic 0-arrow in
CA[n + 1](i, n + 1) to the O-arrow i in 2[A[n]](—, +) = A[n].

Note this construction is natural in the morphisms of A, furnishing the claimed natural transfor-
mation. ]

Finally, combining Propositions 6.5.3 and 6.5.9 we conclude:

6.5.12. COROLLARY. For any pair of objects a, b in a Kan complex enriched category A, there exists a canonical
trivial cofibration in the Joyal model structure

Aa,b) >=— Homg, 4(a, b)

between the external mapping space from a to b and the hom space from a to b in the homotopy coherent nerve
NA. Consequently, the external mapping space from a to b in A is equivalent to the internal mapping space

froma tobin NA.

Exercises.

6.5.i. EXERCISE. Verify the first claim made in Lemma 6.5.2, that Homlﬂ(a, b) and Homlj(a, b) arise as
fibers of the projections 71: YA = A and 7: Agp > A from the slice quasi-categories.

6.5.ii. EXERCISE. Prove that the canonical anodyne extension A(a, b) — Homg,#(a, b) of Corollary
6.5.12 is natural in the action of a simplicial functor F: A — B between Kan complex enriched
categories, when the action of F on the internal homs is defined by the strict universal property of the
simplicial pullbacks the square

Ala,b) ——* 5 B(Fa, Fb)

I I
Homgtﬂ(ﬁ, b) l) HomgtB(Pﬂ, Fb)

commutes.
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CHAPTER 7

Weighted limits in co-cosmoi

7.1. Weighted limits and colimits

Let (V, X, 1) denote a complete and cocomplete cartesian closed monoidal category. The ex-
amples we have in mind are (sSet, X, 1), its cartesian closed subcategory (Cat, X, 1), or its further
cartesian closed subcategory (Set, X, 11).

Ordinary limits and colimits are objects representing the functor of cones with a given apex over or
under a fixed diagram. Weighted limits and colimits are defined analogously, except that the cones over
or under a diagram might have exotic “shapes, ” which are allowed to vary with the objects indexing
the diagram. More formally, in the V-enriched context, the weight, defining the “shape” of a cone over
a diagram indexed by A or under a diagram indexed by A°P, takes the form of a functor in YA,

Before introducing the general notion of weighted limit and colimit, we first reacquaint ourselves
an example that we have seen already in Digression 1.2.5.

7.1.1. EXAMPLE (tensors and cotensors). A diagram indexed by the category 1 valued in a “V-enriched

category Mis just an object A in M. In this case, the weight is just an object U of V. The U-weighted

limit of the diagram A is an object of M denoted AY — or denoted {U, A} whenever superscripts are

inconvenient — called the cotensor of A € M with U € V defined by the universal property
M(X, AY) = VU, M(X, A)),

this isomorphism between mapping spaces in V. Dually, the U-weighted colimit of A is an object

U ® A € Mcalled the tensor of A € M with U € V defined by the universal property
MU®A,X)=VU, M(A, X)),

this isomorphism again between mapping spaces in V. Assuming such objects exist, the cotensor and
tensor define V-enriched bifunctors

Vor x M —— M VM5 M

in a unique way making the defining isomorphisms natural in U and A as well.

Since V is cartesian closed, it is tensored and cotensored over itself, with UQ®V = U X V
and VU := V(U, V). In particular, the defining natural isomorphisms characterizing tensors and
cotensors in M can be rewritten as

MX, A = MX, AT and MU A, X) = MA,X)Y.

The fact that the natural isomorphisms defining tensors and cotensors are required to exist in V
(and not merely in Set) has the following consequence:

7.1.2. LEMMA (associativity of tensors and cotensors). If M is a V-category with tensors and cotensors
then for any U,V € V and A € M, there exist natural isomorphisms

UR(VRA)=UXV)®A and (A = AUXV,
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PROOF. By the defining universal property

MK, (AN = VU, MX, AV)) = VU, V(V, M(X, A)))
= VU XV, M(X, A)) = M(X, AUXV)

for all X € M. By the Yoneda lemma (AV)u = AUV The case for tensors is similar. O

We now introduce the general notions of weighted limit and weighted colimit from three different
viewpoints. We introduce these perspectives in the reverse of the logical order, because we find this
route to be the most intuitive. We first describe the axioms that characterize the weighted limit and
colimit bifunctors, whenever they exist. We then explain how weighted limits and colimits can be
constructed, again assuming these exist. We then finally introduce the general universal property that
defines a particular weighted limit or colimit, which tells us when the notions just introduced do in
fact exist.

7.1.3. DEFINITION (weighted limits and colimits, axiomatically). For a small “V-enriched category A
and a large V-enriched category M, the weighted limit and weighted colimit bifunctors

lim? - (VAP x MA - M and colim® —: VA x MAT 5 M
are characterized by the foﬂowing pair of axioms whenever they exist:

(i) Weighted (co)limits with representable weights evaluate at the representing object:
limAa F=F@  and  colimiy_, G = Ga).

(ii) The weighted (co)limit bifunctors are cocontinuous in the weight: for any diagrams F € MA
and G € M| the funcror colim? G preserves colimits, while the functor Lim™ F carries
colimits to limits."

We interpret axiom (ii) to mean that Weights can be “made-to-order™ a Weight constructed as a colimit
of representables — as all V-valued functors are — will stipulate the expected universal property.

7.1.4. DEFINITION (weighted limits and colimits, constructively). The limit of F € MA weighted by
W e Vis computed by the functor cotensor product:

limig F = f Fa)"®@ = eq[ 1 F@"® — I F@p)?erWe | (7.1.5)
aeA acA a,beA

where the product and equalizer should be interpreted as conical limits; see Digression 1.2.5 or Defini-
tion 7.1.14 below. The maps in the equalizer diagram are induced by the actions A(a, b) X W(a) —

W() and F(a) —» F (b)ﬂ(ﬂ’b) of the hom-object A(a, b) on the V-functors W and F; the latter case
W
makes use of the natural isomorphism F(b)ﬂ(a,b)xW(a) = (F(b)ﬂ(a’b)) @ of Lemma 7.1.2.

"More precisely, as will be proven in Proposition 7.1.12, the weighted colimit functor colim™ G preserves weighted

colimits, while the weighted limit functor lim? F carries weighted colimits to weighted limits.
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Dually, the colimit of G € MAT weighted by W € YA i computed by the functor tensor
product:

Colim}%G = fEﬂ W(a) ® G(a) == coeq| TI (W(a)x Aa,b)@G(b) = 11 W) ®G(a) |,
a,beA a€A

(7.1.6)
where the coproduct and coequalizer should be interpreted as conical colimits. One of the maps in the
coequalizer diagram is induced by the action A(a, b) ® G(b) — G(a) of A(a, b) on the contravariant
V-functor G and the natural isomorphism (W(a) X Aa, b)) ® G(b) = W(a) ® (A(a,b) ® G(b)) of

Lemma 7.1.2; the other uses the covariant action of A(a, b) on W as before.

7.1.7. DEFINITION (weighed limits and colimits, the universal property). The limit ]im%[—' of the dia-
gram F € M% weighted by W € V# and the colimit colim% G of G € M weighted by W € VA

are characterized by the universal properties:
MK, imin F) = VAW, M(X,F))  and  M(colimin G, X) = VAW, M(G, X)), (7.1.8)
cach of these defining an isomorphism between objects of V.
When the indexing category A is clear from context, as is typically the case, we frequently drop
it from the notation for the weighted limit and weighted colimit. We now argue that these three

definitions characterize the same objects. Along the way, we obtain results of interest in their own
right, that we record separately.

7.1.9. LEMMA. The category V admits all weighted limits, as defined by the formula of (7.1.5) satisfying the
natural isomorphism of (7.1.8). Explicitly, for a weight W: A — YV and a diagram F: A — V, the
weighted limit

limiy F == VAW, F),
is the V-object of V-natural transformations from W to V.

PROOF. The V-functor V(1, —): V — V represented by the monoidal unit is naturally isomor-
phic to the identity functor. So taking X = 1 in the universal property of (7.1.8) in the case where the
diagram F € VA is valued in the V-category V, we have

limiy F = VAW, F).
Simultaneously, the formula (7.1.5) computes the V-object (Vﬂ(W, F) of V-natural transformations
from W to F defined in Definition A.3.8. O
The V-object of V-natural transformations satisfies the natural isomorphism
VIV, VW, F)) = VAW, V(V,F))

forany V € V. Applying the observation that W-weighted limits of V-valued functors are V-objects
of natural transformations to the functor M(X,F-) and M(G—, X) in the case of F € M™ and

G e M we may re-express the natural isomorphism (7.1.8) as:

7.1.10. COROLLARY. The weighted limits and weighted colimits of (7.1.8) are representably defined as weighted
limits in V: for W € VA and F € M and G € M the weighted limit and colimit are characterized
by isomorphisms
M(X, limy F) = limy M(X, F) and M(colimyy G, X) = limy M(G, X) (7.1.11)
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natural in X in V. [l
We now unify the Definitions 7.1.3, 7.1.4, and 7.1.7.

7.1.12. PROPOSITION. When the limits and colimits of (7.1.5) and (7.1.6) exist they define objects satisfying
the universal properties (7.1.8) or equivalently (7.1.11) and bifunctors satisfying the axioms of Definition 7.1.3.

PROOF. The proofs are dual, so we confine our attention to the limit case. The general case of the
implication Definition 7.1.4 = 7.1.7 — for either weighted limits or weighted colimits — is a direct
consequence of the special case of this implication for weighted limits valued in M = V proven as
Lemma 7.1.9 and Corollary 7.1.10. The limits of (7.1.5) in M are also defined representably in terms of
the analogous limits in V. So the objected defined by (7.1.5) represents the V-functor limyy M(—, F)
that defines the weighted limit limyy F.

[t remains to prove that the weighted limits of Definitions 7.1.4 and 7.1.7 satisty the axioms of
Definition 7.1.3. In the case of a V-valued diagram F € VA axiom (i) is the V-Yoneda lemma:

VA(A,-),F) = Fa)

proven in Theorem A.3.11. Once again, the general case for F € M7 follows from the specia] case
for V-valued diagrams, for to demonstrate an isomorphism limz, -y F = F(a) in M it suftices to
demonstrate an isomorphism M(X, lim g, -y F) = M(X, F(a)) in V for all X € M and have such a
natural isomorphism by applying (7.1.11) and the observation just made to the functor M(X, F-) €
YA,

For the axiom (ii), consider a diagram K: J°P — YA of weights and a weight V' € VI 5o that
co]im“gK = W. For any F € M# we will show that the V-functor lim7 F: (VAP — M carries
the V-weighted colimit of K to the V-weighted limit of the composite diagram ]im? F:9-> M

The universal property (7.1.8), applied first to the colim‘g K-weighted limit of the diagram F and
the object X, and then to the V-weighted colimit of the diagram K and the object M(X, F), supplies

isomorphisms:
M 1im? 7 F) = VA(colimy) K, M(X, F)) = VIV, VAK, M(X, F))).
co 1mV

Applying (7.1.8) twice more, first for the weights Kj for cach j € J and then for the weight V and the
diagram 1im“1?FZ J — M, we have
= VIV, M(X, lim@ F)) = M(X, lim3) limg F).
By the Yoneda lemma, this proves that
lim” g F = lim) limy; F,

i.c., that the weighted limit functor lim™ F is carries a weighted colimit of weights to the analogous
weighted limit of weights. U
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7.1.13. REMARK (for unenriched indexing categories). When the indexing category is unenriched, the
limit and colimit formulas from Definition 7.1.4 simplify

1im;”3erq[ IIF"" — 11 F(b)w(“)]
aeA Ala,b)

colimiy G = coeq( I W@ Gk —= II W) ® G@) ]
A(a,b) aeA

and in fact, it suffices to consider only non—identity arrows Or even just atomic arrows.

7.1.14. DEFINITION (conical limits and colimits). The unit for the cartesian product defines a terminal
object 1 € V. The constant diagram at the terminal object then defines a terminal object 11 € YA A
limit weighted by the terminal weight is called a conical limit and a colimit weighted by the terminal
weight is called a conical colimit. It is common to use the simplified notation lim F := lim3' F and
. o . A
colim G = colimy G.
Conical limits and colimits satisfy the defining universal properties

M(X, limF) = VA, M(X,F))  and  M(colim G, X) = VAL, M(G, X)),

which say that lim F and colim G represent the functors of “V-enriched conical cones over F or under
G, respectively.

We can now properly understand the formulae for weighted limits and colimits given in Definition
7.14. In particular, these formulae give criteria under which weighted limits or colimits are guaranceed
to exist.

7.1.15. COROLLARY. If Mis a “V-enriched category that admits cotensors and conical limits of all unenriched
diagram shapes, then M admits all weighted limits. Dually, if M admits tensors and conical colimits of all
unenriched diagram shapes, then M admits all weighted colimits.

7.1.16. REMARK. If M is a V-category whose underlying unenriched category admits all small limits,
then if M admits cotensors and tensors over V, then M admits all weighted limits. Via the Yoneda
lemma, the presence of tensors suffices to internalize the isomorphism of sets expressing the unen-
riched universal property of limits to an isomorphism in “V that expresses the universal property of
conical limits. See Exercise 7.1.i.

7.1.17. EXAMPLE (commas). The comma co-category is the limit in the 00-cosmos K of the diagram
41— K given by the cospan
f

c—254
weighted by the diagram -1— sSet given by the cospan

B

115209

Under the simplification of Remark 7.1.13, the formula for the weighted limit reduces to the equalizer

A? (p1.p0)
TT 1/p0
eq ) / \
Cx A xB AXA

T CxB ﬁf



which computes the pullback of (3.4.2). The universal property (7.1.8) provides a correspondence
between functors X — Hom 4(f, g) in K and simplicial natural transformations, the data of which is
given by the three dashed vertical maps that fit into two commutative squares:

1 « 1 2 0 > 1
| | |
cl la )
N2 N2 N2

Fun(X,C) — Fun(X, A) <f— Fun(X, B)

7.1.18. EXAMPLE (Bousfield-Kan homotopy limits). In their classic book on homotopy limits and col-
imits [23], Bousfield and Kan define the homotopy limit of a diagram indexed by a 1-category A and
valued in a Kan-complex enriched category M to be the limit weighted by the functor

A —— sSet
a— A/a
which carries each object 4 € A the nerve of the slice category over a.

7.1.19. ExaMPLE (Kan extensions as weighted co/limits). The usual colimit or limit formula that com-
putes the value of a pointwise left or right Kan extension of an unenriched functor F: C — E along
K: C — D atan object d € D can be succinctly expressed by the weighted colimit or weighted limit

lang F(d) := colimpx_ 4 F and rang F(d) = limp(g gy F.

We conclude with a few results from the general theory of weighted limits and colimits. Immedi-
ately from their defining universal properties, it can be verified that:

7.1.20. LEMMA (weighted limits of restricted diagrams). Suppose given a V-functor K: ‘A — B, a weight
W: A — V, and diagrams F: B — Mand G: B°P — M. Then the W-weighted limit or colimit of the

restricted diagram is isomorphic to the lang W-weighted limit or colimit of the original diagram:
limy (F oK) = limfy, wF  and  colimjy (G oK) & colimf,, 1y G.
PROOF. Exercise 7.1.iii. U

An enriched adjunction is comprised of a pair of V-functors F: 8 - Aand U: A — B
together with a family of isomoprphisms A(Fb, a) = B(b, Ua) that are V-natural in both variables;

see Definition A.3.16. The usual Yoneda-style argument enriches to show:

7.1.21. PROPOSITION (weighted RAPL/LAPC). A V-enriched right adjoint functor U: A — B preserves
all weighted limits that exist in A, while it’s V-enriched left adjoint F: B — A preserves all weighted colimits
that exist in B.

PROOF. Exercise 7.1.iv. O

By the axioms of Definition 1.2.1, 00-cosmoi will admit a large class of simplicially-enriched weight-
ed limits built from the simplicial cotensors and conical simplicial limits enumerated in 1.2.1(i). In
practice, ©0-cosmoi often arise as subcategories (of “fibrant objects”) in a larger category that is also
admits simplicially-enriched weighted colimits, which can then be reflected back into the co-cosmos
to defined weighted bicolimits. This is a story for much later, so we will confine our attention to the
case of weighted limits for the rest of this chapter.
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Exercises.

7.1.i. EXERCISE. Suppose M is a tensored and “V-enriched category whose underlying unenriched
category admits limits of all unenriched diagram shapes. Show that M admits conical limits of all
unenriched diagram shapes, proving the extension of Corollary 7.1.15 described in Remark 7.1.16.

7.1.ii. EXERCISE. Taking the base for enrichment V to be Set, compute the following weighted limits

of a simplicial set X, regarded as a diagram in SetAOP, weighted by:

(i) the standard n-simplex A[n] € SetA%7

(ii) the spine of the n-simplex, the simplicial subset I'[n] < A[n] obtained by gluing together the
n edges from i to i + 1 into a composable path,
A°P ,

(iii) the n-simplex boundary dA[n] € Set™ .
7.1.41i. EXERCISE. Prove Lemma 7.1.20.

7.1.iv. EXERCISE. Prove Proposition 7.1.21.

7.2. Flexible weighted limits and the collage construction

Our aim in this section is to introduce a special class of sSet-valued weights whose associated
weighted limit notions are homotopically well-behaved. Borrowing a term from 2-category theory,
we refer to these weights as flexible. All of the limits enumerated in 1.2.1(i) are flexible limits. In fact,
we will prove that co-cosmoi admit all flexible weighted limits because these can be built out of the
limits enumerated in 1.2.1(3). In §8.2, we will use this observation to help us verify the limit axiom for
newly constructed 0o-cosmoi in a more systematic way.

In this section, we will characterize the class of flexible weights as precisely those whose associated
collages define relative simplicial computads, which will allow us to readily produce examples. In
§7.3, we will establish the homotopical properties of flexible weighted limits and make precise the
relationships between this class of the limits and limits assumed present in any co-cosmos by axiom

1.2.1G).

7.2.1. DEFINITION (flexible weights and projective cell complexes). Let A be a simplicial category.
o A simplicial natural tcransformation of the form
dA[n] X Ala,-) & Aln] X Aa,-)
is called a projective n-cell ata € A.
e A natural transformation a: V < W in sSet”" that can be expressed as a countable composite
of pushouts of coproducts of projective cells is called a projective cell complex.
o A weight W € sSet™ is flexible just when @ < W is a projective cell complex.

7.2.2. REMARK (on generalized projective cells). Since any monomorphism of simplicial sets U <

V can be decomposed as a sequential composite of pushouts of coproducts of boundary inclusions
dA[n] = Aln], the class of projective cell complexes may be also be described as the class of maps in

A . .
sSet”" that can be expressed as a countable composite of pushouts of coproducts of monomorphisms

UxA@,-) =V xXA,-) for somea € A.
*The limit of a simplicial object weighted by dA[n] is called the nth-matching object; see Appendix C.
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7.2.3. EXAMPLE. Since any simplicial set can be decomposed as a sequential composite of‘pushouts of
coproducts of boundary inclusions dA[n] < A[n], simplicial cotensors are flexible weights.

7.2.4. EXAMPLE. Conical products also define flexible weighted limits, buile by attaching one projec-
tive 0-cell for each object in the indexing set.

7.2.5. NON-EXAMPLE. Conical limits indexed by any 1-category that contains non-identity arrows are
not flexible because the ]egs of a conical cone over the domain and codomain of each arrow in the
diagram are required to define a strictly commutative triangle of 0-arrows. The speeifications for a
flexible weight allow us to freely actach n-arrows of any dimension, but do not provide a mechanism
for demanding strict commutativity of any diagram of n-arrows — only commutativity up to the
presence of a higher cell.

7.2.6. DIGRESSION (on flexible limits in 2-category theory). Simplicial limits weighted by flexible
weights should be thought of as analogous to flexible 2-limits, i.e., 2-limits builc out of products, insert-
ers, equifiers, and retracts (splittings of idempotents) [18]. More precisely, simplicial limits weighted
by flexible weights are analogous to the PIE limits, those built just from products, inserters, and equi-
fiers, but we choose to adopt the moniker from the slight larger class of weights because we find it
to be more evocative. The PIE limits also include iso-inserters, descent objects, comma objects, and
Eilenberg-Moore objects, as well as all pseudo, lax, and oplax limits. Many important 2-categories,
such as the 2-category of accessible categories and accessible functors, fail to admit all 2-categorical
limits, but do admit all PIE-limics [70].

The weights for flexible limits are the cofibrant objects in a model structure on the diagram
2-category Cat™ that is enriched over the folk model structure on Cat; the PIE weights are exactly
the cellular cofibrant objects. Correspondingly, the projective cell complexes of Definition 7.2.1 are

exactly the cellular cofibrations in the projective model structure on sSet™.

Recall that a weight is intended to describe the “shape” of cones over diagrams indexed by a par-
ticular category. In the case a Weight W: A — sSet valued in simplicia] sets, we can describe the
shape of W-cones directly as a simplicia] category called the collage of the Weight.

7.2.7. DEFINITION (collage construction). The collage of a weight W: A — sSet is a simplicial cat-
egory collWW which contains A as a full subcategory together with one additional object L whose
endomorphism space is the point. The mapping spaces from any object a € A to L are empty, while
the mapping spaces from L to the image of A < collW are defined by:

collW(L,a) == W(a)

with the action maps A(a, b) X W(a) — W (b) from the simplicial functor W used to define compo-
sition. This defines a simplicial category together with a canonical inclusion T + A < collW that is
bijective on objects and fully faithful on 11 and A separately.

7.2.8. PROPOSITION (collage adjunction).
(i) The collage construction defines a fully faithful functor

sSett <y 1+A/5 St Cat

from the category of A-indexed weights to the category of simplicial categories under 1 + A whose
essential image is comprised of those e, F): 1 + A — & that are bijective on objects, fully faithful
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when restricted to 1L and A, and have the property that there are no arrows in & from the image of F
toée.
(ii) The collage functor admits a right adjoint

coll

/\
sSet™ 1 W AsSet-Cat
~____—

\Vgt
which carries a pair (e, F): 1 + A — & o the weight E(e, F-): A — sSet.

PROOF. The construction of the collage functor is straightforward and left to the reader. The
characterization of its essential image follows from the observation that to define a simplicial functor
W: A — sSet requires no more and no less than

e the specification of simplicial sets W(a) for eacha € A and
e and the specification of simplicial maps A(a, b) X W(a) = W(b) for eacha,b e A

so that this action is associative in sense that the diagram

A(b, c) x Ala, b) x W(a) ——> Ala,c) X W(a)

! |

A(b, c) x W(b) W(c)

commuctes. This is the same as what is required toextendl + Atoa simplicial category in which all
of the additional maps start at L and end at an object in A.
The adjunction asserts that simplicial functors

1+A

SN

COHW #) 8

from collW to & under I + A stand in natural bijective correspondence with simplicial natural
transformations y: W = &(e, F-). Since the inclusion 1 + A < collW is bijective on objects
and full on most homs, the data of the simplicial functor requires only the specification of the maps
collW(L,a) = W(a) — &E(e, Fa). These define the components of the simplicial natural transforma-
tion ) and functoriality of G corresponds to naturality of . O

The collage adjunction has a useful and important interpretation.

7.2.9. COROLLARY. The collage of a weight W: A — sSet realizes the shape of W-weighted cones in the
sense that simplicial functors G: collW — & with domain collW stand in bijection to W-cones over the
diagram G| g with summit G(L). O

On account of Lemma 7.1.20, we'll be interested in computing left Kan extensions of’ Weights
encoded as collages.
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7.2.10. LEMMA. For any weight W: A — sSet and simplicial functor K: A — B, the pushout of simplicial

categories

1+A 2K 148

L

collW —— coll(lang W)
computes the collage of the weight lang W: 8 — sSet.

PROOF. By the defining universal property, a simplicial functor out of the pushout is given by a
pair of functors (¢, F): 1 + B = E and G: collW — & so that

/11+&Z( CFEO
N

COHW # &

By Corollary 7.2.9, this data defines a W-cone with summit e over the diagram FK: A — &. By
Lemma 7.1.20 such data equivalently describes a lang W-cone with summit e over the diagram F: 8 —
&. Applying Corollary 7.2.9 again, we conclude that the pushout is given by the simplicial category
coll(lang W) as claimed. O]

In analogy with Corollary 4.3.5, we can encode simplicial W-weighted limits as a right Kan ex-
tension from the indexing simplicial category to the simplicial category that describes the shape of
W-cones.

7.2.11. LEMMA. For any simplicial functor F: A — & and any weight W: A — sSet, the weighted limit
limyy F exists if and only if the pointwise right Kan extension of F along A < collW exists, in which case
lan F(L) = limy F.

PROOF. Since A <= collWis fully faichful, pointwise right Kan extensions may be chosen to define
genuine extensions

By Corollary 7.2.9, this data defines a W-cone over F with summit ran F(L) that we denoteby A: W =
E(ran F(L), F(-)).
By Corollary 7.2.9 again, the data of a cone over the right Kan extension diagram displayed below-

left

ﬂ F ﬂ F

/ fa \ = '/ F\
collW & collW ——"" 5 &

c \\HZ;TV

defines a W-cone
)4 oy
W == &(G(1), G|#(-)) == &(G(L),F(-))
over F. The universal property of the right Kan extension depicted above-right says this cone factors

uniquely through the W-cone A along a map n, : G(L) — ran F(L). Thus, the right Kan extension
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of F along A = collW equips the resulting W-cone with the universal property of the W—Weighted
limit. O

A particularly convenient aspect of the collage construction is that it allows us to detect the class

of flexible weights.

7.2.12. THEOREM (flexible weights and collages). A natural transformation a: V- — W between weights

insSet™ isa projective cell complex if and only if coll(a): collV < collW is a relative simplicial computad.
In particular, W is a flexible weight if and only if 1 + A < collW is a relative simplicial computad.

PROOF. If a: V < W is a projective cell complex, then it can be presented as a countable com-
posite of pushouts of coproducts of projective cells of varying dimensions indexed by the objects
a € A. Since the collage construction is a left adjoint, it preserves these colimits, and hence the
map coll(@): collV = collW as a transfinite composite of pushouts of coproducts of simplicial func-
tors coll(@A[n] x Aa, -)) = coll(A[n] x Aa, -)) in "*VsSet-Cat. This composite colimit dia-
gram is connected — note coll@d = 1 + A, so this cell complex presentation is also preserved by
the forgetful functor *¥sSet-Cat — sSet-Cat and the simplicial functor coll(@): collV = collW
can be understood as a transfinite composite of pushouts of coproducts of coll(dA[n] X A(a, -)) —
coll(A[n] X A(a, -)) in sSet-Cat.

This is advantageous because there is a pushout square in sSet-Cat

id

2[dA[n]] —— coll(dA[n] x A(a,-)) dA[n] —— JA[n] X Aa,a)
j i [ o [ j (7.2.13)
2[A[1]] ———> coll(A[n] X A(a, -)) Aln] —2 5 A[n] x A, a)

whose horizontals send the two objects — and + of the simplicial computads defined in Example
6.1.5 to L and 4 and act on the non-trivial hom-spaces via the inclusions displayed above left whose
component in A(a, a) is constant at the identity element at 4. The fact that coll(dA[n] X A(a, -)) <=
coll(A[n] x A(a, -)) is a pushout of 2[dA[n]] — 2[A[n]] can be verified by transposing across the
adjunction of Proposition 7.2.8 and applying the Yoneda lemma. Hence, coll(@): collV < collWis a
transfinite composite of pushouts of coproducts of simplicial functors 2[dA[n]] <= 2[A[n]], which
proves that this map is a relative simplicial computad.

Conversely, if coll(a): collV' < collW is a relative simplicial computad, then it can be presented
as a countable composite of pushouts of coproducts of simplicial functors 2[dA[n]] — 2[A[n]];
since this inclusion is bijective on objects the inclusion @ < 1 is not needed. Since the only arrows
of collW that are not present in collV have domain L and codomain a € A, the characterization of
the essential image of the collage functor of Proposition 7.2.8(i) allows us to identify each stage of the
countable composite

collV —— coll(W1) - coll(WH) —— coll(Wi*1) « N collW

as the collage of some weight Wi: A — sSet. Each attaching map 2[dA[n]] — collWi in the cell
complex presentation acts on objects by mapping — and + to L and a for some a € A, and hence
factors through the top horizontal of the pushout square (7.2.13). Hence, the inclusion coll(W?) —
coll(W™1) is a pushout of a coproduct of the maps coll(dA[n] X A(a, —)) = coll(A[n] x A(a, -)),
one for each cell 2[dA[n]] = 2[A[n]] whose attaching map sends + to a € coll(W?). As the collage
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functor is fully faithful, we have now expressed coll(@): collV < collW as a countable composite
of pushouts of coproducts of simplicial functors coll(dA[n] X A(a,-)) < coll(A[n] X A(a, -)). A
fully faithful functor that preserves colimits also reflects them, so in this way we see thata: V < W
is a countable composite of pushouts of coproducts of projective cells, proving that it is a projective
cell complex as claimed. O

As the first of many applications, we introduce the weights for pseudo limits by constructing their
collages and observe immediately that this class of weights is flexible.

7.2.14. LEMMA. For any simplicial set X, the coherent realization of the canonical inclusion 1 + X — X*
defines a collage and relative simplicial computad 1+ C€X — (X ) and hence a flexible weight for homotopy
coherent diagrams of shape X.

PROOF. By Lemma 6.3.5, 1 + €X — €(X7) is a simplicial subcomputad inclusion and hence by
Lemma 6.1.12 a relative simplicial computad. Thus, Theorem 7.2.12 tells us that the collage 1 +€X —
(X ) encodes a flexible weight Wy : €X — sSet. d

7.2.15. DEFINITION (weights for pseudo limits). We call the weight Wy : €X — sSet of Lemma 7.2.14
the weight for the pseudo limit of a homotopy coherent diagram of shape X. The Wx-weighted limit
of a homotopy coherent diagram of shape X is then referred to as the pseudo weighted limit or simply
the pseudo limit of that diagram.’ Since the left adjoint of the collage adjunction is fully faichful, its
unit is an isomorphism, and this permits us to define the weight Wy explicitly: for a vertex x € X,

Wy (x) = G(X (L, x).

7.2.16. REMARK. We call Wy the weight for a “pseudo” limit because we anticipate considering homo-
topy cohererent diagrams valued in Kan-complex enriched categories, in which all arrows in positive
dimension are automatically invertible. By Corollary 7.3.3, Wx-weighted limits also exist for diagrams
valued in co-cosmoti, which are only quasi-categorically enriched. In such contexts, it would be more
appropriate to refer to Wy as the weight for oplax limits, since in that context the 1-arrows of €(X )
will likely map to non-invertible morphisms.*

Exercises.

7.2.i. ExERCISE. Compute the collage of the weight U: 11 — sSet and use Theorem 7.2.12 to give a
second proof that simplicial cotensors are flexible weighted limits. Compare this argument with that
given in Example 7.2.3.

7.2.ii. EXERCISE. The inclusion into the join 1 + X < X< = 1 % X is bijective on vertices. The com-
plement of the image contains a non-degenerate (11 + 1)-simplex for each non-degenerate n-simplex
of X whose initial vertex is L and whose Oth face is isomorphic to the image of that simplex. Use
Theorem 6.3.10 to describe the atomic arrows of the simplicial compurad €(X) chat are not in the

image of 1 + €X.
7.2.iii. EXERCISE. Verify — cither directly from Definition 7.2.1 or by applying Theorem 7.2.12 — that
conical products are flexible Weighted limits.

3Despite the Wishy—washy name, pseudo limits are strict limit notions, satisfying their defining universal property of
Definition 7.1.7 up to isomorphism.

4 .. Wl « T . . . . . .

The distinct between “lax” and “oplax” limits in this context is explained in Exercise 17.1.i.
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7.3. Homotopical properties of flexible Weighed limits

In a V-model category M, the fibrant objects are closed under weighted limits whose weights
are projective cofibrant; see Corollary C.3.13. For instance, the fibrant objects in a Cat-enriched
model structure are closed under flexible weighted limits [63, 5.4] in the sense of [18]. Specializing
this argument to the case of 0-cosmoi, we obtain the following result:

7.3.1. PROPOSITION (flexible weights are homotopical). Let W: A — sSet be a flexible weight and let
K be an 0o-cosmos.

(i) The weighted limit 1im“v7‘(/ F of any diagram F: A — K may be expressed as a countable inverse limit
of pullbacks of products of isofibrations

Fallnl sy pgdAln (73.2)

one for each projective n-cell at a in the given projective cell complex presentation of W.

() IfV - W € sSet™ is a projective cell complex between flexible weights, then for any diagram
F: A — K the induced map between weighted limits

is an isofibration.

(iii) Ifa: F = Gis a simplicial natural transformation between a pair of diagrams F, G: A = K whose
components &, : Fa = Ga are equivalences, then the induced map

(03
is an equivalence.

PROOF. To begin, observe that the axioms of Definition 7.1.3 imply that the limit of F weighted
by the weight U X A(a, -), for U € sSet and a € A, is the cotensor Fatl. Consequently, the map
of weighted limits induced by the projective n-cell at a is the isofibration (7.3.2). By definition, any
flexible weight is built as a countable composite of pushouts of coproducts of these projective cells
and the weighted limit functor lim™ F carries each of these conical colimits to the corresponding
limit notion. So it follows that limi(/ﬂ;/P may be expressed as a countable inverse limit of pullbacks of
products of the maps (7.3.2). This proves (i).

The same argument proves (ii). By definition, arelative cell complex V' < Wisbuilt as a countable
composite of pushouts of coproducts of these projective cells and the weighted limit functor lim™ F
carries each of these conical colimits to the corresponding limit notion. So it follows that lim}%F is

the limit of a countable tower of isofibrations whose base in 1im€{ F, where each of these isofibrations
is the pullback of products of the maps (7.3.2) appearing in the projective cell complex decomposition
of V' W. As products, pullbacks, and limits of towers of isofibrations are isofibrations, (ii) follows.

In (i), we have decomposed each weighted limit lim%F as the limit of a tower of isofibrations,
in which each of these isofibrations is the pullback of a product of the isofibrations (7.3.2). We argue
inductively that if &: F = G is a componentwise equivalence, then the map induced between the
towers of isofibrations for F and for G by the projective cell complex presentation of W is a level-
wise equivalence. It follows from the standard argument in abstract homotopy theory reviewed in
Appendix C that the inverse limit is then an equivalence, proving (iii).
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The bottom of the tower of isofibrations is limy F = 1 = limy G, which is certainly an equiva-
lence. For the inductive step, observe that upon taking the map of weighted limits induced by each
projective n-cell at @ in W, we obtain a commutative square

Aln]
Fallrl 225 GgAlr]

Lo 4

FaoAln] “ﬂN s GaAln]

defining a pointwise equivalence between the isofibrations; the simplicia] cotensor, as eosmo]ogi—
cal functor, preserves equivalences. Now the product of squares of this form gives a commutative
square whose horizontals are isofibrations and whose verticals are equivalences. A pullback of this
square forms the next layer in the tower of isofibrations; by the inductive hypothesis, the map be-
tween the codomains of the pulled back isofibrations is already known to be an equivalence. Now
the equivalence-invariance of pullbacks of isofibrations established in Appendix C completes the

proof. O

Immediately from the construction of Proposition 7.3.1(1):

7.3.3. COROLLARY (00-cosmoi admit all flexible weighted limits). o0-cosmoi admit all flexible weighted
limits and cosmological functors preserve them. O

Our aim is now to describe a converse of sorts to Proposition 7.3.1(i), which proves that the flexible
weighted limit of any diagram in an co-cosmos can be constructed out of the limits of diagrams of
isofibrations axiomatized in 1.2.1(i). Over a series of lemmas, we will construct each of the limits
listed there as instances of flexible weighted limits. It will follow that any quasi-categorically enriched
category equipped with a class of representably-defined isofibrations that possesses flexible weighted
limits will admirt all of che simp]ieia] limics of 1.2.1(i). This will help us identify new examples of
00-CcOSMOi.

To start, simplicial cotensors are flexible weighted limits. For any simplicial set U, the collage
of U: 1 — s8et is the simplicial computad 2[U]. As 1 + 1 < 2[U] is a simplicial subcomputad
inclusion, Theorem 7.2.12 tells us that U: 1 — sSet is a flexible weight; this solves Exercise 7.2.1.

This leaves only the conical limits. The weights for products are easily seen to be flexible directly
from Definition 7.2.1. However, the weights for conical pullbacks or limits of towers of isofibrations
are not flexible because the definition of a cone over either diagram shape imposes composition rela-
tions on 0-arrows.

7.3.4. ExAMPLE (the collage of the conical pullback). Let 2t denote the 1-category ¢ — a < b. Its
collage is the 1-category with four objects and five non-identity 0-arrows as displayed

1 ——b

I\

Cc—a

regarded as a constant simplicial category as in Example 6.1.4. Because the square commutes, this
category is not free and hence does not define a simplicial computad, though the subcategory 1+ =
is free and hence is a simplicial computad. Lemma 6.1.11 tells us that the inclusion is not a relative
simplicial computad and so by Theorem 7.2.12, the weight for the conical pullback is not flexible.
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Our strategy is to modify the weights for pullbacks and for limits of countable towers so that each
composition equation involved in defining cones over such diagrams is replaced by the insertion of
an “invertible” arrow of one dimension up, where we must also take care to define this “invertibility”
without specifying any equations between arrows in the next dimension. We have a device for speci-
fying just this sort of isomorphism: recall from Exercise 1.1iv(i) a diagram I — Fun(A, B) specifies a
“homotopy coherent isomorphism” between a pair of 0-arrows f and g from A to B, given by:

® apairof l-arrowsa: f = gandB: g — f

® a pair of 2-arrows
o § B B f a
AR e N
f=—f §=———g

® a pair of 3-arrows whose outer faces are @ and W and whose inner faces are degenerate
e ctc
We now introduce the weight for pullback diagrams whose cone shapes are given by squares in-
habited by a homotopy coherent isomorphism.

