
Asymptotic Symmetry and Local Behavior of Semilinear 
Elliptic Equations with Critical Sobolev Growth 

LUIS A. CAFFARELLI 
Institute of Advanced Study 

BASILIS GIDAS 
Brown University 

AND 

JOEL SPRUCK 
University of Massachusetts 

1. Introduction 

In this paper we study non-negative smooth solutions of the conformally 
invariant equation 

in a punctured ball, B,(O) \ (0) c R“, n 2 3, with an isolated singularity at the 
origin. The model equation (1.1) arises in many physical contexts but its greatest 
interest in recent years lies in its relation to the Yamabe problem. From this 
geometric point of view, we think of u as defining the conformally flat metric 
El, = u4/(n-2)6i, .  Equation (1.1) then says that the metric has constant scalar 
curvature. The recent work of Schoen and Yau [8],[9],[10] on conformally flat 
manifolds and the Yamabe problem has highlighted the importance of studying 
the distribution solutions of (1.1) and characterizing the singular set of u. A 
solution u of (1.1) with an isolated singularity is the simplest example of a 
singular distribution solution. This deceptively simple looking problem is analyti- 
cally very difficult and requires the development of a new technique which we 
may call an asymptotic symmetry method. It is a “measure theoretic” variation 
of the Alexandrov reflection technique as developed by Gidas, Ni and Nirenberg 
[4], [5 ] .  Loosely speaking, the heuristic idea of the asymptotic symmetry technique 
may be described as follows. After an inversion, the function u becomes defined 
in the complement of B,, is strictly positive on JB,, and in some sense “goes to 
zero” at infinity. If we could extend u to B, as a super solution of our problem, 
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then we could start the reflection process at infinity and move all the way to aB,. 
This would imply asymptotic radial symmetry at infinity. 

Unfortunately, such an extension does not seem possible in general. On the 
other hand, in those directions in which u ( x )  goes reasonably fast to zero for x 
going to infinity, we should be able to reflect u in planes that move reasonably 
close to the origin. The further away we stay from the origin, the larger the family 
of admissible reflections along which u remains monotone. 

The justification of this heuristic idea requires a lot of machinery which we 
shall describe later. Using the asymptotic symmetry technique we may prove the 
following. 

THEOREM 1.1. Let u 2 0 be a C 2 + a  solution of 

(1 4 - A u = g ( u )  in B,\{O}, n 2 3,  

with an isolated singularity at the origin. 
Assume that g ( t )  is a locally Lipschitz function satisfying 

(i) g(  t ) is nondecreasing, g (0 )  = 0 ,  

and, for t suficiently large, 

(i) t - ( n  + 2 ) A n  - 2) g ( t ) 

(iii) g ( t )  2 c t ~  forsome p 2 n / ( n  - 2). 

is nonincreasing , 
(1.3) 

Then 

(1.4) u ( x )  = (1 + O(lx l ) )m( lx l )  as x --+ 0, 

where m ( r )  = f sn-lu(r, w )  dw is the spherical average of u. 

In order to get a more precise result we must understand the radial singular 
solutions of (1.2). For equation (1.1) this may be done (see [ 2 ] )  by setting 
t = -1ogr and + ( t )  = r(f l-2)/2+(r),  where $ / ( r )  is a non-negative radial solu- 
tion of (1.1). Then + ( t )  2 0 satisfies 

The simplest singular solution of (1.1) corresponds to $/ = k = ( ( n  - 2 ) / 2 ) ( n - 2 ) / 2 .  
Equation (1.5) can be integrated to give 
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It follows from (1.6) that the behavior of + is determined by the roots of 

By the maximum principle, + cannot vanish for any finite t unless + = 0, and 
this forces D to lie in the interval 0 2 D 2 - (2 /n) ( (n  - 2)/n)".  The case 
D = 0 corresponds to the regular family of solutions 

x > 0, 

while for all other D there is a periodic translation invariant positive family of 

corresponds to the solution + = k or u = k/r("-2)/2.  

singular solutions of (1.1). 

solutions + D ( t )  of (1.5). The other extreme case, D = -(2/ n>((n - 2>/n>n 

Using Theorem (1.1) as a tool, we get the following characterization of the 

THEOREM 1.2. Let u be a solution of (1.1) with a non-removable isolated 
singularity. Then there is a unique asymptotic constant D, in the interval 0 > D, 
2 - (2/n)((n - 2)/n)" and a radial singular solution + ( r )  = +,(log r ) / r (n-2) /2  
so that 

u ( x )  = (1 + o ( 1 ) ) + ( l x l )  as x -+ 0. 

