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The (complex) representation theory of compact groups, in a nutshell:

(1) All representations are unitarizable, by averaging an inner product against
Haar measure.

(2) All unitary representations decompose into (Hilbert space, i.e., orthogonal
and completed) direct sums of finite-dimensional irreducibles (the Peter–
Weyl theorem), because operators of convolution by continuous measures
are Hilbert–Schmidt (hence compact).

In this chapter, G (or H) is a compact group, and we fix throughout the proba-
bility Haar measure dg. Multiplication of functions by dg turns them into measures
which can act on the space of a representation π, and we feel free to write π(f) for
π(fdg).

1. Unitarity

Proposition 1.1. Let (π, V ) be a representation of G on a space admitting an
inner product (positive definite hermitian form). Then, it is unitarizable.

Proof. Take any positive definite hermitian form 〈 , 〉′, and integrate it over the
action of the group in order to make it invariant:

〈v, v〉 :=

∫
G

〈π(g)v, π(g)v〉′ dg.

�

2. Hilbert–Schmidt property of continuous convolution operators

Given a Hilbert space V , its linear dual V ∗ is identified with its complex conju-
gate V̄ . We denote by B(V ) = End(V ) the space of bounded linear operators on V ,
and by ⊗̂ the Hilbert space tensor product of two Hilbert spaces, i.e., the comple-
tion of the algebraic tensor product with respect to the Hilbert norm characterized
by ‖v ⊗ w‖ = ‖v‖ · ‖w‖.
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2 REPRESENTATIONS OF COMPACT GROUPS

There is a natural embedding V̄ ⊗̂V ↪→ B(V ), with v̄1 ⊗ v2 mapping to the
operator w 7→ 〈v1, w〉 · v2. (Let us take inner products to be complex-linear in
the second variable.) The image is the space of Hilbert–Schmidt operators, and
the Hilbert norm on V̄ ⊗̂V is called the Hilbert–Schmidt norm of an operator.
Explicitly:

‖T‖2HS =
∑
i

‖Tei‖2,

where ei runs over an orthonormal basis of V .
Hilbert–Schmidt operators are compact: they map bounded sets to precompact

sets.

Proposition 2.1. Let L (resp. R) denote the left (resp. right) regular representa-
tion of G on L2(G). For every continuous measure µ on G the operator L(µ) (resp.
R(µ)) is Hilbert–Schmidt and, hence, compact.

Recall that we call a measure “continuous” if it is the product of a continuous
function by Haar measure, see Section 3.

Proof. Let µ = hdg. Then the operator L(µ) has the integral expression:

L(µ)(f)(x) =

∫
H

Kh(x, y)f(y)dy,

where the kernel is given by:

Kh(x, y) = h(xy−1).

The Hilbert–Schmidt norm of an integral operator T with kernel K on a measure
space (X, dx) is given by:

‖T‖2HS = ‖K‖2L2(X×X).

In particular, L(µ) is Hilbert–Schmidt. (It was important here that the group was
compact for the L2-norm of Kh to be finite.) �

3. Recollection of spectral theorems

We recall the following spectral theorems from functional analysis.
Let V be a Hilbert space. The adjoint of a (bounded) operator T on V is the

operator T ∗ with 〈T ∗v, w〉 = 〈v, Tw〉. An operator T is called normal if T ∗T =
TT ∗, and self-adjoint if T = T ∗. The spectrum σ(T ) of an operator T is the (closed)
subset of all λ ∈ C such that T − λI is not invertible.

The idea of the spectral theorem is that the space V decomposes as an “integral”
of “eigenspaces” of T . A familiar case of an integral of eigenspaces is when V =
L2(R), in which case the theory of Fourier transform says:

V =

∫
iR
〈esx〉 ds,

with the spaces 〈esx〉 being eigenspaces for all translation operators.

Theorem 3.1 (Spectral theorem for normal operators). If T is a normal operator
on a Hilbert space V then there is a measure space (X,B, µ), a measurable function
λ : X → C and a unitary isomorphism: V ' L2(X,µ) which carries the operator
T to “multiplication by λ”.
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Moreover, for every measurable ω ⊂ C, let E(ω) be the projection (restriction)
L2(X,µ)→ L2(λ−1(ω), µ). Then, E(σ(T )) = I, E(ω) 6= 0 for every relatively open
nonempty subset of σ(T ), and E(ω) commutes with the commutator of T in B(V ).