7.3.5. DEFINITION (iso-commas). The iso-comma object C >1§ B of a cospan

cS,al B

in a simplicially-enriched and cotensored category Mis the limit weighted by a weight Wy @ 21— sSet
defined by the cospan

]1%]1#]1

Under the simplification of Remark 7.1.13, the formula for the weighted limit reduces to the equalizer

P Al (91.90)

q| cx ATx B TS v

T CxB T oxf

where the maps (41, g0): AT — A X A are defined by restricting along the endpoint inclusion T+1 =
dI = I. In an co-cosmos, this map is an isofibration and the equalizer defining the iso-comma object

is computed by the pullback
C >2 B— Al

- 7.3.6
(fhﬂo)l l(qwo) ( )

CxB—— AXA
gxf

7.3.7. LEMMA. Iso-comma objects are flexible weighted limits and in particular exist in any co-cosmos.
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PROOF. Reprising the notation for the category = used in Example 7.3.4, the weight Wy is con-
structed by the pushout

Il X 21(a,—) —> = (b,—)U =1(c,-)

I -

Ix a(a,-) — Wy

where the attaching map picks out the two arrows in the cospan =. As a projective cell complex,
Wy is built from a project 0-cell at b, a projective 0-cell at ¢, and two projective k-cells at a for each
k > 0, correspnoding to the non-degenerate simplices of I. As described by Remark 7.2.2, these may
be attached all at once. In this way, we see that Wy is a flexible weight, so Corollary 7.3.3 tells us that
iso-comma objects exist in any 00-cosmos, a fact that is also evident from the pullback (7.3.6). O

7.3.8. REMARK. In the homotopy 2-category of an co-cosmos, there is a canonical invertible 2-cell
defining the iso-comma cone:

that has a weak universal property analogous to that of the comma cone presented in Proposition 3.4.6.
The proof; like the proof of that result, makes use of the fact that Alis the weak I-cotensor in the
homotopy 2-category. The proof of this fact is somewhat delicate, making use of marked simplicial
sets as appeared already in the proof of Corollary 1.1.16, which gives 1-cell induction.

Our notation for iso-commas is deliberately similar to the usual notation for pullbacks. In an
00-cosmos, iso-commas can be used to compute “homotopy pullbacks” of diagrams in which neither
map is an isofibration. When at least one map of the cospan is an isofibration, these constructions are
equivalent.

7.3.9. LEMMA (iso-commas and pullbacks). In an co-cosmos K, pullbacks and iso-commas of cospans in
which at least one map is an isofibration are equivalent. More precisely, given a pullback square as below-left
and an iso-comma square as below-right

Pp—tsB c;gBi»B
(R

P~C i B over C and up to isomorphism over B.

PROOF. Applying Lemma 1.2.13 to the functor b: P — B, we can replace the span (c,b): P —
CxBbyaspan(cqg,p): Pb - CxB whose legs are both isofibrations that is related via an equivalence
s: P = Pb that lies over C on the nose and over B up to isomorphism. We will show that under the
hypothesis that f is an isofibration, this new span is equivalent to the iso-comma span.

To see this, note that the factorization constructed in (1.2.14) is in fact defined using an iso-comma,
constructed via the pullback in the top square of the diagram below-left. Since the map b is itself
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defined by a pullback, the bottom square of the diagram below-left is also a pullback, defining the
left-hand pullback rectangle:

Ph ——— Bl

)] L@ X X
bxB - -
PxB —= BXxB (ql’%)l (ql'%)l l(lh/%)

cXB : XB
l y CXBWAXBWAXA
CXBW}AXB

CxB——> AXB —» Al

Now the iso-comma is constructed by a similar pullback rectangle, displayed above-right. And because
f is an isofibration, Lemma 1.2.11 tells us that the Leibniz tensor ig th f: BT =» A i Bofip: 1 — 1

with f: B = A is a trivial fibration. This equivalence commutes with the projections to A X B and

hence the maps (cq,p): Pb - C X B and (q1,4¢): C 3; B —» C X B, defined as pullbacks of an
equiva]ence pair of isofibrations alongg X B, are equiva]ent as claimed. O

We now introduce a flexible Weight diagrams given by a countable tower of 0-arrows whose cone
shapes will have a homotopy coherent isomorphism in the triangle over each generating arrow in the
diagram.

7.3.10. DEFINITION (iso-towers). Recall the category @ whose objects are natural numbers and whose
morphisms are freely generated by maps ¢, ;411 1 — 1 + 1 for each n.

The iso-tower of a diagram F: @ — M in a simplicially enriched and cotensored category M
is the limit weighted by the diagram W_: @°P — sSet defined by the pushout

idp,tn e
I 91 x w(=, n) 21T w(=, n)

new new

J ! (7311

IIIXw(-n ——— W_
new
O]J

in sSet® .
By Definition 7.1.3(ii), in an 0o-cosmos the iso-tower of a diagram

fur2,n11 Fuein fun-1 f21 f1,0

F =

Fn+1 Fn

is constructed by the pullback
. LTI

new

Pl | (73.12)

F —3 F,xF
ng,) n n+1,n/ian ng, n n

hmw(_ F
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The limit cone is generated by a 0-arrow p,, : limyy_ F — F, for eachn € @ together with a homotopy
—

coherent isomorphism ¢y, in cach triangle over a generating arrow F,,;; — F,, in the @w°P-indexed

diagram.

7.3.13. LEMMA. Iso-towers are flexible weighted limits and in particular exist in any 0o-cosmos.

PROOF. The weight W is a projective cell complex built by attaching one projective 0-cell at
cach n € w — forming the coproduct appearing in the upper right-hand corner of (7.3.11) — and
then by attaching a projective k-cell at each n € w for each non—degenerate k—simp]ex of I. Rather
than actach each projective k-cell for fixed n € @ in sequence, by Remark 7.2.2 these can all be
attached at once by taking a single pushout of the “generalized projective cell at 17 defined by the
map dI X w(—,n) = I X w(—,n). These are the maps appearing as the left-hand vertical of (7.3.11).
Now Corollary 7.3.3 or the formula (7.3.12) make it clear that such objects exist in any co-cosmos. [

7.3.14. LEMMA (iso-towers and inverse limits). In an co-cosmos K, the inverse limit of a countable tower
of isofibrations is equivalent to the iso-pullback of that tower.

PrROOF. We will rearrange the formula (7.3.12) to construct the iso-tower limw<_ F as an inverse
limit of a countable tower of isofibrations P: @®°P

F: @w°® — K. In the case where the diagram F is also given by a tower of isofibrations

— K that is pointwise equivalent to the diagram

. 2,n+1 1, -1 P21 1,0
lim P o~ . Pn+2,n+ Pn+1 Pn+1,n Pn Pun . P1 p PO
g zl e zl e zl e zl o (73.15)
limF = N, F F . E E
Foszner Y Fusin " fanet f21 Lo 70

the equivalence invariance of the inverse limit of a diagram of isofibrations will imply that the limits
limpy,_ F = lim P and lim F are equivalent as claimed.

The co-categories P, will be defined as conical limits of truncated versions of the diagram (7.3.12).
To start define Py := Fjy and € to be the identity, then define Py, p; ¢, and e; via the pullback

P10
/\
P, Fl —=5 F,

J q0
€1 lz Z:L q1
F, — F,

f1,0

Note that P = Fy 1>:< Fy computes the iso-comma objects of the cospan given by idg, and f1 0.
0
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Now define Py, p; 1, and €, using the composite pullback

P21
/\
P, o 3 P, F} = E,
lz lz el lz ZTL qn
2| e Fl —>» Fy Fo

a q0 f10
lﬁ zl q1
Fz —>> F1

21

Continuing inductively, Py, pj, ,_1, and e, are defined by appending the diagram

)il ~
Fn—l 70 > Fn—l

o
Fn ra— Fﬂ—l
fn,n—l
to the limit cone defining P,,_1 and taking the limit of this composite diagram.

There is one small problem with the construction just given: it defines a diagram (7.3.15) in which
cach square commutes up to isomorphism — the isomorphism encoded by the map P, — Fg—l —
not on the nose. But because the maps f,,11 ,, are isofibrations this is no problem. The isomorphism
inhabiting the square egp19 = f79e1 can be lifted along f7 ¢ to define a new map ej: P; = Fy
isomorphic to ey; as observed in the proof of Theorem 1.4.7 this €] is then also an equivalence, so
we replace e; with €], and then continue inductively to lift away the isomorphisms in the square
eip21 = fa,162.

Since inverse limits of towers of isofibrations are equivalence-invariant, it follows that lim P =~
limF. By construction lim P = limyy_ F, so it follows that limyy_ F =~ limF, which is what we
wanted to show. O

Exercises.

7.3.4. EXERCISE ([93, 2.2.2]). Show that co-cosmoi admit wide pullbacks: limits of finite or countable
diagrams of the following form

An An—l T Al AO
pn—l\&‘ ’/f pn—Z\& '/f

n-1

B, B, By By
and that their construction is invariant under pointwise equivalence between diagrams.

7.4. Flexible weighted homotopy limits model co-categorical limits

When working in a category M that is enriched over quasi-categories or Kan complexes we will
have occasion for interest in a notion of weighted limit and colimit satisfying a relaxed version of
the universal property expressed in Definition 7.1.7, in which the defining isomorphism is replaced
by an equivalence of quasi-categories or Kan complexes. Borrowing the standard terminology in use
in algebraic topology, we refer to these constructions as “homotopy limits” and “homotopy colimits.”
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The weights that appear in the examples we consider are flexible weights, so we confine ourselves to
the flexibly-weighted case, where the notion of “homotopy limit” is easier to define.

7.4.1. DEFINITION (flexible weighted homotopy limits). Given a flexible weight W € SSetﬂ and a
diagram F € M7 valued in a quasi-categorically enriched category M, a W-cone At W — M(L, -)
displays the object L € M as a flexible weighted homotopy limit of F weighted by W if for all objects
X € M the map

MX, L) -5 lim M(X, F-) = sSet™ (W, M(X, E-))

induced by post-composition with A is an equivalence of quasi-categories,” in which case we denote

object L by lim}y F.

For homotopy coherent diagrams of shape Y, there is a flexible weight of particular interest, the
weight Wy for pseudo limits introduced in Definition 7.2.15. We refer to flexible weighted homo-
topy limits of this shape as pseudo homotopy limits for short. By Corollary 7.2.9, simplicial functors
C(A[0] * Y) — M stand in bijection to Wy-shaped cones in M so we refer to homotopy coher-
ent diagrams of shape A[0] % Y as pseudo Weighted cones. Our present aim, which will occupy the
remainder of this section, is to prove the following result.

7.4.2. THEOREM. For any Kan complex enriched category S, simplicial set Y, and homotopy coherent diagram
F: €Y — 8, if F admits a pseudo homotopy limit in S, then the pseudo homotopy limit cone A: €(Y<) - S
transposes to define a limit cone A1 Y — NS over the corresponding diagram f:'Y — NS in the homotopy
coherent nerve of S. Consequently, if S admits pseudo homotopy limits for all simplicial sets Y, then the quasi-
category NS admits all limits.

Dually, pseudo homotopy colimits in S define colimits in the quasi-category NS. In fact, the
converse to Theorem 7.4.2 holds as well and will appear as will appear as Theorem 16.4.20: a cone
over a diagram Y — NS is a limit cone in the quasi-category NS if and only if the transposed cone
defines a pseudo homotopy limit cone for the homotopy coherent diagram diagram €Y — § in the
Kan complex enriched category S.

The proof of Theorem 7.4.2 proceeds directly from the characterization of a limit cone over a quasi-
categorically valued diagram as a terminal element in the quasi-category of cones given in Proposition
4.3.2. Tt will be most convenient to make use for the slice quasi-category model ‘JES/f for the quasi-
category of cones established by Proposition D.6.5 and Proposition F.2.1. By that result, a diagram
f:Y — NS admits a limit in NS if and only if there exists some cone A over f as depicted below-
left, which enjoys the lifting property below-right

A
y—L %8 A[0] % Y ——> 9A[n] % Y NS
/;, {n}xY //7
=
A[0] % Y Aln] %Y

*Since W is a flexible Weight, Corollary 733 proves that the W—Weighted limit of the diagram of quasi-categories
M(X,F-): A — QCat is a quasi-category.
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foralln > 1. Taking transposes under the homotopy coherent nerve homotopy coherent realization
adjunction, this may equivalently be encoded by a cone as below-left with the lifting-property below-

right:
A
F /_\_g
oy —— 'S SAL0] % Y) (75, @Al % Y) —3 S
{ - - (7.4.3)
/// A ///
C(A[0] % Y) C(A[n] % Y)

To prove Theorem 7.4.2, we show that these extensions can be constructed whenever A is a pseudo
homotopy limit cone, satisfying the universal property of Definition 7.4.1 for the weight Wy for pseudo
limits. The first step towards this proof applies the analysis of §6.4 to characterize the homotopy
coherent diagrams appearing in (7.4.3).

7.4.4. PROPOSITION. If S admits the pseudo weighted limit of a diagram Fy: €Y — S, then simplicial
functors F: &(X % Y) — § that extend Fy: €Y — 8 stand in bijective correspondence to simplicial
functors Fx: €(X % A[0]) = S that map the cone point T to the pseudo weighted limit limyy, Fy.

Note the hypothesis of Proposition 7.4.4 is for a strict pseudo weighted limit rather than a pseudo
homotopy limit. We will apply this result in the co-cosmos of Kan comp]exes, which admits such limits

by Corollary 7.3.3.

PROOF. We start by solving Exercise 6.4.i. Under the isomorphism €(X % Y) = €(X » A[0]) X5
C(A[0]*Y) of Theorem 6.4.8 and the description of €(X * A[0]) X5 €(A[0] % Y) given in Observation
6.4.3, we find that a simplicial functor F: (X % Y) — & is uniquely determined by the following
data:

(i) a pair of simplicial functors Fx: €X — Sand Fy: €Y — S and

(ii) a family of simplicial maps

Fy
E(X * A[O])(x, T) X €(A[0] * Y)(L,y) —= S(Fxx, Fyy)
that is simplicially natural in x € €X and y € €Y.

Transposing this family of simplicial maps and taking the manifest enriched end to encode the
naturality in y € €Y this reduces to a family of simplicial maps

Fy_
E(X * A[O)(x, T) —— fy oy SExx, Fyy) S AOOWY) = Timyy, S(Fxx, Fy—). (7.4.5)

which is simplicially natural in x € €X. By Definition 7.1.4 and 7.2.15 this end computes the pseudo
weighted limit of the diagram S(Fxx, Fy—): €Y — Kan. If S admits a pseudo-weighted limit of the
diagram Fy: €Y — 8, then the codomain of (7.4.5) is, by Definition 7.1.7, naturally isomorphic to
S(Fxx,limy, Fy). So then simplicial functors F: &(X % Y) — S that extend Fy: €Y — 8 stand
in bijective correspondence to simplicial functors Fx: €(X * A[0]) — S that map T to the limit
limwy Fy. |:|

With this result in hand, we return to analyzing the lifting problem (7.4.3). The next result char-
acterizes solutions to lifting problems of that general form.
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7.4.6. PROPOSITION. Solutions to lifting problems of the form
€A xY) ——= S
£ 7 lp (7.4.7)
(Al % Y) —— T
correspond bijectively to pairs of lifts making the following diagram commute:

CA™n + 1](0, n) S(FO0, Fn)

\ //z | \

CA™[n + 1](0, 1 + 1)< l limyy, S(FO, F-)

—~ A
CAn + 1](0, 1) ———===== - l T(G0,Gn) .-~ l

—

CA[n +1](0, 1 + 1) —=—====T - limpy, 7(GO, G-)

PROOF. Under the isomorphism of Theorem 6.4.8, the left-hand inclusion in the lifting problem
(7.4.7) is isomorphic to

CA™ 11 + 1] X, €(A[0] % Y) —— CA[n + 1] X5 C(A[0] % Y)

which is obtained by applying the functor =X, €(A[0]*Y') to the inclusion CA™n+1] = CA[n+1].
By Lemma 6.3.7, the simplicial subcategory €A1 [n + 1] differs from €A[n + 1] only on account of

the proper inclusions
CA™ 1 +1](0,n) = CA[n+1](0,n) and CA™[n+1](0,n +1) = CA[n +1](0,n + 1).

Combining this information with the description of simplicial functors with domain (X % Y) given
in Proposition 7.4.4, we find that each lift in (7.4.7) corresponds to a pair of solutions to the lifting

problems
CA™ [ +1](0, 1) —%s S(FO, Fn) CA™ [+ 10, 1 + 1) —2> limyy, S(FO, F-)
= _>
[ e /L;,n lpFO,Fn [ - /L/O,/— l“mWy p
CA[n + 110, n) ——> T(GO, Gn) CA[n +1)(0, 1 +1) ——> limy, T(GO, G-)

together satisfying the funetoriality condition expressed by the commurative square

CA[n +1](0,1n) ——~"5 S(F0, Fn)

{n,n+1}o—l lAFO_

CA[n+1](0,n+ 1) ST limyy, S(FO, F-)

in which the right-hand map is induced by post-composition with the Wy-weighted cone Ap: Wy —
S(Fn, F-) encoded by the composite simplicial functor

CA[0] % V) UV g9Am] % V) —— S 0
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The unpacked lifting property of Proposition 7.4.6 can be simplified still further via the geometric
descriptions of the mapping spaces in homotopy coherent simplices and horns given in Lemma 6.3.7,
which supplies isomorphisms:

CA™ [ + 1100, n) Z2HS €A™ 1 [11 + 1](0, 1 + 1) o0t —— mp”
n-1 n
(SA[TI + 1](0, 1’1) ‘W GA[TI + 1](0, 1’1) O [I”’lx{l;} U

This leads us to the following technical lemma.

7.4.8. LEMMA. For a commutative square of simplicial maps gh = kp, there exists a bijective correspondence

between lifting problems and their solutions of the forms displayed below-left and below-right:

o1 A
\,x Lz 4 K B o0l —— I;IomB(B, h)
e Pl A “> [ /// lHomq(B,p)
Ot == [ /C//k 7 ot Homp (g, k)
Dn—l$ O - \ D

PROOF. The isomorphism (0" = "1 x A[1] restricts to subspaces to give an isomorphism

My =01 xA[1] U O x{0}.
a0n-1x{0}

Put another way, the inclusion of this cubical horn is isomorphic to a Leibniz product inclusion
(" > 07 = (90 o ) R (0} AL,

Transposing across the Leibniz product — Leibniz exponential two-variable adjunction OFProposition
C.2.9 provides a bijection between solutions to lifting problems

Mt B ol s B2
A -7
[ - lq o Jj Pl lHomq(B,q) (7.4.9)
0" —— D "1 —— Homp(g, D)

Under this transposition, the compatibility condition between the two lifts in the commutative cube
displayed in the commutative square below-left, transposes to the compatibility condition displayed
in the commurative square below-right

Ol --—> A Ol --——> A

|
D”‘lx{l}[ lh “> J lh
N B? —— B

which can be expressed by requiring the lift to define a functor "' --> Homg(B, h). Similarly,

the commutative squares displayed on the tOp and bottom O{" the commutative cube transpose to the
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commutative diagrams

Dn—l «— 8Dn_1 — S A Dn—l — 5 C

| Lo Lo
2 2 N

B Po B P1 B D P1 D

The left-hand square and right-hand square tell us that the codomain of the lifting problem (7.4.9)
may be pulled back to define a functor 0"t — Homp(q, k), while the middle square tells us that the
domain of this lifting problem can be pulled back to define a functor dC1"1 — Homg(B, k). Thus,

this information combines to define the transposed lifting problem

I —— Homg(B, h)

7
[ e - lHomq(B,p)

-~

01— Homp(q, k)
of the statement. O

Cubical boundaries lift against trivial fibrations of simplicial sets. The next lemma gives us a
criterion under which the map Hom, (B, p): Homg(B, h) — Homp(g, k) is a crivial fibration.

7.4.10. LEMMA. Given a commutative square between Kan complexes whose vertical arrows are Kan fibrations

ALB

il b
CT>D

then the induced map Hom, (B, p) : Homg(B, ) - Homp(q, k) is a trivial fibration if and only if the square
is a homotopy pullback, i.e., if and only if the map A = B X C is an equivalence.

PROOF. First note that Proposition 3.4.5, applied in the 0o-cosmos of Kan complexes, tells us that
the map Hom, (B, p): Homp(B, h) = Homp(g, k) induced by the commutative diagram

Al B —
b
C——>D«—B8

is again a Kan fibration. The commurative square gives rise to a commutative square

A—4 Homg(B, h)

Zl lHomq(B,p)

B Xp C T) HomD(q,k)

Since B and D are Kan complexes, the comma objects Homg(B, h) and Homp(g, k) are equivalent to
the iso-comma objects introduced in Definition 7.3.5. Lemma 7.3.9 then tells us that the horizontal
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maps in the above commutative square are equivalences. By the 2-of=3 property, we conclude that

Hom, (B, p): Homg(B, h) =» Homp(g, k) is a trivial fibration, as desired. U
Combining these results, we conclude:

74.11. COROLLARY. If P: 8 — T is a simplicial functor between Kan complex enriched categories and
levelwise Kan fibration, then a lifting problem

€A *Y) ——= S

[~ ]

C(A[n] % Y) — T
has a solution whenever the square

S(F0, Fr1) =5 Timy, S(FO, F-)

PFO,Fnl :Lhmwy P

7(GO, Gn) F limWY 7(GO,G-)
is a homotopy pullback of Kan complexes.

PROOF. Since the weights for pseudo limits are flexible, applying Proposition 7.3.1 in the co-cosmos
of Kan complexes, we see that the pseudo weighted limits limyy, S(FO, F-) and limy, 7(GO, G-) of
the diagrams of Kan complexes are again Kan complexes and the map between them is again a Kan
fibration. So Lemma 7.4.10 applies to tell us that if this square is a homotopy pullback, then a certain
induced map between comma objects is a trivial fibration. If this map is a trivial fibration, then it
clearly admits extensions along cubical boundary inclusions dO0" 1 < "1 Lemma 7.4.8 translates
this lifting property into an equivalent lifting property, which Proposition 7.4.6 reveals is exactly what
is needed to solve the lifting problem of the statement. O

Corollary 7.4.11 specializes to a proof of Theorem 7.4.2.

PROOF OF THEOREM 7.4.2. Consider a homotopy coherent diagram F: €Y — SinaKan complex
enriched category that admits a pseudo homotopy limit cone A: CA[0] * Y — 8. To see that the
transposed cone A: A[0] * Y — NS defines a limit for the quasi-category valued diagram f: Y —
NS, we must solve the lifting problems

A
ey — > S CAO] * Y) ¢z S@AI] % V) —3 S
| = [
C(A[0] % Y) C(A[n] x Y)

forallm > 1. Let K: €(dA[n]*Y) — Sbe asimplicial functor that restricts along €({n} % Y) to the
cone A over F. By Corollary 7.4.11, this diagram can be extended along €(dA[n] * Y) — C(A[n]xY)
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Whenever th€ diagram

S(K0, Kn) —2= Timyy, S(KO,K-)

| !

1 1

isa homotopy pullback of Kan Complexes. This is che case just when the map

S(K0,Kn) —2 limyy, S(KO,K-)
Al Al
S(KO, A(L)) ——> limyy, S(KO,F-)

is an equivalence, which encodes the universal property of the psecudo homotopy limit cone A with

summit Kn = A(L). O

To assist with later calculations, we now constructed some explicit models of pseudo homotopy
limit cones of homotopy coherent diagrams for simple but important diagram shapes. In particular,
we'll consider as an indexing 1-category | either

e a discrete category, indexing product diagrams,
e the cospan category -, indexing pu”back diagrams, or
e the category w"°?, indexing inverse limits ofcomposable sequences.

In each case, | is a free category on an underlying graph G < | of “atomic” arrows; we regard G as a
L-skeletal simplicial set. As the following lemma indicates, such diagrams ] — & are automatically
“homotopy coherent.”

7.4.12. LEMMA. Let | be a 1-category freely generated by the graph G = | of atomic arrows.

(i) The homotopy coherent realization CG is isomorphic to |, regarded as a simplicial category with dis-
crete hom-sets. Hence diagrams | — 8 in a Kan complex enriched category correspond bijectively to
diagrams G — NS in the homotopy coherent nerve.

(i) For any Kan complex enriched category S, the quasi-categories NS and NRSE are equivalent. Hence,

up to equivalence, we can represent a quasi-categorical diagram | — NS by a point-set diagram

J—S.

PROOF. The isomorphism €G = | was observed in Exercise 6.3.ii. Hence diagrams G =] —» S
in a Kan complex enriched category correspond bijectively to diagrams G — NS in the homotopy
coherent nerve.

Note further that when [ is a 1-category freely generated by a graph G, the inclusion G < [ is
inner anodyne when considered as a monomorphism of simplicial sets. Since S is a quasi-category,
restriction along this map induces an equivalence NS/ = NSC. So, up to equivalence, we can repre-
sent any diagram | — NS by its restriction G = | — NS, which transposes to a strictly commuting

diagram €G =] — S by (i) O

Theorem 7.4.2 shows that limits of homotopy coherent diagrams in Kan complex enriched cat-
egories weighted by the weight for pseudo limits model limits in the underlying quasi-category. In
the following definition, we construct cones of the appropriate shape over the strictly commuting
homotopy coherent diagrams considered in Lemma 7.4.12.
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7.4.13. DEFINITION. When [ is the free 1-category generated by a graph G, a strictly commuting pseudo
cone over a diagram F: | 2 €G — § is formed by restricting a strict cone a: L = F(-) along the
unique map Wg — 1 of weights:

We ——> 1 —25 S(L,F-)

Such strictly commuting pseudo cones are of interest on account of the following result which
consider diagrams F: | — & in a Kan complex enriched category S of one of the types enumerated
above in which certain maps Fj — Fj’ are representable Kan fibrations, inducing Kan fibrations

S(X, Fj) » S(X,Fj’) forall X € S,

7.4.14. PROPOSITION. Suppose | is a discrete category, the pullback shape =1, or @°P, and F: | — S'isa
diagram in a Kan complex enriched category comprised of representable Kan fibrations, in the case | = w®P,
and in which one of the maps is a representable Kan fibration, in the case | ==. Then the strictly commuting
pseudo cone formed from the limit cone 7t lim F = F(=) over a diagram F: | — S valued in a Kan complex
enriched category presents lim F as a pseudo homotopy limit of F in S.

PROOF. For all X € S, postcomposition with the weighted cone 7t!: W — S(lim F, F-) deter-
mines a map of Kan complexes

().

S(X, lim F) = limy S(X, F-) = lim; S(X, F~) —— limyy, S(X, F-)

which factors as indicated through the map induced by the map !: W5 — 1 of weights upon tak-
ing weighted limits of the diagram S(X,F-): G — Kan. Our task is to show that this map is an
equivalence.

In this way we sce that it suffices to show that for a diagram F: | — Kan of one of the types
enumerated in the statement, that the induced map from the strict limit of F to the pseudo limit of F
is an equivalence, which is achieved by the next three lemmas. O

7.4.15. LEMMA. For any family of objects {A]-}]'e] in a simplicial category with products, the strict limit cone

T H]. Aj o A defines a pseudo homotopy limit cone.

PROOF. In this case the result is trivial because the weight for the pseudo limit of a discrete diagram
is isomorphic to the terminal weight. O

Lemma 7.4.15 applies in particular to the 00-cosmos Kan of Kan complexes.

7.4.16. LEMMA. The strict pseudo cone formed from the pullback cone over a diagram of Kan complexes and
Kan fibrations

T «— I

541%0

s
-4
s

f
defines a pseudo homotopy limit cone in Kan.

PROOF. Unpacking Definition 7.2.15, the weight W, : €(4) =1— sSet for pseudo limits over the
pullback shape is given by the simplicial functor which maps the outer objects b and ¢ of =t to A[0]
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and the middle object a to 2°P= A°[2]. From the pullback diagram of the statement, we derive the
following commutative diagram

c—ts A A Al B
N I P .
~ -%P ~
C—» Ai— AT —=» A B

Here the upper row is a wide pullback diagram whose limit is simply the pullback P of the original
diagram. The lower row is the wide pullback diagram whose limit is the end that computes the limit of
the original diagram weighted by W.. Since ! is a contractible simplicial set and A is a Kan complex,
the indicated maps are equivalences. It follows from Proposition 7.3.1 that the induced map of limits
is an equivalence, as elaborated upon in Exercise 7.4.1. O

7.4.17. LEMMA. The strict pseudo cone formed from the limit cone over a sequence of Kan fibrations between
Kan complexes

F n F n-1 r‘ 1 F 0
An A AO

PROOF. The diagram shape of the statement, the graph underlying the free category w®P, is the
ordered set IN°P with objects 1 € @ and non-identity edges 1 + 1 — 1. The weight Wiep: CINP =
@ — s8Set maps each object 7 to the 1-skeletal simplicial set IN with connecting map from one
integer to its predecessor given by the successor map S: IN — IN. From the given sequence of Kan
fibrations we may derive the following commutative diagram:

-1 1 0
e A Py e Ay s A =—— A D Ay =—— A
ZlA ZlA ZlA ZlA ZlA ZlA
AN AN AN AN AN AN
I AR Ay TROGNT T Ay T pNT 0 Ay 00

Here the upper row is a wide pullback diagram whose limit is simply the limit of the original digram.
The lower row is the wide pullback diagram whose limit is the end that computes the limit weighted
by Wier. The components of the transformation from top to bottom are equivalences because IN is
a contractible simplicial set and each of the A;, are Kan complexes. It follows from Proposition 7.3.1
that the induced map of limits is an equivalence, as elaborated upon in Exercise 7.4.i. O

Exercises.

7.44. EXERCISE.

(i) Show that co-cosmoi admit wide pullbacks: limits of a finite or countable diagram of the
following form

Bn Bn—l Bl BO
Pn—\& Al ,,A Az N A M A
- An—l An—Z . Al AO

in which the right-facing arrows are isofibrations.
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(i) Show that the limits constructed in (i) are invariant under pointwise equivalence between
diagrams.

7.5. Weak 2-limits revisited

To wrap up this chapter on weighted limits, we briefly switch the base of enrichment from sim-
plicial sets to categories and reconsider the weak 2-limits introduced in Chapter 3. We give a general
definition that unifies the weak 2-limits introduced in special cases there and prove their essential
uniqueness in a uniform manner.

Before turning our attention to weak 2-limits we describe the explicit construction of the weighted
limit of any Cat-valued diagram. Let A be a small 2-category and consider any pair of 2-functors
F,W: A 3 Cat, the first regarded as the diagram and the second as the weight.

7.5.1. LEMMA (on the construction of weighted limits in Cat). For any diagram F: ‘A — Cat and weight
W: A — Cat, the weighted limit limy, F € Cat exists, defined to be the category whose

® objects are 2-natural transformations «: W = F and

® morphisms are modifications.

PROOF. By Definition 7.1.7, the W-weighted limit of F is a category limy F € Cat characterized
by a natural isomorphism of categories
Cat(X, limpy F) = Cat™ (W, Cat(X, F-))
for any category X. The 2-functor Cat(1l, —): Cat — Cat is the identity, so taking X = 1 this tells us
that
limy F = Cat™ (W, F),

the category of 2-natural transformations and modifications from W to F. O

7.5.2. DEFINITION (weak 2-limits in a 2-category). Consider a 2-functor F: A — C indexed by a small
2-category A and a weight W: A — Cat. A W-cone with summit P € C

W == C(P, F-)

displays P as a weak 2-limit of F if and only if for all X € C the functor induced by composition with
A

C(X,P) =25 limy C(X, F-)
to the W-weighted limit of the diagram C(X, F=): A — Cat is smothering, in the sense of Definition
3.1.2.

The weak universal property encoded by a smothering functor is sufficiently strong to characterize
the limit objects up to equivalence in the ambient 2-category:

7.5.3. PROPOSITION (uniqueness of weak 2-limits). For any fixed diagram and fixed weight, any pair of
weak 2-limits are equivalent via an equivalence that commutes with the legs of the limit cones.

PrOOF. If
W =2= C(P,F-) and W =2= C(P’,F-)
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both define weak 2-limit W-weighted cones over a 2-functor F: A — C, then for any X € C, we
have a pair of smothering functors

C(X,P) =2 Timyy C(X, F=) <X C(X, P

Taking X = P, the identity idp € C(P,P) maps to the cone A € limy C(P, F-), which then lifts
along the right-hand smothering functor to define a 1-cell u: P — P’; a 1-cell v: P* — P is defined
similarly as the lift of A” € limyy C(P’, F-) along A,. By construction, both # and v commute with
the legs of the limit cones A and A’.

Now A, carries the composite vu € C(P, P) to the cone W = C(P, F-) whose component at
a € A is the composite

P u p/ v P All
\ A\_}M

which equals simply the cone leg A,;. Thus idp and vu lie in the same fiber of the smothering functor

Fa

A, and so by Lemma 3.1.3 must be isomorphic via an isomorphism that whiskers to identities along
the legs of the limit cone. Similarly, uv = idp/, proving that P ~ P” as claimed. O

Exercises.

7.5i. EXERCISE. An inserter is a limit of a diagram indexed by the parallel pair category ¢ =
weighted by the weight
0
1 :1; 2 € Cat
Prove that the homotopy 2-category of an co-cosmos has weak inserters of any parallel pair of functors

f,g: A 3 B constructed by the pullback

Ins(f,g) —> B?

l : l(m,po)

A—— BXB

©&f)
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CHAPTER 8

Exotic 0co-cosmoi

Our aim in this section is to introduce further examples of co-cosmoi.

8.1. The co-cosmos of isofibrations

Our first example is a special case of a more general result that will appear in Appendix E that we
nonetheless spell out in detail to illustrate the ideas involved in this sort of argument. The walking
arrow category 2 is an inverse Reedy category, where the domain of the non-identity arrow is assigned
“degree 17 and the codomain is assigned “degree zero.” This Reedy structure motivates the definitions
in the co-cosmos of isofibrations that we now introduce:

8.1.1. PROPOSITION (00-cosmoi of isofibrations). For any oo-cosmos K there is an co-cosmos K2 whose

(i) objects are isofibrations p: E = B in K
(i) functor-spaces, say from q: F = A top: E - B, are defined by pullback

Fun(F—» A,E2» B) —— Fun(F, E)
Fun(A, B) T> Fun(F, B)

(i) isofibrations from q to p are commutative squares

F—g»E

ETRG L
. ®, |p
-

A—>»B

f

in which the horizontals and the induced map from the initial vertex to the pullback of the cospan are
isofibrations in K
(iv) limits are defined pointwise in K
(v) and in which a map
8
F—E

~

q p

A——>B
f

is an equivalence in the 00-cosmos K2 if and only if g and f are equivalences in K.
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Relative to these definitions, the domain, codomain, and identity functors

dom

K2 «id— K
SN

CO d

are all cosmological.

PROOF. The diagram category K2 inherits its simplicially enriched limits, defined pointwise, from
K. The functor-spaces described in (ii) are the usual ones for an enriched category of diagrams. This
verifies 1.2.13).

For axiom 1.2.1(ii) note that the product and simplicial cotensor functors carry pointwise isofibra-
tions to isofibrations. The pullback of an isofibration as in (iii) along a commutatative square from an
isofibration 7 to p may be formed in K. Our task is to show that the induced map ¢ is an isofibration
and also that the square from ¢ to 7 is an isofibration in the sense of (iii):

|
|
G E
|
t a4 q Y 7
R N l..).' (8.12)
&y Lo

The map t factors as a pullback of z followed by a pullback of 7 as displayed above, and is thus an isofi-
bration, as claimed. This observation also verifies that the square from ¢ to 7 defines an isofibration.
A similar argument verifies the Leibniz stability of the isofibrations and that the limit of a tower of
isofibration is an isofibartion. This proves that KZ defines an 00-cosmos in such a way so that the
domain, codomain, and identity functors are cosmological.

Finally, since pullbacks of isofibrations in QCat are invariant under equivalences, a pair of equiv-
alences (g, f) induces an equivalence between the functor-spaces defined in (ii). The converse, that an
equivalence in K2 defines a pair of equivalences in K follows from the fact that domain and codomain-
projection functors are cosmological and Lemma 1.3.2. O

In close analogy with Proposition 3.6.3 we have a smothering 2-functor that relates the homo-
topy 2-category of K2 to the 2-category of isofibrations, commutative squares, and parallel natural
transformations in the homotopy 2-category of K.

8.1.3. LEMMA. There is an identity on objects and I-cells smothering 2-functor H(K?) — (HK)? whose
codomain is the 2-category whose

e objects are isofibrations in K
o I-cells are commutative squares between such,
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o 2-cells are pairs of 2-cells in hK

PROOF. Exercise 8.1.1. ]

Any 00-cosmos admits an 00-cosmos of trivial fibrations, defined similarly. We leave the details
to the reader.

8.1.4. PROPOSITION. Let K be an co-cosmos.

(i) For any co-category B in K, the full subcategory 7(/_73 <~ 7(/3 spanned by the trivial fibrations with
codomain B defines an 0o-cosmos, with limits, isofibrations, equivalences, and trivial fibrations created
by the inclusion.

(ii) The full subcategory K2 — K> spanned by the trivial fibrations defines an co-cosmos, with limits,
isofibrations, equivalences, and trivial fibrations created by the inclusion.

PROOF. The details, which are similar to Propositions 1.2.19 and 8.1.1, are left to Exercise 8.1.ii. [J

Note that the sliced co-cosmoi 7(/7_; of trivial fibrations are weakly contractible in the following
sense sense: the functor spaces are contractible Kan complexes, and consequently and each functor in
7(/‘2; is an equivalence. Hence the unique functor 7(/7; — 11 to the terminal co-cosmos is a cosmological
biequivalence, a notion whose general properties are explored in Chapter 14.

Exercises.
8.1.i. EXERCISE. Prove Lemma 8.1.3.

8.1.ii. EXERCISE. Prove Proposition 8.1.4.