For the family of equations 

bu = ua,  
n n + 2  

< f f < -  n - 2 =  n - 2 '  

with subcritical Sobolev growth, a similar but much simpler analysis gives 

THEOREM 1.3. Let u 2 0 be a solution of (1.8) in B,\{O} with a non- 
removable isolated singularity. Then 

(i) for n / ( n  - 2) < a < ( n  + 2 ) / ( n  - 2), 

u = ( 1  + o ( l ) ) c o / ~ x p + - l )  as x -+ 0 ,  

where 

(ii) for a = n / ( n  - 2), 
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Part (i) of Theorem 1.3 was proved by Gidas and Spruck [6] using analytic 

We now discuss the organization of the paper. In order to make the heuristic 
techniques while part (ii) is an improvement of a result of Aviles [l]. 

ideas described earlier precise, we perform, in fact, an inversion 
X 1 

y = z + 7 u ( x )  = - u ( y )  
1x1 1xin-2 

about a regular point z near zero, so that u has a good asymptotic expansion at 
infinity, but has a singularity in a cylinder of radius 1 far away from the origin. 
In Section 3 we prove a basic extension lemma that says that we can extend u to 
B, as a supersolution on a set A c B ,  of sufficiently small measure. This 
extension lemma is used in Section 4 to formulate our Reflection Theorem. The 
essential assumption of this theorem is that u decays to zero uniformly on rays 
parallel to the reflection direction except possibly for a certain set of exceptional 
rays which hit B,. The set A is the intersection of the exceptional rays with B, 
and is required to have small enough measure. The proof of the Reflection 
Theorem utilizes some preliminary results of Section 2, In particular, Lemmas 2.3 
and 2.4 show that the reflection process can always be started and can only 
terminate because of a difficulty on a compact set. In Section 5 we use potential 
theory and capacity estimates to obtain an estimate for the measure of the'set of 
directions for which the hypotheses of the Reflection Theorem hold. In particu- 
lar, Corollary 5.2 shows that the set of admissible directions on the unit sphere 2, 
has measure IZ,I - M-' for some 6 > 0 if we are willing to reflect up to distance 
M from the origin. Section 6 makes precise the manner in which asymptotic 
symmetry follows from the results of Sections 4 and 5. Section 7 contains the 
proofs of the main results that we have stated. Finally, Section 8 contains 
additional global results about solutions with one or two singularities that are 
slight extensions of the corresponding results in [5 ] .  This section requires only the 
preliminary results of Section 2 and may be read independently of the bulk of the 
paper. 

2. Preliminary Results 

In this section we collect some preliminary results which will be needed for 

The following lemma is well known. The proof we give is a slight modification 
our later analysis. 

of Proposition 3.1 of [ 5 ]  

LEMMA 2.1. Let u 2 0 be a C 2  solution of 

(2.1) - AM = g ( u )  in B2\ ( 0 )  C R n ,  
where 

(i) g ( t )  2 0 for t 2 0, 
(ii) __ lim, ,,g(t)/tP > 0 for some p 2 n / ( n  - 2) .  

n 2 3 ,  

Then, g( u )  E L,( B, ) ,  u E Lp( B, )  and u is a distribution solution in B,. 
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Proof: For k > max,,,,,u(x), let + ( t )  2 0 be a smooth nonincreasing 
function satisfying 

Set @ ( t )  = /dp(s) ds. Let r)  = ~(1x1) be a smooth nondecreasing function satis- 
fying 

Letting E tend to zero gives 

Now letting k + 00, we conclude that g ( u )  E L,(B,)  and u E L,(B,) by 
condition (ii). 

To show that u is a distribution solution we must establish that 

Using 17s as a test function in (2.1) with 71 as before gives 

But, 
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and so, 

Since uAl  + l g ( u )  is in L,(B,) ,  (2.2) follows from the dominated convergence 
theorem and the proof is complete. 

One important consequence of Lemma 2.1 is the following 

LEMMA 2.2. Let u,, u2 be distribution solutions of - A M  = g( u )  in B,,  with u2 
as in Lemma 2.1. Assume u1 is smooth near the origin and that u1 5 u2, u, f u2 
a .e .  in 3,. Then, u2 > u1 + E for some E > 0 near the origin. 

In order to study a local solution u 2 0 of 

(2.3) - A M  = g(u) in B,\{O} 

with a non-removable singularity at the origin, we perform an inversion about a 
regular point z of u with z near 0 and transform u to u by the Kelvin transform: 

X 
x = -  Y - Z  y = z + , ,  

lY - Z l 2  ' 1x1 
(2.4) 

1 
U(.) = - u ( y ) .  1.y 

Then u satisfies 

(2.5) - A u ( x )  = fb, 4, 
where 

1 f = -g( lx l"-2u) .  
IXJ"+Z 

Note that 
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and that u has a harmonic asymptotic expansion at 00: 

X .  
ux ,=  - ( n - 2 ) a o - +  + O 

1x1 

where a. = u(z ) ,  ai = u,(z). 
The following lemma, which is a simple consequence of the asymptotic 

expansion (2.6), will be used in the proof of the Reflection Theorem 4.1 to start 
the reflection process. 