Proof. See [Rud91, Theorem 12.23]. The measure space (X,µ) in our formulation
is not canonical, but can be obtained from the more canonical formulation of loc.cit.
by considering subspaces of V of the form C[T ]v, for v ∈ V . �

An operator on a Banach space is compact if it maps bounded sets to precompact
sets (i.e. sets whose closure is compact). Compact operators form a closed Banach
subalgebra K(V ) of the algebra of bounded operators B(V ), and for a large class of
Banach spaces, that includes Hilbert spaces, K(V ) is the closure of the set V ∗⊗ V
of operators with finite-dimensional range, i.e., compact operators are those that
can be approximated in the operator norm by operators with finite-dimensional
range.

Theorem 3.2 (Spectral theorem for compact self-adjoint operators). Let T be
a compact self-adjoint operator on a Hilbert space V , then there is a sequence of
eigenvectors vn with (real) eigenvalues 0 6= λn → 0 (or a finite number of such
eigenvalues, if the operator is of finite range) such that

V = kerT ⊕
⊕̂

n
〈vn〉 ,

a Hilbert space (i.e., orthogonal and completed) direct sum.

Proof. See [Rud91, Theorem 12.30]. �

In particular, all eigenspaces with nonzero eigenvalues are finite-dimensional.

Theorem 3.3 (Schur’s lemma). If V is an irreducible unitary representation of

any group G, and S ∈ EndG(V ), then S is a scalar multiple of the identity.
If V, V ′ are two irreducible unitary representations of a group G, and T ∈

HomG(V, V ′), then T is a scalar multiple of an isometry.

Proof. For the first claim, by unitarity, the Hilbert space adjoint S∗ of S also
commutes with G; hence, we may assume that S is self-adjoint, by replacing it
with S + S∗ and i(S − S∗). Then, we claim that the spectrum σ(S) is a single-
ton, making S a scalar operator by the Spectral Theorem 3.1. Otherwise, by the
same theorem, for two non-empty, disjoint open subsets of σ(S), the corresponding
projections E(ω1) and E(ω2) are non-zero, and have orthogonal images. But these
projections commute with the action of G, which commutes with S, hence V cannot
be irreducible.

For the second claim, it is enough to show that the self-adjoint bounded operators
T ∗T and TT ∗ are scalars. Again, by unitarity, the Hilbert space adjoint T ∗ of T also
commutes with G. Let S be one of these operators, and apply the first claim. �

4. Peter–Weyl theorems

Let H be a compact group, and consider the space V = L2(H). It is a unitary
representation for G = H ×H.

Let (π, V ) be a finite-dimensional representation of H, and consider the matrix
coefficient map (see 4)

Mπ : π∗ ⊗ π → C(H).
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Lemma 4.1. For π irreducible, the matrix coefficient map is an embedding. For
π, σ irreducible and non-isomorphic, the images of their matrix coefficient maps are
orthogonal in L2(H).

Proof. The matrix coefficient map is an embedding (injection), because it is clearly
non-zero, and π∗ ⊗ π is an irreducible representation of G = H ×H.

If π, σ are irreducible and non-isomorphic, the orthogonal projection from the
image of Mπ to the image of Mσ is G-equivariant, and since π∗⊗π is not isomorphic
to σ∗ ⊗ σ (already as an 1×H-representation), it has to be zero. �

Notice that the image of the matrix coefficient map consists of (left and right)
finite vectors (since π ⊗ π∗ is finite dimensional). Our goal is to prove:

Theorem 4.2 (Peter–Weyl theorem). The matrix coefficient maps give rise to a
canonical isomorphism

(4.2.1) L2(H) '
⊕̂

π∗ ⊗ π

(orthogonal, completed direct sum), where π runs over representatives for the iso-
morphism classes of irreducible, finite dimensional representations of H.

Proof. We start with the following assertions:

• Let µn be a sequence of positive probability measures on G, supported
on a fixed compact neighborhood of the identity, which converge to δ1
in the weak-* topology of Mc(G); we will refer to such a sequence as an
approximation of the identity. Then, for any Banach representation (π, V )
and vector v ∈ V we have π(µn)v → v.

This follows from Proposition 5.4.
• For any subrepresentation V of L2(H) under the right (or left) regular

action, continuous functions are dense in V .
Indeed, it is enough to choose an approximation (µn)n of the identity

by continuous measures (i.e., continuous functions times a Haar measure).
By the above, L(µn)(f) → f for every f ∈ V , but L(µn)(f) is simply the
convolution µn ? f , which is continuous. Thus, continuous functions are
dense.