8.2. Replete sub co-cosmoi

For any co-cosmos K and any subcategory of its underlying 1-category — that is for any subset of
its objects and subcategory of its 0-arrows — one can form a quasi-categorically enriched subcategory
L C K that contains exactly those objects and 0-arrows and all higher dimensional arrows that they
span. We call such subcategories £ full on positive-dimensional arrows; note the functor spaces of £
are quasi-categories because all inner horn inclusions are bijective on vertices. We will take particular
interest in subcategories that satisfy a further “repleteness” condition.

8.2.1. DEFINITION. Let K be an co-cosmos. A subcategory L C K is replete in K if it is full on
positive-dimensional arrows and moreover:
(i) Every co-category in K that is equivalent to an object in L lies in L.
(ii) Any equivalence in K between objects in L lies in L.
(iii) Any arrow in K that is isomorphic in K to an arrow in £ lies in L.
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8.2.2. LEMMA. Suppose L c Kisa replete subcategorjy of an co-cosmos. Then any map p: E — Bin
L that defines an isofibration in K is a representably-defined isofibration in L: that is for all X € L,
p.: Fun (X, E) - Fun ¢(X, B) is an isofibration of quasi-categories.

PROOE. Since K is an co-cosmos, axiom 1.2.1(ii) requires that p,: Fungd(X, E) - Fung(X, B)
is an isofibration of quasi-categories. Because the inner horn inclusions are bijective on vertices and
Fun (X, E) <= Fungd(X,E) is full on positive-dimensional arrows, it follows immediately that the
restricted map p, : Fun (X, E) = Fun (X, B) lifts against the inner horn inclusions. Thus it remains
only to solve lifting problems of the form displayed below-left

1 —— Funy(X,E) —— Funy(X,E)

-
[ p*£,f/’ l

I % Fun (X, B) —— Fung{(X, B)

The lifting problem defines a 0-arrow e: X — E in £ and an isomorphism : b = pe in L. Its
solution in K defines a 0-arrow €’ : X — E in K'so that pe’ = b together with an isomorphism e = ¢’
in K. By fullness on positive-dimensional arrows, to show that this lift factors through the inclusion
Fun (X, E) = Fung(X, E), we need only argue that the map ¢’ lies in L, but this is the case by
condition (iii) of Definition 8.2.1. O

The following result describes a condition under which a replete subcategory £ C K inherits an
oo-cosmos structure created from K

8.2.3. PROPOSITION. Suppose L C K is a replete subcategory of an 0o-cosmos. If L is closed under flexible
weighted limits in K, then L defines an co-cosmos with isofibrations, equivalences, trivial fibrations and
simplicial limits created by the inclusion £ = K which then defines a cosmological functor.

When these conditions hold, we refer to L as a replete sub co-cosmos of K and £ = Kasa
cosmological embedding.

PROOF. To say that a replete subcategory L < Kis closed under flexible weighted limits means
that for any diagram in £ and any limit cone in K that limit cone lies in £ and satisfies appropriate
simplicially-enriched universal property of Definition 7.1.7 in there. We must verify that each of the
limits of axiom 1.2.1(1) exist in L. Immediately, £ has a terminal object, products, and simplicial
cotensors, since all of these are flexible weighted limits. By Lemmas 7.3.7 and 7.3.13, £ also admits the
construction of iso-comma objects and of iso-towers.

Define the class of isofibrations in £ to be those maps in L that define isofibrations in K. By
Lemmas 7.3.9 and 7.3.14, pullbacks and limits of towers of isofibrations are equivalent in K to the
iso-commas and iso-towers formed over the same diagrams. Since these latter limit cones lie in L by
hypothesis, so do the equivalence former cones by repleteness of L in K.

There is a little more still to verify: namely that pullbacks and limits of towers of isofibrations
satisfy the simplicially-enriched universal property as conical limits in L. In the case of a pullback

diagram
p—tsB
{7 b
C — A
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in L we must show that for each X € L, the functor-space Fun ;(X, P) is isomorphic to the pullback
Fun (X, C)Xpyn p(x,4)Fun (X, B) of functor spaces. We have such an isomorphism for functor spaces
in K and on account of the commutative diagram

Fun,(X,P) ---» Fun,(X,C) >(< » Fun (X, B)

[ Fun £(X,

Fungd(X,P) —— Fung(X,C) X  Fung(X,B

XX, P) KX,O) X FumyX, B
and fullness on positive-dimensional arrows, we need only verify surjectivity of the dotted map on
0-arrows. So consideracone (h: X — B,k: X — C) over the pullback diagram in L. By the universal
property of the isocomma AXE, there exists a factorization y: X — CXB in L. Composing with the

equivalence CXB =~ P, this map is equivalent to the factorization z: X — P of the cone (h, k) through

the limit cone (b, ¢) in K that exists on account of the strict universal property of the pullback in there.
By rep]eteness, the isomorphism between z and the composite of‘y with the equiva]ence suffices to
show that z lies in L. Hence, the functor spaces in L are isomorphic. A similar argument invoking
Lemma 7.3.14 proves that inverse limits of towers of isofibrations define conical limits in L. This
completes the proof of the limit axiom 1.2.1(1).

Since the isofibrations in L are a subset of the isofibrations in /K and the limit constructions
in both contexts coincide, most of the closure properties of 1.2.1(ii) are inherited from the closure
properties in K. The one exception is the requirement that the isofibrations in £ define isofibrations
of quasi-categories representably, which was proven for any replete subcategory in Lemma 8.2.2. This
proves that L defines an co-cosmos.

Fina]]y, we argue that the equivalences in L coincide with those of K, which will imp]y that the
trivial fibrations in £ coincide with those of K as well. Condition (ii) of Definition 8.2.1 implies that
for any arrow in L that defines an equivalence in K, its equivalence inverse and witnessing homotopies
of Lemma 1.2.15 lie in L. Because we have already shown that £ admits cotensors with I preserved by
the inclusion £ < K Lemma 1.2.15 implies that this data defines an equivalence in L. Conversely,
any equivalence in L extends to the data of (1.2.16) and since £ — K preserves I-cotensors, this data
defines an equivalence in K. Thus, by construction, the co-cosmos structure of L is preserved and

reflected by the inclusion £ < K as claimed. O

In practice the repleteness condition of Definition 8.2.1 is satisfied by any subcategory of objects
and O-arrows that is determined by some OO—categorical property, so the main task in Verifying that a
subcategory defines an co-cosmos is verifying the closure under flexible weighted limits.

8.2.4. PROPOSITION. For any oo-cosmos K, let K+ denote the quasi-categorically enriched category whose

(i) objects are co-categories in K that possess a terminal object
(i) functor spaces Fun+(A, B) C Fun(A, B) are the sub-quasi-categories whose 0-arrows preserve termi-
nal objects and containing all n-arrows they span

Then the inclusion K+ — K creates an 0o-cosmos structure on K+ from K, and moreover for each object of
K+ defined as a flexible weighted limit of some diagram in K-, its terminal element is created by the 0-arrow
legs of the limit cone.

PROOF. We apply Proposition 8.2.3. Lemma 2.2.6 and Proposition 2.1.10 verify the repleteness
condition, so it remains only to prove closure under flexible weighted limits, which we do by induction
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over the tower of isofibrations constructed in Proposition 7.3.1(i), which expresses a flexible Weighted
limit limyy F as the inverse limit of a tower of isofibrations

cach of which is a pullback of products of maps of the form (7.3.2) indexed by the projective cells of
the flexible weight W. We'll argue inductively that each co-category in this tower possesses a terminal
clement that’s created by the legs of the tower of isofibrations.
For the base case, note that if (A;);es is a family of co-categories possessing terminal elements
t;: 1 = A;, then the product of the adjunctions ! = t; defines an adjunction
|
N
1=l + g4
~—_ "
(tier=I1;ti
exhibiting (;);e; as a terminal element of Hiel A;. By construction, this terminal element is jointly
created by the legs of the limit cone. Note that by construction the product—projection functors pre-
serve this terminal element and the map into the product co-category Hiel A; induced by any family
of terminal element preserving functors (f : X — A;);e; will preserve terminal elements. This verifies
that the subcategory K+ is closed under products.
For the inductive step consider a pullback diagram

limy,  F —— AAl]
llkaF T) A&A[I’l]

that arises from the attaching map for a projective n-cell. The inductive hypothesis tells us that
limy, F admits a cerminal element #; and for each vertex of i € dA[n], the corresponding com-
ponent £;: limy, F — A of the limit cone preserves it. Since F is a diagram valued in K and A is an
oo-category in its image, we know that A must possess a terminal element t: 1 — A. By Proposition
2.1.7(iii), the constant diagram at f then defines a terminal element in A8 4nd AA[”], which we
also denote by t. By terminality, there is a 1-arrow a: €(t;) — t € A8 Whose components at each
i € dA[n] are isomorphisms in A. By Lemma 16.2.1, it follows that & is also an isomorphism, which
tells us that £(#;) is also a terminal element of A?A["]. The same argument demonstrates that terminal
elements in simplicial cotensors, in this case by dA[n] are jointly created by the 0-arrow components
of the limit cone, namely by evaluation on each of the vertices of the cotensoring simplicial set. The
proof is now completed by the following lemma: O

8.2.5. LEMMA. Consider a pullback diagram

F-2LE
qy l”
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in which the co-categories A, B, and E possess a terminal element and the functors f and p preserve them.
Then F possesses a terminal element that is created by the legs of the pullback cone q and g.

PrOOE. Ife: 1 — Eanda: 1 — Aare terminal, then this implies that f(a) = p(e) € B. Using the
fact that p is an isofibration, there is a lift ¢ = e of this isomorphism along p that then defines another
terminal element of E. The pair (4, €’) now induces an element t of F that we claim is terminal.

To see this we'll apply Proposition 4.3.10, which proves that ¢ is a terminal element of F if and
only if the domain-projection functor pg: Homg(F,t) = F is a trivial fibration. By construction of
t, we know that the domain-projection functors for the elements gt, gt, and pgt = fgt are all trivial
fibrations and moreover the top and bottom faces of the cube

Homp(F, t) Homg(E, gt)
/ p0| 2/
Hom 4 (A, qt) Homg(B, fqt) 2| Po
m |2 r P4 L{Po E
/ J /
p
A 7 B

are pullbacks. Since homotopy pullbacks are homotopical, the fact that the three maps between the
cospans are equivalences implies that the map between their pullbacks is also an equivalence, as re-
quired. OJ

Applying the result of Proposition 8.2.4 to K* constructs an 0o-cosmos K| whose objects are
oo-categories in XK that possess an initial object and O-arrows are initia]—e]ement—preserving functors.
Combining these, we get an co-cosmos for the pointed co-categories of Definition 4.4.1, those that
possess a zero element.

8.2.6. PROPOSITION. For any 0o-cosmos K, let K, denote the quasi-categorically enriched category of pointed
oo-categories, i.e., 00-categories that possess a zero element, and functors that preserve them. Then the inclusion
K. = K creates an 0o-cosmos structure on K, from K.

PrROOF. Thisresult follows directly from Proposition 8.2.4, since the co-cosmos K, of co-categories
in K possessing a zero object is isomorphic to (K1), = (%K )+, the idea being that an initial element
a:1 — Ain K5 is encoded by a terminal-object preserving functor, which says exactly that a is a
zero element. OJ

Applying the result of Proposition 8.2.4 or its dual to the co-cosmos Kjp of isofibrations over
B € K, we obtain two new co-cosmoi of interest.

8.2.7. COROLLARY. For any oo-category B in an co-cosmos XK, the sliced co-cosmos Ky admits sub co-cosmoi

Rari(K)p « K > Lari(K)p

whose
® objects are isofibrations over B admitting a right adjoint right inverse or left adjoint right inverse, respec-
tively, and
® (-arrows are functors over B that commute with the respective right or left adjoints up to fibered isomorph-
ism
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with the co-cosmos structures created by the inclusions.
PROOF. These co-cosmoi are defined by Zari(K)p := (Kjp)+ and Lari(K)p = (Kp) . O
Leveraging Corollary 8.2.7, we can establish similar cosmological embeddings
Rari(K) K> > Lari(K)
The quasi-categorically enriched subcategories Zari(K) and Lari(K) are replete in K2, so by Propo-

sition 8.2.3 we need only check closure under flexible weighted limits. We argue separately for coten-

sors, which are easy, and for the conical limits, which are harder. For this, we make use of a general
l-categorical result making use of the fact that the codomain-projection functor cod: FZari(K) — K
is a Grothendieck fibration of underlying 1-categories, defined by restricting the Grothendieck fibra-

tion cod: K2 - K.

8.2.8. LEMMA. Let P: & — B be a Grothendieck fibration between 1-categories. Suppose that J is a small
category, that D: J — & is a diagram, and that

(i) the diagram PD: [J — B has a limit L in B with limit cone A: AL = PD,
(ii) the diagram A*D: J — &

D
s e gTce
A At
AL lp _ D lp

B B

constructed by lifting the cone A to a cartesian natural transformation x: A*"D = D has a limit M
in the fibre & with limiting cone yu: AM = A*D, and

(iii) the limit p: AM = A*D is preserved by the re-indexing functor u*: & — Ep associated with any
arrowu: B— LinB.

Then the composite cone
AM == 1'D =2= D
displays M as a limit of the diagram D in &.

PROOF. Any arrow f: E — E’ in the domain of a Grothendieck fibration P: & — B factors
uniquely up to isomorphism through a “vertical” arrow in the fiber Epg followed by a “horizontal”
cartesian lift of Pf with codomain E’.

Given a cone @: AE = D with summit E € & over D, by (i) its image Pa: APE = PD factors
uniquely through the limit cone A: AL = D viaamapb: PE — L € B. By the universal property of
the cartesian lift x of A constructed in (ii), it follows that @ factors uniquely through x via a natural
transformation f: AE = A*D so that PB = Ab. This arrow factors uniquely up to isomorphism via
“vertical” natural transformation y: AE — a*D = b*y*D followed by a “horizontal” cartesian lift of
b. By (iii), the limit cone p: AM = A*D in & pulls back along b to a limit cone in Epg through
which the pullback of B factors via a map k: E — b*M. Thus, f8 itself factors uniquely through u via
the composite of this map k: E — b*M with the cartesian arrow b"M — M liftingb: PE —» L. 0O

8.2.9. PROPOSITION. For any 00-cosmos K, the 0o-cosmos of isofibrations admits sub co-cosmoi

Rari(K) « K> > Lari(K)
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whose
® objects are isofibrations admitting a right adjoint right inverse or left adjoint right inverse, respectively,
and
® (-arrows are commutative squares between the right or left adjoints, respectively, whose mates are isomor-
phisms

wu:h t]’lC ©O-cosmos structures created by tl’lC inclusions.

We refer to a commutative square between right adjoints whose mate is an isomorphism as an
exact square.

PROOF. The quasi-categorically enriched subcategories Zari(K) and Lari(K) are replete in K2,
so by Proposition 8.2.3 we need only check that Zari(K) < K? is closed under flexible weighted
limits; the argument for Lari(K) < K2 is dual. We argue separately for cotensors and for the conical
limits.

If p: E > B is an isofibration admitting a right adjoint right inverse in K and U is a simplicial
set, then the cosmological functor (=)¥: K — K carries this data to a right adjoint right inverse
to pY: EY — BY, which proves that the simplicial cotensor in K? of an object in Zari(K) lies
in Zari(K). The limit cone for the cotensor is given by the canonical map of simplicial sets U —

u
Fun(EY LN BY,E LN B) defined on each vertex u: 1 — U by the commutative square

EU Y, F
pul lp (8.2.10)

BUT)B

The maps u* define the components of a simplicial natural transformation from (9)Y to the iden-
tity functor and thus the mate of this commutative square is an identity, so the limit cone for the
U-cotensor lies in FZari(K). Finally, to verify the universal property of the cotensor in Zari(K), we
must show that for any commutative square whose domain is an isofibration admitting a right adjoint
right inverse

F——> EU

b
A—— BU

that composes with each of the squares (8.2.10) to an exact square is itself exact. To see this take the
mate to define a l-arrow in Fun(A, EY) = Fun(A, E)¥ and note that the hypothesis says that the
components of this 1-arrow are invertible for each vertex of U. Lemma 16.2.1 then tells us that this
l-arrow is invertible as required.

Taking U to be a set, the argument just given proves also that Zari(K) is closed in K? under
products. It remains only to show that it is closed under the remaining conical limits. By pullback
stability of fibered adjunctions, the Grothendieck fibration of 1-categories cod: K2 — K restricts
to cod: Fari(K) — K, so we may appeal to Lemma 8.2.8 to calculate 1-categorical limit cones in
Fari(K) C K2 as composites of cartesian cells with limit cones of fiberwise diagrams. By Corol-
lary 8.2.7, these fiberwise limits in Kjp of diagrams in Fari(K)p lic in Zari(K)p — Fari(K).

Moreover, these 1-categorical limits are preserved by the simplicial cotensor, which by Proposition
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A.5.6 implies that their universal property enriches to define conical limits. In this way we see that
Rari(K) = K2 is closed under flexible weighted limits and thus defines a cosmological embedding,

as claimed. 0]
Proposition 8.2.9 allows us to construct further 00-cosmoi of interest.
8.2.11. PROPOSITION. For any oo-cosmos K and simplicial set ], there exist sub 0o-cosmoi

7(1-,] b 7( > 7<‘J—J

whose

® objects are 0o-categories in K that admir all limits of shape | or all colimits of shape ], respectively,

® (-arrows are the functors that preserve them
with the 00-cosmos structures created by the inclusions. Moreover for each object of K+ or K j defined as
a flexible weighted limit of some diagram in that co-cosmos, its J-shaped limits or colimits are created by the
0-arrow legs of the limit or colimit cones respectively.

PROOF. First note that the quasi-categorically enriched subcategories K+ y and K jare replete in
K. so by Proposition 8.2.3 we need only confirm that the inclusions are closed under flexible weighted
limits. We prove this in the case of colimits, the other case being dual.

For any fixed simplicial set J, there is a cosmological functor F]Z K — KZ defined on objects
by mapping an co-category A to the isofibration A® - Al in the notation of 4.2.6 and a functor
f: A — B to the commutative square

>
L e

Lo

A —— B

By Corollary 4.3.5, A admits colimits of shape | if and only if this isofibration admits a left adjoint
right inverse, and now it is clear that f: A — B preserves these colimits if and only if the square
displayed above is exact. In summary, the quasi-categorically enriched subcategory K, ; is defined by

the pullback
K, — Lari(K)

o

K — K2
Proposition 8.2.9 proves that Lari(K) < K2 is closed under flexible weighted limits and Fir K-
K? preserves them, so it follows, as in the proof of Lemma 6.1.7, that K1 jis closed in K under flexible
weighted limits. Now Proposition 8.2.3 proves that the inclusion K ; < K creates an co-cosmos
structure.

In particular, the closure of the subcategory K, j under flexible weighted limits in K implies that
J-shaped colimits in an co-category defined as a flexible weighted limit are created by the 0-arrow legs
of the limit cone, as we explain. Certainly the colimits in an co-category in 7(J_J, formed as a weighted
limit of a diagram of co-categories in K j, are preserved by the 0-arrow legs of the weighted limit
cone, since the 0-arrows in K ; are J-shaped-colimit-preserving functors. And since the J-colimit
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completeness of an co-category that is defined as the flexible weighted limit in K can be deduced
whenever that diagram lies in the sub co-cosmos K, j, these J-colimits are also created. U

8.2.12. PROPOSITION. The 0o-cosmos of isofibrations admits sub co-cosmoi

Cart(K) —— K? «—— coCart(K)

whose objects are cartesian or cocartesian fibrations, respectively, and whose 0-arrows are cartesian functors,
with the co-cosmos structures created by the inclusions. Similarly, for any co-category B in an co-cosmos K,
the sliced 0o-cosmos Kjp admits sub co-cosmoi

Cart(K)p —— Kjp «—— coCart(K)p

whose objects are cartesian or cocartesian fibrations over B, respectively, and whose 0-arrows are cartesian
functors, with the 00-cosmos structures created by the inclusions.

PROOF. The quasi-categorically enriched subcategories Cart(K) and coCart(K) are replete in K=
by Corollary 5.1.17. By Theorems 5.1.11 and 5.1.19, the quasi-categorically enriched category Cart(K)

is defined by the pullback
Cart(K) —— FHari(K)
K2 K K2
along the simplicial functor that sends an isofibration p: E = B to the isofibration k: E2 -

Homg(B, p) defined by Remark 5.1.13. To sce this, note that Proposition 8.2.9 observes that the
0-arrows in the functor spaces of Lari(K) are commutative squares between isofibrations admit-

ting a left adjoint right inverse so that the mate of the identity 2-cell induces an isomorphism in the
corresponding square involving the left adjoints. By Theorem 5.1.19, this condition pulls back along
the functor K to tell us that 0-arrows in coCart(‘K) are commutative squares between cocartesian
fibrations that define cartesian functors in the sense of Definition 5.1.18.

The simplicial functor Kis constructed out of weighted limits and thus preserves all weighted lim-
its, and the replete subcategory inclusion Zari(K) < K? creates flexible weighted limits by Propo-
sition 8.2.9. Hence, as in the proof of Lemma 6.1.7, Cart(K) is closed in K? under flexible weighted
limits, and now Proposition 8.2.3 proves that the inclusion Cart(K) < K2 creates an 00-cosmos
structure.

The result for cartesian fibrations with a fixed base can be proven directly by a similar argument
or deduced by considering 7(/3 C KZ as the (non-replete!) subcategory whose n-arrows have idg as
their codomain components. O

Exercises.

8.2.i. EXERCISE. Suppose A is an 0o-category with pullbacks and pushouts and suppose the pushout
functor lan: A" — A" preserves pullbacks, meaning that the left-hand composite is isomorphic to
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the right-hand absolute right lifting diagram:
(Ar)m £> (AE)El AE)E

ran ran
res res res

(AIT)J (AF)d land 3 (Aﬂ)ﬂ (AIT)J Il_ﬂ—‘> (AE)A (AE)J

[l

Show that any pullback square in A is also a pushout square by considering a diagram, such as depicted
below, built from the solid-arrow pullback square p = a X, b:

P ~ b ~
/ \\\) // b ~)
/
/ b .......... .//. ............. > b
A /' v /
/ /
N RN /
~\ : . ~
C 0 ................. g C
/ SN v / S
Y ~
// C wooreeenien )/. .............. g c
v : / e /
TR SO SUTURTIE /
AN RN /
\\) v \\g v
C ............................. C

8.2.ii. EXERCISE. Use the previous exercise and an argument similar to that given in the proof of Propo-
sition 8.2.6 to prove that any 00-cosmos K admits a sub co-cosmos Stab(K) — K whose objects are
the stable co-categories of Definition 4.4.5 and whose morphisms are the exact functors, which pre-
serve the zero elements and the exact triangles.

8.2.iii. EXERCISE. Consider a functor between isofibrations

E g F
R [4 q A
AN 4,7
~N /S

r \\B’/

in which p admits a right adjoint right inverse 7 and g admits a right adjoint right inverse s. Prove that

if gr = s over B, then the mate of the identity ¢ = p is an isomorphism. This proves that the 0-arrows
in the co-cosmos Zari(K)p are exact transformations between right adjoint right inverse adjunctions.

8.2.iv. EXERCISE. Prove that Lari(K) = Fari(K°).

8.2.v. EXERCISE. Use Exercise 1.2.iv to show that if £ = Kis a replete sub co-cosmos, then an object
A € Lis discrete if and only if A is discrete as an object of K.

8.2.vi. EXERCISE ([44, 4.1.5]). Given a diagram

E’ E E”
Lo
B B B”
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where the vertical maps are cocartesian fibrations and the squares define cartesian functors, Verify
that the induced functor

E’ XE E’/ — B/ XB B”
is a cocartesian fibration and the projections define cartesian functors. Show also that if the vertical
maps are discrete cocartesian fibrations so is this induced functor.
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CHAPTER 9

Homotopy coherent adjunctions

Bar and cobar resolutions are ubiquitous in modern homotopy theory, defining for instances var-
ious completions of spaces and spectra [23] and free resolutions such as given in Definition 6.2.1. For-
mally, these bar or cobar constructions are associated to the monad or comonad of an adjunction

A_ 1 _B n:idg = uf, €: fu=idy

between co-categories. The monad and comonad resolutions associated to an adjunction are dual.
By the triangle equalities, the unit and counit maps give rise to a coaugmented cosimplicial object in
hFun(B, B), the “monad resolution”

_m 7

idg — 11— uf «uef —ufuf —— ufufuf (9.0.1)
% %
ufn —

an augmented simplicial object in hFun(A, A), the “comonad resolution”

€fu —
idy ¢«—e— fu —fu— fufu «—— fufufu (9.0.2)
1dp n .0.
fue «—

and augmented simplicial objects in hFun(A, B) and hFun(B, A) admitting forwards and backwards

contracting homotopies

nufu -
_m —uefu— ;
u—=ufu ~ ufqus ufufu ufufufu
ue S
Z;;IJG( — (9.0.3)
%
— — fruf— —
f == fuf M7 fufuf = fufufuf
fn X —
fufn ’

A classical categorical observation tells a richer story, relating the four resolutions displayed above.
There is a strict 2-category Adj containing two objects and an adjunction between them — the free
2-category containing an adjunction — and collectively these four diagrams display the image of a
2-functor whose domain is Adj [94]. More precisely, each diagram is the image of one of the four hom-
categories of this two object 2-category: a 2-functor Adj — HK extending the adjunction f - u is
defined by a pair of objects A, B € h’K, the monad and comonad resolutions in the functor categories
hFun(B, B) and hFun(A, A), and the dual pair of split augmented simplicial objects in hFun(A, B) and
hFun(B, A). The fact that these resolutions assemble into a 2-functor says that, e.g., that the image of
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the comonad resolution under # is an augmented simplicial object in hFun(A, B) that admits “extra
degeneracies.”

In this chapter, we will prove that any adjunction in the homotopy 2-category of an co-cosmos
— that is, any adjunction between co-categories — can be lifted to a homotopy coherent adjunction in
the co-cosmos. The data of a homotopy coherent adjunction is indexed by a simplicial computad that
is uncannily closely related to the free adjunction Adj. In fact, we define the free homotopy coherent
adjunction to be the 2-category Adj regarded as a simplicial category by identifying its hom-categories
with their nerves. Section 9.1 is spent justifying this definition by introducing a graphical calculus
that allows us to precisely understand homotopy coherent adjunction data and prove that Adj is a
simplicial computad.

In a homotopy coherent adjunction, the resolutions (9.0.1), (9.0.2), and (9.0.3) lift to homotopy

coherent diagrams
A, = Fun(B,B), AY — Fun(A,A), A, — Fun(A,B), A, — Fun(B,A)

indexed by the 1-categories introduced in Definition 2.3.9 and valued in the functor quasi-categories of
the 0o-cosmos. In the case of the split augmented simplicial objects, the contracting homotopies, also
called “splittings” or “extra degeneracies,” are given by the bottom and top 1’s respectively. Applying
Proposition 2.3.11, it follows that the geometric realization or homotopy invariant realization of the
simp]icia] objects spanned by maps in the image offuf and ufu are simp]icia] homotopy equiva]ent
to f and u. Dual results apply to the (homotopy invariant) totalization of the cosimplicial object
spanned by these same objects; in this case the “extra codegeneracies” are given by the top and bottom
€’s.

The main theorem of this chapter proves that homotopy coherent adjunctions are abundant: in-
deed any adjunction of co-categories extends to a homotopy coherent adjunction. Homotopy coherent
adjunctions extending a subcomputad of generating adjunction data are not unique on the nose. How-
ever, whenever the subcomputad of generating adjunction is “parental” — loosely, generating from the
universal property of either the right adjoint or the left adjoint exclusively — then extensions to a full
homotopy coherent adjunction define the vertices of a contractible Kan complex, proving appropri-
ately generated extensions are “homotopically unique.”

All of the results in this chapter apply to any adjunction defined in (the homotopy 2-category of) a
quasi-categorically enriched category K. Yet since we'll typically apply these results to 00-cosmoi, we
retain the usual notation Fun(A4, B) for the hom quasi-categories of K to trigger the correct intuition
in these contexts.

9.1. The free homotopy coherent adjunction

In this section, we present a strict 2-category Adj introduced by Schanuel and Street under the
name “the free adjunction” [94], which has the universal property that it is the free 2-category contain-
ing an adjunction. Immediately after introducing this classical object, we take the unorthodox step
of\reconsidering itasa simp]icial category via a mechanism that we shall describe. We deve]op anew
presentation of Adj by introducing a graphical calculus that allows us to prove the surprising fact
that this simplicial category is a simplicial computad. This justifies referring to it as the free homotopy
coherent adjunction. The remainder of this chapter will explore the consequences of this definition.
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9.1.1. DEFINITION (the free adjunction). Let Adj denote the 2-category with two objects + and — and
the four hom-categories
Adj(+,+) = A, , Adj(-,-) =AY, Adj(-,+)=A+, Adj(+,-)=A,

displayed in the following cartoon:

0] p

A=A

Here At,A; C A C A, are the subcategories of order-preserving maps that preserve the top or
bottom elements, respectively, in each ordinal, as described in Definition 2.3.9. Their intersection

AL+ =A NAr =AY

is the subcategory of order-preserving maps that preserve both the top and bottom elements in each
ordinal. This identifies A with the subcategory A, + C A, of “intervals,” as is elaborated upon in
Digression 9.1.8.
The horizontal composition maps in Adj are defined in Adj(—, )P = Adj(+,+) = A, by the
ordinal sum operation:
A, xA, — 25 A,
[7],[m] ——— [n+m + 1]
apl = Jaop a® fp(i) = {

[n'],[m'] —— [0 +m’ +1]

a(i) i<n
pi-n-1)+n"+1 i>n

The object [-1] € A, serves as the identity for ordinal sum, and thus represents the identity 1-cells
on — and + in Adj. Ordinal sum restricts to the subcategories A}, A+ C A, to give bifunctors

A, X Ay ® Ay A, XA, ® A,
Al Al Al i
Adj(+, +) X Adj(-, +) —— Adj(-, +) Adj(+, -) x Adj(+, +) —— Adj(+,-)

defining these horizontal composition operations that we'll later come to think of as “actions” of
Adj(+, +) on the left and right of Adj(—, +) and Adj(+, —). The opposites of these functors defines
the action of Adj(—, =) on the right and left of Adj(—, +) and Adj(+, -).

9.1.2. LEMMA. The 2-category Adj contains a distinguished adjunction

[0]
with unic |2 [-1] = [0] € AL = Adj(+, +) and counit given by the same map in AT = Adj(—, -).
PROOF. We must verify the triangle equalities in Adj(—, +) and Adj(+, —); these categories are
opposites and the calculation in each case is dual, so we focus on the case of Adj(—, +). The whiskered
composite of the unit !: [-1] — [0] € Adj(+, +) with the right adjoint [0] € Adj(—, +) is the map
O:[0]—=1]e Adj(—, +), which is indeed top-element preserving. The whiskered composite of the
counit in Adj(—, =) with the right adjoint in Adj(—, +) is defined by whiskering the opposite map
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' [-1] — [0] € Adj(+, +) = Adj(-, -)°P with [0] € Adj(+,-) = Adj(—, +)°P. This composite is
the map 61: [0] — [1] € Adj(+,-) = Adj(—, +)°P, which is indeed top-element preserving. Under
the isomorphism Adj(—, +) = Adj(+, )P, this corresponds to the map ¢°: [1] — [0] € Adj(-, +).
Now the composite o -8%: [0] = [0] € Adj(—, +) is the identity as required. O

The 2-categorical universal property of Adj — that 2-functors Adj — C correspond to adjunc-
tions in the 2-category C — is stated without proofin [94]. We will take a roundabout route to verifying
it in Proposition 9.1.13 that uses the simplicial computads of Chapter 6.

Throughout this text we have found it convenient to identify 1-categories with their nerves, which
define simplicial sets. The 1-categories can be characterized as those simplicial sets that admit unique
extensions along any inner horn inclusion or spine inclusion, or as those 2-coskeletal simplicial sets
that admit unique extensions along inner horn or spine inclusions in dimensions 2 and 3; see Remark
1.1.5. Similarly, in developing homotopy coherent category theory it will be convenient to identity
2-categories with the simplicia] categories obtained by identifying each of the hom—categories with
its nerve — a Categorification of the previous construction. As a Corollary of the characterization of’
nerves of 1-categories, we obtain a characterization of the simplicially enriched categories that arise
in this way.

9.1.3. LEMMA (2-categories as simplicial categories). A 2-category A may be regarded as a quasi-categorically
enriched category whose

e objects are the objects of A

® (O-arrows in A(x,y) are the 1-cells of A from x to y
f

e I-arrows in A(x, y) from f to § are the 2-cells of A of the form x @ y
8

® and in which there exists a 2-arrow 0 in A(x, y) whose faces 0" := 0 - &' are I-arrows in A(x, y)

f
2.8 AN L
/o N\ “r xSy = x Loy
J S NS 5
ol h
if and only if ol is the vertical composite a9 - g2

with the higher-dimensional arrows determined by the property that each of the hom-spaces is 2-coskeletal.
Conversely, a simplicially-enriched category A is isomorphic to a 2-category if and only if each of its hom-
spaces are 2-coskeletal simplicial sets that admit unique extensions along the spine inclusions in dimensions 2

and 3. O

We now give the first of two presentations of the free homotopy coherent adjunction. Since we use
the same notation for 1-categories and their nerves, we also adopt the same notation for a 2-category
and its corresponding simplicial category under the embedding of Lemma 9.1.3.

9.1.4. DEFINITION (the free homotopy coherent adjunction, as a 2-category). The free homotopy co-
herent adjunction to be the free adjunction Adj, regarded as a simplicial category. Explicitly Adj has
two objects + and — and the four hom quasi-categories defined by

Adj(+,+) =A,, Adj(-,-) = AT, Adj(-,+) = A+, Adj(+,-) =A,
with the composition maps defined in 9.1.1.
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This presentation of the free homotopy coherent adjunction is not particularly enlightening. Via
Lemma 9.1.3 and Definition 9.1.1 we could in principle describe the n-arrows in Adj but it’s tricky
to get a real feel for them. We will now reintroduce this simplicial category in a different guise that
achieves just this. Before doing so, note:

9.1.5. OBSERVATION. To specify a simplicial category, thought of as an identity-on-objects simplicial
object in Cat, it suffices to specify:
e a set of objects
e for cach n > 0, a set of n-arrows whose domains and codomains are among the specified object
set,
® a right action of the morphisms in A on this graded set of arrows that preserves domains and
codomains,
e a “horizontal” composition operation for the n-arrows with compatible (co)domains that pre-
serves the simplicial action.

We will now reintroduce Adj following this outline, by exhibiting its graded set of n1-arrows be-
tween the objects + and —.

9.1.6. DEFINITION (strictly undulating squiggles). Define a graded set of arrows between objects — and
+ whose n-arrows are strictly undulating squiggles on 71 + 1 lines, such as displayed below in the case
n=>:

The lines are labeled 0, 1, ..., 7 and the gaps between them are labeled -, 1, ..., 11, +. A squiggle must
start, on the right-hand side, and end, on the left-hand side, in either the gap — or +. The right-hand
starting gap becomes the domain of the squiggle and the left-hand ending gap becomes its codomain,
these conventions chosen to follow the usual composition order. Each turning point of the squiggle
must lie entirely within a single gap. The qualifier “strict undulation” refers to the requirement that
adjacent turning points should be distinct and that they should oscillate up and down as we proceed
from right to left.
Formally, the data of a strictly undulating squiggle on 71 + 1 lines can be encoded by a string
a = (ag,ay, ... ,,-1,4a,) of letters in the set {—, 1,2, ..., n, +} corresponding to the gaps in which each
successive turning point occurs, whose width is the integer w(a) := r, subject to the following condi-
tions:
(i) The domain a5 and codomain ag of 4 are both in {—, +}.
(i) If ag = — then for all 0 < i < w(a) we have a; < a;;1 whenever i is even and a; > a;4
whenever i is odd, and if ag = + then for all 0 < i < w(a) we have a; > a;,1 whenever i is
even and a; < a;,1 whenever i is odd.

9.1.7. LEMMA. The graded set of strictly undulating squiggles admits a right action of the morphisms in A that
preserves domains and codomains and a “horizontal” composition operation for arrows in the same degree with
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compatible (co)domains that preserves the simplicial action. Relative to the horizontal composition, an n-arrow
is atomic if and only if there are no instances of + or — occurring in its interior. While the faces of an atomic
arrow need not be atomic, the degeneracies of an atomic arrow always are.

PROOF. The horizontal composition of n-arrows is given by horizontal juxtaposition of strictly
undulating squiggles on 11 + 1 lines, which produces a well-formed squiggle just when the codomain
of the right-hand squiggle matches the domain of the left-hand squiggle:

+/2/3/1/3/_

This operation is clearly associative. Moreover, any strictly undulating squiggle admits a unique de-
composition into squiggles that do not contain + or — in their interior sequences of gaps, which proves
that any squiggle a = (ag, ay, ... ,a,_1,a,) with the property thatay, ... ,a,_1 € {1, ..., n} is atomic.
The right action of the simplicial operators on strictly undulating squiggles is best described in
two cases. If a: [m] = [n] is an epimorphism, then a strictly undulating squiggle on lines 0, ..., n
becomes a strictly undulating squiggle on lines 0, ..., m by replacing cach line labeled i € [1] with lines
labeled by each element of the fiber @72(i) and then “pulling these lines apart” to create new gaps:

[5] —— [2] -

1

ot——0 gty .-
+ LA

2, 3’ 4 1 +/1/+/2/+r_/1/_

50— 2

Note that “pulling apart lines” does not create instances of + or — in the interior sequence of gaps, so
the action by degeneracy operators preserves atomic arrows.

Ifa: [m] > [n]is a monomorphism, then a strictly undulating squiggle on lines 0, ... , 7 becomes
a strictly undulating squiggle on lines 0, ..., m by removing the lines labelled by elements i € [n] not
in the image of @ and renumbering the lines that are in the image in sequence. The original squiggle
will still undulate between the new lines, but may not do so “strictly” — it is possible for the squiggle
to turn around mutliple times in the same gap — but this is casily corrected by “pulling the string
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taut™

[2] = [5]
0—1 .
1— 4
2+—5
1 1]
> a-o .= 2 = 2]
- + e e + 0N e’
+/1/11_11/1/+1_12/l/1/1/+1_ +/_/+/_/2/1/+/_

Note that in both of these cases, the actions by epimorphisms and monomorphisms preserve domains
and codomains of squiggles and respect horizontal concatenations.