We use the notation x A  = (x’,2A - x,) to denote the reflection of the point 
x = (x’, x,) in the plane x ,  = A. 

LEMMA 2.3. Let u be a function in a neighborhood of inJnity satisfying the 
asymptotic expansion (2.6). Then there exist large positive constants x, R such that, 

U ( X )  > u ( x A )  for x ,  < A, 1x1 > R.  

ifxzx, 

Proof: Using the asymptotic expansion (2.6), we have 

for 1x1 large. In view of (2.6), 

I f  lxAl 2 21x1, and 1x1 is sufficiently large we may conclude from (2.8) that 

1 1  a0 2- 
- 41xl”-2‘ 

U ( X )  - u ( x ~ )  2 -a - 2 O I x y - 2  
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So assume lxAl < 21x1. We estimate the terms on the right-hand side of (2.8) as 
follows: 

Therefore, for h large and 1x1 large, 

Case fi): l x A l  - 1x1 > (c2/c1)(1/1x1). 
Then (2.9) implies u ( x )  - u ( x ~ )  > 0. 

Then X ( A  - x,) 5 c, or x ,  2 A - c/h. For X large we find from (2.7) that 
u,,, < 0 along the interval ( x ' ,  x,) to (x', (x,) ,)  and so u ( x )  2 u ( x ~ ) .  The proof 
is  complete. 

Case (ii)* lxAl  - I x I  5 (c2/c1)(1/1x1). 

The next lemma will be used in the proof of the Reflection Theorem 4.1 to 
assert that the reflection property given in Lemma 2.3 must continue to hold until 
either the solution becomes symmetric or the property must fail on a compact 
subset of R". 

LEMMA 2.4. Let u be a C 2  positive solution of 

(2.10) - Au = F ( x )  in 1x12 R ,  

where u has a harmonic asymptotic expansion (2.6) at 00. Suppose that, for x ,  > 0, 

(a) 4 x ' ,  x,) 5 u(x ' ,  - X J ,  
U ( X "  x,) f u ( x ' ,  -xn) ,  

(b) F(x' ,  x,) 5 F(x' ,  -x,). 
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Then there exist E > 0, S > R such that 

(i) ux, < 0 in 
(ii) u(x’, x,) < u(x’,2h - x,) in x ,  > f e  > A, 1x1 > S ,  

for X 5 A, with A, a suitably small multiple of E.  

I x , ~  < E, 1x1 > S,  

Proof: Let w ( x )  = u(x’, -x,) -u(x’, x,) for x ,  > 0, 1x1 > R. Then Aw 0. 
We choose k =- 0 so small that 

on 1x1 = R + 1, x ,  > 0. This is possible since wx, > 0 on x ,  = 0 by the Hopf 
boundary point lemma. Then, the maximum principle (x,/IxI ’ is harmonic) 
implies that 

X 
w ( x )  > k+ on J x I >  R +  1,  x ,  > 0. 

1x1 

In particular, wx,(x’,O) = -2ux,(x’,0) > k/lx‘l”. Using this and the asymptotic 
expansion (2.6), we have 

for Jh(  < k/4C and 1x1 large. This proves part (i) of the lemma. To prove part (ii) 
we use the expansion (2.6) and the results of part (i). We first estimate 

- ch 
1x1” 

u(x’,2X - x,) - u(x‘, -x,)  2 -(x,  + c )  

for x ,  > 0 and 1x1 large. Then, 

u(x’,2h - x,) - u ( x ’ ,  x,) 

= ( u ( x ’ ,  -x,) - u(x’, x,))  + (u(x’,2X - x,) - u(x’, - x , ) )  

kx ,  c X ( X ,  + C )  ( k  - c X ) X ,  - CX 
> O  - - 

lXln 1x1” 
2.- 
- 1x1 

if x ,  2 $ E  and X is sufficiently small compared to E. This completes the proof. 
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Remark 2.5. For our application to the study of isolated singularities, u is 
given by formulas (2.3)-(2.5) and 

Under the assumptions (1.3) of the introduction, 

if u(x,)  2 U ( X )  for X ,  > A. 

3. An Extension Lemma 

In this section we shall prove an extension lemma that will provide the first 
step in adapting the method of moving planes to local situations. 

where f is locally bounded in t ,  uniformly in 1x1 5 2. 

( A (  < (T, we can extend u to a Lipschitz function V in B2 satisfying 
Then there exists u = u(8,, M ,  f) such that, for any open set A c B,  with 

(i) 6 2 $8, in B,, 

Proof: We first extend u to 3, by choosing u" E C'+p(B,) satisfying 

(where v is the exterior normal to dBl ) .  For example, we may take v' = harmonic 
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extension of ulaB + radial correction. For IAl small enough, we can solve 

C +  sup I f ( x , t ) l  x A  in B, ,  1 IXlSl 
0% r l ;  3/& 

w = o  on aB,,  

with w E C”P(B,),  I(wIIcl+qB1) 5 1 for any p E (0,l). Since 0 < 38, 5 u” + w 
- - < 2/8, + 1 < 3/6, it follows that 

(a) -A(u” + w )  2 sup( f ( 2  f ( x ,  u” + w )  on A ,  

(b) ( u ” + w ) , 2 M + 1  on aB, .  