• Right-finite (or left-finite) functions are dense in any closed, invariant sub-
space of L2(H).

This is the most important step of the proof. Assume to the contrary
that there is a non-zero closed subspace V without a dense subspace of right-
finite functions, which (by taking orthogonal complement of the subspace
of right-finite functions) reduces to the case where V does not have any
right-finite vectors. We can find a continuous, self-adjoint measure µ on
H such that L(µ)V 6= 0. Here, by self-adjoint we mean that the operator

L(µ) is self-adjoint, which is equivalent to h(g−1) = h(g) if µ = hdg —
exercise! The existence of such a measure follows by approximating the
identity by positive, continuous self-adjoint measures µn, and then using
the fact that µn(v)→ v for every vector v. We know (Proposition 2.1) that
L(µ) is compact, hence by the Spectral Theorem 3.2 there is a non-zero
(real) eigenvalue λ of L(µ), and the λ-eigenspace is finite-dimensional. But
the λ-eigenspace for L(µ) is stable under the right action of H, hence there
are right-finite vectors, a contradiction.
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Now let π be a finite-dimensional irreducible representation of H; by the previous
point, such representations exist. We have a tautological map T : HomH(π, L2(H))⊗
π → L2(H), where we only consider the right regular representation. Moreover, the
image of T lies in the subspace C(H) of continuous functions. If we endow the space

HomH(π, L2(H)) with the action induced from the left regular representation of H
on L2(H), the map T is equivariant. Evaluation at the identity defines a morphism
Hom(π, L2(H)) → π∗, whose kernel is (tautologically) trivial. We conclude that
the π-isotypic component of L2(H) under the right representation (the image of T )
is isomorphic to π∗⊗ π. Those subspaces, as the isomorphism class of π varies, are
mutually orthogonal by Lemma 4.1, and they span a dense subspace, by the points
above. This proves the L2-part of the theorem.

�

Remark 4.3. If π is endowed with an invariant Hilbert norm, so π∗ = π̄, the
decomposition (4.2.1) is not an isometry. This will be the subject of the Plancherel
formula, Theorem 5.1.

Theorem 4.4. Every Fréchet representation (π, V ) of H contains a dense subspace
of finite vectors. In particular, every irreducible Fréchet represenation is finite
dimensional. Every Hilbert representation of H is the Hilbert space direct sum of
irreducibles.

Proof. Let fndh be an approximation of the identity by positive, continuous prob-
ability measures. Then, given a convex neighborhood U ⊂ V of zero, and a vector
v ∈ V , we have π(fndh) ∈ v + 1

2U , for large n, by Proposition 3.3.
Now fix such a large n, and choose a sequence hj of finite functions such that

hj → fn in L2(H). In particular, hj → fn in L1(H), and the measures hjdh
converge strongly to fndh. Again by Proposition 3.3, we have π(hjdh)(v) →
π(fndh)(v), hence π(hjdh)(v) ∈ v + U , for large j.

But, for a vector v ∈ V , π(µn)v is finite since µn is left-finite. This proves the
first claim, and the others follow easily.

�

Proposition 4.5. Assume that H is a compact Lie group (or just a compact group,
ignoring mentions of smooth vectors below). We have a sequence of dense inclusions
of Fréchet spaces:

(4.5.1) L2(H)fin ⊂ C∞(H) ⊂ C(H) ⊂ L2(H),

where fin denotes left and right finite functions.

Proof. If H is a Lie group, we can show as in the proof of Theorem 4.2, by
choosing a smooth approximation of the identity, that any subrepresentation of
L2(H) contains a dense subspace of smooth vectors, and that L2(H)fin belongs to
the space of smooth functions.

We then apply Theorem 4.4 to any of these Fréchet spaces, viewed as a repre-
sentation of the group H ×H. �

5. The Plancherel formula

The Plancherel formula expresses a function f ∈ L2(H) (using probability Haar
measure for the L2-norms throughout) in terms of its spectral transforms, which
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have to be defined as explicit projections onto the summands π∗ ⊗ π of the Peter–
Weyl theorem. Of course, f decomposes as a convergent sum of its orthogonal
projections to those subspaces, but these are not the most natural projections to
consider in practice. Instead, the “natural” projection is the map

f 7→ π(fdh) ∈ End(π) = π∗ ⊗ π

(where dh is the probability Haar measure).
Hence, the content of the Plancherel formula is the comparison of these “natural”

projections with the orthogonal ones.