Now in general, a simplicial operator a: [m] — [1] can be factored uniquely in A as an epimor-
phism followed by a monomorphism, so it acts on a strictly undulating squiggle on 71+ 1 lines by first
“removing lines and pulling taut” and then by “duplicating lines and pulling apart.” O

We leave the formalization of these geometric descriptions of the actions of the simplicial opera-
tors on strictly undulating squiggles presented as sequences satisfying the axioms of Definition 9.1.6(i)
and (ii) to Exercise 9.1.iii, with the hint that a combinatorial description of this action can easily be
defined using the “interval representation” of A°P.

9.1.8. DIGRESSION (the interval representation). There is a faichful interval representation of the cat-
[6) .
egory AY asa subcategory of A in the form of a functor

op ir
sy —— A

[n-1] ——— [n]

61'\], — TUi
[n] ——— [n +1]
o1 - Lsitt

[n+1] —— [n +2]

whose image is the subcategory A| + = A; N A+ C A of simplicial operators that preserve both the
top and bottom elements in each ordinal.

If we think of the elements of [11] as labelling the lines in the graphical representation of an
n-arrow, then the elements of ir[n] := [n + 1] label the gaps, with the bottom element 0 relabeled as
— and the top element 71 + 1 relabeled as +. If the elementary face operators &' and elementary degen-
€racy operators o' act by removing and duplicating the lines in a squigg]e diagram, then the functors
ir 8 and ir o' describe the corresponding actions on the gaps.

The graphical description of its nn-arrows of Adj clearly exhibits a simplicial computad structure
on a simplicial category we now more formally introduce following the outline of Observation 9.1.5:

9.1.9. DEFINITION (the free homotopy coherent adjunction, as a simplicial computad). The free ho-
motopy coherent adjunction Adj is the simplicial computad with
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® two objects + and —,
® whose n-arrows are strictly undulating squiggles on 71 + 1 lines of Definition 9.1.6, oriented from
right to left, with the right-hand starting position defining the domain object and the left-hand
ending position defining the codomain object,
e with the simplicial operators acting as described in Lemma 9.1.7, and
e with horizontal composition defined by horizontal juxtaposition of squiggle diagrams,
which means that the atomic n-arrows are those squiggles each of whose interior undulations occurs
between the lines 0 and 7.

We now reconcile our two descriptions of the free homotopy coherent adjunction, comparing
Definition 9.1.9 with Definition 9.1.4. Zaganidis discovered a similar proof in his PhD thesis [114,
§2.3.3] that improves upon some aspects of the authors’ original argument.

9.1.10. PROPOSITION. The simplicial computad Adj is isomorphic to the 2-category Adj.

PROOF. We explain how the 1-arrows in each of the four homs of the simplicial category Adj cor-
respond to sequences of 1 composable arrows in the corresponding hom-categories A, A}, A, and
A, + of the 2-category Adj. Here it is most convenient to think of A, A+, and A} 1 as subcategories
of A, the latter via the interval representation of Digression 9.1.8.

To easily visualize the isomorphism, shade the region under a strictly undulating squiggle on n+1
lines to define a topological space S embedded in the plane. In the case of a squiggle from — to —,
this shaded region includes both the left and right boundary regions of the squigg]e diagram. For
cach i € [n], the connected components of the intersection S; of the shaded region with the region
above the labelled 7 define a finite linearly ordered set, ordered from left to right by the order in which
the intervals defined as the intersection of each component with the line 7 appear on that line. These
ordinals define the objects in the composable sequence of arrows in A, or one of its subcategory A
A, or A corresponding to the squiggle diagram.! Formally, the ordinal representing the ith object
in the sequence of 1 arrows counts the number of “maximal convex subsequences” of the sequence
a = (ag, -, Ay()) that encodes the squiggle; a maximal convex subsequence is a maximal sequence of
consecutive entries d; satisfying the condition a; <.

The intersections of the shaded region S with the regions above the lines i = 0, ..., 1 define a
nested sequence of subspaces

Soo S8 o -5, 1,58,
Taking path components yields a composable sequence
7'(050 — 7'(051 —> > 7105”_1 — ﬂosn.

As explained above, each of the sets 11(S; is linearly ordered, from left to right, by the positions in
which each component of S; intersects the line labeled 7 and the functions induced by the inclusions
are order-preserving. This defines the composable sequence of arrows in Ay, A, , A, or A} + corre-
sponding to a strictly undulating squiggle on 1 + 1-lines.

For instance, suppose the shaded region under the squiggle diagram intersects the line labelled
iin m + 1 components, corresponding to the ordinal [m] and similarly suppose the shaded region

'In the case of a squiggle from + to +, it is possible that the squiggle diagram does not intersect the line labeled 0, in
which case the subspace So is empty; if chis is the case, the squigg]e may also fail to cross the next several lines. In each of
the other three hom—categories, the ordinals defined by taking the connected components of the intersection of each line
with the shaded region are non-empty because either the left or right boundary of the squiggle diagram is also shaded.
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under the squiggle diagram intersects the line labelled i +1 in k + 1 components, corresponding to the
ordinal [k]. We identify the corresponding simplicial operator a: [m] — [k] by taking the fiber over
t € [k] to be the subset of shaded regions s € [m] above the ith line that belong to the same connected
component as t in the shaded region above the line 7 + 1. Formally, the element t € [k] represents
a maximal convex subsequence of 4 = (dy, ..., Ay () comprised of those a4; < i+ 1. This convex
subsequence is partitioned into possibly smaller maximally convex subsequences satisfying the more
restrictive condition 4; < 7 and the elements s € [m] indexing these subsequences form the fiber of &
over t. Note that if the domain of the squiggle is —, then the top element of each ordinal is necessarily
preserved because the right-hand boundary of the squiggle diagram defines a connected shaded region;
similarly, if the codomain of the squiggle is —, then the bottom element of each ordinal is preserved.
The constructs a map from the simplicial computad Adj of Definition 9.1.9 to the 2-category Adj of
Definition 9.1.4.

The converse map can be constructed by iterating a sp]icing operation that we now introduce.
This splicing operation proves that each of the hom-spaces of the simplicial computad Adj satisfies
a “strict Segal condition” that says that the set of 71 + m-arrows is isomorphic to the set of pairs of
n-arrows and m-arrows whose last and first vertices coincide. In more detail, if 4 and b are strictly
undulating squiggles on 11 + 1 and m + 1 lines that lie in the same hom-space with the property that
the nth vertex of a coincides with the Oth vertex of b, then these squiggle diagrams can be uniquely
spliced to form a strictly undulating squiggle ¢ on 71 + m + 1 lines whose face spanned by the vertices
0, ..., n is a and whose face spanned by the vertices 11, ... ,m + n is b.

+ 9O G WN -

= W N~ O

_/5/4/6/1/3/_/2/1/7/4/+/5/6/2/+
-2,1,3,-,4,1,+,2,3,-,+

This splicing operation is defined graphically by separating the squiggle diagrams for 4 and for b into
an ordered sequence of components by cutting the squiggle a each time it enters or leaves the gap
marked “+.,” removing the dotted arcs at the bottom of the squiggle diagram, and cutting the squiggle
b cach time it enters or leaves the gap marked “~.” removing the dotted arcs at the top of the depicted
squiggle diagram. This requires two cuts for each occurrence of “+” or “~” in the interior of g or b

“.o "

respectively and one cut for each occurrence of “+” or “=” as the source or target of 4 or b respectively.
The condition that the nch vertex of a coincides with the Oth vertex of b ensures that the numbers of
cuts made to a (the number of times a intersects the n1th line) and b (the number of times b intersects
the Oth line) are the same. Now form ¢ by sewing together these squiggle components in order to form
the crossings of the line labeled “n.”

By iterating the splicing operation, we can construct a strictly undulating squiggle on 7 + 1 lines
from a sequence of 11 composable arrows once we know how to encode a single 1-arrow of Adj as a

strictly undulating squiggle on 2 lines. We give full details in the case of a 1-arrow from + to +. A
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simplicial operator a: [m] — [k] defines a strictly undulating squiggle on 2 lines from + to + by a
sequence 4 with “=" occurring 1 + 1 times (each occurrence of which corresponds to an intersection
of the shaded region and the Oth line) and “+” occurring k + 2 times (each consecutive pair bounding
an intersection of the shaded region and the 1st line). The strings between each consecutive pair of
+s correspond to the elements i € [k]. If the fiber over 7 is empty, the sequence is “+1+." If the fiber
contains a single element, the sequence is “+ — 1 — +,” and if the fiber contains s > 1 elements, the
sequence is “+ — (1=)514 O

Note that the planar orientation of a strictly undulating squiggle diagram makes the numerical la-
bels for the lines, gaps, and the sequence of undulation points redundant. Going forward, we typically
omit them.

9.1.11. ExaMPLE (adjunction data in Adj). For later use we name some of the low-dimensional non-
degenerate atomic arrows in Adj. There exist just two atomic 0-arrows, which we call

f = 1 and U= 1

Since Adj is a simplicial computad, all of its other 0-arrows may be obtained as a unique alternating
composite of these two, for example:

fufuf ={HI
There are exactly two non-degenerate atomic 1-arrows in Adj, these being:

n:= :ﬁ and €= *U

Again, since Ad] is a simplicial computad, all of its other 1-arrows are uniquely expressible as hori-
zontal composites of the 1-arrows 7] and € with degenerated 1-arrows obtained from f and u, such as

|: Y Y

FOT examp] ¢

ufn:

There exist two non- degenerate atomic 2-arrows with minimal width, whose faces are casily com-

puted:

IR
Il
)
\..\
=
Il
)
IR
S
Il
I~~~
Il
IS
lo%)
o
Il
o
Il

ﬁ¢=‘ §'523=nzi=ﬂ{ 5'61¢=z¢=|“ §-6°=u_=,,U,

For each width w > 3, there exist exaetly two non—degenerate atomic 2-arrows, the deseription of
which we leave to Exercise 9.1.v. There are countably many atomic non-degenerate n-arrows in each
dimension n > 2, which we shall partially enumerate in the proof of Proposition 9.2.11.

In the “homotopy 2-category” of the simplicial category Adj, which is isomorphic to the 2-category
Adj, the atomic 2-arrows @ and  witness the triangle equalities, proving that this 2-category contains

an adjunction (f,u,n: id, = if,g: fu=id_).
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9.1.12. LEMMA. The simplicial computad Adj contains a distinguished adjunction

withunit n: id, = uf € Adj(+, +) and counit € fu — id_ € Adj(—,-).

PROOF. By Proposition 9.1.10 this follows from Lemma 9.1.2 though the reader may prefer to prove
this result directly. O

We can now prove the universal property of the free adjunction Adj claimed by Schanuel and
Street.

9.1.13. PROPOSITION. For any 2-category C, 2-functors Adj — C correspond to adjunctions in the 2-category
C.

PROOF. Lemma 9.1.2 identifies an adjunction in Adj that we denote in the notation of Lemma
91.12by (f,u,n: id, = uf,e: fu = id_). A 2-functor Adj — C carries this data to an adjunction
in the 2-category C.

Conversely, we suppose that C is equipped with an adjunction (f, u, 1 idg = uf,e: fu = idy).
To construct a 2-functor Adj — C it suffices, because the embedding 2-Cat — sSet-Cat is fully
faichful, to consider both 2-categories as simplicial categories via Lemma 9.1.3 and instead define a
simplicial functor Adj — C; see Exercise 9.1.i. Now since Ad] is a simplicial computad and the homs
of C are 2-coskeletal, it suffices to define a simplicial functor sk, Adj — C from the subcomputad of
Adj generated by its acomic 0-, 1-, and 2-arrows. This functor is given by the mapping

e + 1 Band — — A on objects,
e f = fand u — u on atomic O-arrows,
e 711+ nand € = € on atomic non-degenerate l-arrows,

and for each of the atomic non-degenerate 2-arrows of Exercise 9.1.v we must, by Lemma 9.1.3, verify
that the 2-cells in C defined by their boundaries compose vertically as indicated.
For @ and B, the unique non-degenerate atomic 2-arrows of minimal width 3, the required com-

position relations are
ef - fn=ids and ue - nu = id,,
which hold by the triangle equalities for the adjunction in C. For the atomic 2-arrows of odd width
2r + 1, the required composition relations are the “higher order triangle equalities”
€'f-fn =ids and ue"-n'u =id,,

which can easily be seen to hold by depicting the left-hand expressions as pasting diagrams.* For the
atomic 2-arrows of even with 27, the required composites are closely related “higher order triangle
equalties”

r+1

e fru=e and ue-nl=rq,

which again can easily be seen to hold by depicting the left-hand expressions as pasting diagrams. [

*Here 1" refers to the horizontal composite of ¥ copies of the unit and the “” expresses a vertical composite of a
whiskered copy of this with a whiskered copy of €, the horizontal composite of 7-copies of the counit. The 1-cell codomain
of the former and 1-cell domain of the latter fit together like a cartoon depiction of a closed mouth of pointy teeth.
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Motivated by this result and the fact that the simplicial category Adj is a simplicial computad, we
use it to define a notion of homotopy coherent adjunction in any quasi-categorically enriched category,
and in particular in any co-cosmos.

9.1.14. DEFINITION. A homotopy coherent adjunction in a quasi-categorically enriched category K'is
a simplicial functor Adj — K. Explicitly, it picks out:
® a pair of objects A, B € K
e together with four homotopy coherent diagrams
A, — Fun(B,B), AY — Fun(A,A), A+ — Fun(A,B), A, — Fun(B, A) (9.1.15)
that are functorial with respect to the composition action of Adj.

The 0- and 1-dimensional data of the these diagrams has the form displayed in (9.0.1), (9.0.2), and
(9.0.3). We interpret the homotopy coherent diagrams (9.1.15) as defining homotopy coherent versions
of the bar and cobar resolutions of the adjunction (f = u, 1, €).

Exercises.

9.1i. EXERCISE. Prove that the embedding 2-Cat < sSet-Cat defined by Lemma 9.1.3 is fully faichful:
prove that simplicial functors A — B between 2-categories define 2-functors.

9.1.ii. EXERCISE. Use Lemma 9.1.3 to prove that the homotopy coherent w-simplex CA[w] is a 2-category.’

9.Liii. EXERCISE. Describe the action of a general simplicial operator a: [m] — [n] on a strictly
undulating squiggle on 1 + 1 lines represented by a sequence a = (ag, a4, ..., 4,1, 4,) of “gaps” a; €
{—1,..,n,+}.

9.1iv. EXERCISE. Give a graphical interpretation of the dualities
Adj(—, -) = Adj(+, +)°P and Adj(—, +) = Adj(+, -)°P
of Definition 9.1.4.

9.1.v. EXERCISE.

(i) Describe the non-degenerate atomic 2-arrows of Adj and compute their faces and compare
your results with the composition relations appearing in the last paragraph of the proof of
Proposition 9.1.13.

(ii) Describe the degenerate atomic 2-arrows of Adj and “compute” their faces.

9.1.vi. EXERCISE. Use the graphical calculus presented in Definition 9.1.9 to verify the following ob-
servation of Karol Szumilo: the simplicial category Adj is isomorphic to the Dwyer-Kan hammock
localization [37] of the category consisting of two objects + and — and a single non-identity arrow
+ = — that is a weak equivalence.

9.1vii. EXERCISE. For any homotopy coherent adjunction as in Definition 9.1.14, define internal ver-
sions of monad resolution, the comonad resolution, the bar resolution, and the comonad resolution

(uf)®

B BA+ A (fu)e AA:’_P bar cobar
7 7

A— BAT, B— AL,

*In light of Lemma 9.1.3, Theorem 6.4 of [84] proves more generally that the simplicial computads defined as free
resolutions of strict 1-categories are always 2-categories.
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and explore the relationships between these functors.*

9.2. Homotopy coherent adjunction data

Any homotopy coherent adjunction in an 00-cosmMos or general quasi—categorically enriched cat-
egory has an underlying adjunction in its homotopy 2-category. Remarkably, this low-dimensional
adjunction data may always be extended to give a full homotopy coherent adjunction by repeated in-
voking the universal property of the unit, as expressed in Proposition 9.3.2. In this section, we filter
the free homotopy coherent adjunction Adj by a sequence of “parental” subcomputads, which must
contain, for each atomic n-arrow with codomain “=” its “fillable parent,” the atomic 7+ 1-arrow with
codomain “+” obtained by whiskering with # and the “precomposing” with 1.

In §9.3 we then use this fileration to prove that any adjunction in an co-cosmos — or more precisely
any diagram indexed by a parental subcomputad — extends to a homotopy coherent adjunction. Our
proof is essentially constructive, enumerating the choices necessary to make each stage of the extension.
In §9.4, we give precise characterizations of the homotopical uniqueness of such extensions, proving
that the appropriate spaces of extensions are contractible Kan complexes. Via the 2-categorical self-
duality of Adj described in Remark 9.2.12, there is a dual proof that instead exploits the universal
property of the counit, the main steps of which are alluded to in the exercises.

Our proof that any adjunction extends to a homotopy coherent adjunction inductively specifies
the data in the image of a homotopy coherent adjunction by choosing fillers for horns corresponding
to “fillable” arrows.

9.2.1. DEFINITION. An arrow b of Adj is fillable if
e it is non-degenerate and atomic,

e its codomain by = +, and
® b #£byfori>1.

Write Fill, € Atom,, for the subset of fillable 7-arrows of the subset of atomic and non-degenerate
n-arrows.

9.2.2. DEFINITION (distinguished faces of fillable arrows). On account of the graphical calculus, we
refer to h(b) == by — 1, an integer in {0, ..., 7 — 1} that labels the line immediately above the position
of the left-most turn-around, as the height of the fillable arrow b.” The fillability of b implies that no
“tautening” is required in computing the distinguished codimension-one face b - 8" which then is
non-degenerate and has the same width as b. Further analysis of this face differs by case:
A bar BAT
*For instance, there is a commutative diagram ul lm .
— 5 BAs
B (uf)* B
*The unique fillable O-arrow u behaves somewhat differently, but nonetheless it is linguistically convenient to include

it among the fillable arrows.
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o case hi(b) > 0: The face b - oM s non-degenerate and atomic, but it is not fillable, since non-
degeneracy implies that there is some i > 1 with b; = h(b), whence the entries of b - "D a1 and
i both equal h(b).
o case (b) = 0: The face b- 5" decomposes as u - a, where 4 is non-degenerate, atomic, has width
one less than the widch of b, and has codomain —.
We write
p o {100 MO0
e h(b) = 0.
for the non-degenerate atomic h(b)th face in the positive height case and for the non-degenerate
atomic factor of the Oth face ug in the height 0 case and refer to the acomic 7 — 1-arrow defined
in either case as the distinguished face of the fillable arrow.

We now argue that any non-degenerate and atomic n-arrow of Adj that is not fillable arises as the
distinguished face of a unique fillable 71 + 1-arrow in the form of the first case just described when its
codomain is + and in the form of the second case just described when its codomain is —.

9.2.3. LEMMA (identifying fillable parents).

(i) If b is a non-degenerate and atomic n-arrow of Adj with codomain + that is not fillable then it is the
codimension-one face of exactly two fillable (n + 1)-arrows with the same width, both of which has b

as its by th face: one which has height by that we refer to as its fillable parent and denote by E and the
other which has height by — 1.

(i) If a is a non-degenerate and atomic n-arrow of Adj with codomain —, then the composite arrow ua is
a codimension-one face of exactly one fillable (n + 1)-arrow, which we call the fillable parent of a and
denote by a'. The fillable parent a® has widch one greater than the widch of a, has heighe 0, and has
ua as its Och face.

Together, these cases define a “fillable parent/distinguished face” bijection
)f
Atom,,\Fill,, (E)o Atom,, 1

between fillable n + 1-arrows and non-degenerate atomic n-arrows which are not fillable.

PROOF. For 9.2, if b is a non-degenerate acomic #1-arrow with domain + that is not fillable, then
it must be the case that b; = by for some i > 1. This arrow is then a codimension-one face of the
two atomic 71 + 1-arrows that are formed by inserting an extra line into the gap labeled by separate
the entry by from the other turn-arounds that occur in the same gap; the 1 + 1-arrows obtained in
this way will then clearly have b as their by th face. There are exactly two ways to do this, as illustrated