Then V = u“ + w is a Lipschitz extension of u to B, with the desired 
properties (3.2). 

4. The Reflection Theorem 

We are now in a position to prove a general “reflection theorem” that will 
eventually imply that solutions of (2.3) or (2.5) are asymptotically radial. Its 
statement is a bit complicated and its proof reasonably simple, given our 
preliminary results. The reader should keep in mind that the main hypothesis of 
the theorem, condition (e) below is formulated to insure that the good reflection 
property asserted in Lemmas 2.3 and 2.4 does not fail because of a difficulty on a 
compact set of small measure. The direction in which condition (e) holds is said 
to be an admissible direction. In Section 5 we shall show under very natural 
assumptions that there are many such directions. 

Our formulation of the theorem makes essential use of the extension 
Lemma 3.1. 

THEOREM 4.1. Let u > 0 be a distribution solution of 

-Au = f ( x ,  u )  = F ( x )  2 0 in 1x1 2 1 

satisfying 

(a) u is C* in (1 5 1x1 5 2) u (1x1 > R }  u { x ,  > I}, 
(b) u has a harmonic asymptotic expansion (2.6) at co, 
(c) F ( x )  5 F ( x A )  in x ,  > A > 0 wheneuer u ( x )  5 u(xA) ,  
(d) u satisfies the assumptions (3.1) of Lemma 3.1, 
(e) there exists a set A’ c {(x’,O) : lx’l < l}, IA’I < $a, and apositiue number 

M > 1 such that, if x = (x’ ,  x , )  with x’ 4 A’ and x ,  2 M, then u ( x )  
- - < as,. 
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Let U be the extension of u to R" giuen by the extension Lemma 3.1 correspond- 
ing to A = { x = (x ' ,  x , )  : 1x1 < 1, x' E A'} .  Then 

Proof: Since U is strictly positive on compact sets and tends to zero 
uniformly at 00, Lemma 2.3 implies that (4.1) holds for all sufficiently large A. 
Consider the set of h for which (4.1) holds. This set is closed because w ( x )  = 
U ( x X )  - U(x) is lower semicontinuous. To see that it is also open, suppose (4.1) 
holds for some x > M .  By the construction of 6, U ( x )  Z U(xX) .  If (4.1) does not 
hold for all h in some neighborhood of A ,  there is a sequence A, tending to x 
and points x J  with x i  > A, such that U ( x J )  > - U ( x i  ). It follows from Lemma 
2.4 (the plane x ,  = 0 there corresponds to x ,  = h her;) that a subsequence of the 
xJ converges to a point X with X, 2 h. There are three cases to consider: 

- 
(i) X, = h and VJX) 2 0, 

(ii) Xn > x and lXXl > 1, 
(iii) X, > x and (XX( 5 1. 

In all cases consider w ( x )  = U(xx) - U(x) 2 0. Because of condition (c), w 
is superharmonic in x ,  >= x. In case (i), w is a non-negative smooth superhar- 
monic function in a small half-ball B;(X) = BJXl n { x ,  > x} vanishing on 
x ,  = x. By the Hopf boundary point lemma, W,,(X) = -2Ux,(X) > 0, a contra- 
diction. In case (ii), w is superharmonic and smooth in a neighborhood of X 
because of Lemma 2.2, and w(X) = 0. This violates the maximum principle since 

In case (iii), X' E A' for otherwise, one would have w(X) = u ( X X )  - u ( X )  
2 $8, - $8, = $so, a contradiction. Therefore, the extension Lemma 3.1 implies 
that w is again superharmonic in a neighborhood of X. This is a contradiction as 
in case (ii) and completes the proof of the theorem. 

w ( x )  f 0. 

5. The Family of Admissible Directions 

In this section we shall obtain an estimate for the measure of the set of 
directions for which the hypothesis, condition (e) of the reflection Theorem 4.1, 
holds. 

For this purpose the main properties of u at infinity that we shall use are the 
~~ - -  

following: 

(a) u 2 0 is superharmonic in 
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We want to use these two properties to estimate those cylindrical directions 
along which u has fast decay. Equivalently, we want to control the set of 
directions on which u does not decay. 

For a given direction 7, we denote by I-( 7) the half-infinite cylinder of radius 
3 with axis 7, r k ( 7 )  being the portion of r(7) in B 2 k + 1  \ Bp. 

Given p > 0, define the exceptional set 

Here, P, is orthogonal projection along the direction T onto the plane x 7 = 2k. 