Theorem 5.1. For any f ∈ L2(H), we have

(5.1.1) ‖f‖2 =
∑
π

‖π(fdh)‖2HS · d(π),

where π ranges over all isomorphism classes of irreducible unitary representations
of H, d(π) denotes the dimension of π, and ‖ · ‖HS denotes the Hilbert–Schmidt
norm on End(π), i.e., the Hilbert norm on π∗ ⊗ π.

If f ∈ C(H) can be written as the convolution of two functions in L2(H) (or a
linear combination thereof), then we have

(5.1.2) f(1) =
∑
π

tr (π(fdh)) · d(π),

with the right hand side being absolutely convergent.

Proof. Assume that f ∈ L2(H). The right regular action R(fdh) is represented
by the kernel Kf (x, y) = f(x−1, y), i.e.,

R(fdh)Φ(x) =

∫
Φ(y)f(x−1y)dy.

Calculating the Hilbert–Schmidt norm of this operator we get, on one hand,

‖R(fdh)‖2HS = ‖Kf‖2L2(H×H) = ‖f‖2,

and on the other, by the Peter–Weyl theorem 4.2,

‖R(fdh)‖2HS =
∑
π

dim(π∗)‖π(fdh)‖2HS =
∑
π

d(π)‖π(fdh)‖2HS .

This proves (5.1.1).
Now let f be the convolution of two L2-functions: f = f1 ? f2. Then, f(1) =

〈f∗1 , f2〉 , where f∗1 (g) = f1(g−1), and ? denotes convolution (=pushforward by the
multiplication map H ×H → H). (We take the linear factor to be the second one
in the hermitian inner products.)

By the Plancherel formula just proven, we have (with all sums absolutely con-
vergent)

〈f∗1 , f2〉 =
∑
π

d(π) 〈π(f∗1 dh), π(f2dh)〉HS =

=
∑
π

d(π)tr (π(f1dh) ◦ π(f2dh)) =
∑
π

d(π)tr (π(fdh)) ,

where we have used the fact that, for two Hilbert–Schmidt operators T1, T2, we
have tr(T1 ◦ T2) = 〈T ∗1 , T2〉HS . �
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Remark 5.2. If f = f1 ? f2, so R(f) = R(f1) ◦ R(f2), the operator R(f), being
the composition of two Hilbert–Schmidt operators, is a trace class operator, and its
trace can be computed in any orthogonormal basis of the Hilbert space.

Hilbert–Schmidt and trace class operators form ideals in the algebra B(V ) of
bounded operators on a Hilbert space V , let us denote them by B(V )2 and B(V )1,
respectively. We have inclusions

B(V )1 ⊂ B(V )2 ⊂ K(V ) ⊂ B(V ),

where K(V ) is the subspace of compact operators. The first two inclusions are
dense, and the last one is closed. The space of trace class operators admits a norm,
under which

K(V )∗ = B(V )1,

B(V )∗1 = B(V ).

The first equality, restricted to the dense subspace of Hilbert–Schmidt operators in
K(V ), can be taken as the definition of trace class operators, i.e., an operator T is
trace class if

sup
S∈B(V )2,‖S‖≤1

| 〈T, S〉HS | ≤ ∞,

where ‖S‖ is the operator norm, not the Hilbert–Schmidt norm of S, which ensures
that the Hilbert–Schmidt pairing extends to a pairing between B(V )1 and the space
of compact operators. It can be shown that trace class operators are precisely the
compositions of two Hilbert–Schmidt operators.

In practice, there are many situations where a continuous function can be shown
to be a convolution of two functions. For example, it is a corollary of the Dixmier–
Malliavin theorem that if G is a compact Lie group then every smooth function of
G is a convolution of two smooth functions, hence the pointwise Plancherel formula
applies to smooth functions.

On the other hand, pointwise convergence for general continuous functions fails,
even for the example of Fourier series when H = S1!

6. Example: Spherical harmonics

We finish this chapter with a classical example, the decomposition of the space
L2(Sn) into irreducibles for the action of SO(n + 1). Here, Sn is the unit sphere
in Euclidean space Rn+1, and G = SO(n + 1) is the special orthogonal group of
length-preserving linear transformations of determinant +1. We follow the notes
[Gal].

Here, we work with real-valued functions and real Hilbert spaces; the translation
to complex-valued functions is immediate, after tensoring by C. We let G act
on the right on Rn+1, and by fixing a base point we have an isomorphism Sn =
SO(n)\SO(n+ 1), which proves (inductively) that SO(n) is compact.