below:
~~~~~~~~ o + ! :
Q :::77::7 1 AN Q = 2 or 2
3 3

For (ii), given a non-degenerate atomic n-arrow 4 with codomain —, there is a unique way to make
ua into the face of an atomic 71 + 1-arrow with domain + whose width is only one greater: by adding
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an extra line in the upper-most space above the squiggle diagram.

N DR 0 |
a=-Ff11 > ua = -
- 2 |

9.2.4. DEFINITION. A subcomputad A of Ad] is parental if it contains at least one non-identity arrow
and satisfies the condition:

e if ¢ is a non-degenerate atomic arrow in (A, then either it is fillable or its fillable parent £+ is also

in A.

The condition implies that any parental subcomputad A C Adj contains at least one fillable
arrow. The last vertex of any fillable arrow has the form ug for some 0-arrow 4, so it follows that the
O-arrow U is contained in any parental subcomputad.

Recall from Definition 6.1.8, that any collection of arrows S in a computad generates a minimal

subcomputad §

9.2.5. EXAMPLE (notable parental subcomputads).
® The unique fillable O-arrow u generates the minimal parental subcomputad@ C Adj containing
only # and its degenerate copies.
® The unit 1-arrow 7 is fillable and the subcomputad ﬁ C Adj it generates has u, f, and 1 as its
only non—degenera_te atomic arrows. Of these, # and 1? are parental and 717 is the fillable pa;ent of

f, so this subcomputad is parental.

® The triangle identity witness ﬁ of Example 9.1.11 is fillable and the subcomputad {,‘T} C Adj it
generates has u, f 1. € and ﬁ as its only non-degenerate atomic arrows. Since ﬁ is the fillable

parent of €, this 9ubgomputad is parental.
® The pair of fillable 3-arrows

generate a subcomputad {w, T} C Adj that has u, f . € both triangle identity witnesses ﬁ and

a of Example 9.1.11, and v : =@ 6! = 76 as its only non-degenerate atomic arrows. Since @ is
the fillable parent of @ and T is the fillable parent of

this subcomputad is parental.
o Adj is trivially a parental subcomputad of itself.

9.2.6. NON-EXAMPLE.

® The subcomputad {€} has u, f and € as its only non-degenerate atomic arrows. Since both f and

€ are missing their fillable parents, this subcomputad is not parental.
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® The subcomputad {7, €} that has u, f, 7, and € as its only non-degenerate acomic arrows still fails
to be parental since the fillable parent of € is missing.
® The subcomputad {B, @} that has u, f, 17, €, and both triangle identity witnesses f and « as its

atomic non—degenerate arrows is not parental since the fillable parent @ ofg is missing.

These examples establish a chain of parental subcompurtad inclusions

W c ) < 18)  lw, 1) < Adj.

Our aim in the remainder of this section is to filter a general parental subcompurtad inclusion A C
A’ as a countable tower of parental subcomputad inclusions, with each sequential inclusion pre-
sented as the pushout of an explicit simplicial subcomputad inclusion. The subcomputad inclusions
2[A¥[n]] = 2[A[n]] from Example 6.1.5 will feature, where AF[n] is an inner horn. A second family

of inclusions will also be needed, which we now introduce.

9.2.7. DEFINITION. For any simplicial set U, let 3[U] denote the simplicial category whose three non-
trivial homs are displayed in the following cartoon:

V x
T IxU +
That is 3[U] has objects “T”, “=”, and “+” and non-trivial hom-sets
3UT,—-)=U, 3Ul(-+) =1, 3[UT,+)=1%xU,

and whose only non-trivial composition operation is defined by the canonical inclusion

3[U](=, +) x 3[U](T, -) — 3[UI(T, +)

Here we define the endo hom—spaces to contain only the respective identities and the remaining hom-

spaces to be empty.

9.2.8. LEMMA. A simplicial functor 3[U] — K is uniquely determined by the data:
® g pair of O-arrows u: A — Bandb: X — B

® a cone with summit U over the cospan

Fun(X, A) —— Fun(X, B)
or equivalently a map U — Yy, whose codomain is its pullback.

PROOF. The objects X, A, and B are the images of T, —, and + respectively. The mapu: A — Bis
the image of the unique 0-arrow from — to +. Simplicial functoriality then demands the specification
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of the vertical maps below making the square commute

U—>1xU

| |
| |
\Z \

Fun(X, A) = Fun(X, B)
By the join  slice adjunction of Proposition 4.2.5, the simplicial map 1 % U — Fun(X, B) may be
defined by specifying a 0-arrow b: X — B, the image of the cone point of 1 % U, together with a map
U — YFun(X, B). Now the above commutative square transposes to the one of the statement.  [J
Similarly a simplicial functor 2[U] — Kis uniquely determined by the data U — Fun(X, A) of a
simplicial map valued in one of the functor spaces of K. In particular, simplicial functors 2[A[n]] —
K correspond to n-arrows in K. O

9.2.9. NOTATION.
e For cach fillable n-arrow b of positive heighe, let Fj,: 2[A[n]] — Adj be the simplicial functor
classified by the n-arrow b of Adj. B
e For cach fillable n-arrow b of height 0, let F,: 3[A[n — 1]] — Adj be the simplicial funcror
defined on objects by — = — + = + and T > bw@, the domain of b, and on the three
non-trivial homs by

3[AI - 111(T,5) = Al = 1] 2> Adjby,-)  3AL - 111(-,+) = A0] > Adj—, +)

3[A[n - 1]I(T, +) = Aln] 2> Adj(boy, +)

9.2.10. LEMMA (extending parental subcomputads). Suppose A C Adj is a parental subcomputad and b
is a fillable n-arrow of height k that is not a member of A but whose faces b - &' are in A for all i # k. Then

the subcomputad A’ := {A, b} generated by A and b is defined by the pushout on the left below in the case
k > 0 and on the right below in the case k = 0

Fy Fy
2[Af[n]] — A 3[0A[n-1]] — A
2[A[n]] T> A’ 3[A[n —1]] T) A

and in both cases A’ is again a parental subcomputad.

PROOF. Because b is the fillable parent of its distinguished face Qo, this non-degenerate, atomic,
non-fillable (1 — 1)-arrow cannot be a member of the parental subcomputad A. Since the other faces
of b are assumed to belong to A, b and b’ are the only two atomic arrows that are in A’ but not
in A. Since the first is fillable and the second has the first as its fillable parent, it is clear that the
subcomputad A’ is again parental.

To verify the claimed pushouts, we consider what is required to extend a simplicial functor F: A —
K to a simplicial functor F: A" — K. In the positive height case, all that is needed for such an exten-
sion is an n-arrow f in K with the property that f - 6" = F(b- ') for all i # k, which may be specified
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by a simplicial functor f: 2[A[n]] — K that makes the following square commute:

2[AM[n]] L A

! I

2[A[n]] - 7 - K

If the height of b is zero, then both its Oth face b-6° = u-a and its acomic non-degenerate factor a
are missing from A. So to extend a simplicial functor F: A — K to a simplicial functor F: A" — K
requires an (n — 1) arrow g and an n-arrow f in K'so that ¢ - &' = F(a - &) for all i € [n — 1] and
f- 6' = F(b- ') for alli # 0 € [n], so that f-6% = Fu-g. By Lemma 9.2.8 this data may be specified
by a 51mp11c1a1 functor f: 3[A[n - 1]] = K that makes the following square commute:

3[0A[ - 1] —%s A

i I "

3[A[n - 1]] —F -> K

9.2.11. PROPOSITION. Any inclusion A <= A’ of parental subcomputads of Adj may be filtered as a count-

able tower of parental subcomputad inclusions

A=Ay o Ay o | A =R
>0
in such a way that for each i > 1 there is a finite non-empty set S; of fillable arrows that are not themselves
contained in but which have all faces except the distinguished one contained in A;_y so that the parental
subcomputad A; is generated by A;_1 U S;. Hence, the inclusion A — A’ may be expressed as a countable
composite of inclusions which are constructed by pushouts of the form

(Fplpes.

1 2[AD[dim®)]|u| 1T 3[PAdim@®)]] | ———— Ay
beS; beS;
h(b)>0 h(b)=0
IO 2[A[dim®I] || T 3[Aldim®)]] 0 A;
bes; bes; b7bes;

h()>0 h(©)=0

PROOF. Let S denote the set of fillable arrows in A" which are not in A and let S, , i denote the
subset of arrows with width w, dimension 1, and height k. Note that any non-degenerate arrow of
Adj must have dimension strictly less than its width, and there are only finitely many non-degenerate
arrows of any given width. The height is strictly less than the dimension so each set Sy, ,,  is finite
and if non-empty we must have k < n < w. Now we order the triples (w, 11, k) that index non-empty
subsets of fillable arrows lexicographically by increasing width, increasing dimension, and decreasing
height and let S; := Sy, .. k. denote subset of fillable arrows in the ith triple in this ordering for i > 1.
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Let A; be the subcomputad of Adj generated by A U (U]l:=1 S;). By construction this family filcers
the inclusion of A into A" = AU (U, §)).

We complete the proof by induction on the index starting from the parental subcomputad Ay =
A. For the inductive step, we must verify that all but the distinguished face of each b € S; == Sy, . 1.
lie in A;_q. By iterating Lemma 9.2.10, it will follow that (A; is again parental.
By construction (A;_q is the smallest subcomputad of Adj which contains A and all of the fillable
arrows of A" which have:
e width less that w; or
e width w; and dimension less than n; or
e width w;, dimension 1;, and height greater than k;.
Each fillable arrow b € S; has width w;, dimension #1;, and height k;. We must show that its faces b - o/
lie in A;_q for each j # k;, which we verify by a tedious but straightforward case analysis.
case j # k; +1: 1f j # k; + 1 then since j # k; the line numbered j is not one of the ones
separating the gap by from the other entries of b, which means that this entry will not be eliminated
when computing the jth face. Consider the unique factorization
b-o/=( ap)e-ot - a)
of the face b+ &/ into non-degenerate and atomic arrows of A’ acted upon by degeneracy operators. By
the analysis just given, Ql is fillable with width at most w;, height k; or k; — 1 depending on whether
j>ki+1orj<kj, and dimension less than 71;. Thus Ql it is contained in A;_1 by the hypothesis that
this subcompurtad contains all fillable arrows of width at most w; and dimension less than 7;. Since
by has widtch at least 2, the other atomic factors have width less than or equal to w; — 2. Thus each of
these is either a fillable arrow with widch at most w; — 2, which means that it is in A;_1, or its fillable
parent in A’ has width at most w; — 1, which means that this fillable parent is also in A;_;. As b+ &/
is a composite of degenerate images of arrows in A;_1 it too lies in A;_1.
casej = k; +1: Since b ¢ A;_1 and all parental subcomputads contain the unique fillable 0-arrow
u, we know that b # u and so has width at least 2 and dimension at least 1. The only fillable arrow
of width 2 is 7 which has depth 0 and face 17+ 6! = id,, which certainly lies in A;_q, so we can safely
assume that the width of b is at least 3 which forces the height k; to be at most n; — 2; otherwise b
would not be atomic. Thus j is at most 7; — 1, which tells us that b - &/ is again atomic. Now we have
two subcases:
® case by = by + 1: In this case, the line j = k; + 1 = by separates the gaps by and by, so the face
b -/ will have width at least two less than the width of b. This face may also be degenerate but in
any case the fillable parent of the non-degenerate arrow that it represents has widch less than w;
and so this face is present in A;_1.
® case by > by + 1: In this case, the linej = k; + 1 = by separates the gap by from the gap
immediately below it, which contains neither by nor by. So the face b + & has width w; and is
non-degenerate. Because b is non-degenerate, there is some s > 2 so that by = by + 1,50 b - &/
is not fillable. Now Lemma 9.2.3 tells us that its fillable parent has widch w;, dimension n;, and
height k; + 1. Thus, this fillable parent lies in A;_1 by our hypothesis that that A;_; contains all
fillable arrows of A’ of width w;, dimension 7;, and height greater than k;, so b - & must also be
in there, as desired.

O
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9.2.12. REMARK (a dual form). In the 2-category Cﬂd]'CO the 0-arrow U is left adjoint to the 0-arrow f,

CO

with unit € and counit 1. The 2-functor Adj — Adj™ that classifies this adjunction is an isomorph-
ism. Via this duality, we e could have introduced a variant notion of “fllable n-arrow” (a subset of those
n-arrows with codomain —) and “parental subcomputad” of Adj so that every parenta] subcomputad
contained the 0- arrowf Dualizing the argument of Example 9.2.5, the subcomputads {f} c el cla)

would all be parental, but the subcomputads of Example 9.2.5 would no longer be so.
Exercises.

9.2.i. EXERCISE. Give a graphical description of the dual fillable nn-arrows discussed in Remark 9.2.12.

9.3. Building homotopy coherent adjunctions

We now employ Proposition 9.2.11 to prove that every adjunction in an 00-cosmos K extends to a
homotopy coherent adjunction Adj — K which carries the canonical adjunction in Adj to the chosen
adjunction in K. The data used to present an adjunction ina quasi—categorically enriched category K
in the sense of Definition 2.1.1 — a pair of co-categories A and B, a pair of 0-arrows u € Fun(A, B)
and f € Fun(B, A), a pair of 1-arrows 17: idg — uf € Fun(B,B) and €: fu — id4 € Fun(A, A),

and witnesses to the triangle equalities given by a pair of 2-arrows

ufu fuf
T2 g NE eFun(A,B) A o N crun, A)
U ———u f=——cf

— determines a simplicial functor T: {$, a} — K whose domain is the subcomputad of Adj generated

by the triangle identity 2-arrows. This functor then is defined by mapping — to A and + to B and
Acting on the non-degenerate and atomic arrows in the way suggested by their syntax: T(u) = u,

f) = f, T(T]) =1n,T(€) =¢ Tﬁ) = B, and T(a) = a. In Theorem 9.3.4, we prove that it is

Always possﬂole to extend the data (f - 1,1, €) to a homotopy coherent adjunction Adj — K, but
unless B and a satisfy a coherence condition that will be described, doing so might require making a
different choice for one of these triangle equality witnesses.

By Proposition 9.2.11, extensions along parental subcomputad inclusions may be built inductively
from two types of extension problem, one of which involves attaching fillable arrows with positive
height and the other of which involves attaching fillable arrows of height zero. We prove that both
simplicia] subcomputad extension prob]ems can be solved re]ative]y against any simp]icial functor
P: K — L between quasi-categorically enriched categories that defines a “local isofibration,” mean-
ing that the action of P on functor spaces is by isofibrations. This relative lifting result will be used
in the proof of the homotopical uniqueness of such extensions in §9.4.

9.3.1. LEMMA. Let P: K — L be a simplicial functor that defines a local isofibration of quasi-categories.
Then any lifting problem against the directed suspension of an inner horn inclusion

2N )] — K
[ L
2[A[n]] — £
has a solution.
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PrROOF. The lifting problem of the statement is equivalent to asking for a lift of the inner horn
inclusion

A¥[n] —— Fun(4, B)

_
-
-
-
-

A[1n] —— Fun(PA, PB)

against the action of P on some functor spaces of Kand L. By hypothesis this action is an isofibration
of quasi-categories and so the claimed lift exists. O

9.3.2. PROPOSITION (the relative universal property of the unit). If K has an adjunction (f — u,n),
P: K — Lis a local isofibration of quasi-categorically enriched categories, and if T: 3[dA[n]] — K'is
defined to carry the unique 0-arrow — — + to u: A — B, the cone point of 1 % dA[n] = A%[n] to
b: X — B and the I-arrow from 0 to 1 in A[n] to nb: b — ufb for some n > 1, then any lifting problem

3[9A[n]] L: K

e
[
//

3[A[n]] — L
has a solution.

PROOF. By Lemma 9.2.8, the lifting problem of the statement translates to a lifting problem of the
following form

IA[n] —— Yy,

A1
-
-
-
-

e

A[n] —— Ppy,

where the upper horizontal map carries the initial vertex 0 € dA[n] to the object nb € by, which is
initial in there by Proposition 4.1.4 applied to the adjunction between functor spaces

fe
/‘\
Fun(X,B) 1 Fun(X,A)
~_

Uy

and Appendix C, which proves that Joyal’s slices are fibered equivalent to comma quasi-categories.
The right-hand vertical is an isofibration that preserves this initial element, since it carries it to a
component of the unit for the adjunction (Pf - Pu, Pn) in L. Lemma F.1.2 proven in Appendix F
now proves that the desired lift exists. U

Our theorems about extensions to homotopy coherent adjunctions will follow as special cases of
the following relative extension and lifting result for parental subcomputads containing the unit of
an adjunction.

9.3.3. THEOREM. Suppose {n} € A C A’ C Adj are parental subcomputads. Then if P: K — Lisa

local isofibration between qu;si—categorically enriched categories and if K has an adjunction (f = u, 1) then

251



we may SOl'UC any llft”’lg problem

ALK
[l
ﬂ’;L

so long as T(j_r) = f, T(u) = u, and T(ﬂ) =1

PROOF. By Proposition 9.2.11 the inclusion A < A’ can be fillered as a sequential composite of
pushouts of coproducts of maps of two basic forms, so it suffices to demonstrate that we may solve
lifting problems of the following two forms

2N )] —s A L, % B[9A[ - 1]] — A L%
[ //r’/f lp [ ,///r//f lp
2[Aln]] —— A L 3[Al - 1]] —— A L

for some fillable n-arrow b € Adj, of positive height in the left-hand case and of height zero in the
right-hand case. In the case of the left-hand lifting problem, such lifts exist immediately from Lemma
9.3.1.

In the case of the right-hand lifting problem, we must verify that the hypotheses of Proposition
9.3.2 are satisfied, which amounts to verifying that for any fillable n-arrow b of height zero, the functor
Fy: 3[A[n = 1]] = Adj defined in Notation 9.2.9 in relavant part by the map

B[A[ - 11T, +) = Aln] > Adj(b.p, +)

carries the l-arrow from 0 to 1 in A[n] to a component of the unit in A C Adj. This is casily
verified using the graphical calculus. The image of the 1-arrow from 0 to 1 under the map b: A[n] —
Adj(byy(p), +) is simply the initial edge of b, which may be computed by removing all of the other lines
from the strictly undulating squiggle diagram. By the specifications of a fillable arrow with height 0,
there are only two possibilities, depending on whether the domain of b is 4+ or —, as illustrated by the
following diagrams:

. S (i f R o
- - o=} ] =)

Thus we see that b+ 801 = nu or b+ 501 = 7, both of which satisfy the conditions required for
Proposition 9.3.2 to provide the desired lift. O
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9.3.4. THEOREM (homotopy coherent adjunctions). If Kisa quasi—categorically enriched category con-
taining an adjunction (f = u,1,€,, a):
(i) There exists a simplicial functor A: Adj — K for which A(u) = u, A(f) = f, and A(n) = 1.
(ii) There exists a simplicial functor A: Adj — K for which A(u) = u, A(f) = f, An) = 1,
A(e) = €, and A(B) = B.
(iii) If there exist a pair ;f 3-arrows @ and T in K
uf uf
w = idy T Suf  TE idy T uf

N A A
ufuf ufuf

witnessing the coherence relations w8 = ua, 60 = Bf, wd! = 8!, wd? = 16 = nol, with the
3rd faces of these simplices defined by the pair of 2-arrows given by the horizontal composite

A[] % A[1] 2% Fun(B, B) x Fun(B, B) ——s Fun(B, B)

then there exists a simplicial functor A: Adj — K for which A(u) = u, A(f) = f, A(n) =,
A) =€ AQB) =B, Ala) = a, A(w) = @, and A1) = 7. Bl B

Coherence conditions of the form stated in ((iii)) appear in the definition of a biadjoint pair in a

strongly bicategorically enriched category in [111, 1.3.8].
Exercises.
9.3.i. EXERCISE. Unpack Proposition 9.3.2 in the casen =1 and n = 2.

9.3.ii. EXERCISE. Use Remark 9.2.12 to formulate the dual of Theorem 9.3.4, describing homotopy
coherent adjunctions generated by a given counit.

9.4. Homotopical uniqueness of homotopy coherent adjunctions

The homotopy 2-category of an co-cosmos can be regarded as a simplicial category of the form
described in Lemma 9.1.3, in which context it is equipped with a canonical quotient functor Q: K —
HK of simplicial categories. Formally, Q is a component of the counit of the adjunction described in
Digression 1.4.2. It follows easily from the characterization of 2-categories in Lemma 9.1.3 that Q is a
local isofibration.

By Proposition 9.1.13, any adjunction in the homotopy 2-category of an co-cosmos is represented by
a unique simplicial functor T: Adj — HK. To say that a homotopy coherent adjunction A: Adj —
‘K lifts the adjunction in the homotopy 2-category means that A is a lift of T along Q. Theorem 9.3.4
proves that a lift of any adjunction in the homotopy 2-category h%K can be constructed by specifying

alift T: {B} = Kof T: Adj — HK — this amounting to a choice of 1-arrows representing the unit
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and counit and a 2-arrow witnessing one of the triangle equalities — and then extending along the
parental subcomputad inclusion to define the homotopy coherent adjunction A.

Note that the commutativity of the top left triangle implies the commutativity of the bottom right
one, so instead of thinking of A as a [ift of T: Adj — HhK to a homotopy coherent adjunction, we

can equally think of A as an extension of T: {8} — K to a homotopy coherent adjunction.

In this section, we will define the space of extensions of given adjunction data to a homotopy
coherent adjunction. Our main theorem in this section is that if the base diagram to be extended is
indexed by a parental subcomputad, then the space of lifts is a contractible Kan complex.

The first step is to construct a (possibly large) simplicial hom-space between two simplicial cate-
gories.

9.4.1. DEFINITION. Define the cotensor LY of a simplicial category L with a simplicial set U to be the
simplicial category with obj L4 = obj L and hom-spaces
LUX,Y) = LX, Y.

Any simplicial set U defines a comonoid (U, !: U — 1, A: U — UXU) with respect to the cartesian
product and diagonal maps, so the endofuncror (—): sSet-Cat — sSet-Cat is a monad whose unit
and multiplication are defined by restricting along these maps.

For simplicial categories K and L, let Icon(K, £) denote the large simplicial sets defined by the
natural isomorphism

lcon(, L)Y = lcon(K, LY) i,  lcon(K, L), := lcon(K, LA,

The composition map
lcon(L, M) X Icon(K, L) —— Icon(K, M)
is given by defining the composite of a pair of n-arrows F: K — LA and G £ > MAM (6 be

the Kleisli composite H-arrow
g¢ —E 5 poin S A AInAI] = pqAInIxAI] Ay AqAT]

9.4.2. WARNING. The simplicial category LY s not the category of “U-shaped diagrams in £ In
particular, the cotensor LA s distinet from the category L2 of arrows (or isofibrations) considered
elsewhere.

9.4.3. REMARK. The vertices of lcon(%, L) are simplicial functors K — L. The name “icon” is chosen
because the 1-simplices are analogous to the “identity component oplax natural transformations” in
2-category theory as defined by Lack [64]. In particular, each 1-simplex K — LA n-simplex
K — LA spans simplicial functors K — L that agree on objects.
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9.44. LEMMA. If P: K — L is a local isofibration between quasi-categorically enriched categories and
I: A = Bis a simplicial subcomputad inclusion, then if either P is bijective on objects or I is injective on
objects then the Leibniz map

Igo\n(l, P): Icon(B,K) —» Icon(A,K) X Icon(B, L)
Icon(A, L)
is an isofibration between quasi-categories.

PROOF. A lifting problem of simplicial sets as below-left transposes into a lifting problem of sim-
plicial categories below-right:

u lcon(8B, K) A— KV
_7 //7 —
i[ e - llc?o\n(l,P) I e l{i,P}
v, lcon(A,K) X lcon(B, L) B KU x LV
Icon(A, L) ru
When P is surjective on objects, so is the simplicial functor {171\3} and in general the action on homs is
given by the Leibniz map
{i, P}: Fun(X,Y)V » Fun(X,Y)!  x  Fun(PX,PY)",

Fun(PX,PY)U
which is a trivial fibration whenever U < V is an inner horn inclusion or is the inclusion 1 < 1.
By Definition 6.1.11 to solve the right-hand lifting problem, it suffices to solve the two lifting

problems
@ —: KV 2[dA[n]] —>>, KV
[ /// l{z‘TP} [ //// l{fp}
12— U x £V 2[A[n]] —— KU x LV
£u £u

where the left-hand lifting problem is not needed if I is bijective on objects. The right-hand lifting

problem can be solved because {i, P} is a local trivial fibration and the left-hand lifting problem can
be solved whenever P is surjective on objects. 0

9.4.5. COROLLARY. If K'is a quasi-categorically enriched category, if A is a simplicial computad, and if
I: A = Bis a simplicial subcomputad inclusion, then

Icon(I, K): Icon(B, K) - Icon(A, K)

is an isofibration between quasi-categories. OJ

9.4.6. LEMMA. Suppose P: K — Lis asimplicial functor between quasi-categories that is locally conservative
in the sense that each Fun(A, B) — Fun(PA, PB) reflects isomorphisms. Then if A is a simplicial computad

and A — B is a bijective-on-objects simplicial subcomputad inclusion, then the Leibniz map

Icon(I, P): Icon(B, K) - Icon(ﬂ,?()l (>;1L) lcon(B, L)
con(A,

is a conservative functor of quasi-categories.
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PROOF. In the language of marked simplicial sets, we must show that any lifting problem below-
left has a solution

2 lcon(B, K) A— K
=7 P
Jj Pt llc?c?n(l,P) Jj o g l
28 27 5 lcon(A,K) X  lcon(B, L) B8 K2 x %
Icon(A, L) 12

where 2F represents invertible 1-arrows. By adjunction, this transposes to the lifting problem above-
right. As in the proof of Lemma 9.4.4, it suffices to consider the case where A = B is 2[J[A[n]]] =
2[A[n]] for some n > 0, in which case the lifting problem of simplicial categories reduces to one of
simplicial sets

dA[n] Fun(A, B)Zﬂ (dA[n] x 2% U (A[n] x 2) —> Fun(A4, B)
_ -
I S Ry
A[n] =5 Fun(A,B)2 x  Fun(PA,PB)? A[n] x 28 —— Fun(PA, PB)
Fun(PA,PB)2

The marked simplicial sets on the left have the same underlying sets, differing only in their markings,

so by the hypothesis that Fun(A, B) — Fun(PA, PB) is conservative, the result follows. O

9.4.7. DEFINITION. The space of homotopy coherent adjunctions in a quasi-categorically enriched
category K is
cohadj(X) = Icon(Adj, K).

9.4.8. PROPOSITION. The space of homotopy coherent adjunctions in Kis a Kan complex, possibly a large one.

PROOF. Since Adj is a simplicial computad, Corollary 9.4.5 implies that cohadj(‘/K) is a quasi-
category. By Corollary 1.1.15, we need only show that all of its arrows are isomorphism. Since a 1-arrow
in a functor space of K is an isomorphism if and only if it represents an invertible 2-cell in H % the
quotient simplicial functor Q: K — bhK is locally conservative, and by Lemma 9.4.6, it suffices to
show that cohadj(hK) is a Kan complex.

From Proposition 9.1.13 we can extract an explicit description of cohadj(hK) that reveals that it
is actually isomorphic the nerve of a 1-category: its

® objects are adjunctions (f = u,1,€) in hK

e arrows (P, V): (f 4 u,n,e) = (f" 4 u',n,€") consist of a pair of 2-cells ¢: f = f’ and
Y: u = u'sothate’ - (PpyY) = €and ' = (YP) - 1, and

e identities and composition are given componentwise.

The isomorphisms in cohadj(hK) are those pairs (¢, ) whose components ¢ and ¢ are both
invertible. From the defining equations €” - (¢10) = € and )’ = () - 17 it follows that the mate of ¢
is an inverse to ¢ and the mate of @ is an inverse to 1, so every arrow is in fact an isomorphism.  [J

9.4.9. PROPOSITION (homotopical uniqueness of parental subcomputad extensions). Suppose {n} C

A C A" € Adj are parental subcomputads. Suppose T: A — Kis a simplicial functor so that T(f) = f,

T(u) = u, and T(n) = 1 define an adjunction in K. Then the fiber of the isofibration Bl
lcon(A’, K) - Icon(A, K)
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over T is a contractible Kan complex.

PrROOF. The fibers over T are those simplicial functors T: A" — K extending T: A — K. By
Theorem 9.3.3, this fiber is non-empty. We must show for any inclusion U < V of simplicial sets, the
lifting problem

u Er Icon(A’, K)

[ 1]
1% 1 Icon(A, K)

has a solution. Transposing, we obtain a lifting problem of simplicial categories

AL g K, gy
| 7
A KU

against the local isofibration KV > KU The simplicial functor KK — K like all simplicial
functors, preserves the adjunction (f —u, 1]) in K, so Theorem 9.3.3 app]ies to provide asolution. O

Taking A" = Adj, Proposition 9.4.9 tells us that the space of homotopy coherent adjunctions
extending a simplicial functor A — K'indexed by a parental subcomputad whose image specifies the
unit of an adjunction is a contractible Kan complex. This proves that such extensions are “homotopi-
cally unique.” We conclude this section with more refined presentations of this kind of result for two
instances of basic adjunction data of interest.

9.4.10. DEFINITION (the space of units). Simplicial functors W — K correspond bijectively to the
choice of a pair of O-arrows f € Fun(B, A), u € Fun(A, B), together with a I-arrow 1) idg = uf €
Fun(B, B). We refer to the simplicial subset unit() c lcon({n}, K) of those triples (f,u,n) that

specify the unit of an adjunction and those 1-simplices that define isomorphisms between them as the

space of units, and denote its objects by (f = u,1). Since Icon( }, K) is a quasi-category, unit(K) is

a Kan complex.
9.4.11. LEMMA. There is an isomorphism of quasi-categories
Homg,n(z,5)(idp, )

o

lcon({n}, K) =TI Homgngp(idg,©)  Fun(A, B) X Fun(B, A)

S,

Fun(B, B)

PrOOF. Exercise 9.4.1i. 0

9.4.12. THEOREM (uniqueness of homotopy coherent extensions of a unit).

(i) The space E,7 of homotopy coherent adjunctions extending the counit 1] is a contractible Kan complex.
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(ii) The forgetful functor py;: cohadj(K) =» unit(‘K) is a crivial fibration of Kan complexes.

PROOF. Both statements follow from specializing Proposition 9.4.9 to the parental subcomputad

{n} c Adj. If A: Adj — Kis a homotopy coherent adjunction, its restriction to {7} — K defines

an object of unit(K) C Icon(ﬁ,?(). The fiber of the isofibration py;: cohadj(K) =» unit(K) over

(f = u,1n) coincides with the fiber considered in Proposition 9.4.9 and is thus a contractible Kan
complex.

By Corollay 9.4.5, the map py;: cohadj(K) =» unit(K) is an isofibration between Kan complexes,
and is thus a Kan fibration. By Proposition D.5.4 any Kan fibration between Kan complexes with
contractible fibers is a trivial fibration, proving (ii). OJ

9.4.13. DEFINITION (the space of right adjoints). Simplicial functors {1} — K correspond bijectively
to the choice of a O-arrow 1 in K. Indeed:
Icon(@,?Q = H Fun(A, B).
A,BEK
We refer to the simplicial subset rightadj(‘’K) c Icon(@,?() of those O-arrows that possess a left

adjoint and the isomorphisms between them as the space of right adjoints. As a quasi-category whose
l-arrows are all isomorphisms, rightadj(K) is a Kan complex.

The isofibration ICOH(W,W) - Icon(@,?() restricts to define an isofibration gg : unit(%K) —
rightadj(K) of Kan complexes.

9.4.14. PROPOSITION. The isofibration qg : unit(K) — rightadj(X) is a trivial fibration of Kan complexes.

PROOF. Since both unit(K) and rightadj(K) are Kan complexes, automatically gg is a Kan fibra-
tion. By Proposition D.5.4, we need only show that its fibers are contractible. The fiber of qg over

u: A — B is isomorphic to the sub-quasi-category of the fiber of the isofibration Icon({n}, K) —»

Icon({u}, K) over u whose objects are pairs (f, ) which have the property that f is a left adjoint to
the fixed 0-arrow u with unit represented by 17 and whose 1-simplices are all invertible. By Lemma
9.4.11, this isofibration is isomorphic to the coproduct of the family of projections

TT Homeun.s(ids, &) 2 Fun(4, B) x Fun(B, A) 5 Fun(A, B)
A,BeK
whose fiber over u is isomorphic to Homg,np p)(idp, 1)
Applying Proposition 4.1.4 to the adjunction between functor spaces
f*
/\
Fun(B,B) L1 Fun(B,A)
\_/

Uy
and the element idg € Fun(B, B) reveals that (f,7) is a initial in Homgy,g py(idp, 4.). So the fiber
of gg over u is isomorphic to the sub-quasi-category of Homg,,g p(idp, 14.) spanned by its initial
clements and as such is a contractible Kan complex.® O

“In any quasi-category in which every element is initial, all 1-arrows are isomorphisms, since the initial elements are
also initial in its homotopy category, which must then be a groupoid. This proves that the quasi-category sp:mned by initial
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9.4.15. THEOREM (uniqueness of homotopy coherent extensions of a right adjoint).

(i) The space E,, of homotopy coherent adjunctions with right adjoint u is a contractible Kan complex.
(ii) The forgetful functor pg : cohadj(K) = rightadj(K) is a trivial fibration of Kan complexes.

PROOF. The space E,, is defined as the fiber of the composite fibration

p q
pr: cohadj(’K) —Nu» unit(K) —f» rightadj(K)

By Theorem 9.4.12 and Proposition 9.4.14, both maps are trivial fibrations of Kan complexes, hence so
is the composite and thus its fiber is a contractible Kan complex. O

Exercises.

9.4.i. EXERCISE. State and prove a relative version of Proposition 9.4.9, establishing the homotopical
uniqueness of solutions to lifting problems of parental subcomputad inclusions against local isofibra-
tions of quasi-categorically enriched categories.

9.4.1i. EXERCISE. Prove Lemma 9.4.11.

elements is in fact a Kan complex. Any adjunction between Kan complexes is an adjoint equiva]ence, so in particu]ar the
right adjoint 11 A =» 1 defines an equivalence, and hence a trivial fibration .

259






CHAPTER 10

The formal theory ofhomotopy coherent monads

10.1. Homotopy coherent monads

The free homotopy coherent monad is defined as a full subcategory Mnd — Adj on the object
+. Via this definition, it inherits a graphical calculus from the graphical calculus established for Adj
in §9.1.

10.1.1. DEFINITION (the free homotopy coherent monad). The free homotopy coherent monad Mnd
is the full subcategory of the free homotopy coherent adjunction Adj on the object +. Proposition
9.1.10 gives us two definitions of Mnd:
® It is the 2-category regarded as a simplicial category with one object, with the hom-category A,
and with horizontal composition given by ordinal sum ®@: A, X A, — A,.
e It is the simplicial category with one object whose n-arrows are strictly undulating squiggles on
(1 + 1)-lines that start and end in the gap labeled +.

10.1.2. LEMMA. The simplicial category Mnd is a simplicial computad, though Mnd < Adj is not a

simplicial subcomputad inclusion.

PROOF. Horizontal composition in Mnd is given by horizontal juxtaposition of squiggle diagrams
that start and end at +. Thus, an n-arrow is atomic if and only if it has no instances of + in its interior.
This proves that Mnd is a simplicial computad, but note that Mnd includes atomic arrows such as

t=uf= } and  pe=uef=1]U | (10.13)
— N ta — — + . L
that do have — in their interiors and thus fail to be atomic in Ad]. O

Employing the graphical calculus, we discover another characterization of the atomic n-arrows of
Mnd in reference to the atomic 0-arrow ¢ defined in (10.1.3):

10.1.4. LEMMA. An n-arrow in Mnd is atomic if and only if its final vertex is t.

In particulan tis the unique atomic 0-arrow.

PROOF. The n-arrows are strictly undulating squiggles on (11 4+ 1)-lines that start and end at the
space labeled +; these are acomic if and only if there are no instances of + in their interiors.
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This condition implies that if all the lines are removed except the bottom one, a process that computes
the final vertex of the n-simplex, the resulting squiggle looks like a single hump over one line, which
is the graphical representation of the 0-arrow ¢. O

10.1.5. DEFINITION. A monad in a 2-category is given by:
e an object B,
e an endofunctor t: B — B,
e and a pair of 2-cells : idg = tand p: 2 = ¢

so that the “unit” and “associativity” pasting equalities hold:

RN e AN 7S - AN

When these conditions are satlsﬁcd, we say that (£, 1, u) deﬁnes a monad on B.

10.1.6. LEMMA. The atomic arrows

t={t, n={l, e p=uef= U|

define a monad (t,1, 1) on + in the 2-category Mnd.

PrROOF. The unit pasting identities of Definition 10.1.5 are witnessed by the atomic 2-arrows

The pair of atomic 2-arrows

foﬂ ] and .

demonstrate that the left hand side and right-hand side of the associativity pasting equality have a
common composite, namely the common first face

qu ]

As a 2-category Mnd has a familiar universal property. Lawvere’s characterization of (A, @, [-1])
as the free strict monoidal category containing a monoid ([0],!: [-1] — [0], 0% [1] = [0]) tells us
that Mnd is the free 2-category containing a monad [65]:

10.1.7. PROPOSITION. For any 2-category C, Z—functors Mnd - C correspond to monads in C. O

These considerations motivate the following definition:

10.1.8. DEFINITION (homotopy coherent monad). A homotopy coherent monad in a quasi-categorically
enriched category K is a simplicial functor T: Mnd — K. Explicitly, a homotopy coherent monad
consists of
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® an object B € K and
® a homotopy coherent diagram T: A, — Fun(B, B) that we refer to as the monad resolution of
T
so that the diagram
A, x A, =T, Fun(B, B) X Fun(B, B)

| 5
A, — Fun(B, B)

commutes. This simplicial functoriality condition implies that the generating 0- and 1-arrows of the
monad resolution have the following form:

tt
nt —
[ «— ‘ut_
idg —N— t «—#— tt —mr— ttt € Fun(B, B) (10.1.9)
[ Ht‘u_
g ttn

where (t,7, 1) denotes the image of the monad (£, 1, 4) of Lemma 10.1.6 under T: Mnd — K. We
refer to the O-arrow t: B — B as the functor part of the homotopy coherent monad T and refer to

the 1-arrows 1 and y as the unit and associativity maps.

Note that for any generalized element b: X — B, the monad resolution (10.1.9) restricts to define
a monad resolution

nttb
ntb
EEm— «— utb —
b—nb— th ¢«—pub— ttb —tmv — ttth € Fun(X, B) (10.1.10)
Er—— — tub—
tnb
ttnb

10.1.11. ExXAMPLE (free monoid monad). Let M be a Kan-complex (or topologically) enriched category
equipped with an enriched monoidal structure = ® —: M X M — M that admits countable conical
coproducts that are preserved by the monoidal product separately in each variable. Then there exists

a simplicially enriched endofunctor T: M — M defined on objects by
T(X) = [ x®"
n>0
equipped with simplicial natural transformations 17: idp( = T and p: T2 = T defined by including
at the degree-one component and “distributing” the coproduct

T2(X) = || (H X®m)®".

n>0 \m>0
The monad resolution of this simplicially enriched monad defines a simplicial functor A, X M —
M, regarding A, as a simplicial category whose hom-spaces are sets. Applying the homotopy coherent
nerve, N: Kan-sSet — QCat, this simplicially enriched monad defines the left action Ay X "M —
M of a homotopy coherent monad in QCat on M.
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More generally, any topologically enriched monad on a topologically enriched category defines a
homotopy coherent monad on its homotopy coherent nerve.

Any homotopy coherent monad T: Mnd — K defines a monad in the homotopy 2-category, sim-
ply by composing with the canonical quotient functor discussed at the beginning of §9.4 and applying
Proposition 10.1.7:

T Q
Mnd K hK
However “monads up to homotopy” — that is, monads in the homotopy 2-category of an co-cosmos
— cannot necessarily be made homotopy coherent.

10.1.12. NON-EXAMPLE (a monad in the homotopy 2-category that is not homotopy coherent). Stasheff
identifies homotopy associative H—spaces that do not extend to Aoo—spaces; that is, monoids up to
homotopy cannot necessarily be rectified into homotopy coherent monoids. Let

M,n:+—> M,n: MXM — M)

denote such an up-to-homotopy monoid. This structure defines a monad up to homotopy on the
(large) quasi-category of spaces by applying the homotopy coherent nerve to the endofunctor M X
—: Kan — Kan and natural transformations induced by 1 and €. This monad in hQCat cannot be
made homotopy coherent.

Exercises.

10.1.i. EXERCISE.
(i) Show that Mnd contains a unique atomic 1-arrow u : t" — ttoreachn >0, u = idé being
degenerate, but each of the other i being non—degzgcrate. -
(ii) Identify the images of these atomi:nl—arrows in the monad resolution (10.1.9).
(iii) Given an interpretation for the 1-arrow p that acknowledges the role played by ES in the

-n
proof of Lemma 10.1.6.

10.2. Homotopy coherent algebras and the monadic adjunction

Homotopy coherent monads can be defined in any quasi-categorically (or merely simplically) en-
riched category but we are particularly interested in homotopy coherent monads valued in eo-cosmoi
because the flexible weighted limits guaranteed by Corollary 7.3.3 permit us to construct the monadic
adjunction, which relates the co-category on which the monad acts to the co-category of algebras.

The universal property of the monadic adjunction associated to a homotopy coherent monad
T: Mnd — K is very easy to describe, though some more work will be required to demonstrate
that any 00-cosmos K admits such a construction. The monadic adjunction is the terminal adjunc—
tion extending the homotopy coherent monad, which means that it is given by the right Kan extension

/ =
Mnd T K

Since Mnd — Adj is fully faichful, the value of the right Kan extension at + € Mnd is isomorphic
to B := T(+). By Example 7.1.19, the value of the right Kan extension at — € Mnd is computed as the

along the inclusion

\\ A']I‘
N
N
!

Adj
U
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limit of T: Mnd — K weighted by the restriction of the covariant representable of Adj at — along
Mnd = Adj, which is how we will now define the weight W_ for the co-category of algebras.

10.2.1. OBSERVATION (weights on Mnd). A weight on Mnd is a simplicial functor W: Mnd — sSet.