THEOREM 5.1. IA(k, p)l  
In particular, if p = 2-8k ,  6 = ( n  - p ) / 3 p ,  then 

(C/p2)2k/P(B-n) with C independent of p and k .  

COROLLARY 5.2. JUroA(k)J  ~ 2 - ' ~ o  and if T 4 UroA(k) ,  then T is an 
admissible direction for M = 2k0 with k ,  suficiently large so that p < as,. In other 
words, the set of admissible directions for a given M = 2k and o = 2-'k = M - E  
has measure IZ,J - M-" for suitable E ,  6 > 0. 

Proof of Theorem 5.1: We estimate J A ( k , p ) J  on the unit sphere Z, by 
covering A ( k ,  p )  by a finite union of spherical caps Uirn , ,D(~~)  centered at 7, of 
radius C 2 - k .  The constant C is an absolute constant independent of k chosen so 
that the radial projection of p T ( r k )  is essentially D(T). By a standard argument 
(see [3]), we may assume that the spherical caps centered at T~ of radius $C2-k 
have " finite overlapping". Then, 

We shall estimate the right-hand side of (5.2) by an average of u. For that 
purpose let w be the capacitory potential of 21-kE in B, - B,, E = Uim_,{ u ( x )  > 
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p }  n rk(7;). That is, w is harmonic in ( B 8  - B, )  - E ,  w = 1 on E ,  w = 0 on 
2(B ,  - B,) .  By the maximum principle, u ( ~ ~ - ’ x )  2 p w  in B,  - B,. 

Note that the capacity of 2lPkE is given by 

cap 2’ ~ kE = IVw[2dx  = $,,, w,da la,-*, R -  1) 
(5.3) 

(where v is the interior normal) and that, 

A simple argument using (5 .3 )  and (5.4) gives us the important inequality 

Denote by j, the orthogonal projection P, followed by radial projection on 
2,. By construction, p,( rk( 7)) is essentially D( 7) for large k .  Given a point Q in 
F,(E) ,  let 0 be the “first” point of P;‘(Q) on the section (curve) 7 = 21-ky 
sitting over Q. Then 

d 
1 = J a w d s .  

i s  

Integration over F, (E)  on 2, yields 

and so by Holder’s inequality 
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Since the disks D ( T ~ )  have finite overlapping, we can sum the inequalities in 
(5.6) and obtain (recalling (5.2)) 

l A ( k  P) I 5 

Using ( 5 . 9 ,  this gives 

(5 .7)  I A ( k  P )  I - ff u ,  
p R k  

We now use assumption (5.16). We have 

Combining (5.7) and (5.8) we obtain the estimate 

The theorem is proven. 

6. Asymptotic Symmetry 

A final step that is needed, before we can discuss applications, is to clarify 

For a given direction 7, denoted by x h  = x + 2(X - x T)T, the reflection of 
how asymptotic symmetry will follow from the Reflection Theorem. 

x in the plane x 7 = A. 

THEOREM 6.1. Let u be a function on 02" - B, with the property that, for some 
M > 0 and I- E d c  Z,, 
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Then there are constants e0 > 0, C > 0 independent of M such that, if IZ,J - Isdl 
< to, then 

Proof: We want to show that we may compare u ( x )  and u ( y )  by a finite 
number of reflections taken from the admissible set d. It suffices to show that 
(6.2) holds (for some C) if that angle a ( x ,  y )  between x and y is small enough. 
For we can then inductively find a sequence zl, z2,. . . , zk of bounded length such 
that z1 = x ,  zk = y ,  lzi+ll > lzil + M and a(z i ,  

For concreteness, we shall suppose that a(x, y )  5 &r. Consider the cone rx 
of directions of aperture $7r (with vertex at the origin) and axis direction - x .  We 
fix R 2 1x1 + 2 M  to be chosen later and look at those points z in 2 ,  which can 
be obtained by reflection of x in a plane rIT with normal r E I?, such that II, 
separates z from BM(0). If T E d  is admissible, then from (6.1), u ( x )  2 u ( z )  
and we say that z is admissible for x.  That is, 

small. 

dx = { z  E 2,: x = z + 2(X - x T ) T  with 

z r > X 2 M and T E l?, n -01). 

Note that z = x - 2 ( x  T - X)T and 

It follows that R 2  - 
R - 1x1 2 2 M  as long as R 2 1x1 + 2 M .  

4X(X + 1x1) or (2X + 1 ~ 1 ) ~  2 R2.  Therefore, 2 h  2 

Similarly, we define the admissible set for y ,  d,,, as follows: 

dy = { z  E Z,: z = y  + 2 ( h  - y * T ) r  with 

Notice that if z u ( z )  2 u ( y )  and the direction -T is in r,, (cone of 
directions of aperture $T with axis -y) .  In order that h >= M be well defined, R 
must be chosen so that 
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For example, we may take 

and then both dx and dy are well defined. 
By our construction d’ is just the set of admissible points for x in VX n Z,, 

where gX is the cone with vertex x, axis -x  and aperture +T. For E,, small 
enough, dx covers as big a proportion of Vx n 2, as we like. Similarly, dy is 
the set of admissible points for y in Wy n 2, and covers as big a proportion of 
gY n ZR as we want. 