Lemma 6.1. Restrictions of polynomials on Rn+1 are dense in L2(Sn).

Proof. Apply the Stone–Weierstrass theorem. �

The restriction map R[Rn+1] → L2(Sn) is not injective. For example, on S1 =
exp(iR) we have x2 + y2 = 1.

One proves that it is enough to restrict to harmonic polynomials, that is, eigen-
values for the Laplacian ∆ on Rn+1. The proof goes as follows: We define an
isomorphism P 7→ ∂(P ) between the algebra of polynomials and the algebra of
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linear differential operators with constant coefficients on V = Rn+1, given in an
orthonormal set of coordinates (xi)i by xi 7→ ∂

∂xi
. (Up to a scalar, this is simply

the Fourier transform of a differential operator, when we use the inner product to
identify the space V with its dual V ∗.) Then one easily sees that the pairing

(6.1.1) 〈P,Q〉 = ∂(P )Q

is an inner product on the space R[V ]k of homogeneous polynomials of degree k,
or a hermitian inner product on C[V ]k.

Lemma 6.2. The Laplace operator

∆ : R[V ]k+2 → R[V ]k

is surjective for every k ≥ −1 (setting R[V ]−1 = 0).

Proof. If Q ∈ R[V ]k is orthogonal to the image of ∆ then for every P ∈ R[V ]k+2

we have
0 = 〈Q,∆P 〉 =

〈
‖x‖2Q,P

〉
(by basic properties of Fourier transform), hence ‖x‖2Q = 0, and therefore Q =
0. �

The same argument shows

Lemma 6.3. If Hk+2 ⊂ R[V ]k+2 denotes the subspace of harmonic polynomials
(∆P = 0), we have an orthogonal decomposition

R[V ]k+2 = Hk+2 ⊕ ‖x‖2R[V ]k.

Proof. Indeed, if P ∈ Hk+2 and Q ∈ R[V ]k, we have〈
‖x‖2Q,P

〉
= 〈Q,∆P 〉 = 0,

which shows that the two subspaces are orthogonal. By 6.2, their dimensions are
complementary; this proves the lemma. �

This shows:

Proposition 6.4. We have an orthogonal decomposition

R[V ]k = Hk ⊕ ‖x‖2Hk−2 ⊕ ‖x‖4Hk−4 ⊕ . . . .
The restriction of every polynomial to Sn is equal to the restriction of a linear
combination of harmonic polynomials.

Proof. The first statement follows by induction from Lemma 6.3, and the second
because ‖x‖ = 1 on the unit sphere. �

Now, if ∆S is the Laplacian on Sn, and r = ‖x‖ is the radial coordinate, the
Laplacian on Rn+1 can be written

(6.4.1) ∆ =
1

rn
∂

∂r

(
rn

∂

∂r

)
+

1

r2
∆S .

Hence,

Lemma 6.5. If P ∈ Hk, then P |Sn is an eigenvector of the Laplacian ∆S with
eigenvalue −k(n+ k − 1).

Proof. We write P (r, θ) = rkf(θ), with θ the coordinate on Sn, and the result
follows from (6.4.1). �
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This leads to the main result:

Theorem 6.6. If Hk denotes the space of harmonic polynomials, homogeneous of
degree k, on Rn+1, the restriction maps

Hk → L2(Sn)

are injective (allowing us to identify Hk as a subspace of L2(Sn), and we have an
orthogonal direct sum decomposition

L2(Sn) =
⊕̂∞

k=0
Hk.

This is the decomposition of L2(Sn) into irreducible representations for the group
SO(n+ 1).

Proof. The restriction of a homogeneous polynomial to Sn determines the poly-
nomial, therefore the maps R[R]k → L2(Sn) (and, a fortiori, their restriction to
harmonic polynomials) are injective for every k.

The Laplacian ∆S is a self-adjoint operator; therefore, its eigenspaces corre-
sponding to distinct eigenvalues are mutually orthogonal. This applies to the spaces
Hk, by Lemma 6.5.

By Lemma 6.1, restrictions of polynomials to Sn are dense, and by Proposition
6.4, those are the same as the restrictions of harmonic polynomials.

The group G = SO(n + 1) preserves the metric on Sn, therefore its action on
C∞(Sn) commutes with the Laplacian. In particular, eigenspaces for ∆S are stable
under G.

[Proof of irreducibility to be added.] �
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