Explicitly, to specify a weight on Mnd is equivalent to specifying

e asimplicial sec W := W(+)

e cquipped with a left action of the simplicial monoid' (A,, @, [-1])

—1]xid

A, XA, x W S5 A x W wEPE A W
W

—
AL XW— W so that @Xidl l \

ALXW— S W

Frequently, the simplicial set W happens to be a quasi-category, in which case the weight W on Mnd
is precisely a homotopy coherent monad on the quasi-category W.

Relative to the encoding of weights on Mnd as simplicial sets with aleft A -action,amap f: V —
W e sSetM™ i given by amap f: V — W of simplicial sets that is A|-equivariant in the sense that
the diagram

f

V——mWw

[-1]xid [-1]xid
A}x v A+£ W
V— W

f

commutes.

10.2.2. LEMMA. Let W: Mnd — sSet be a weight on Mnd and lec T: Mnd — K be a homotopy
coherent monad on B € K. Then a W-shaped cone over T with summit X is specified by a simplicial map
y: W — Fun(X, B) which makes the square

T
A, x W —L5 Fun(B, B) x Fun(X, B)

W — Fun(X, B)

PROOF. By Observation 10.2.1, a simplicial natural transformation y: W — Fun(X, T-) is given
by its unique component y: W — Fun(X, B) subject to the equivariance condition:

id
A, x W =25 A, x Fun(X, B)

W ——— Fun(X, B)
"The strict monoidal category (A, ®,[-1]) is a monoid in (sSet, X, 1). Applying the nerve functor, (A, ®, [-1])
also defines a monoid in (sSet, X, 1).
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The right—hand action map is the transpose of the action map of the composite simplicial funcror

Fun(X, T-): Mnd — QCat, this being

A, —T Fun(B, B) ™5 Fun(Fun(X, B), Fun(X, B))
which transposes to
A, x Fun(X, B) =5 Fun(B, B) x Fun(X, B) —— Fun(X, B).
Now the equivariance square coincides with the commutative square of the statement. O

10.2.3. EXAMPLE (notable weights on Mnd). We fix notation for a few notable weights on Mnd.
(i) Write W, : Mnd — sSet for the unique represented functor on Mnd, which is given by the
quasi-category A, = Mnd(+,+) = Adj(+, +) acted upon the left by itself via the ordinal
sum map

A, xA, —25 A,

(i) Write W_: Mnd — sS8et for the restriction of the covariant representable functor Adj —
sSet on —along Mnd — Adj. This weight is presented by the quasi-category A+ = Adj(—, +)
acted upon the left by A, by the ordinal sum map

A, x Ay —25 A

which defines the horizontal composition in Adj in Definition 9.1.1.

There is a natural inclusion

A, — AL

Al Al
Adj(+, +) —> Adj(-, +)

that “frecly adjoins a top element in each ordinal” or, in the graphical calculus of Definition 9.1.9,
“precomposes a strictly undulating squiggle with 1 := (+, —).” This commutes with the left A -actions
and so defines an inclusion of weights W, <= W_ by Observation 10.2.1.*

Since W, is the representable weight it is automatically flexible. By the first axiom of Definition
7.1.3 the W, -weighted limit of a homotopy coherent monad T recovers the co-category limy,, T = B
on which T acts.

10.2.4. LEMMA. The inclusion W, = W_ is a projective cell complex in sSet™™ buile by attaching projec-
tive n-cells IA[n] X W, — A[n] X W, in dimensions n > 0. In particular, W_is a flexible weight.

PROOF. We apply Theorem 7.2.12 and prove that W, < W_ is a projective cell complex by verify-
ing that coll(W,) < coll(W_) is a relative simplicial computad. Since W/, is flexible, it follows then
that W_ is too. The collage coll(W_) can be identified with the non-full simplicial subcategory of Adj
containing two objects — (aka T) and + and the hom-spaces Adj(—, +) and Adj(+, +) but with the
hom-space from — to — trivial and the hom-space from + to — empty. Via the graphical calculus of
Definition 9.1.9, we see that coll(W_) is a simplicial category whose n-arrows are strictly undulating
squiggles from — to + or from + to + with composition defined by concatenation at +. Its atomic
n-arrows are then those that have no instances of + in their interiors.

’A “right adjoint” to the inclusion W, < W_ will be described in the proof of Proposition 10.2.11.
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Similarly, coll(W,) is the simplicial category with two objects T and + and with the hom-spaces
from T to + and from + to + both defined to be Adj(+, +), with the hom space from T to T trivial
and the hom-space from + to T empty. This is also a simplicial computad in which the only acomic
arrow from T to + is the identity 0-arrow corresponding to [-1] € Adj(+,+) = A,; as before,
the atomic arrows from + to + are the strictly undulating squiggles which have no instances of + in
their interiors. To provide intuition for this simplicial computad structure on coll(W,), recall that
since the representable W, defines a projective cell complex @ < W, built by atcaching a single
projective O-cell at +, the proof of Theorem 7.2.12 tells us that the simplicial subcomputad inclusion
1+ Mnd < coll(W,) is defined by adjoining a single acomic 0-arrow from T to + to the simplicial
computad 1 + Mnd.

The inclusion coll(W,) < coll(W_) is bijective on the common subcategory 1+ Mnd and defined
by sending each n-arrow from T to + in coll(W,. ), represented as a squiggle from + to +, to the squiggle
from — to + defined by precomposing with . This function carries the unique atomic 0-arrow from
T to + in coll(W,) to u, which is the unique acomic 0-arrow in coll(W_) from T to +. Now Theorem
7.2.12 proves that W, < W_ is a projective cell complex. Furthermore, since coll(W,) < coll(W_)
is surjective on atomic 0-arrows, only projective cells of positive dimension are needed to present
W, < W_asasequential composite of pushouts of projective n-cells JA[n]x W, — A[n]xW,. O

Now let K be an co-cosmos.

10.2.5. DEFINITION. The co-category of T-algebras for a homotopy coherent monad T: Mnd — K
in an co-cosmos K is the flexible weighted limit limyy T. When T acts on the co-category B via the
monad resolution (10.1.9) with functor part t: B — B, we write

AlgT(B) = limyy, T
for the co-category of algebras. By Proposition 7.3.1(ii), the projective cell complex W, < W_ induces
an isofibration

limw_ T - llmw+ T
upon taking weighted limits defining a map that we denote by u': AIgT(B) — B and refer to as the
monadic forgetful functor. This map is the leg of the W_-shaped limit cone indexed by the unique
object + € Mnd.

By Corollary 7.3.3 and Lemma 10.2.4:

10.2.6. PROPOSITION. Any homotopy coherent monad in an 00-cosmos admits an co-category of algebras. [

We now introduce the generic bar resolution A — Fun(AlgT(B), B) associated to the co-category
of T-algebras for a homotopy coherent monad acting on B.
10.2.7. DEFINITION (generic bar resolution). The limit cone f: W_ = Fun(AlgT(B), T(-)) defines
the generic bar resolution of a homotopy coherent monad T acting on an co-category B. By Lemma
10.2.2 and Example 10.2.3, a W_-cone with summit AlgT(B) = limyy_ T over a homotopy coherent
monad acting on T is given by a simplicial map f: A — Fun(AlgT(B), B) so that the square

AL X A+ BLLR Fun(B, B) X Fun(AlgT(B), B)

Ay ———— Fun(Alg,(B), B)
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commutes. Under the identification At = Adj(—, +), we write u! and B2 tu! — u' for the 0- and
l-arrows of Fun(AlgT(B), B) defined to be the images of 4 and u€ under f: A — Fun(AlgT(B), B)

respectively. This O-arrow ut is the monadic forgetful functor of Definition 10.2.5. Then in the nota-
tion of (10.1.9), the generic bar resolution has the form of a homotopy coherent diagram

t

tu
Ay e—
uh =t T Tt ttut € Fun(Alg(B), B)
ﬁt n _
tpt ¢

(10.2.8)
that restricts along the embedding A, < A+ that freely adjoins the top element in each ordinal to
the monad resolution (10.1.10) applied to ut.

For any generalized element X — A]gT(B) of the co-category of T-algebras associated to a homo-
topy coherent monad acting on B, an X-family of T-algebras in B, the generic bar resolution (10.2.8)
restricts to define a bar resolution

ntb -
be——=tb T b tith (10.2.9)
tp E

10.2.10. PROPOSITION. The monadic forgetful funcror u': AlgT(B) —» B is conservative: for any 2-cell y
with codomain Alg,ﬂ,(B) if uty is invertible, then so is y.

PROOF. Conservativity of the functor ut asserts that for all X the isofibration of quasi-categories
ut: Fun(X, A]gT(B)) - Fun(X, B) reflects invertible 1-cells. Working with marked simplicial sets,

this is the case just when this map has the right lifting property with respect to the inclusion 2 < 2t
of the walking arrow into the walking marked arrow.

By Definition 10.2.5, the monadic forgetful functor is defined by applying lim_ T to the projective
cell complex W, < W_ of Lemma 10.2.4. By Proposition 7.3.1(i), the isofibration u': AlgT(B) - B
then factors as the inverse limit of a tower of isofibrations, each layer of which is constructed as
the pullback of products of projective cells BAIM s BIAIM for 1 > 1. The cosmological functor
Fun(X,-): K — QCat preserves this limit, so ul: Fun(X, A]gT(B)) - Fun(X, B) is similarly the
inverse limit of pullbacks of products of maps Fun(X, B)Al" — Fun(X, B)?Al"] for n > 1. Since
conservativity of a functor between quasi-categories may be Captured by a 1iftir1g property, it suffices

to show that the maps Fun(X, B)Al" — Fun(X, B)?2" reflective invertibility of 1-simplices. Since
for n > 1, the inclusion dA[n] <= A[n] is bijective on vertices, this is immediate from Corollary
D.4.18, which says that invertibility in exponentiated quasi-categories is detected pointwise. O

We now show that any homotopy coherent monad T: Mnd — %K on an co-category B in an
0o-cosmos extends to a homotopy coherent adjunction AT: Adj — K whose right adjoint is na

10.2.11. PROPOSITION (the monadic adjunction). For any homotopy coherent monad T: Mnd — K on
B, the monadic forgetful functor u': AlgT(B) — B is the right adjoint of a homotopy coherent adjunction
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AT: Adj > K
ft
> . :
B ,\J-_’ Alg (B) ntsidg = ulft € flut = idalg (8) -

ut

whose underlying homotopy coherent monad is . This constructs the monadic adjunction of the homotopy
coherent monad.
In particular, the criple (u! f!, ', u'e! f') recovers the monad (¢, 7, 1) on B defined in 10.1.8.

PROOF. Recall the weights W, and W_ are defined in Example 10.2.3 to be restrictions of the
representable functors on Adj; in the case of W, this restriction defines the representable functor for
Mnd since the inclusion Mnd — Adj is full on +. The weight for the monadic homotopy coherent
adjunction is defined to be the composite of the Yoneda embedding with the restriction functor

Adj? —F 58St e, g GeMd

+ | W,
L) - AR
& e

which can be interpreted as deﬂning an adjunetion ofweights whose left and right adjoints, in the
encoding of Observation 10.2.1, are given by the maps

—ou
~—

A, L A
~—

_of

that act on strictly undulating n-arrows by precomposing with u = (+,-) or f = (=, +) as appro-
priate; these maps commute with the left A -actions by postcomposition with a strictly undulating

squiggle from + to +.
Composing with the weighted limit functor lim_ T defines a simplicial functor

AT = lim, y oy T: Adj — K,
i.e., a homotopy coherent adjunction between limyy, T = B and limyy, T = AlgT(B) whose right

adjoint is given by the action of the 0-arrow u, which is the monadic forgetful functor u': AlgT(B) —

B is defined in 10.2.5.
Finally, the underlying homotopy coherent monad of the homotopy coherent adjunction just con-

structed is defined to be the limit of T: Mnd — K weighted by

Mnd”? —— AdjP —E s 5Set™M e SN

which is just the Yoneda embedding for Mnd. By the first axiom of Definition 7.1.3, this functor is
isomorphic to T. O

In §10.4, we give a characterization of the monadic adjunction of a homotopy coherent monad. To
build towards this result, we spend the next section establishing important special properties of the
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monadic forgetful funcror u': AIgT(B) — B and its left adjoint f': B — AlgT(B), whose essential
image identifies the free T-algebras.

Exercises.

10.2.i. EXERCISE. Prove that the 0o-category of a]gebras associated to the homotopy coherent monad
W, : Mnd — QCat on A, is A, . What is the monadic adjunction?

10.3. Limits and colimits in the 0o-category ofalgebras

The key technical insight enabling Beck’s proof of the monadicity theorem [8] is the observation
that any algebra is canonically a colimit of a particular diagram of free algebras. In the case of a monad
(t,1, 1t) acting on a I-category B, the data of a t-algebra in B is given by a u!-splic coequalizer diagram

th
I
—ub-> -
b «tpb— th —B— b (10.3.1)
B

Here the solid arrows are maps which respect the t-algebra structure where the dotted splittings do
not. Split Coequalizers are examples of absolute colimits, which are preserved by any functor, and in
particular by t: B — B, a fact we may exploit to show that the underlying fork of (10.3.1) defines a
reflexive coequalizer diagram in the category of t-algebras.

In the co-categorical context, we require a higher-dimensional version of the diagram (10.3.1),
namely the bar resolution constructed in (10.2.9) for any generalized element X — A]gT(B) of the
oo-category of T-algebras for a homotopy coherent monad acting on B. This replaces the ut—split

coequalizer by a canonically-defined ut—split augmented simplicial object.
Before defining this special class of colimits, we establish a more general result:

10.3.2. PROPOSITION. Let T: Mnd — K be a homotopy coherent monad on an 0o-category B with functor
part t: B — B. Then if B admits and t preserves colimits of shape ], then the monadic forgetful functor
ut: A]gT(B) — B creates colimits of shape J.

PROOF. The 0-arrows in the image of a homotopy coherent monad T: Mnd — K are given by
the identity functor at B, the “functor part” t: B — B defined as the image of the unique atomic
0-arrow of Mnd, and finite composites t*: B — B for eachnn > 1. If t preserves colimits of shape [ in
B, then so does t". Thus, in the case where B admits and ¢ preserves J-shaped colimits, the homotopy
coherent monad lifts to homotopy coherent monad T': Mnd — K ;in the co-cosmos of Proposition
8.2.11. Since the inclusion 7(J_J — K creates flexible weighted limits, such as those weighted by W_,
it follows that the limit cone u!: AlgT(B) —» B lifts to K| p. This monadic forgetful functor is the
unique 0-arrow component of the limit cone, so by Proposition 8.2.11 this tells us that AlgT(B) admits

and u': A]gT(B) — B creates J-shaped colimits. O

A dual argument, employing the co-cosmos K7 ; of co-categories that admit and functors that
preserve J-indexed limits, proves that if B admits and ¢ preserves limits of shape ], then the monadic
forgetful funcror u': AlgT(B) —» B creates limits of shape J. We don't explicitly consider this dual
version here, however, because we will prove a stronger result in Theorem 10.3.9 that drops the hy-
potheses on t.
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10.3.3. DEFINITION (u-split simplicial objects). The image of the embedding
U -
Al Al
Adj(=, =) <= Adj(=, +)

is the subcategory of A+ generated by all of its elementary operators except for the face operators

8%: [n—1] — [n] for each n > 1. We refer to these extra face maps as splitting operators. By Defini-
op . . . Al . . .
BA™ in B admits an augmentation if it lifts along the restriction

op op e ) op ) e
functor BA+ — BA™ and an augmented simplicial object X — BA+ in B admits a splitting if it

tion 2.3.9, a simplicial object X —

lifts along the restriction functor BAT —» BAY Thus, given any functor u: A — B of co-categories,
the co-categories SA™ () and SAY (1) of u-split simplicial objects and u-split augmented simplicial
objects in A are defined by the pullbacks

op Op
SA" () —— BAT SA+ (1) —— BAT
- .
l lrcs l lres
AAP — BA® AAKP — BAiP
AO op
u ud+

and there exists a forgetful functor

AMY e A (1)

o

N2
AAop SAop (u)

BAT

Our interest in these notions is explained by the following example: if u: A — B is a right adjoint
functor between co-categories, any homotopy coherent adjunction extending # defines a canonical
u-split augmented simplicial object.

10.3.4. LEMMA. Let A: Adj — K be a homotopy coherent adjunction with right adjoint u: A — B. Then
the comonad resolution and bar resolution

op

jointly define a u-splic augmented simplicial object A — S2+ (u).
PROOF. Functoriality of A supplies a commutative diagram below-left

P = Adj(-,-) —2 Fun(4, A)

| Jo-

A+ = Adj(-, +) — Fun(A, B)
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which internalizes to the commurative diagram of the statement. By the definition of the 0O-category
of u-split augmented simplicial objects in 10.3.3, this induces the claimed functor A — SA+p(u). Thus

the comonad resolution ky: A — ADY Jefines an augmented simplicial object in A that is u-split by
the bar resolution for A. d

10.3.5. PROPOSITION. The monadic forgetful functor u': AlgT(B) — B creates colimits of u'-split simplicial

objects. Moreover, for any u'-splic augmented simplicial object, the augmentation defines the colimit cone for
the underlying simplicial object in AlgT(B).

PROOF. The co-category of ut—split simplicial objects is defined by the pullback
SA“P (ut) 55 BAT
AP AP

By Proposition 2.3.11, the canonical 2-cell (2.3.10) defined by the initial object in A, defines an absolute
left lifting diagram

B
o lA (10.3.6)
BV
S (ut) ——» BAT —» BAY —o BAY

that is also an absolute colimit in B, preserved by all functors and in particular by t: B — B.
Now Proposition 10.3.2 tells us that u': Alg_ﬂ,(B) — B creates this colimit, which means that there
exists an absolute left lifting diagram as below-left

t
Alg (B) Alg (B) —“— B B
colim///7 lA Colim///" lA lA — ev_q lA
. ol op 8"
SA‘P(ut) — AIgT(B)A‘} SAOP(ut) — AlgT(B)AOP (Wp BA? SAop(ut) — s BAY —» BA

that when postcomposed with (1f)A™ : AlgT(B)AOp —» BA™ recovers the absolute left lifting diagram

(10.3.6), in the sense expressed by the pasting equality above-right. Thus, the monadic forgetful funcror
creates colimits of u'-splic simplicial objects in A]gT(B).

Upon precomposing with the SAip(ut) — SA"(ut) the fact that Proposition 10.3.2 tells us that
ut: AlgT(B) —» B creates the colimit (10.3.6) also means that whenever there exists a pasting equality

Alg (B) —“— B B

CV‘/ OplA lA = CV lA
ﬂAlgT(B)V ﬂ‘BVO D

MY () —» Alg (B o Alg (BT — BST S8 (u) —» BAT o BAY o BAY

(ut)A P res res
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such as arises here by 2-functoriality of the simplicial cotensor construction, the 2-cell

Alg,(B)

V Op lA
MAlg(B)”

M (uf) — Alg (BN —— Alg (BA”

is an absolure left lifting diagram. This proves that u!: AlgT(B) — B creates colimits of u!-split
simplicial objects. O

Now, as displayed by the bar resolution (10.2.8), any T-algebra in B canonically gives rise to a
u'-split simplicial object to which Proposition 10.3.5 applies; the bar resolution At — Fun(AlgT(B), B)
internalizes to a diagram bar: AlgT(B) — BAT. The colimit cone in AlgT(B) is given by the Aip—shaped
subdiagram of the bar resolution that omits the dashed maps

ntu* - _ >
! i
b————— > gt STHU t ——— t
w T tw e HE tttu
ﬁt nu —_—
tpt ¢

This subdiagram admits a concise description: it is the comonad resolution for the comonad induced

by the monadic adjunction f* 4 u' on AlgT(B), this bei;lg a functor Ay — Fun(AlgT(B), AlgT(B))
that internalizes to a functor kL : A]gT(B) — Algjr(B)AJr .
10.3.7. THEOREM (canonical colimit representation of algebras). For any homotopy coherent monad T

on B, the induced comonad resolution kb : AlgT(B) - AlgT(B)A(’)rp on the co-category of T-algebras in B
encodes an absolute left lifting diagram

Alg, (B) Alg (B)
/ lA = / lA (103.8)
8 ) fAlg (B
A°P A:_ A°P

created from the ut—split simplicial object in B.
Alg (B) —“— B B

ﬂ/\lgT(B)v ﬂBvop

op o o °p O
Alg (B) - AlgT(B)A+ — AIgT(B)Ap(—> BA™ Alg (B) — BAT BA+ BA™

ut)AOP res res

Thus (10.3.8) exists the algebras for a homotopy coherent monad as colimits of canonical simplicial objects of
free algebras.

PROOF. Applying Lemma 10.3.4 to the monadic adjunction of Proposition 10.2.11, we see that the
comonad resolution k& : AlgT(B) - AlgT(B)A+} on AlgT(B) and the bar resolution bar: AlgT(B) —
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BAT defined in (10.2.8) together define a canonical ut—split augmented cosimplicial object:

0] p

Yty —— BT

b

Alg (BYAY — BYY

(ut)AJr

SA

Now the claimed result follows immediately from Proposition 10.3.5. OJ

Our final task for this section is to generalize the dual of Proposition 10.3.2, proving that the
monadic forgetful functor creates all limits that B admits, whether or not f preserves them.

10.3.9. THEOREM. Let T: Mnd — K be a homotopy coherent monad on an oo-category B. Then the
monadic forgetful funcror u': AlgT(B) — B creates all limits that B admits.

PROOF. See [90, §5] for now. OJ
Exercises.

10.3.i. EXERCISE ([44, 4.23]). Let t: B — B be an endofunctor of an co-category, and define the
oco-category of t-algebras in B by the pullback

algt(B) — > B?

utl J i(m,po)

Adapt the proof of Proposition 10.3.2 to show that if B admits and ¢ preserves colimits of shape J, then
the forgetful functor u': algt(B) — B creates colimits of shape J.

104. The monadicity theorem

Consider an adjunction

A_ 1 _B n:idg = uf, e:fu=idy

between oo-categories, that is in the homotopy 2-category of an co-cosmos. Theorem 9.3.4 proves that
this data lifts to a homotopy coherent adjunction A: Adj — K, which then restricts to define a
homotopy coherent monad T': &Z{dj — K on B. Proposition 10.2.11 then constructs a new homo-
topy coherent adjunction with T as its underlying homotopy coherent monad: namely the monadic
adjunction f' - u' becween B and the co-category of T-algebras A]gT(B). Immediately from its

construction as a right Kan extension — there is a simplicial natural transformation from the first
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homotopy coherent adjunction to the second whose component at + is the identity and whose com-
ponent at — defines a functor that we call 7: A — AIgT(B) commuting strictly with all of the data of

cach homotopy coherent adjunction

————

This monadicity theorem, originally proven for 1-categories by Beck [8] and first proven for quasi-
categories by Lurie [67], supplies conditions under which this comparison functor 7 is an equivalence,
so that the co-category A can be identified with the co-category of T-algebras.

To construct this simplicial natural transformation, we re-express the co-category of algebras as a
weighted limit of the full homotopy coherent adjunction diagram, not merely as a weighted limit of
its underlying homotopy coherent monad.

10.4.1. PROPOSITION. The co-category of algebras associated to the homotopy coherent monad underlying a
homotopy coherent adjunction A: Adj — K is the limit weighted by the weight lan W_ defined by the left
Kan extension
Adj o
/ 1= \\_:\ -

Mnd T__ sSet

Explicitly, lan W_: Adj — sSet is the homotopy coherent adjunction displayed on the top below

J_fo_
N . lanW_
A°P 1 A+ o Adj —— sSet
\u?_/
j_fo_
MG A
Adj(-,-) L  Adj(-,+) “> Adj — sSet
~____

Uuo—

defined by restricting the domain of the right adjoint and codomain of the left adjoint of the representable
adjunction Adj along the canonical inclusion A°P — AY

PROOF. Recall Lemma 7.1.20, which says that the weighted limit of a restricted diagram can be
computed as the limit of the original diagram weighted by the left Kan extension of the weight. Thus
limi[nd {/V_ A = 1im{/\v/(_nd res A

recovers the 0o-category of algebras for the homotopy coherent monad underlying A.

All that remains is to compute the functor lan W_: Adj — sSet explicitly. Because the inclusion
Mnd = Adjis full on +, lan W_(+) = W_(+) = Adj(—, +), since W_ was defined as the restriction
of the covariant representable functor Adj : Adj — sSet along Mnd — Adj. By the standard
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formula for left Kan extensions reviewed in Example 7.1.19 presented in the form of (7.1.6), the value

of lan W_ at the object — is computed by

Mnd
lan W_(-) = Adj(+,-) X Adj(—, +)

oXid
= Coeq( Adj(+, ) X Adj(+, +) x Adj(=, +) _% Adj(+, -) X Adj(~, +) ) .
id Xo
By associativity of composition in Adj, the composition map
Adj(+,-) X Adj(—, +) —— Adj(-,-)
defines a cone under the coequalizer diagram. By the graphical calculus and Proposition 9.1.10, the

image of this map in Adj(—, -) = AY is comprised of those strictly undulating squiggles from — to —
that pass through +. This is the subcategory AP < A In fact, we claim chat

Adj(+, -) X Adj(+, +) X Adj(—, +) :;idi Adj(+, =) X Adj(-, +) —— A*® (10.4.2)
id Xo

is a coequalizer diagram. The map from the coequalizer to AP is surjective for the reason just de-
scribed: a strictly undulating squiggle from — to — that passes through + can be decomposed as a
horizontal composite of a squiggle in Adj(—, +) followed by a squiggle in Adj(+, —). To see that the
map from the coequalizer to AP is injective, consider two distinct subdivisions of a squiggle from —
to — into a pair of squiggles from — to + and from + to —. The subsquiggle between the two chosen
+ symbols in this an element of Adj(+, +), and thus this pair of elements of Adj(+, =) X Adj(-, +)

are identified in the coequalizer diagram. O

10.4.3. LEMMA. For any homotopy coherent adjunction A: Adj — K, there exists a simplicial natural

. . . . . Ad .
transformation from A to the monadic adjunction hmlan]W_ A: Adj — K whose components at + and —
defined on weights by the counit of the adjunction

lﬂl'\

e lan W_ = lanres ﬂdj_ — &Z{dj_
sSet™ 1 sSetMM
\E/ ﬂdj+ = lanres ff’(dj+ % ﬂdj+

PrROOF. Consider the diagram of weights in SSetﬂdj.

€

—

lan res ﬂdj_

_ _°]_C lan res(—owu)
,@ 3/
L lan res(—OJ_r)

&Z{dj+ = lan res ﬂdj+

Adj
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Applying these weights to a homotopy coherent adjunction A Adj — Kwith underlying adjunction
f Hu: A— Byields

————

with the component €_ inducing the non-identity component of the canonical comparison functor
with the monadic adjunction. O

10.4.4. EXAMPLE. Returning to Example 10.1.11, there is a Kan-complex enriched category Mon(M)
of monoids in M equipped with a simplicially enriched adjunction
F

TN
Mon(M) L M
\U/’

Applying the homotopy coherent nerve, this defines a homotopy coherent adjunction between the
quasi-categories St Mon(M) and M. By Lemma 10.4.3, there is a canonical comparison map to the

monadic homotopy coherent adjunction

-~

- ~
NMon(M) Foo AIgT(‘RM)
\fx j
u mM ft
that is not an equivalence. Elements of 9t Mon(M) are strict monoids in M, while elements of
AlgT(‘ﬁM) are homotopy coherent monoids, objects X € M equipped with #n-ary multiplication
maps ty,: X®" — X for all n that are coherently associative up to higher homotopy.
10.4.5. LEMMA. Let A: Adj — K be a homotopy coherent adjunction with right adjoint u: A — B and
let AT: Adj — K be the associated monadic adjunction. Then there is a canonical functor L: A]gT(B) —
AL thar
(i) is u-split by the bar resolution bar: AlgT(B) — BA™
(i) is so that the composite Lor: A — AL s the simplicial object underlying the comonad resolution
ke: A — AA:rp7 and
(iii) is so that the composite A" o L: AlgT(B) - AIgT(B)Aop is the simplicial object underlying the

comonad resolution kb : AIgT(B) - AlgT(B)Aip.
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PROOF. The first two statements ask for a functor L that fits into a commutative diagram below-

left

A—Lt a8 Adj ——— Adj x AT
(s 1]
Alg (B) -==> AA” e lanres Adj ¢ —"-- Adj x AP
bar ub™” T T(—og)xid
BAT —— BA™ Adj, X Ay 502 Adj X A

in which each of the objects and all but the map L have been described as maps induced by taking
weighted limits of the homotopy coherent adjunction diagram, with the weights in sSet™ displayed
above-right. By the Yoneda lemma, each of the three maps of weights labeled “o” are defined by a
single map of simplicial sets. In the case of o2 Adj X AT — Adj  the Yoneda lemma says it suftices
to define a map AY — Adj (-) = A we take this map to be the identity, which implies that
o Adj x AP — Adj acts in both components by composing over — in Adj. In light of the explicit
description of the adjunction lanres Adj given in Proposition 10.4.1 the other two maps labelled “o”
may be defined similarly by identity maps. Since the dashed map makes the right-hand diagram of
weights commute, the induced functor on weighted limits has the desired properties (i) and (ii).

The final stacements demands commutativity of the diagram below left, which again follows from
the commutativity of the corresponding diagram of weights below-right

AlgT(B) lan res Adj
t
T
AA? T> AIgT(B)AOP Adj X AP o lanres Adj X AP

this just amounting to the simple observation that the counit component € lan res &Zldj_ — &Z{dj_ 18

just given by the natural inclusion AP < AT [l

10.4.6. LEMMA. Given any homotopy coherent adjunction with left adjoint f: B — A, the diagram defined

by restricting the canonical cone (2.3.10) built from the interalized comonad resolution kg: A — AAY along

f:B—> A

A A
f lA — o lA
e o 1A’
A°P AY A°P
B —f> A B 7 A T AR+ —> A

displays f as an absolute colimit of the family of diagrams ko f : B — AL
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PrROOF. The homotopy coherent adjunction provides a commutative diagram below-left

AP —A 5 Fun(A, A) B—L 54
]_(°_\[ lfO— cobarl lko
A, —2 Fun(B, A) AbT ey ANT

which transposes to the commutative diagram above-right, which tells us that when the internalized

. °p . . . . ..
comonad resolution k,: A — A®+ s restricted along f, it extends to a split augmented simplicial
object, with the splittings on the opposite side as usual; this is no matter since AL, considered as a full
sub 2-category of sSet spanned by finite ordinals, is isomorphic to its co-dual via an isomorphism that

commutes with AY £ A This tells us that the colimit cone of the statement is the one of Proposition

23.11. O

There are many versions of the monadicity theorem. For expediency’s sake, we prove just one
for now. We break its statement into two parts, first constructing a left adjoint to the canonical
comparison functor, which under additional hypotheses we prove defines an adjoint equivalence.

10.4.7. THEOREM. Let A: Adj — K be a homotopy coherent adjunction with right adjoint u: A — B
with underlying homotopy coherent monad T: Mnd — K. If A admits colimits of u-splic simplicial objects

then the canonical comparison functor admits a left adjoint:

t

L//—‘\
A \\J__% Alg (B)

PROOF. If A admits colimits of u-split simplicial objects, then there exists an absolute left lifting
of the u-split simplicial object L: AIgT(B) — AM" defined in Lemma 10.4.5

A
L lA (10.4.8)
- Ao
Alg (B) —— A

whose functor part we take to be the definition of the left adjoint £: AlgT(B) — A. By Lemma
10.4.5(ii), the diagram defined by restricting along 7 agrees with the cosimplicial object underlying
the comonad resolution, which has a canonical cone (2.3.10) as displayed below-left:

A A

/TA: lA = e /ﬂ/\ lA (10.4.9)

A —— AMY 5 AAT A —— Alg (B) —— A"

ke

By the universal property of the absolute left lifting diagram (€7, Ar), this induces a unique 2-cell
e: lr = idy.

The unit is induced from the absolute left lifting diagram (10.3.8). By Lemma 10.4.5(iii), the
comonad resolution k& : AlgT(B) — AlgT(B)AOP factors as ¥A" - L, so the pasted composite below
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left factors through the absolute left lifting diagram as below right.

A —— Alg (B) A —— Alg_(B)
¢ a1ty
A = ¢ 10.4.10
A l lA T %& lA ( :
Alg (B) —— AAY ye: Alg (B)™" Alg,(B) —— Alg (B)™"

To verify the triangle equalities, note that by construction

A —— Alg_( A —"— Alg (B)
¢
— fe A
/ T / l _ 4 l Js
A —— Alg (B) —— Alg,( (BYA™ A —— Alg (B) —— AY — Alg (B)A"
r
A —"— Alg (B) Alg (B)
= A _
1AY" l lA - %% lA

A —— AV e Alg (B)*" A — Algy(B) —— Alg (B)*"

op ‘N

the last equality following from simplicial naturality of 7 and the definition of  as A]g (B)Y

Theorem 10.3.7. Thus the triangle equality composite 7€ - nr = id,.
It follows that the other triangle equality composite ¢ = el - fT] is an idempotent:

Q-p:=(el-tn)-(el-tn) =€l -elrl -trln-tn=el-lreC-tnrl - tn =€l -{n = P,

so to prove that €€ - €1 = idy it suffices to show that ¢ is an isomorphism. To demonstrate this, we
will show:

(i) that ¢f" is invertible, i.c., that ¢ is an isomorphism when restricted to free T-algebras

(ii) and that the putative left adjoint € preserves the canonical colimit (10.3.8) that expresses every

T-algebra as a colimit of free T-algebras.

We then combine (i) and (ii) to argue that ¢ is invertible.

To this end, we first observe by Lemma 10.4.6 and the definition of € above that we have a pair of
absolute left lifting diagrams:

A A
/ l - " l
Op OP

By simplicial naturality of the canonical comparison map rf = ft, and by Lemma 10.4.5(ii) Lft =
Lrf = kof. Thus the absolute left lifting problems coincide and we obtain a canonical natural iso-
morphism y: fft =

Now to prove the claim of (i) that qbft is an isomorphism it suffices to prove that 17ft is an iso-
morphism and that efft is an isomorphism — and by naturality of whiskering and the isomorphism
y: {f" = fjust constructed, €€f! is an isomorphism if and only if € f is an isomorphism.
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By (10.4.10), the construction of , and simplicial naturality of 7, which implies that rAOpk, = kir:

A —"—s Alg (B f A —"— Alg (B)

%T/i : w

B Algy(B) = Alg, (B B — Alg,(B) — AY —go Alg (BN
A—"— Alg (B) Alg_(B)
= f lA
/ lA = % lA
B 7) AA} W} A]gT(B)A} B T AlgT(B) k—t.> AlgT(B)A :

So T]fi‘l is the inverse of the isomorphism 7y, and is consequently invertible.

Similarly, by (10.4.9),

T T b e

B — A —— Alg (B) —— AA? B - AA“" B — Alg (B) —— AAT
so €f =y is also an isomorphism. Thus, we conclude that qZ)ft is invertible as claimed in (i).
To prove (ii), we must show that

Alg (B) —t A

/ lA lA (10.4.11)

AIgT(B) — AlgT(B)AOP W} AAT
is an absolute left lifting diagram. Of course, we expect this to be true because left adjoints preserve
colimits by Theorem 2.4.2, but as we have not yet shown that € is a left adjoint, this requires a direct
argument.
By the equational characterization of Theorem 3.5.3, the cosmological functor (A" K - K
preserves the absolute left lifting diagram (10.4.8); thus

AAUP

AOP
A

Algr]r(B)A()p (AAOP )AOP

AO p
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is absolute left lifting. Since AATCA = AAT A there are two equivalent ways to compute the
horizontal composite of this 2-cell with B, displayed below-left and below-right

/T /l

A]gT(B ALY = A]gT(B —> ALY
AOP A°P

/ J, 4 % lA lA
Algy(B) ——> Algy (B —> (AN Algy(B) ——> Algy (BY" — (AN

By Lemma 2.4.1, to show that (10.4.11) is absolute left lifting, i.e., that £ preserves the absolute left
lifting diagram B, it suffices to prove that L preserves the absolute left lifting diagram . By Proposition
4.3.15, to show that this diagram is absolute left lifting it suffices to show that for each [n] € A, that
the diagram

Alg (B) ——— A" —— A

b o]

Alg (B) —— Alg (BN —p (AN —s A"

AOP
is absolute left lifting.
By the construction of L in Lemma 10.4.5, ev,, L: AlgT(B) — A is the map induced by taking

the weighted limits of the homotopy coherent adjunction A: Adj — K by the map of weights
—o (fu)"t!: Adj — lanres Adj . Thus we see that ev,, L is the map fthut: AlgT(B) — A, and in

particular factors through u': AIgT(B) — B. Since the canonical colimit of Theorem 10.3.7 is u'-split,

(u', u') is an absolute left lifting diagram preserved under postcomposition by all functors, and in
particular by f(uf)". Thus, the above diagram is absolute left lifting as claimed, which tells us that L
and thus € preserves the colimit (10.3.8).

It remains only to combine (i) and (ii) to argue that ¢ is invertible. For this, we consider the
pasting equality

4
Alg (B) —— A Alg (B )/_ma\ A
/ J, ngp lA = / l lA
Nlg, (B) —— AIE,T(B)AOP AT AN Nlgy (B) —— Alg (B — > 4%

onp

By the definition of ki, the components of the whiskered natural transformation (pAOp -k ac[n] €
A°P is (z)(ftut)””, which is an isomorphism by (i). By Corollary D.4.18, this proves that quQP - kL is
invertible. Thus, by (ii) the left hand diagram is isomorphic to an absolute left lifting diagram and
thus is absolute left ]ifting. The pasting equa]ity describes a factorization of the left hand absolute
left lifting diagram through the absolute left lifting diagram of (ii) via ¢, so by the uniqueness in the
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universal property of absolute left lifting diagrams we conclude that ¢ is invertible as desired. This
proves that (€ = 7,7, €) defines an adjunction as claimed. O

We now describe conditions under which the adjunction just constructed defines an adjoint equiv-
alence. As the proof will reveal, condition (ii) implies that the unit is an isomorphism, while conditions
(i) and (iii) together imply that the counit is an isomorphism.

10.4.12. THEOREM (monadicity). Let A: Adj — K be a homotopy coherent adjunction with right adjoint
u: A — B with underlying homotopy coherent monad T: Mnd — K. If
(i) A admits colimits of u-splic simplicial objects,
(i) u: A — B preserves them, and
(iii) u: A — B is conservative
then the canonical comparison functor r: A — AlgT(B) admits a left adjoint € : AlgT(B) — A defining an

adjoint equivalence.

Note that Theorem 10.3.7 and Proposition 10.2.10 establish these properties for the monadic ad-
junction.

PROOF. Theorem 10.4.7 constructs an adjunction (£ = 7,1, €) under the hypothesis (i), with the
left adjoint £: AlgT(B) — A defined as the colimit of the u-split family of diagrams L: AlgT(B) —
AA" with colimit cone A: A€ = L. It remains to show that this defines an adjoint equivalence.

By hypothesis (ii), # preserves the u-split colimit diagram that defines €. By Lemma 10.4.5(1),
ud"L: AlgT(B) — BA™ is the monadic bar resolution, so the absolute left lifting diagrams below-

left and below-center are isomorphic:

A B Alg (B) —“— B
e lA /7 A

op op (&) OP Op
Alg (B) o> AY BA " Alg(B) o BT B b Alg (B) - Alg (B)A b B
By the construction of the bar resolution in Lemma 10.3.4, the absolute left hftmg dlagram above-
left coincides with the one above-right. Now consulting (10.4.10), we see that the left-hand diagram
above factors through the right—hand diagram above via utn. Thus utn is invertible, and by Proposition
10.2.10, n: id/\lgT(B) = r{ is also an isomorphism.

By the same line of reasoning, the diagrams Lr: A — AAY andk,: A = AA are both u-split by
the bar resolution by Lemmas 10.4.5 and 10.3.4 respectively. Again by the hypothesis thatu: A — B
preserves u-split colimits, the absolute left lifting diagram below-left must be isomorphic to the one
below-center, which equals the absolute left lifting diagram below-right:

A—L > B " B A—L > B
%lA lA /eﬁlA = %l lA

op O Op Oop O
A T> AA% T BA(P A 1—> BAT % BAL} A % AAL} T BA(p
u bar

[

By the uniqueness of factorization through absolute lifting diagrams it follows that 1€ must be an
isomorphism, and since © is conservative, this means that €: £r = id4 is also invertible.
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This completes the proof, but in fact we can sidestep the most difficult part of the proof of The-
orem 10.4.7 — the proof of the triangle equality €€ - €n = id; — under the additional hypotheses
(ii) and (iii) that imply invertibility of the unit and counit constructed there. Since 77 and € are both
invertible, the triangle equality composite €€ - €1 is an isomorphism. Since the other triangle equality
composite is an identity, as in the proof of Proposition 2.1.11 this composite is also an idempotent and
hence, by cancelation, this idempotent isomorphism is also an identity. O

The dual to Theorem 10.4.12 characterizes those left adjoints that define comonadic functors, whose
domain is equivalent to the co-category of coalgebras for the associated homotopy coherent comonad;
see Exercise 10.4.i. When a functor u: A — B admits both left and right adjoints, then it turns out
that these conditions coincide: if the adjunction € < u is monadic then 4 - 7 is comonadic and
conversely, as the following result shows.

10.4.13. PROPOSITION. Suppose u: A — B admits both left and right adjoints

Then if u is monadic then u is also comonadic, and if u is comonadic, then u is also monadic.

ProOF. We'll show that if u is monadic, then u is also comonadic. The converse implication is
dual. If u is monadic, then u is conservative, by Proposition 10.2.10. By Proposition 2.3.11, B admits
limits of u-split cosimplicial objects, and by Theorem 10.3.9, u: A — B creates them, so A admits
and u preserves such colimits as well. Since we have assumed that # admits a right adjoint, Theorem
9.3.4 can be used to construct a homotopy coherent adjunction with left adjoint #. Now, by the dual
of Theorem 10.4.12, we conclude chat u# is comonadic as claimed. O

Exercises.

10.4.i. EXERCISE. Dualize the work of this section to define and characterize the comonadic adjunction
between A and the co-category of coalgebras for the homotopy coherent comonad acting on A.

10.5. Monadic descent
Consider once more the canonical comparison functor

/’__s\\
e ~)

y Alg (B)

&

defining the component at — € &Z{dj of a simplicial natural cransformation A — AT from a homo-
topy coherent adjunction to the monadic homotopy coherent adjunction built from its underlying
homotopy coherent monad. The monadicity theorem of the previous section characterizes when the
comparison functor 7: A — AlgT(B) is an equivalence. Our aim in this section is to present a theo-

rem proven by Su]yma [105], which characterizes when the functor7: A — A]gT(B) is fu]ly faichtul,
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which is the case just when the canonical map
r. . 2
id,": A® — HomA]gT(B)(r, r)