Therefore, we can arrange that 

Idx n (% n Z,) n (‘lpy n 2,) I ’ +I(% n Z,) n (Vy  n 2,) 1 ,  
Idy (‘x Z R )  (‘y ‘R) I ’ il(‘X ’ (‘y ‘R) 1 )  

and thus there exist z E dx n dy with 

This completes the proof. 

COROLLARY 6.2. Let u ( x )  satisfy the hypothesis of Theorem 6.1. Suppose in 
addition that u 2 0 is superharmonic. Then, 

(6 .3)  u ( x )  = inf u(1  + 0 ( 1 / R ) )  for 1x1 = R as R + co. 
ZR 

Proof: From Theorem 6.1, we have 

(6 .4 )  sup u 5 infu 5 supu 5 inf u .  
~ B R  + CM a B R  a B R  ~ B R - C M  

But 

In particular, for R, = R - CM, 1x1 = R + CM, 

R - CM ’-’ 
inf u 2 ( + c M )  inf u ,  

~ B R  + CM ~ B R  - CM 

or 

inf u 5 (1 + 0 ( 1 / R ) )  inf u .  
~ B R  - CM a& + CM 

(6 .5 )  

The combination of (6.4) and (6.5) gives (6.3). 
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7. Proofs of the Main Results 

Proof of Theorem 1.1: As in Section 2, formulas (2.3)-(2.5), we perform an 
inversion about a regular point z near 0 and transform u to u by the Kelvin 
transform. Let us take z = (l/p)en and locate the singularity of u at the point 
- p e n .  Then we can apply the Reflection Theorem 4.1 for any admissible 
direction T in the cone (~(7, e n )  5 ir. Note that the estimates in measure, in 
Section 5 ,  for the set of admissible directions hold uniformly for all approxima- 
tions u.  Since the reflection inequality is preserved under limits, if we let p + ao, 
the admissible directions for the limit are the lim sup of the admissible directions 
for the approximations. That is, X(1im sup dP) = lim sup x( dP). Thus, by Fatou's 
lemma, the asymptotic symmetry results of Section 6 may be applied directly to 
our original solution u inverted through the singularity at 0. In particular, 
Corollary 6.2 shows that 

u ( x )  = inf u ( l  + 0(1 /R) )  for 1x1 = R as R -+ 00, 
2, 

where 

It follows that, for IyI = r ,  

and Theorem 1.1 follows. We now use Theorem 1.1 to prove Theorem 1.2. 

Proof of Theorem 1.2: We first show that 

Since u is a distribution solution, we have 

for smooth TJ. Choosing q = ( . I 2  we see, after some simple manipulations, that 
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Since u ( x )  = m(lxl)(l + O(lx1)) and 

we have, from (7.2), 

for r 6 R .  From (7.4) it follows that 

(7.5) 

and (7.5) gives Rnm(n+2)/(n-2)  - < c R ( " - ~ ) / ~  or m( R )  5 c / R ( " - ~ ) / ~ .  Inserting this 
into (7.3) proves the preliminary estimates (7.1). 

Now set t = -log r and 

( 7 4  + ( t ,  e )  = F 2 ) l 2 u ( r ,  e), e E s n - 1 .  

Then a simple calculation shows that + satisfies 

(7.7) 
2 n - 2  

+tf + A,+ - ( T) + + + ( n + 2 ) / ( n - 2 )  = 0. 

Let P ( t )  = / , . -I+ dB = r (n-2) /2m(r) .  Note that 

+(t, e) = r ( n - 2 ) / 2 m ( r ) ( 1  + ~ ( r ) )  + p ( t ) ( l  + o(e-')), 

p =  - rnl2mr(  r )  g 0 ,  p' + - n - 2  
n 

and that P = 0 ( 1 ) ,  P' = 0(1) from (7.1) and (7.8). 

LEMMA 7.1. 
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Proof: From Theorem 1.1, we have 

- A ( u  - rn) = m ( n + 2 ) / ( n - 2 ) 0 ( r )  in fr < 1x1 < 2 r ,  

say. Then by standard elliptic estimates (for example, Theorem 3.9 of [7]), 

on 1x1 = r .  
But in f r  < 1x1 < 2r,  sup u (and thus sup rn) is comparable to u ( x ) .  Since 

u > 0 satisfies Au + a ( x ) u  = 0 with a ( x )  = u ~ / ( " - ~ )  - < c/1xI2 and hence it 
satisfies the Harnack inequality (see [6] for more detai1s)in the annulus $r < 1x1 
< 4r.  Therefore, 

( ~ ( u  - m ) l  5 c ( m ( r )  + r 2 m 4 / ( n - 2 ) m )  5 c m ( r )  for 1x1 = r 

In particular, 

(7.9) 

a -(u - m )  5 cm, ar  

( v ~ ( u  - m)( 5 crm. 

Since +(f, 0 )  - P ( t )  = r (" -2 ) /2 (u ( r ,  8 )  - rn(r)), t = -logr, the lemma follows 
easily. 

We now derive from (7.7) a standard energy estimate (equivalent to the 
well-known Pohazhaev identity) by multiplying (7.7) by + t  and integrating: 

n - 2 2  n - 2  
(7.10) 1 S"-l (+: - (7) +' + ----I)~'/('-~) n -(Vo+)21: = 0. 

Using Lemma 7.1, we convert (7.10) into our basic identity: 

Set 
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Then (7.11) can be rewritten as 

(7.12) D ( t )  = D ( s )  + (az + p '2 )O(e -s )  + O ( e - ' )  

for t 2 s. Equation (7.12) determines a unique asymptotic constant 

Dm = lim D ( t ) .  
t-rm 

For, from (7.12), 

D ( k  + 1) - D ( k )  = O ( C k )  

so that ID(k + 1 + 1) - D ( k ) )  5 ce-k. Therefore, the bounded Cauchy sequence 
{ D ( k ) )  has a unique limit 0,. Passing to the limit in (7.12) gives 

Dm = D ( s )  + ( p ' +  p")O(e-" ) .  

Reversing, the roles of s and t ,  we arrive at the fundamental equation 

(7.13) D ( t )  = Dm + ( p ' +  p " ) ) o ( e - ' ) ,  

or equivalently 

From (7.14) we see that the behavior of p is completely determined by the 
roots of the right-hand side of (7.14). In particular, Dm must lie in the interval 

(7.15) 

In Case Dm < 0 it follows easily from (7.14) that p is asymptotic to 
(a suitable translate of) the solution of the corresponding equation (1.6) of the 
introduction and Theorem 1.2 follows. 

It remains to show that, in the case Dm = 0, u has a removable singularity 

From (7.14) we see that p cannot have a local minimum and must ultimately 
decrease monotonically to zero (recall from the introduction that the asymptotic 
solution I) = k corresponds to Dm = -(2/n)((n - 2)/n)"). Therefore, 

(or equivalently, j3 decays to zero like e- (n-2) t /2  1. 

lim p ( t )  = lim p ' ( t )  = 0, 
1-00 t 'rn 

p' < 0 for t > to.  
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Returning to (7.14) we find that 

pf 2 h2p2 for t > t , (h) 

for any h c ( n  - 2)/2. It follows that p = O(e-"),  /?' = O(e-"). Going back 
to (7.14) once more we see that 

and so 

Integrating this we obtain 

a( t )  5 p( t,)exp{ ce'o} e-(n-2)(r -ro) /2  

and thus t( has a removable singularity, and Theorem 1.2 is complete. 

Proof of Theorem 1.3: We sketch the proof as there are no technical 
difficulties. As in the proof of Theorem 1.2, it is a simple matter to establish 

Again, set t = -log r and 

Then 

(7.17) 

where 

n - 2  n + 2  2(n - 2) n 
a - 1  n - 2  a = -(- -a) and c ; - ' =  

2 (a - s). (a - 1) 

Let 
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As before, we have that 

(7.18) 

Averaging (7.17) over S"-' we obtain 

p" + up' - c ; - p  + pa + f (+a - pa) = 0.  
S"-l 

(7.19) 

Multiplying (7.19) by P' and integrating yields 

It follows from (7.19) that /7Pf2 < c and so P' + 0 as t + 00. Multiplying 
(7.19) by P" and integrating by parts, we find also that jTP''2 < c and so 
P" + 0 as t + 00. Passing to the limit as t -, 00 in (7.19), we conclude that 
either 

lim P (  t )  = co 
t-m 

or 

lim P ( T )  = 0, a > n/(n - 2). 
t -m 

To complete the proof of part (i) of Theorem 1.3 we must show that the 
singularity is removable if p + 0 as t + 00. 

It is easy to see that the decay of j3 is controlled by the negative root of 

r' + ar - c;-l = 0.  

This root is 

A = - + ( a  + { a m ) .  

But a* + 4cZ-l = (n - 2)'. Therefore, 

2 = -  
a + ( n - 2 )  

2 a - 1 .  
- A  = 
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Using (7.18) to control the errors one can show that /3 = O(e-2 ' / (ap1))  and that 
the singularity of u is removable. 

To complete the proof of part (ii) of Theorem 1.3 (a = n / ( n  - 2), co = 0, 
a = n - 2), we must find the decay rate of /I. Without too much trouble one sees 
that either /I = O(e-(n-2)r )  and the singularity of u is removable or that 

Ths  completes the proof. 