is an equivalence over A X A.

To :ma]yze this situation, we consider the homotopy coherent comonad K: Cmd — Wunder]ying
the homotopy coherent adjunction A: Adj — K. We write k := fu for the functor part of the
homotopy coherent comonad, an endomorphismk: A — A defined as the image of the unique atomic
O-arrow in Cmd. Our first partial result, true for formal reasons under no additional hypotheses,
observes that the canonical comparison functor 7 is always fully faithful on maps out of the comonad
k= fu: A — A of the homotopy coherent adjunction.

10.5.1. LEMMA ([105, 3.5]). The canonical comparison map pulls back along the substitution of the comonad
k: A — A into its domain variable to define a fibered equivalence:

Hom ,(k, A) A2 -

) \ldr
S \\

HomA]gT(B) (T’k, 1") T HomAlgT(B)(V, 7")
AXA P AXA

PROOEF. By Proposition 4.1.1 applied to the adjunctions f = u and f < u' and the relations

k= fu,u=ur andrf = f"
Hom 4 (k, A) := Hom 4(fu, A) =454 Hom 4(u, 1) = Hom 4 (u'r, u'r) ~ 45 4 Hom 4(fulr, )
= Homu(rfu,r) = Hom,(rk, r),

and this equivalence is the one induced by id,: the first equivalence is induced by pasting with n = 7,
while the second equivalence is induced by pasting with €'r = re. By the triangle equalicy e f- fe = id £
the composite map is the one induced by pasting with id,. O

The statement of the main theorem requires the following definition, recall that the homotopy

. . ) Op
coherent comonad K internalizes to define a functor ky: A — AB+ that we call the comonad reso-
lution, which restricts to a canonical cosimplicial object together with a cone under it.

10.5.2. DEFINITION. A generalized elementa: X — Ais K-cocomplete if the restriction of the canon-
ical diagram

A

/ﬁ lA
nav?

X A ABY s AAT

a ke

is an absolute left lifting diagram.

The terminology is adapted from Hess [48], who refers to such elements as “strongly IK-cocomplete.”
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10.5.3. ExaMPLE (algebras are cocomplete). Theorem 10.3.7 proves that in a monadic homotopy co-
herent adjunction, the identity functor at the co-category of algebras is IKT—cocomplete. By restrict-
ing the absolute left lifting diagram, all generalized elements in the co-category of T-algebras are
]KT—cocomplete.

We now argue that the canonical comparison functor associated to a homotopy coherent adjunc-
tion is full and faithful if and only if all generalized elements of A are IK-cocomplete.

10.5.4. THEOREM ([105, 3.14]). The canonical comparison functorr: A — AlgT(B) for a homotopy coherent

adjunction A with underlying homotopy coherent comonad K is full and faithful if and only if the identicy
idg: A — Ais K-cocomplete, i.e.,

A A
/ lA _ / lA (10.5.5)
a NAY
A k AAOP A k AA+ AAOP

is an absolute left lifting diagram.

In the special case where A admits colimits of u-split simplicial objects, the diagram (10.4.9) in
the proof of Theorem 10.4.12 establishes the result: the composite £r: A — A defines the colimit
of the comonad resolution ky: A — AA™ | and this functor is related to the identity via the counit
€: {r = idy. To say that id4 is IKK-cocomplete, is to say that idg: A — A is the colimit of this
diagram, which is the case if and only if € is fully faichful. Since a right adjoint 7 is fully faichful just
when the counit is an isomorphism (see Proposition 13.4.5 or Exercise 10.5.1), the result follows.

In the absence of this hypothesis, we cannot construct the left adjoint €: AlgT(B) — A. Inits

place, we make use of the functor L: AlgT(B) — AA" of Lemma 10.4.5. In the terminology of §3.5,
the following lemma proves that the co-category of cones under this diagram is right-represented by
the canonical comparison functorr: A — AlgT(B).

10.5.6. LEMMA. Thereis a fibered equivalence Hom ,xor (L, A) = HomAlgT(B)(AlgT(B)' r) over AXA]gT(B).

PROOF. The inverse equivalences are defined by 1-cell induction:

Hom 4aor (L, A) Hom 4aor (L, A)
/ \ QV Po
le (B e
A &y (B) A - A]gT(B)
Alg_(B ANT Alg_(B) p
gT( ) e
Kt &= kt
AOP . (]
k« lr k«
Alg (B Algy (BY*
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and then

Hom 4aor (L, A)
Hom ,aer (L, A) | .
o
p1 Po P v
<C= = Hom,y, ) (Alg(B), 7)
5 o %
And conversely,
Homa, 8)(Alg(B), 7)

HomAlgT(B)(AlgT(B)/ 7’) :

n ro P v
/ @ \ Hom ,aor (L, A)
A . Alg (B) = y %

We leave the verification that these maps define inverse images to the reader. O

PROOF OF THEOREM 10.5.4. By Lemma 10.4.5(ii), the fibered equivalence of Lemma 10.5.6 pulls
back along AX7r: AXA— AX Alg,ﬂ,(B) to a fibered equivalence

HomAAOP (k., A) ~ HomA]gT(B)(T’, 7")

over AX A. Moreover this equivalence commutes with the canonical functors up to natural isomorph-

AZ
Ny

Hom 4aor(k,, A) = HomAlgT(B)(r,r)

1Sm

Under the universal property of Proposition 3.4.7, the functor "id,” is classified by the 2-cell
)
A2 e A—— Alg (B)
po

defined as the whiskered composite of the generic arrow over A. The equivalence converts this into a

> o ke -
2-cell under A% and over the cospan A AL AAT (2 4 by forming the horizontal composite
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of k¥ with a:

/

A > Al&; (B) —=— A"

0 k.

and this is the 2-cell that classifies the map labelled "a”

By Theorem 3.5.3, the left-diagonal map is an equivalence if and only if (10.5.5) is an absolute left
lifting diagram. By Corollary 3.5.6, the right-diagonal map is an equivalence if and only if 7 is fully
faichful. By the 2-of-3 property, either map is an equivalence if and only if both are, which is what we
wished to show. O

10.5.7. REMARK. Sulyma observes that the same argument shows that the canonical comparison funct-

orr: A — AlgT(B) is fully faichful on maps out of a: X — A ifand only ifa: X — A'is
K-cocomplete [105, 3.14].

The motivation for the result of Theorem 10.5.4 arises from the theory of monadic descent. To
explain, we first require some definitions.

10.5.8. DEFINITION. The co-category of descent data Dscp(B) of a homotopy coherent monad T acting
on an oo-category B is the co-category of]KT—coalgebras in the co-category of T-algebras:

Dscy(B) = Coalg]KT(AlgT(B)).
Elements are called descent data.
Unpacking Definition 10.5.8, we can clarify the meaning of “descent data.”

10.5.9. PROPOSITION. Let T be a homotopy coherent monad acting on an 0o-category B € K. The co-category
of descent data is the limit of T: Mnd — K weighted by the weight Wy,.: Mnd — sSet given by the
category A with the left A -action by ordinal sum.

PROOF. Recall from Proposition 10.2.11 that the monadic adjunction associated to a homotopy
coherent monad is defined as the limit of the homotopy coherent monad diagram T weighted by the

Adj P xAdj

restriction of the Yoneda embedding X e SSet b along the inclusion Mnd — Adj in the co-

domain variable, a weight we denote by resﬂd] 4 X From the monadic homotopy coherent adjunction
AT :111’1’1 M”dckT ﬂd] —)7(
S Adj
the induced homotopy coherent comonad on Al gT(B) is defined by restricting along the inclusion
Cmd — Adj, producing a diagram

TK := resﬂdd(llmM%jn]d L T): Cmd - K.
Now dualizing Definition 10.2.5, the descent object is defined to be the co-category of coalgebras for

this homotopy coherent comonad, which is define to be the lifted Weighted by the restriction of the
representable functor ﬂd]' : Adj — sSet along the inclusion Cmd — Adj in its codomain variable:

Mnd
Dscy(B) = ]11’1’1 Cmd?[d] resﬂdd(hm X,(ndotl“).
Adj
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Our aim is now to express this iterated weighted limit as a single Weighted limit of the diagram T.

By Lemma 7.1.20, the weighted limit of the restricted diagram reeﬂd] (hmMXf(lnd : T): Cmd — Kis
Adj

isomorphic to the limit of the diagram lim™ ‘Mnd + T): Adj — K weighted by the left Kan extension
r(‘bﬂdj

of the weight along Cmd — Adj. Thus:
Dscy(B) = lim® Cmd . ™ ﬂdd(hmMﬂd )
?ld]

Adj . Mnd
ImCm]d ru%g]d Adj, TS Adj &

~ 1:

= |im

By Definition 7.1.3(ii), the weighted limit of a weighted limit of a diagram is the limit of that diagram
weighted by the weighted colimit of the weights:
~ hmM]”dﬂdj wnd T
colim TCSﬂd‘
11ncm]d Iesg{;}d ﬂd] ]
By the symmetry of Definition 7.1.4, this weighted colimit of the weights is isomorphic to the weighted
colimit of weights with the weight and diagram swapped, yielding the first isomorphism below. Now
by Definition 7.1.3(i), this reduces to the restricting of the diagram along Mnd — Adj, yielding the
second isomorphism below:
Adj .

resﬂd]d & = ohm M”dc): memd rcs%"’;]d ﬂd] = resﬂtzd memd rcs%"é]d ﬂd]

colim Cmd
lancmd 1€<ﬂd] ﬂd]

Upon substituting into our formula for Dse(B) we conclude that
= lim ;
o Mud A Cmd 4
1csﬂdﬂj lancmdws‘(];sj ﬂd]+
as desired.

It remains only to simplify the description of the weight

Wyee = rcsﬂé;d I‘mCmd rcsﬂdd ﬂd] € sSet™™.

By Observation 10.2.1, this diagram defines a category Wy, .(+) — which we will shortly identify,
defined by evaluating at + € Mnd — and a homotopy coherent monad on it. This is the dual of
the Lalculation of Proposition 10.4.1. By the formula for pointwise left Kan extensions, the value of

lal’lcmd TGSﬂdd ﬂd] at the Ob ect + is Computed by

4 cm
Wiee(+) 1= (langeyy resGid Adj )(+)
md

Adj(=, +) X Adj(+,-)

Il

Il

coeq ( Adj(~, +) X Adj(-, =) x Adj(+, -) %d; Adj(~, +) x Adj(+, -) )
id Xo

Il

id Xo

xid
coeq(A x AY xAl:;A XA )

Il

A.
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The monad structure is given by a “left action of A,,” in this case by the functor
@A XA—> A
obtained by restricting the ordinal sum composition in Adj. 0
10.5.10. REMARK. The Wy, -weighted limit cone on Dscyr(B) takes the form of a A -invariant diagram

A — Fun(Dscy(B), B) that we refer to as the generic descent dacum. Writing b: Dse(B) — B for
the 0-arrow in the image of the terminal element of A, this diagram has the form

—n-
N> ep—
b«Bp—th —tn> t2b
—0—- —tp—
—t0>

The generic descent datum, internalizes to a functor Dseq(B) — BA.

10.5.11. OBSERVATION. The weights W_, Wy, W, € sSet™™ are given by the categories A, A+, and

A, respectively, with the left A -action in each case given by ordinal sum. Thus the inclusions

A=A > A, > W_ - Wy, — W, €sSetM™
are A, -equivariant, defining maps of weights. On weighted limits, we thus get canonical maps that

fit into a commutative diagram

limy, T —— limy, T —— limy, T
Al Al Al

B ——— Dser(B) —= Alg;(B)
ft

The canonical functor c: B — Dscy(B) can also be described as the non-identity component of
the simplicial natural transformation from the monadic homotopy coherent adjunction AT to the
comonadic homotopy coherent adjunction associated to its homotopy coherent comonad KT,

P - —

-7 3
B < ut Y Dscy(B)
N @
t
F7 Alg (B) —

10.5.12. DEFINITION. The homotopy coherent monad T satisfies descent if ¢: B — Dscy(B) is fully
faithful and satisfies effective descent if c: B — Dscy(B) is an equivalence. The homotopy coherent
monad T satisfies effective descent just when the monadic homotopy coherent adjunction is also
comonadic.

Specializing the dual of Theorem 10.5.4, we have:

10.5.13. COROLLARY. A homotopy coherent monad T acting on B satisfies descent if and only if idg: B — B
is T-complete. finish
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Dually, for a homotopy coherent comonad K acting on an co-category A, the co-category of code-
scent data is
Codesc (A) = AlgT]K(Coalg]K(A)).
The homotopy coherent comonad K satisfies codescent if the canonical comparison map c: A —
Codesc(A) is fully faichful and satisfies effective codescentif c: A — Codescy (A) is an equivalence,
which is the case just when the comonadic homotopy coherent adjunction is also monadic. The former

holds just when id4: A — A is K-cocomplete.

Exercises.

10.5.i. EXERCISE. Use Corollary 3.5.10 and Proposition 4.1.1 to anticipate the proof of Proposition
13.4.5: show that a right adjoint is fully faithful if and only if the counit of the adjunction is an iso-
morphism.

10.5.ii. EXERCISE. Prove the claim made in Remark 10.5.7.
10.6. Homotopy coherent monad maps

Two adjunctions are equivalent just when there exists a pair of equivalences as displayed horizon-
tally below that commute up to isomorphism with the right adjoints

~~
N
&
=
IR
:\
&
-
g

and so that the mate of the isomorphism bu = u’a defines an isomorphism f’b = af in the square
formed with the left adjoints. The pair f < u# extends to a homotopy coherent adjunction, which
defines a homotopy coherent monad on B, and similarly f* - 1" defines a homotopy coherent monad
on B’. But are the monadic adjunctions induced by these homotopy coherent monads similarly equiv-
alent?

A simpler question also requires some argument. Consider just a single adjunction f - u in
the homotopy 2-category h of an co-cosmos and two extensions to homotopy coherent adjunctions
A, A" Adj — K. By Proposition 9.4.9, A and A’ are isomorphic as vertices of the Kan complex
cohadj(K). But what does this actually mean?

Unpacking Definition 9.4.1, we are given a homotopy coherent adjunction A: Adj — KL whose
target is the quasi-categorically enriched category whose objects are the same as in K and whose
functor-spaces are defined as the cotensor of the functor spaces of K with I so that when A is evalu-
ated at the endpoints of I, this returns the homotopy coherent adjunctions A and A’. Note this data
does not define a simplicial natural cransformation A — A’ in particular, there would be no obvious
choices for its components other than the identity functors at A and B, so we cannot directly apply
Proposition 7.3.1 to construct an equivalence between the co-categories of algebras. The following
result explains how to construct an equivalence between two homotopy coherent adjunctions that are
isomorphic as vertices of cohadj(‘/K) in slightly greater generality than described here.

10.6.1. PROPOSITION. Suppose u,u’: A — B are naturally isomorphic right adjoints in the homotopy
2-category hHH of an co-cosmos K. Then any homotopy coherent adjunctions A: Adj — Kand A’ : Adj —
‘K extending u and u’ are connected by a zig zag of simplicial natural equivalences, and hence the monadic
homotopy coherent adjunctions for A and A’ are naturally equivalent.
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PROOF. By Theorem 9.4.15, the forgetful functor pg: cohadj(K) = rightadj(K) defines a trivial
fibration of Kan complexes, where rightadj(‘K) is defined as a sub-quasi-category of T | ABeK Fun(A, B)
containing the right adjoint functors and isomorphisms between them. The postu]ated nacural iso-
morphism @: # = 1’ defines a lifting problem

o1 242 cohadj(K)

A
[ A o

QN rightadj(K)

2\ 5

whose solution defines a simplicial functor A: Adj — V&

Consulting the definition of the cotensor of a quasi-categorically enriched category with a sim-
plicial set U in Definition 9.4.1, we see that when K is an 00-cosmos (and in particular admits sim-
plicial cotensors of objects inside K), KU is concisely defined as the Kleisli category for the monad
(—)4: K — K, with the unit defined by the constant map A: A — AY and the multiplication
defined by the fold map V: (AU = AUXU — AU both arising from the comonoid (U, !: U —
1,A: U — U x U) in sSet. As such, the quasi-categorically enriched categories K and KU are
connected by the Kleisli adjunction

whose left adjoint is identity on objects and acts on homs by post-composing with the constant map
Fun(X, A) —2 Fun(X, AU) = Fun(X, A)Y,

while the right adjoint sends A to AY and acts on homs by

\u
Fun(X, A)Y = Fun(X, A% “255 Fun(XY, (ADY)) —Ys Fun(xY, Al).

Now for each vertex u: 1 — U, there is a simplicial natural transformation K = ev,, whose compo-
nents are given by ev,: AY —» A.
Speeiaiizing to U =1, we obtain a zig-zag of‘simpliciai natural transformations
evp
RN
K —k-> K
N
€V1
whose components are the trivial fibrations evg, evy : Al =5 A andin particular, define equivalences.
Precomposing with A’ this defines a zig-zag of simplicial natural equivalences between the homotopy
coherent adjunction A and the homotopy coherent adjunction A’. The homotopy coherent monadic
adjunction is computed as a flexible weighted limit of these diagrams, so Proposition 7.3.1 implies that
the homotopy coherent monadic adjunctions are equivalent, as claimed. O
Proposition 10.6.1 can be understood as presenting an affirmative answer to the question posed
at the start of this section. The equivalence 4 and b can be promoted to adjoint equivalences by

Proposition 2.1.11, then Composed with the adjunctions f — u and f’ = u to produce a pair of
naturaliy isomorphic adjunctions between the same oo-categories, to which Proposition 10.6.1 applies.
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The details are left as Exercise 10.6.i. But even with this question resolved, such considerations inspire
a more general avenue of inquiry that is worth pursuing, which we do following Zaganidis work in his
PhD thesis [114].

To state the question, we first review a bit of classical 2-category theory.

10.6.2. DEFINITION (monad morphism in a 2-category). Let (¢, 1, 4) be a monad on B and let (s, (,v)
be a monad on A in a 2-category. A (lax) monad morphism (f, x): (t,n, u) — (s,1,v) is given by:

e afunctor f: B— A

o a2-cell x:sf = ft
so that the following pasting equalities hold

A A AN
TN I AZ{S A A— A
A ; A= A"w B wa g wl =1 Ir
1 w T A 7w B—5 B =5
B B B B ;

t t

If (g, ¢¥): (t,n,1) = (s,4,v) is a second monad morphism, a monad transformation a: (f, x) =
(g, 1) is given by a 2-cell a: f = g so that

f
B—F 4 B 1 A
\_j
Ux _ 8
t S = t s
B 1 > A B— A
~__ 8
8

This defines the 2-category of monads and monad morphisms in a fixed 2-category C [99]. If
then this
2-category defines a reflective subcategory of a particular 2-category of adjunctions that we now in-

3

C admicts Eilenberg-Moore objects, which are to represent the “category of algebras functor,

troduce.

10.6.3. DEFINITION. A right adjunction morphism is a commutative square between the right adjoints
A—L5 A
hl R f’
/ RS
U Alu " L‘/‘

\
BTB/

*A 2-category C admits Eilenberg-Moore objects whenever it admits the PIE limits alluded to in Digression 7.2.6 [60)].
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and a right adjunction transformation is a pair of natural transformations

a
7
A la A’

so that u’a = Bu.

10.6.4. PROPOSITION. [fC is a 2-category admitting the construction of Eilenberg—Moore objects, the forgetful
2-functor from the 2-category of adjunctions, right adjunction morphisms, and right adjunction transformations

to the 2-category of monads admits a fully faithful right 2-adjoint.
PROOF. Exercise 10.6.ii or see [28]. O

10.6.5. REMARK. A lax morphism of monads (f: B — A, x: sf = ft) as in Definition 10.6.2 cor-
responds to a lift of f along the right adjoints of the monadic adjunctions for ¢ and s, but this lifted
functor does not commute with the left adjoints. In general, the mate of the identity functor is non-
invertible.

The question is what is a homotopy coherent monad morphism?

10.6.6. DIGRESSION. Consider homotopy coherent monads T: Mnd — Kand §: Mnd — K on B
and A. A simplicial natural transformation f: T = $ is given by its unique component f: B — A
satisfying a strict naturality condition relative to the bar resolutions

A, —X 5 Fun(B, B)

4 I

Fun(A, A) T Fun(B, A)

Such data defines a monad morphism in the homotopy 2-category whose component x: sf = ftis
the identity 2-cell. So in general, this definition is too strict.

By Remark 9.4.3, if the vertices T and § are in the same connected component of Icon(Mnd, K),
then necessarily B = A, which is also too rigid a notion of monad morphism to consider in general.

We present the data of a homotopy coherent monad morphism by means of a simplicial computad
Mnd,, introduced by Zaganidis. Generalizing the relationship between the simplicial computad Mnd
and the simplieia] Computad &Z{dj, Mndz defines a simp]ieial subcategory of a simp]icia] category
ﬂdjz that we introduce first via a graphical calculus developed in Zaganidis [114, ?]. This graphical
calculus extends to a sequence of composable adjunction morphisms so we might as well introduce
fﬂdjm in its full generality.

The simplicia] category fid]]n is a 2-category whose hom-wise nerve can be presented via a graph—
ical calculus, exactly as was the case for Adj. A 2-categorical description of ﬂdjm is given in [114,
§3.1.1]. The graphical calculus that presents ?ldj]n as a simplicial category is described in more detail
in [114, §3.1.2].
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10.6.7. DEFINITION. The objects Ofﬂdjm are pairs whose first component is either + or — and whose
second component i € {0,1, ..., 1 — 1} is best thought of as a color drawn from a linearly ordered set
where the color 0 is the “lightest” and the color 1 -1 is the “darkest.” Note the objects ofﬂdjm are the
objects of the product simplicial category Adj X m; we write +; or —; for the two objects with color
or either +; or F; to denote a generic object of Adj X m.

The n-arrows in ﬂdjm are strict]y undulating colored squiggles on 7-lines. In more detail, an
n-arrow £ — F; is permitted only if k > j; that is the color of the domain, appearing on the right,
must be “darker” than the color of the codomain, appearing on the left. The data of a morphism
+p — F; is given by a scrictly undulating squiggle of Adj from + to F as appropriate, with all four
choices of + or — possible, together with a coloring, with colors drawn from the interval [j, k], of the
connected components of each of the strips between the lines i and i—1 for some i € [n1] of the shaded
region under the squiggle diagram. This coloring must satisfy the axioms:

e In the strip between the ith and i — 1¢h lines for i € [n], the coloring function is monotone,
becoming darker as you move from left to right.

e If a connected component of a strip above the line i shares a boundary with a connected compo-
nent of a strip below the line 7, then color of the top strip is lighter than the color of the bottom
strip, i.e., the coloring function is monotone, becoming darker as you move from top to bottom
in a single vertical section of the squiggle diagram.

e Finally, in the case of a morphism — — %, each of the strips that touches the right-hand bound-
ary must be colored the maximal color k.

For a fully formal definition together with a description of the composition, face, and degeneracy

actions are described in [114, §3.1.2].

The monochromatic strictly undulating squiggles in ﬂdjm define the data found in just one of its
1 homotopy coherent adjunctions.
10.6.8. EXAMPLE. The atomic O-arrows of Adj  define n adjuncrions that we denote by f u and

n — 1 adjunction morphisms as depicted below: :

E1 gn—l
0 1 e ~n-2 “n-1
!, <—|> 4o (—Q iy f (—Q Lo f | (—Q My
+o b +1 e +n-2 b th-1
=1 —n-1

We now state a few of the key results from Zaganidis’ thesis whose proofs are too long to reproduce
here. Note that ﬂdjm is not a simplicial computad, since the diagram of right adjoints and adjunction
morphisms in Example 10.6.8 commutes strictly at the level of 0-arrows. However, this is the only
obstruction, in a sense made precise by the Fo”owing result
10.6.9. PROPOSITION ([114, 3.2.5]). Consider the inclusion 2 X m < .?[dj]n whose image is the subcategory
comprised of the right adjoints U, and the 0-arrow components a and hi of the adjunction morphisms. Then

2Xm < ﬂdjm is a relative simplicial computad.

10.6.10. REMARK. Diagrams of morphisms between adjunctions of more general 2-categorical past-
ing diagram shapes are also of interest. Zaganidis constructs a generalization ﬂdji ofﬂdjm for any
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“shape” S C C€A[n — 1] with the universal property that for a 2-category C, 2-functors ﬂd]nsq - C
correspond to 2-functors from S into the 2-category of adjunctions, right adjunction morphisms, and
right adjunction transformations of Definition 10.6.3. Zaganidis’ construction requires S to be a sim-
plicial computad, although S < €A[n — 1] need not be a simplicial subcomputad inclusion. Instead,
any factorization in €A[n—1] of an atomic arrow of S must be through an object that is not contained
in the subcategory S.

An argument along the lines of that given in §9.2 and §9.3 proves that homotopy coherent adjunc-
tion morphisms are generated by what we term a diagram of n-right adjoints: this being given by a
commutative diagram inK

Ao Ay Apa N A
luo lul lun—Z lun—l
By < — B Byz — By

together with a choice of left adjoint and unit for each u;. We state just one of the many extension
theorems proven as Theorems A and 5.12-13 in [114]:

10.6.11. THEOREM. Any diagram of n-right adjoints in a quasi-categorically enriched category extends to a
simplicial functor ﬂdjm — K. And, moreover the space of extensions over a given diagram of right adjoints

is a trivial Kan complex.
10.6.12. DEFINITION. Let Mnd_ be the full subcategory ofﬂdjm on the objects +, ... , +,,-1. By [114,
5.19] it is a simplicial compurad.

10.6.13. THEOREM ([114, 5.20,5.24-5]). For any homotopy coherent diagram of monads T: Mnd_, — K
the simplicially enriched right Kan extension AT: ﬂdjm — K exists. For eachi € {0, ..., n — 1}, the object

AT (=) is equivalent to the oco-category of algebras for the ith underlying homotopy coherent monad.

Note that its not the case that the value of the right Kan extension along Mnd < ﬂdjm at

—; recovers the co-category of algebras for the ith homotopy coherent monad on the nose. However,
by applying Theorem 10.4.12 this co-category can be shown to be equivalent to the co-category of
algebras. See §5.3 of [114] for more details.

Exercises.

10.6.i. EXERCISE. Use Proposition 10.6.1 to prove that the co-categories of algebras associated to any
homotopy coherent adjunctions extending equivalent adjunctions, in the sense described at the start
of this section, are equivalent.

10.6.ii. EXERCISE. Prove Proposition 10.6.4, perhaps just in the 2-category of categories.
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CHAPTER 11

Two-sided fibrations

Recall from Proposition 8.2.12 that for any co-category B in an co-cosmos K, the quasi-categorically
enriched categories coCart(K),p and Cart(K) g define sub co-cosmoi of K. In this section, we in-
troduce another sub co-cosmos 4 Fib(K)p C K axp whose objects are two-sided fibrations from A to
B. Several equivalent definitions of this notion are given in §11.1. Iterating Proposion 8.2.12 reveals
that 4 Fib(K)/p is again an c0-cosmos, which we study in §11.2. Importantly, a two-sided fibration
from B to 1 is simply a cocartesian fibration over B, while a two-sided fibration from 1 to B is a carte-
sian fibration over B, so results about two-sided fibrations simu]taneous]y generalize these one-sided
notions. For instance, in §11.3, we introduce two-sided representables and prove the Yoneda lemma,
generalizing Theorem 5.5.4 for representable (co)cartesian fibrations.

Another reason for our interest in two-sided fibrations is the fact that the discrete objects in 4 Fiby
are precisely the modules from A to B, which we define and study in §11.4. The calculus of modules,
developed in Chapter 12, is the main site of the formal category theory of co-categories, which is the
subject of Chapter 13.

11.1. Four equivalent definitions of two-sided fibrations
By factoring, any span in K from A to B may be replaced up to equivalence by a two-sided isofi-

bration, a span A «q—E LS B for which the functor (g,p): E = A X B is an isofibration. Two-sided
isofibrations from A to B are the objects of the co-cosmos K axp. In this section, we describe what
it means for a two-sided isofibration to be cocartesian on the left or cartesian on the right, and then
introduce two-sided fibrations, which integrate these notions.

. q p
11.1.1. LEMMA (cocartesian on the left). For a two-sided isofibration A «—E —» B in an co-cosmos K, the
following are equivalent:

(i) The functor

E—9  axB

Nt

is a cocartesian fibration in the slice co-cosmos 7</B-
(ii) The functor

E—9 , AxB

L]

in K 4 lies in the sub co-cosmos coCart(K), .
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(iii) The functor induced by idq

— - —

pe’ 4
i
@p) z%?o)
AXB
admits a left adjoint in K xp.
(iv) The isofibration q: E = A is a cocartesian fibration in K and for every g-cocartesian transformation

e e
- . ~ p . . .
X U _ E, thecomposite X Ux - E ——» B isan isomorphism.
~—"7
e e

. .. .~ q p . .
If any of these equivalent conditions are satisfied, we say that A «—E —» B is cocartesian on the

left.

PROOF. We first prove that the equivalence (i) (iii) is exactly the interpretation of the equiva-
lence Theorem 5.1.11(i) & (ii) applied to the isofibration (g, p): E = AXB in the co-cosmos 7(/3. This
lacter result asserts that the isofibration (q,p): E - A X B is a cocartesian fibration in Kp if and
only if a certain canonical functor from E to the left representation of the functor (g,p): E - AXB
admits a left adjoint over the codomain w: A X B — B; since (Kjp)/n: ax—»B = Kjaxp this is the
same as asserting this adjunction over A X B.

The only subtlety in interpreting Theorem 5.1.11 in Kjp has to do with the correct interpretation
of the left representable comma co-category in K for the functor (q,p): E - A X B. This comma
co-category is constructed as a subobject of the 2-cotensor of the object 71 AXB — B in Kjp, which
Proposition 1.2.19 tells us is formed as the left-hand vertical of the pullback diagram

A?>x B —— (A X B)?

l ’ |
B—*2 B2

By (3.4.2) the comma co-category is constructed by the pullback in Kp

Hom 4(q, A) A2 x B 2%, AxB

pol S ppo " / lpoxid

E q.p) AxB (11.1.2)

which is created by the forgetful functor Kjp — K, and its codomain-projection functor is the
top composite (p1,ppo): Hom (g, A) = A X B. Now we see that the interpretation of Theorem
5.1.11(1) & (ii) is exactly the equivalence (i) & (iii).

It remains to demonstrate the equivalence with (ii) and 11.4. Assuming (iii) and composing with
1. AXB - A, weare left with a fibered adjunction that demonstrates that g is a cocartesian fibration.
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The unit of both fibered adjunctions is the same, and by Theorem 5.1.11(v) the composite

—_—
Hom 4(g, A) Un Hom 4(q, A) —po>» E

Z\E/i

is the generic g-cocartesian cell. Since 7 is fibered over A X B, when we postcompose with p we get an
identity, which tells us that p: E = B carries g-cocartesian cells to isomorphisms. This proves 11.4.
In fact, 114 can easily be seen to be equivalent to (ii). By Example 5.2.4, the cocartesian cells for
the cocartesian fibration 71: A X B = A are precisely those 2-cells whose component with codomain
B is an isomorphism, so 11.4 says exactly that (g, p): E = A X B defines a cartesian functor from ¢ to
7t. Thus 11.4 implies (ii).
For the converse, assume (ii) and consider a 2-cell in K

X—% SE

\&“) i(q,p)
@h) >~ AxB

Because ¢ is a cocartesian fibration, a: ge = a has a g-cocartesian lift y: e = ¢’: X — E, and
since (g,p) is a cartesian functor, the whiskered 2-cell px: b = pe’ is an isomorphism. Because
(q,p): E » A X B is an isofibration, we may lift the 2-cell (id, px™!): ¢ = (a,b) to an invertible
2-cell y: e’ = e” with gy = id,. The composite y - x: e = €” is a lift of (a, id) along (g, p) over B,
which is easily verified to define a (g, p)-cocartesian lift of (a, id) in Kjp. 0

If(q,p): E - AXB isadiscrete cocartesian fibration in Kp then the converse to the last statement
of 11.4 holds: any 2-cell x for which px is an isomorphism is g-cocartesian. See Exercise 11.1.1.
By Lemma 11.1.1 and its dual:

q p .
11.1.3. COROLLARY. A two-sided isofibration A «—E —» B is cocartesian on the left and cartesian on the
right if the following equivalent conditions are satisfied:

(i) The functor
@p) AxB

N e

lies in coCart(K), 4 and defines a cartesian fibration in K 4.
(ii)) The functor

E

E—9 , AxB

P wn
B
lies in Cart(K)p and defines a cocartesian fibration in Kp. O

A two-sided fibration is a span that is cocartesian on the left, cartesian on the right, and satisfies
a further compatibility condition that can be stated in a number of equivalent ways, which boil down
to the assertion that the processes of taking g-cocartesian and p-cartesian lifts commute:

q p
11.1.4. THEOREM. For a two-sided isofibration A «—E —» B in K the following are equivalent:
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(i) The functor

E—9 , AxB

]

defines a cartesian fibration in coCart(K) 4.
(ii) The functor

E—9 o aAxB

N et

defines a cocartesian fibration in Cart(K),p.
(iii) The canonical functors admit the displayed adjoints in K 4xp

P -

E < T Homg(B, p)
.
f(jli (0|
id,i /
Hom 1(q, 4) “% Hom (g, 4) x Homy(B, )
F\

~ —

r
and the mate of the identity 2-cell in this displayed commutative square defines an isomorphism £r = r€.

(iv) A «q—E ﬁ» B is cocartesian on the left, cartesian on the right, and foranya: X — A, b: X — B,
and e: X — E and pair of 2-cells > ge = a and : b = pe, the map f*a.(e): X — E, obtained
as the domain of a p-cartesian lift of the composite of B with a g-cocartesian lift x,: e = a.(e) of
a over B, is isomorphic over A X B to the map a..f*(e): X — E obtained as the codomain of a
q-cocartesian lift of the composite of & with a p-carcesian life xg: B*(e) = e of B over A.

q p .
A span A «—E —» B defines a two-sided fibration from A to B if any of these equivalent condi-
tions are satisfied:

PROOF. Our strategy will be to show that condition (i) is equivalent to (iii), an equationally wit-
nessed condition in the slice co-cosmos Kjaxp. A dual argument will show that condition (ii) is
equivalent to (iii). We then unpack this condition to prove its equivalence with (iv).

We use Theorem 5.1.11(ii), which provides a condition that characterizes the cartesian fibrations
in any co-cosmos via the presence of a fibered adjunction, to re-express (i) in 7(/A><B~ To apply this
characterization to the map displayed in (i), we must first compute the right representable comma
object in coCart(K),;4 C K4 associated to the funcror (q,p): E — A X B over A. By Proposition
8.2.12, it suffices to compute this comma object in K 4. By the dual of the calculation (11.1.2) we gave
in the proof of Lemma 11.1.1, the comma object covariantly representing the functor (g, p): E — AXB
in coCart(K);a C K4 is the cocartesian fibration gp; : Homg(B, p) » A.
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Now Theorem 5.1.11(ii) applied in coCart(?()/A tells us that condition (i) holds if and only if the

canonical functor 7 admits a right 7 over A X B

E = n Homg (B, p)
\\7___/ (11.1.5)
@p) (gp1.p0)
AXB

where the three displayed objects are all cocartesian fibrations over A and each of the four displayed
maps are cartesian functors between these cocartesian fibrations.
By Lemma 11.1.1, to say that (g, p) defines a cartesian functor between cocartesian fibrations is to

say that the span A «—E —» B is cocartesian on the left, which is the case if and only if the canonical

functor 7 admits a left adjoint

—_ - —

@p) “ )
A xB (p1.PP0)

in Kjaxp. Similarly, to say that (gpq, pg) defines a cartesian functor between cocartesian fibrations

qpr1 Po
is to say that the span A «——Homg(B,p) — B is cocartesian on the left. By Lemma 11.1.1 again,
this is equivalent to the hypothesis that the canonical functor from Homg(B, p) to the comma object
contravariantly representing gp; admits a left adjoint

¢
«-—" " T T~= -~
Homjg(B, p) Tlid)> Hom 4(gq, A) X Homjg(B, p)

> ) “ o)

X B

in K axp-
Finally, by Theorem 5.1.19, to say that the functor i of (11.1.5) is cartesian is to say that in the
commutative solid-arrow diagram in K 4p.

- - -

E i Hom(B, p) E<—o Homg(B, p)
.
f(jli (imﬁd)ﬁ ¢ ’l l(z‘md)
(id,ipp)
Hom 4(q, A) g Hom (g, A) X Homy(B,p)  Hom,s(q, A 25" Hom,(q, 4) x Hom(5, p)
ﬁ ~ - —_——
-

(11.1.6)
the mate of this identity 2-cell involving the left adjoints € is an isomorphism. This “Beck-Chevalley”
condition is equivalent to saying that the other mate, displayed above right, associated to the functor
r of (11.1.5) is an isomorphism. Finally, to say that 7 is also a cartesian functor between cocartesian
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fibrations is to say that the further mate

) = e (11.1.7)
| |
Hom (g, A) ¢-~- Hom,(q, A) 25 Homg(B, p)

is an isomorphism.

Thus, we have shown that condition (i) is equivalent to (iii) positing the existence of adjunctions
(11.1.6) in K gxp so that all of the mates of the solid-arrow diagram are isomorphisms. Dualizing and
reversing this argument, we see that this is equivalent to condition (ii).

Finally, (iii) and (iv) are equivalent since the existence of the left adjoints in (11.1.6) is equivalent
to the span being cocartesian on the left, the existence of the right adjoints is equivalent to being
cartesian on the right, and the compatibility condition for the cartesian and cocartesian lifts is the
meaning of the isomorphism (11.1.7). O

11.1.8. COROLLARY. Any two-sided isofibration (a,b): X —» A X B that is equivalent over A X B to a
two-sided fibration (q,p): E - A X B is a two-sided fibration.

PROOF. The assertion of Theorem 11.1.4(iii) is invariant under fibered equivalence. OJ
Theorem 11.1.4 will help us establish an important family of examples.
Pn- p
11.1.9. PROPOSITION. For any co-category A and any n > 2, the two-sided isofibration A A D A
defines a two-sided fibration.

This result is a generalization of Proposition 5.1.23 and its dual and the proof uses similar ideas.

PROOF. We use Theorem 11.1.4(iii). The right representable comma oco-category associated to
po: A™ = A is constructed by the pullback

AZVm 33 AZ

L7
ADT»A

which is equivalent to (p,, pg): A" = A X A over the endpoint evaluation maps. The canonical

map
Aél 61
AnET T TS ann I S S |
A7 70
(Pnflm mo) (n—;ﬂ\ (n,0)
AXA 1+1

that tests whether (p,,_1, pg): A™ = A X A is cartesian on the right is given by restriction along the
0: m+1 — m chat sends the objects 0,1 € m+ 1 to 0 € m. This functor admits a
left adjoint under the endpoint inclusions displayed above-right, which provides the desired fibered

epimorphism o

right adjoint displayed above left.
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A dual argument shows that (p,,_1, pg) : A™ = AXA is cocartesian on the left. The final condition
asks that the mate of the commutative square defined by the degeneracy maps
61
ST

7 L
H’l#]ﬂ'F]l

/ o \
/ \
oM |_,I\0n 0n+l]\_| |(5"+1
\ /
K 'S

0
n+l¢«T—mn+2
~__ _=

61
is an isomorphism, as is casily verified. The square in Theorem 11.1.4(iii) is obtained by applying
AL, O
Theorem 11.1.4 has a relative analogue, whose proof is left to the reader, which characterizes what

we call a cartesian functor between two-sided fibrations from A to B.

11.1.10. LEMMA. A map of spans between a pair of two-sided fibrations from A to B

q p
P (11.1.11)

defines a cartesian functor between the cartesian fibrations in coCart(K), 4 if and only if it defines a cartesian
functor between the cocartesian fibrations in Cart(K),p.

PROOF. A similar argument to that given in Theorem 11.1.4 shows that the map g: E — F of
(11.1.11) is a cartesian functor between cartesian fibrations in coCart(K),4 if and only if in two com-
mutative diagrams over AXB, the mates are isomorphisms. This condition also characterizes cartesian
functors between cocartesian fibrations in Cart(K)g. The details are left as Exercise 11.1.ii. O

A cartesian functor is just a map of spans (11.1.11) that defines a cartesian functor between the
cocartesian fibrations g and s and also a cartesian functor between the cartesian fibrations p and 7. It
follows from the internal characterization (iii) of Theorem 11.1.4 and a similar internal characteriza-
tion of cartesian functors derived from Theorem 5.1.19 that:

11.1.12. COROLLARY. Any cosmological functor preserves two-sided fibrations and cartesian functors between

them. O

Exercises.

11.1i. EXERCISE. Suppose (q,p): E » A X B is a discrete cocartesian fibration in Kp. Prove, for any
2-cell x with codomain E, that if px is an isomorphism, then ) is g-cocartesian.

11.1.1i. EXERCISE. Prove Lemma 11.1.10.

11.1.iii. EXERCISE. Prove that

(i) A two-sided isofibration 1 «!—E _p» B defines a two-sided fibration from 1 to B if and only if
p: E = B is a cartesian fibration.
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(ii) A map of spans

B

E
! p
1 / lg\
Y
F
defines a cartesian functor of two-sided fibrations if and only if g: E — F defines a cartesian

functor from p to g.

11.2. The co-cosmos of two-sided fibrations

The equivalent conditions (i) and (ii) of Theorem 11.1.4 provide two equivalent ways to define the
00-cosmos of two-sided fibrations.

11.2.1. DEFINITION (the 0o-cosmos of two-sided fibrations). By Theorem 11.1.4 and Lemma 11.1.10, the
pair of quasi-categorically enriched subcategories

Cart(coCart(K)a)jm: ax»a  and  coCart(Cart(K)p)/n: axp—»B

of K)axp coincide. By Proposition 8.2.12, applied twice, this subcategory is an 0o-cosmos, which we
call the co-cosmos of two-sided fibrations from A to B and denote by

AFib(K)p € K)axp-
By definition
FunA\ﬁb(qo/B(E, F) := Funyyg(E,F) C Fung(E,F)
is the quasi-category of maps of spans that define cartesian functors from E to F in the sense of Lemma

11.1.10.

11.2.2. PROPOSITION. The simplicial subcategory 4 Fib(K)p < K)axp creates an co-cosmos structure on
the 00-cosmos of two-sided fibrations from the co-cosmos of two-sided isofibrations.

PrROOF. This inclusion factors as
AFib(K)p = coCart(Cart(K)p)/axp-»B < (Cart(K)p) ax—»p = (Kip)axp-»p = Kjaxs

Applying Proposition 8.2.12, we see that both inclusions create co-cosmos structures. O

11.2.3. OBSERVATION (two-sided fibrations generalize (co)cartesian fibrations). By Exercise 11.1iii, a
two-sided fibration from B to 1 is a cocartesian fibration over B, while a two-sided fibration from 1
to B is a cartesian fibration over B. Indeed,

COCﬂT’t(W)/B = B\FZb(?{)/l and Cart(?()/B = 1\Flb(7<)/B

In this sense, statements about two-sided fibrations simu]taneous]y genera]ize statements about cart-
esian and cocartesian fibrations.

11.2.4. PROPOSITION. For any pair of functors a: A’ — A and b: B — B, the cosmological pullback
functor
@,b): Kjaxg — Kjarxp
restricts to define a cosmological functor
(a,b): aFib(K)p —> anFib(K)p:.
In particular, the pullback of a two-sided fibration is again a two-sided fibration.
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id xb axid
PROOF. By factoring (a,b) as A’ X B —— A’ X B —— A X B we see that it suffices to consider

pullback along one side at a time. Proposition 5.1.20 proves that pullback along b: B” — B preserves
cartesian fibrations and cartesian functors, defining a restricted functor

Cﬂrt((}()/B —> 7{/3
|

b \L lb

Cﬂ]"t(?()/B/ —> 7(/3/

Since limits and isofibrations in Cart(K) g are created in K, this restricted functor is a cosmological
functor. Applying this result to the map

AxB —Xt s AxB

Tt A T
in the co-cosmos coCart(K), 4, we conclude that pullback restricts to define a cosmological functor

AFib(K)p = Cart(coCart(K)/a)m: axpa — (c0Cart(K) o). axp»a — Kjaxs

(id xb)*: (id xb)*l l(id xb)*
N2

AF(K)pr = Cart(coCart(K),a)jm: axpr—»a — (€oCart(K),a)in: axpr»a — Kjaxp
O

q P . . . .
11.2.5. LEMMA. If A «—E —» B is a two-sided fibration from A to B, v: A = C is a cocartesian fibration
and u: B = D is a cartesian fibration, then the composite span

v q P u
C A E B D
defines a two-sided fibration from C to D. Moreover, a cartesian functor between two-sided fibrations from A
to B induces a cartesian functor

between two-sided fibrations from C to D.

Note composition in the sense being described here does not define a cosmological functor from

AFID(K)p to o\ Fib(K)p because it does not preserve flexible limits.

PROOF. By Theorem 11.1.4, it suffices to consider composition on one side at a time, say with a
cocartesian fibration v: A - C. Working in the co-cosmos Cart(K)/p, we are given cocartesian

fibrations

E—" s AxB AxB—2 4 cxB

N D
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These compose Vertically to define a cocartesian fibration

E_Y  cxB

N

and hence a two-sided fibration from C to B, as desired.

Now the vg-cocartesian cells are the g-cocartesian lifts of the v-cocartesian cells. If ¢ is a cartesian
functor from ¢ to s, then these are clearly preserved, proving that g also defines a cartesian functor
from vg to vs. O

Proposition 11.2.4 and Lemma 11.2.5 combine to prove that two-sided fibrations can be composed
“horizontally.”

11.2.6. PROPOSITION. The pullback of a two-sided fibration from A to B along a two-sided fibration from B
to C
EXF
B

W N
. E \pg / F
e g N
A B C
defines a two-sided fibration from A to C as displayed.

PROOF. The composite two-sided fibration is constructed in two stages, first by pulling back

EXF ——F

B o
(mﬂm)l l(s,r)
ExC W) BxC

and then by composing the left leg with the cocartesian fibration g: E = A. By Proposition 11.2.4
and Lemma 11.2.5, this results is a two-sided fibration from A to C. Alternatively, the composite can
be constructed by pulling back along A X s and composing with the cartesian fibration r: F = C,
resulting in another two-sided fibration from A to C that is canonically isomorphic to the firsc. 0

11.2.7. ExXaMPLE. If p: E = B is a cartesian fibration and q: F = A is a cocartesian fibration, then
the span

ALFEFxESED B
defines a two-sided fibration from A to B.

11.2.8. EXAMPLE. By Proposition 11.1.9 and Proposition 11.2.4, a general comma span

C «™— Hom(f,g) —>» B

. . ' . P1 > PO .. .
is a two-sided fibration, as a pullback of A < A% = A By Proposition 11.2.6, “horizontal com-
posites” of comma spans are also two-sided fibrations. In certain cases, a horizontal composite again
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defines a span that is equivalent to a comma span, as is the case for:

HomA(A/g) >1§ HomA(f/ A)

Hom4(A, g) Homy(f, A)

gpl/ &» % \pos
C A B
which is equivalent to (p1, pg) : Hom4(f,g) = CXB over CXB. Certain other horizontal composites
are not equivalent to comma spans but nonetheless define two-sided fibrations, as is the case for:

Hom 4(a, A) § Homg(B, b)

Hom 4(a, A) Homg(B, b)
p1 Po 21 Po
A / \ X / \ B

Exercises.

11.2.i. EXERCISE. Consider a diagram

E F
q p s r
in which g and & define cartesian functors between two-sided fibrations, from A to B and from B to

C, respectively. Prove that ¢ and ki pullback to define a cartesian functor (g,h): E >B< F - F >Pf F’

C

between two-sided fibrations from A to C.

11.2.ii. EXERCISE. Prove the assertion made in Example 11.2.7.

11.3. Representable two-sided fibrations and the Yoneda lemma

We now introduce representable two-sided fibrations and prove a two-sided version of the external
Yoneda lemma.

11.3.1. DEFINITION. Specializing Example 11.2.7, for any pair of elementsa: 1 — Aand b: 1 — B,
the span

pimt poTt
A «——Hom(a, A) X Homg(B,b) —» B
defines a two-sided fibration from A to B that we refer to as the two-sided fibration represented by a

and b. Note there is a canonical element (id,, id;): 1 — Hom 4(a, A) X Homg(B, b) in the fiber over
(a,b): 1 - AXB.

The terminology of Definition 11.3.1 is justified by the Yoneda lemma for two-sided fibrations.
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11.3.2. THEOREM (Yoneda lemma). Forany elementsa: 1 — Aandb: 1 — B and any two-sided fibration

ALED B, restriction along ("id,”, "id,"): 1 — Hom 4 (a, A) X Hompg(B, b) defines an equivalence of
quasi-categories

Hom 4(a, A) X Homy(B, b) E 1 E
Fun«p :L p l = Fun g (a'b)J, , l
AXB AXB AXB AXB

Interpreting this result in a slice c0-cosmos will enable us to replace the elements @ and b with a
pair of generalized elementsa: X — A and b: X — B; see Corollary 11.3.5.

PROOF. The two-sided fibration represented by 4 and b is defined by a pullback

Hom 4(a, A) X Homg(B, b) ~2%% Hom ,(a, A) x B

PlXidl : L:lxid

A X Homg(B, b) . AXB

id Xpo

We will argue by applying the Yoneda lemma of Theorem 5.5.4 twice: first for cocartesian fibrations
over the object 71 A X Homg(B,b) —-» Homg(B, b) the co-cosmos Cart(K)momy(s p), and then for
cartesian fibrations over the object B in the K.

To set up the first use of the Yoneda lemma, we begin by pulling back the two-sided fibration

ALELD B along pg: Homg(B, b) — B to obtain a two-sided fibration

HomB(p’ b) ’

po . \’”s
Z/ E < Homg(B, b)
A N B T

from A to Homg(B, b). By the adjoint correspondence between cartesian functors established by
Lemma 11.3.3(iii) below, there is an isomorphism

Hom 4(a, A) X Homg(B, b) E
Fun’s plxrﬂol / l(q/p)

AXB AXB

Hom 4(a, A) X Homg(B, b) Homg(p, b)
= FUNaxtoms(80) Plxidl ’ l(qpo,r]’)
A X Homg(B, b) A X Homg(B, b)
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Consider the object 11 A X Homp(B,b) - Homg(B, b) in the co-cosmos Cart(K)pomyip)- The
element

Homy(B, b) @0 A x Homp(B, b)

S 7
Homg(B, b)
has p; X id: Homy(a, A) X Homg(B,b) — A X Homg(B, D) as its representing cocartesian fibra-
tion in Cart(K)omy(Bp)- Applying the Yoneda lemma to this representable cocartesian fibration in
Cart(K) jHomp(B b), We see that restricting along this map defines an equivalence whose codomain

Funj;‘xHomB(Blb)(HomB(B, b) = A X Homg(B, b), Homg(p, b) - A X Homg(B, b))

is the mapping quasi-category defined by the pullback
o ——> Funbiomy b (iduomy s ), Homp(p, b) - Homg(B, b))

l(ﬂpolp')"—

(@!,id)

c . n
1—> FunHomB(B,b)(ldHomB(B,b)l A X HomB(B, b) —» HomB(B, b))

By Lemma 11.3.3(iii) applied to the adjunction (pyo—) = pj the right-hand vertical map is isomorphic
to the left-hand vertical map displayed below

c b
Fung,(Homg(B, b) 2% B, E 2> B) ~ Fung(1— B,E-» B)

(‘%P)°—l l(tw)o—

Fung(Homg(B, b) LN Homgy(B,b), A X B T B) —— Fung(1 KN B,AxB D B)

which is equivalent to the vertical map on the right by the Yoneda lemma applied to the cartesian fibra-
tion pg: Homg(B, b) = B corresponding to the element b: 1 — B. Combining these observations,
we obtain an equiva]ence to the pu]]back

(@) @p) b P
Fun,xg(1 — AXB,E —» A X B) —— Fung(l1 — B,E— B)

l ’ l(rw)o—

b
1 @?) Fung(1 > B, Ax B = B)

This composite equivalence is the map defined by precomposition with the canonical element

("id,", "idy"): 1 — Hom 4(a, A) X Homg(B, b),
completing the proof. O
11.3.3. LEMMA.

(i) Supposes: B — Aisa discrete cartesian fibrationand p: E — B is anisofibration. Thenp: E — B
is a cocartesian fibration if and only if sp: E = A is a cocartesian fibration.
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(ii) Suppose that s is a discrete cocartesian fibration and p and q are cocartesian fibrations. Then (g, s)
defines a cartesian functor from p to q if and only if g defines a cartesian functor from sp to 1.

E—25F E g F
(11.3.4)
I DN

(iii) If s: B - A'is a discrete cocartesian fibration, then the adjunction s o — - s*

p s q p Y
Fun,(E— B—» A,F—» A) = Fung(E — B,s"F —» B)

between composition with and pullback along s restricts to cartesian functors:

Funty,(E 2 B=» A, F2» A) = Fun$(E 2 B,s'F —> B).

PROOF. For (i) recall that Lemma 5.1.7 proves that cocartesian fibrations compose, with sp-cocartesian
cells being the p-cocartesian lifts of s-cocartesian cells. This proves that sp is cocartesian if p is, and
the converse follows as well by the proof of that result: if s is a discrete cocartesian fibration, then
any 2-cell with codomain B is s-cocartesian, so we may take the p-cocartesian cells to be precisely the
sp-cocartesian cells.

For (ii), note that in proving (i), we have just argued that sp-cocartesian cells are precisely the same
as p-cocartesian cells when p is a cocartesian fibration and s is a discrete cocartesian fibracion. This
proves that the two notions of cartesian functor coincide.'

Finally (iii) follows immediately from (ii) and Proposition 5.1.20, which tells us that a map to the
pullback of a cocartesian fibration along s: B — A defines a cartesian functor over B if and only if
the square as displayed on the left of (11.3.4) defines a cartesian functor. OJ

11.3.5. COROLLARY. The inclusion
aFibg < K axs

b
admits a left biadjoint defined by sending a two-sided isofibration A b X — B to the composite two-sided
fibration

Hom 4(a, A) >§ Homg(B, b)

/ ’ \

Hom 4(a, A) Homg(B, b)
V &» % Y;
A X B

and equipped with a natural equivalence

Hom 4(a, A) X Homg(B, b) E X E
Funiaxg l p L = Fun . (a,b)l , l
AxB AXB AXB AXB

'If's is cocartesian but not discrete, then if the left-hand diagram defines a cartesian functor, then so does the right
one, but the converse no longer holds.

312



of functor spaces.

PROOF. Let (q,p): E = A X B be a two-sided fibration in K. Then since — X X: K — Ky is a
cosmological functor, the span
gxid pxid
AXX ——EXX—>»BxX

is a two-sided fibration in K)x. The mapsa: X — Aand b: X — B induce a pair of elements
(a,id): X - AX Xand (b,id): X — B X X in Kx which are respectively covariantly and con-

travariantly represented by
(p1,p0): Homu(a, A) » AX X and (p1,po): Homg(B,b) » B X X.

Applying Theorem 11.3.2 in Kjx to this two-sided isofibration and pair of elements, we find that
restriction along the canonical map

i: X > Homy(a, A) >§ Homg(B, b)

defines an equivalence of quasi-categories

Hom 4(a, A) X Homg (B, b) Ex X X ExX
Fun;}xBxX :L ’ :L = Funaxpxx (tl,b,id)l ’ :L
AxBxX AXBxX AXBxX AxXxBxX
Transposing the domain and codomain across the adjunction
x
’/\
K _ 1L Kx
~—>
—xX
yie]ds the equivalence of functor spaces
Hom 4(a, A) >§ Homg(B, b) E X E
Funj}le :L , l = Fun g (a,b)l , l
AXB AXB AXB AXB
of the statement. U

The argument used to establish the equivalence of functor spaces in Corollary 11.3.5 works for any
pair of generalized elements a: X — A and b: X — B, whether or not this span defines a two-sided
isofibration. In the case of spans represented by a single non-identity functor a “one-sided” version of
Corollary 11.3.5, which is much more simply established, may be preferred:
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q
11.3.6. PROPOSITION (one-sided Yoneda for two-sided fibrations). For any two-sided isofibration A «—

p . .. .
E —» B and functor f: A — B, restriction along the canonical functor

A £ B
Y~
Homgp(B, f)
induce equivalences of functor spaces
Homg(B, f) E A E
Funaxs (PLPO)l ’ l(””’) = Fun g (idA,f>l / l(’“’)
AXB AXB AxXB AXB

PROOF. This follows immediately from the external Yoneda lemma of Theorem 5.5.4 applied to
the element (id4, f): A — A X B and the cartesian fibration (g,p): E = A X B in the co-cosmos
coCart(K), 4. O

Exercises.

11.3.i. EXERCISE. State and prove the other one-sided Yoneda lemma for two-sided fibrations, estab-
1ishing an equivalence of functor spaces below-left induced by restricting a]ong the funcror below-

right

B

B
Hom,(f,A)  E B E f
Funyyp (pl,po)l ’ l(q,p) = Fun g ( f,idB)l ’ L(q,p) A < li E
AXB AXB AXB AXxB P~ 0

Hom4(f, A) ’

11.4. Modules as discrete two-sided fibrations

We are not so much interested in two-sided fibrations but the special case of those two-sided
fibrations that are discrete as objects in 7(/A><B-

11.4.1. DEFINITION. A module from A to B is a two-sided fibration A «q_ E _p» B that is a discrete
object in 4 Fib(K)p.

Note that an object in the replete subcosmos 4\ Fib(K)p = Kjaxp is discrete in there if and only
if it is discrete as an object of(}(/Axg; see Exercise 8.2.v. Our work in this chapter enables us to give a
direct characterization of modules:

11.4.2. LEMMA. A two-sided isofibration A «q—E _p» B defines a module from A to B if and only if it is

(i) cocartesian on the left,
(ii) cartesian on the right,
(iii) and discrete as an object of K axp.
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PrROOF. This follows immediately from the characterization of two-sided fibrations given as The-
orem 11.1.4(iv). OJ

Unpacking the definition, we casily establish the following properties of modules.

114.3. LEmMA. If A «q—E _p» B defines a module from A to B, then

(i) The functors

(a.p) AxB E q.p) AxB

N et N

B

define a discrete cocartesian fibration and a discrete cartesian fibration, respectively, in the slice 00-cosmoi
7(/3 and 7<./A'

(ii) The functors q: E - A and p: E - B respectively define a cocartesian fibration and a cartesian
fibration in K.

(iii) For any 2-cell x with codomain E, x is p-cartesian if and only if q x is invertible, and x is g-cocartesian
if and only if px is invertible.

(iv) In particular, any 2-cell that is fibered over A X B is both p- and g-cocartesian and any map of spans

from a two-sided fibration
F
S T
e lg\ b
Y

F

to a module defines a cartesian functor of two-sided fibrations in the sense of Lemma 11.1.10, and also
a cartesian functor from s to q and from 1 to p.

E

PROOF. By Lemma 11.1.1, conditions (i) and (iii) together assert exactly that (g,p): E » A X B
defines a discrete cocartesian fibration in 7(/3, proving (i). Statement (ii) holds for any two-sided
fibration; the point of reasserting it here is that it is not necessarily the case that the legs of a module
are themselves discrete fibrations (see Exercise 11.4.1).

One direction of statement (iii) is proven as Lemma 11.1.1 while the converse is proven in Exercise
11.1.i. Statement (iv) follows. OJ

An important property of modules is that they are stable under pullback:

11.4.4. PROPOSITION. If A « E = B is a module from A to Banda: A” — A andb: B’ — B are any
pair of functors, then the pullback defines a module A" «= E(b,a) - B” from A" to B’.

PROOF. The cosmological functor

(a,b)": aFib(K)p — anFib(K)pr
of Proposition 11.2.4 preserves discrete objects in these 00-cosmoi. O

Applying Proposition 11.4.4 to a pair of elements a: 1 — A and b: 1 — B, we see that a module
from A to B is a two-sided fibration whose fibers E(b, a) are discrete objects. The converse does not
generally hold: being discrete as an object of the sliced co-cosmos Kjaxp is a stronger condition than
merely having discrete fibers. However, in the co-cosmos QCat the point 1 is a generator in a suitable
sense and we have:
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11.4.5. LEMMA. If E - A X B is a two-sided fibration of quasi-categories whose fibers are Kan complexes,
then E is a module.

PROOF. By definition, E - A X B defines a discrete object in QCat/AxB if any 1-simplex in EX
that lies over a degenerate 1-simplex in (A X B)X is an isomorphism. As isomorphisms in functor
quasi-categories are determined pointwise (see Lemma 16.2.1), it suffices to consider the case X = 1
and now this reduces to the hypothesis that the fibers E(b, a) over any pair of points (2,b) € A X B

are Kan COl’l’lplCXCS. |:|

The prototypical example of a module is given by the arrow co-category construction.
11.4.6. PROPOSITION. For any oo-category A, the arrow o0o-category A2 defines a module from A to A.

The fact that A2 - A X A is discrete is related to but stronger than the fact that each fiber over a
pair of elements in A, the internal hom-space between those elements of A, is a discrete co-category,
proven in Proposition 3.4.10.

PROOF. Proposition 11.1.9 proves that (py, pg): A% - AXA is a two-sided fibration, so it remains
only to verify the discreteness condition, which we can do in K44 Discreteness of A2 » AX Aas
an object of K44 is an immediate consequence of 2-cell conservativity of Proposition 3.2.5: if p is
any 2-cell with codomain A2 so that pgy and pyy are invertible, then y is itself invertible. O

By the construction of (3.4.2) and Proposition 11.4.4:

11.4.7. COROLLARY. The comma oo-category Hom 4(f,g) = CX B associated to a pair of functors f: B —
Aand g: C — A defines a module from C to B.

Two special cases of these comma modules, those studied in §3.5, deserve a special name:

11.4.8. DEFINITION. To any functor f: A — B between co-categories
(i) the module Homg(B, f) from A to B is right or covariantly represented by f, while
(ii) the module Homp(f, B) from B to A is left or contravariantly represented by f.

E
More generally, a module A B is covariantly or contravariantly represented by f if E is equivalent
to the left or right represented modules over A X B.

As we saw in §5.5, the Yoneda lemma for two-sided fibrations simplifies when mapping into a
module on account of the observation in Lemma 11.4.3(iv) that any map of spans from a two-sided
fibration to a module defines a cartesian funcror.

11.4.9. THEOREM (Yoneda lemma for modules). For any elements a: X — A and b: X — B and any
module A < E LN B, restriction along ("id,", "id,"): X — Hom(a, A) >§ Homg(B, b) defines an

equivalence Of Kan COTHPZCXCS

Hom 4(a, A) >}§ Homg(B, b) E X E
Fu nAxB :L , l =3 FunAxg (a,b)l , :L
AXB AXB AXB AXB
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Similarly for any functors f: A — B or g: B — A, restriction along ridf-'i A — Homg(B, f) or
"id,": B — Homy(g, A) define equivalences of Kan complexes

Homg(B, f) E A E
Fun ;g i , l = Fun,xp (id,f)l ) l
AXB AXB AXB AXB
Hom,(g,A) E B E
Fun 445 l , l = Fun 4.3 (g'id)l , l . O
AXB AXB AXB AXB

Exercises.

) . q p .
11.4.i. EXERCISE. Demonstrate by means of an example that if A «—E —» B defines a module from A
to B then it is not necessarily the case that p: E = B is a discrete cartesian fibration or q: E - A is
a discrete cocartesian fibration.

11.4.1i. EXERCISE.

(i) Explain why the two-sided fibration (p,,_1,p,): A™ = A X A of Proposition 11.1.9 does not
define a module for n > 2.

(i) Conclude that the horizontal composite of modules, as defined in Proposition 11.2.6, is not
necessarily a module.
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CHAPTER 12

The calculus OmedUICS

The calculus of modules between co-categories bears a strong resemblance to the calculus of
(bi)modules between unital rings. Here co-categories take the place of rings, with functors between
oo-categories playing the role of ring homomorphisms, which we display vertically on the table below.
A module E from A to B, like the two-sided fibrations considered in Chapter 11, is an co-category on
which A “acts on the left” and B “acts on the right” and these actions commute; this is analogous to
the situation for bimodules in ring theory and explains our choice of terminology." Modules will now

E
be depicted as A B whenever explicit names for the legs of the constituent span are not needed.
unital rings A co-categories
A/

ring homomorphisms ul co-functors

A

E
bimodules between rings A-+B modules between co-categories
A’ _E'% B/
module maps al U lb module maps

A —|—>E B
Finally, there is a notion of module map, that we shall introduce below, whose boundary in the most
general case is a square comprised of two modules and two functors as above. In ring theory, a module
map with this boundary is given by an A’~B” module homomorphism E” — E(b, a), whose codomain
is the A’~B’ bimodule defined by restricting the scalar multiplication in the A-B module E along the
ring homomorphisms a and b.

The analogy extends deeper than this: unital rings, ring homomorphisms, bimodules, and module
maps define a proarrow equipment, in the sense of Wood [113].> Our main result in this chapter is The-
orem 12.2.6, which asserts that co-categories, functors, modules, and module maps in any co-cosmos
define a virtual equipment, in the sense of Cruttwell and Shulman [32].

As a first step, in §12.1 we introduce the double category of two-sided fibrations, which restricts to

define a virtual double category of modules. A double category is a sort of 2-dimensional category with ob-
jects; two varieties of 1-morphisms, the “horizontal” and the “vertical”; and 2-dimensional cells fitting

”

'In the 1- and co-categorical literature, the names “profunctor,” “correspondence,” and “distributor” are all used as
synonyms for “module.”

*This can be seen as a special case of the prototypical equipment comprised OF(V—Categories, V-functors, V-modules,
and V-natural transformations between then, for any closed symmetric monoidal category V. The equipment for rings
is obtained from the case where V is the category of abelian groups by restricting to abelian group enriched categories

with a single object.
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into “squares” whose boundaries consist of horizontal and vertical 1—m0rphisms with compatible do-
mains and codomains. A motivating example from abstract algebra is the double category of modules:
objects are rings, vertical morphisms are ring homomorphisms, horizontal morphisms are bimodules,
and whose squares are bimodule homomorphisms. In the literature, this sort of structure is sometimes
called a pseudo double category — morphisms and squares compose strictly in the “vertical” direction
but only up to isomorphism in the “horizontal” direction — but we'll refer to this simply as a “double
category” as it is the only variety that we will consider.

Our aim in §12.1 is to describe a similar scructure whose objects and vertical morphisms are the
oo-categories and functors in any fixed 00-cosmos, whose horizontal morphisms are modules, and
whose squares are module maps, as will be defined in 12.1.6. If the horizontal morphisms are replaced
by the larger class of two-sided fibrations, this does define a double category with the horizontal
composition operation defined by Proposition 11.2.6. However, on account of Exercise 11.4.ii, the
horizontal composition of two-sided fibrations does not preserve the class of modules: the arrow
0o-category A? defines a module from A to A whose horizontal composite with itself'is equivalent to
the two-sided fibration (py, pg): A% - A X A of Proposition 11.1.9, which is not discrete in Kjax 4.
To define a genuine “tensor product for modules” operation would require a two-stage construction:
first forming the pullback that defines a composite two-sided fibration as in Proposition 11.2.6, and
then reﬂecting this into a two-sided discrete fibration by means of some sort OF“homotopy coinverter”
construction. As colimits that are not within the purview of the axioms of an co-cosmos, this presents
somewhat of an obstacle.

Rather than leave the comfort of our axiomatic framework in pursuit of a double category of mod-
ules, we instead describe the structure that nacurally arises within the axiomatization: it turns out to
be familiar to category theorists and robust enough for our desired applications. We first demon-
strate that co-categories, functors, modules, and module maps assemble into a virtual double category,
a weaker structure than a double category in which cells are permitted to have a multi horizontal
source, as a “virtual” replacement for horizontal composition of modules.

Once the definition of a virtual equipment is given in §12.2, these axioms are very easily checked.
The final two sections are devoted to exploring the consequences of this structure, which will be put
to full use in Chapter 13, which develops the formal category theory of co-categories by introducing
Kan extensions in the virtual equipment of modules. In §12.3, we explain how certain horizontal com-
posites of modules can be recognized in the virtual equipment, even if the general construction of the

tensor product of an arbitrary composable pair of modules is not known. The final §12.4 collects to-

Homg(B,f) Homp(f,B) N
gether many special properties of the modules A -+ Band B -+ A represented by a functor

f: A — B of co-categories, revisiting some of the properties first established in §3.5.

12.1. The double category of two-sided fibrations

Our first task is to define the 2-dimensional morphisms in the double categories that we will
introduce.
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q p
12.1.1. DEFINITION. Let A «—F < B and A «~F—» B be two-sided isofibrations. A map of spans

- q p S r
from A «—E—» B to A «=F—» B is a fibered isomorphism class of strictly commuting functors

A

LN
[

Ny A
F

where two such functors ¢ and §” are considered equivalent if there exists a natural isomorphism
. ~ A/ ’ . . .
a: g =g’ sothacra =id; and sar = id,,.

12.1.2. DEFINITION. Let A GLLE _p» B and A «-F— B be two-sided fibrations. A map of two-sided

fibrations from A «q_ E _p» Bto A & F 2 B is a map of spans in which any and hence every
representing map

A

LN
lg B

~NY A
F
defines a cartesian functor of two-sided fibrations defined in Lemma 11.1.10.

12.1.3. DEFINITION. Let A «q_ E _p» Band A «S—F—r» B be modules. A map of modules from E to

. . q p s r N .
F is just a map of spans from A «—E — B to A «—F—» B, that is a fibered isomorphism class of
strictly commuting functors

A

LN
[

NV A
F

12.1.4. OBSERVATION (the 1-categories of spans and maps). The 1-category of two-sided isofibrations
from A to B and maps of spans may be obtained as a quotient of the quasi-categorically enriched
category K axp, or of its homotopy 2-category D(K) axp), or of the slice homotopy 2-category HK) axp:
it is the I-category with the same set of objects and in which the morphisms are isomorphism classes
of 0-arrows.

Similarly, the 1-category of two-sided fibrations from A to B and maps of two-sided fibrations may
be obtained as a quotient of the quasi-categorically enriched category A\ﬁb(m/g, or of its homotopy
2-category h( 4\ Fib(K)p): it is the 1-category with the same set of objects and in which the morphisms
are isomorphism classes of 0-arrows.

By Lemma 11.4.3, the 1-category of modules from A to B and modules maps is a full subcategory
of either of the two 1-categories just considered.

The I-categories of Observation 12.1.4 are of interest because they precise]y capture the correct no-
tion of equivalence between two-sided isofibrations, two-sided fibrations, or modules first introduced
in Definition 3.2.7.

321



12.1.5. LEMMA.
(i) A pair of two-sided isofibrations are equivalent in 7(/ axp if and only if they are isomorphic in the
I-category of spans from A to B.
(ii) A pair of two-sided fibrations are equivalent in A\ Fib(K)p if and only if they are isomorphic in the
1-category of two-sided fibrations from A to B.

(iii) A pair of modules are equivalent over A times B if and only if they are isomorphic in the I-category of
modules from A to B. OJ

Each of the Definitions 12.1.3 admits a common generalization, which defines the 2-dimensional
maps inhabiting squares.

12.1.6. DEFINITION (maps in squares). A map of modules or map of two-sided fibrations or map of

two-sided isofibration from A’ «<—E’ i» B t0 A <-<q—E —p» Bovera: A — Aand b: B — Bis

AL F—
al il lb (q’frf’)l l(«w)
A—+—>B A xB -2, AxB

is a fibered isomorphism class of strictly commuting functors g as displayed above-right, which in the
case of two-sided fibrations must preserve the cartesian and cocartesian transformations, where two
such functors g and ¢’ are considered equivalent if there exists a natural isomorphism a: ¢ = ¢’ so
that qa = 1daq’ al:ld pa = 1dbp" ] ]

In the case of modules or two-sided isofibrations, the functor-space Fun,y;,(E’, E) of maps from

E’ to E over a X b is defined by the pullback
Fun,y,(E’, E) — Fun(E’,E)

l : l(q,r))
1

) Fun(E’, A X B)

In the case of two-sided fibrations, the functor space is taken to be the full sub quasi-category
Fun,y,(E’, E) C Fun,y,(E’, E)

of all n-simplices whose vertices define cartesian functors.
idc
We occasionally extend the notion of map to allow the domain to be an identity span C «—
dc .. . . . .
C — C, but unless the domain is the identity span, we always require the codomain to be at least a
two-sided isofibration.

We now introduce the double categories of isofibrations and of two-sided fibrations. These struc-
tures can be viewed cither as a collection of data present in the homotopy 2-category HK of an
00-cosmos or as a quotient of quasi-categorically enriched structures, presented by a non-unital in-
ternal category defined up to natural isomorphism in the category of co-cosmoi and cosmological
functors; see Exercise 12.1.i. For economy of language, we adopt the former approach.
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12.1.7. PROPOSITION (the double category of two-sided (iso)fibrations). The homotopy 2-category of an
co-cosmos supports a double category’ of two-sided isofibrations whose:

° objects are 0o-categories,

e vertical arrows are functors,

E q p
® horizontal arrows A B are two-sided isofibrations A «—E —» B, and
o 2-cells with boundary

AI_E';B/

| o |
A _)'E_> B
are maps of two-sided isofibrations as defined in 12.1.6, or equivalently, are isomorphism classes of objects
in the quasi-category Fun,y;,(E’, E).
Vertical composition of arrows and 2-cells is by composition in K, while horizontal composition of arrows and

2-cells is by pullback, which is well-defined and associative up to isomorphism. The double category of two-sided
fibrations is the sub double category that has the same objects and vertical arrows but whose:

E
® horizontal arrows A B are two-sided fibrations A «q—E _p» B and
o 2-cells with boundary

’

Al 3 Bl

| |
A _é_> B
are maps of two-sided fibrations as defined in 12.1.6, or equivalently, are isomorphism classes of objects in

Fun.,(E’, E).

PROOF. The composition of horizontal arrows is defined in Proposition 11.2.6, while the hori-
zontal composition of 2-cells is defined in Exercise 11.2.i. By simplicial functoriality of pullback and
composition in K both constructions are associative up to canonical natural isomorphism. O

12.1.8. REMARK (why we left out the horizontal unit). We could have formally added the identity span
A: A — AXA toserve as a horizontal unit in the double categories of Proposition 12.1.7 but we find
it less confusing to leave them out because when we restrict to the structure of greatest interest, the

Hom 4
virtual equipment category of modules, we will see that the arrow 0o-category A » A plays the role
of the horizontal unit for composition in a sense to be described in Proposition 12.2.4.

12.1.9. DEFINITION (virtual double category). A virtual double category consists of

® a category of objects and vertical arrows
e for any pair of objects A, B, a class of horizontal arrows A - B

*As discussed previously, our double categories support vertical composition laws that are strictly unital and associa-

tive but horizontal composition laws that are only associative and unital up to isomorphism. For reasons to be explained
in Remarks 12.1.8 and 12.1.13, we choose not to require a horizontal unit arrow or 2-cell.
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e cells, with boundary depicted as follows
Eq Ep E,

Ag Al —— - —— A,
fl I lg (12.1.10)
By 1': B,

including those whose horizontal source has length zero, in the case Ay = A,
® a composite cell as below-right, for any configuration as below-left

Ell/"-/Elkl Ezq,..., E2k2 En1,eer Enkn
AO ..... 1> 1 o> TN .
Eq1 Eer--~rEnkn—1 Enkn
fol U lfl il J/l U lfn AO S e > e — An
F F Fy _.
By +— B, : — B, = gfol U lhfn
gl M lh Co pa C,
Co é Cu

e an identity cell for every horizontal arrow

A—%5B

| v |
A—— B
E
so that composition of cells is associative and unital in the usual multi-categorical sense.

12.1.11. LEMMA. The double category of two-sided isofibrations and the double category of two-sided fibrations
extend to a virtual double category in which the

® objects are 0o-categories,

vertical arrows are functors,

horizontal arrows are two-sided isofibrations or two-sided fibrations as appropriate, and
n-ary cells (12.1.10) are 2-cells

E1x- X Ep

A] A,
Ag Lt A,
fl L lg (12.1.12)
BO 1:3 Bn

whose single vertical source is the (n — 1)-fold pullback of the sequence of spans comprising the vertical
source in (12.1.10).

324



PrROOF. The only thing perhaps worth commenting on is the nullary cells which have an empty
sequence as their vertical domain

A=——A

low s

B — C
which we interpret as a 0-fold pullback, this being the identity span from A to A. So the nullary cells

displayed above are fibered isomorphism classes of maps

L lh\g

where h and I’ lie in the same equivalence class if there exists a natural isomorphism ez h = b’ so that

sa = idf and ra = idg. O
12.1.13. REMARK. For instance, the map

A
/l\ A== A
A A A N>

‘7?\ /;0 A—— A

Al Al

I
defines a nullary morphism with codomain AfH A in the virtual double category of two-sided isofi-
brations. Note, however, that despite the fact that A1 A = AT defines an equivalence in K, this cell
does not define an isomorphism in the virtual double category of any kind. It is for this sort of reason
that we left out the identity horizontal arrows in Proposition 12.1.7.

Our main example of interest is a full sub virtual double category defined by restricting the class of
horizontal arrows and taking all cells between them. Since the only operations given in the structure of
a virtual double category are vertical sources and targets, vertical identities, and vertical composition,
it is clear that this substructure is closed under all of these operations, and thus inherits the structure
of a virtual double category:

12.1.14. PROPOSITION. For any 0o-cosmos K, there is a virtual double category of modules Mod(hK) defined
as a full subcategory of either the virtual double categories of isofibrations or the virtual double category of two-
sided fibrations whose

. objects are 0o-categories,
o vertical arrows are functors,

E .
e horizontal arrows A—» B are modules E from A to B,
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o 1-ary cells are fibered isomorphism classes of maps of spans

Eq E> E, 1 An-1
AO ' Al ; . } An E/ | \S
l U l s Ag | Ay (12.1.15)
! £ 7l | I
BO t Bn BO : Bn
F N

These maps, introduced in Definition 12.1.6, can be thought of as special cases of the n-ary cells of Lemma
12.1.11 where Eq, ..., E,, F are all required to be modules: the single horizontal source in the diagram
(12.1.12) is the two-sided fibration defined by the (n—1)-fold pullback of the sequence of modules comprising

the horizontal source in the left-hand diagram. O

We refer to (12.1.15) as an n-ary module map. Note a I-ary module map is just a module map as
in Definition 12.1.6. We refer to the finite sequence of modules occurring as the horizontal domain of
an n1-ary module map as a composable sequence of modules, which just means that their horizontal
sources and targets are compatible in the evident way.

A hint at the relevance of this notion of #1-ary module map is given by the following special case.

Homp(h,K)
12.1.16. LEMMA. There is a bijection between n-ary module maps whose codomain module B 5 Cisa

comma as displayed below-left and 2-cells in the homotopy 2-category whose boundary is displayed above-right.

E; x - X E,

E E, E, A1 Ay
Ay —— A —— -+ —— A, &« ~y
> AO An
1| v Js 7l = 1
B : C B C
Homp(h,k)
X D %
PROOF. Combine Definition 12.1.6 with Proposition 3.4.7. O

For any pair of objects A and B in the virtual double category of modules, there is a vertical
I-category of modules from A to B and module maps over a pair of identity functors, which coincides
with the 1-category of modules from A to B introduced in Observation 12.1.4.

. E F .
12.1.17. LEMMA. A parallel pair of modules A—» B and A~ B are isomorphic as objects of vertical I-category
of modules in the virtual double category of modules if and only if the modules E and F are equivalent as spans

from A to B.
PROOE. This is a restatement of Lemma 12.1.5(iii). OJ
For consistency with the rest of the text, we write E = F or E ~4,p F whenever the modules

E F
A~ B and A B are isomorphic as objects of the vertical 1-category of modules from A to B. For

instance, Proposition 4.1.1 proves that a functor f: B — A is left adjoint to a functor u: A — B if

. Hom4(f,A)
and only if Hom4(f, A) ~ Homg(B, 1) over A X B, that is, if and only if the modules B+ A

Hompg(B,u)
and A 4 Bare isomorphic as objects of the vertical 1-category of modules from A to B.
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Exercises.

12.1.i. EXERCISE. Generalize the proof of Proposition 8.1.1 to prove that for any co-cosmos K, there is
an co-cosmos K whose objects are two-sided isofibrations between an arbitrary pair of co-categories.
Prove that the domain and codomain define cosmological functors KX = K. Use this to give a second
description of the double category of two-sided isofibrations as as quotient of a structure defined at
the level of quasi-categorically enriched categories.

12.1.ii. EXERCISE. Prove that any double category defines a virtual double category.4

12.2. The virtual equipment of modules

The virtual double category of modules Mod(hK) in an co-cosmos K has two special properties
that characterize what Cruttwell and Shulman term a virtual equipment. Before stating the definition,
we explore each of these in turn.

12.2.1. PROPOSITION (restriction). Any diagram in Mod(HK) as below-left can be completed to a cartesian
cell as below-right

PR PR
(I I M
Ao A

characterized by the universal property that any cell as displayed below-left factors uniquely through p as
below-right:

E E, E,
Xy —— X7 — — X,
X —to> Xy —is e i X, 7| ” s
_ E(ba)
af l U lbg - A’ : B
A : B o| Ip le
A E B

E
PROOF. The horizontal source of the cartesian cell is defined by restricting the module A-»B
along the functors 4 and b:

E(,a) —? SE

l - l (12.2.2)

A'XB —— AXB
(a,b)

‘If the double category lacks horizontal identity morphisms, the corresponding virtual double category may lack
nullary morphisms — unless these can be defined in some other way as we did in the proof of Lemma 12.1.11. Note that if
we added identity spans to our double category of two-sided isofibrations, then the corresponding virtual double category
would be the correct one, which contains the virtual double category of modules. See Remark 12.1.13 however.
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By Proposition 11.4.4, this left-hand isofibration defines a module from A’ to B’, while by Defini-
tion 12.1.6 the top horizontal functor represents a module map inhabiting the desired square. As in
Definition 12.1.6, the simplicial pullback in K induces an equivalence’® of functor spaces:

Funfxg(El 2(1 Xl En/ E(b El)) —) Funafxbg(El . Xl En, E)
which descends to a bijection on isomorphism classes of objects. This defines the unique factorization
of cells as displayed above left through the cartesian restriction cell p. O
E(b,a)

We refer to the module A’ —» B’ as the restriction of A—HB along the functors a and b, be-
cause the pullback (12.2.2) is analogous to the restriction of scalars of a bimodule along a pair of ring
homomorphisms.

HomA(f.8) . . A
12.2.3. ExXAMPLE. The module C 5" = B is the restriction of the module A+ A alongg: C —» A

Hom 4
and f: B — A. To make this restriction relationship more transparent, we typically write A -+~ A

when regarding the arrow co-category as a module. Since the common notation for “homs” places
the contravariant variable on the left and the covariant variable on the right, we've adopted a similar
notation convention for restrictions in Proposition 12.2.1.

12.2.4. PROPOSITION (units). Any object A in Mod(bK) is equipped with a canonical nullary cocartesian
cell as displayed below

A=——A

|

A—— A
Hom4

characterized by the universal property that any cell in Mod(HK) whose horizontal source includes the object
A factors uniquely through t as below-right:

X s s A e A Ty

Eq E, Fy Ey,
rat dy | | ]y |
i y s = x =500 H°m" Ty
B : C fl A \F
B pa C

A A
o b

Hom 4

*If the pullbacks are defined strictly, then in fact pullback induces an isomorphism of functor spaces, but even it E(b, a)
is replaced by an equivalent module, the functor spaces are still equivalent, which enough to induce a bijection on iso-
morphism classes of objects.
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induced by the generic arrow with codomain A (3.2.3); recall from Example 12.2.3 that we write

Hom 4
A —»" A for the module encoded by the arrow co-category construction.

In the case where both of the sequences E; and F; are empty, the one-sided version of the Yoneda
lemma for modules given by Theorem 11.4.9 tells us that restriction along the this map induces an
equivalence of func