8. Global Results 

In th s  final section we include a global result for solutions in R" with one or 
two singularities (one of which is located at infinity). Its proof follows easily from 
the results of Section 2. 

THEOREM 8.1. Let u be a C 2  solution of 

- A u = g ( u )  in R " -  { 0 } ,  n 2 3 ,  

with an isolated singularity at the origin. Assume that g( t ) is a locally Lipschitz 
function satisfying 

(i) g ( t )  is non-decreasing, g(0) = 0, 
(ii) t-(n+2)/(n-2)g(t)  is non-increasing 

(iii) g ( t )  >= ctP for some p 2 n / ( n  - 2) for t large. 

Then, 

(a) if the origin is a non-removable singularity, then u is radially symmetric 

(b) if the origin is a removable singularity, u is radially symmetric about some 
about the origin; 

point of W". 

COROLLARY 8.2. Let u 2 0 be a C 2  solution of 

Au + ua = 0 in R". 
Then, 

(a) i f n / ( n  - 2) 5 a < ( n  + 2) / (n  - 2), 

u = 0. 

(b) if a = ( n  + 2) / (n  - 2), 

x > 0,  

for some origin. 
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Remark 8.3. For a = ( n  + 2 ) / ( n  - 2),  the corollary implies by conformal 
invariance that there are no one-point singularities. 

Proof of Corollary 8.2: Part (b) follows from the discussion of radial 
solutions given in the introduction. To prove part (a) observe that u satisfies 

so that 

Therefore, u-%'(r) 5 - r / n .  Integrating this form 0 to r we obtain 

a - 1  1 -> -+ -  r 2 .  
1 

un-l = u * - ' ( o )  2n 

This implies that 

To complete the proof we need the well-known Pohazhaev identity 

R"-luu'( R) n - 2  
n 

u a + l  
fR"u'2(R) + R"-(Y+T(R) + - 

Using (8.1) we see that the terms on the left-hand side of (8.2) tend to zero as 
R -, GO. Since n / ( a  + 1) - ( n  - 2 ) / n  > 0, this implies that j F r " - l u a + l  = 0 or 
u = 0. 

Proof of Theorem 8.1: Suppose the origin is a non-removable singularity. 
Choose an arbitrary point z # 0 and, as in formulas (2.4), (2.5), let u be the 
Kelvin transform of u. Observe that u ( x )  has a harmonic asymptotic develop- 
ment at infinity and is singular at the origin and at x = -z/1zI2. This defines an 
axis (going through 0 and z )  about which, as we shall show, u is axisymmetric. 
Consider any reflection direction 7 orthogonal to this axis. For simplicity, 
suppose 7 is the positive x, direction. Then, by Lemma 2.3, 

(8 .3 )  u(x) $u(x,) for x , z X  
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for all A sufficiently large. Consider the set of h 2 0 for which (8.3) holds. This 
set is closed by lower-semicontinuity of w(x) = U(xX) - U(x). To see that it is 
also open, suppose (8.3) holds for some x > 0. By our assumption that the origin 
is non-removable, v ( x )  f u(xX). If (8.3) does not hold for all A in some 
neighborhood of h, there is a sequence X i  tending to h and points x J  with 
xi > A, such that U(xJ)  > - U(xi,). It follows from Lemma 2.4 (the plane x, = 0 
there corresponds to x, = A here) that a subsequence of the xJ converges to a 
point X with X, 2 h. Necessarily, 

Case (i): 
Case (ii): X, > A. 
In case (ii), w = U(xX) - U(x) is superharmonic and non-negative in a 

neighborhood of X, and w ( X )  = 0. This violates the maximum principle since 
w ( x )  f 0. In case (i), w is a non-negative smooth superharmonic in a small 
half-ball B:(X) = Be(?) n { x ,  > h} vanishing on x, = A. 

X, = A and UJX) 2 0. 

By the Hopf boundary point lemma, 

w,,(x) = - 2 q X )  > 0, 

a contradiction. Therefore, we have shown that (8.3) holds for all h 2 0 and so u 
is axisymmetric. This implies that u ( x )  is axisymmetric about any axis through 
the origin, and so is radially symmetric about the origin. This proves part (a) of 
the theorem. To prove part (b) observe that the previous argument shows that, 

Choosing a new point in this plane as the center of inversion, we find that u is 
symmetric about a second plane orthogonal to the first. After n steps we find the 
center of symmetry. Alternatively, one can invert about some point z and 
translate along a direction parallel to v u( z )  to obtain the optimal asymptotic 
development at infinity as in [4]. Our previous reasoning then says that u is 
axisymmetric about an axis through z parallel to the vector vu (z ) .  Choose 
another point Z as the center of inversion. Then if vu(Z) is not parallel (in the 
same sense), u is axisymmetric about a second axis. The intersection of these axes 
determines the center of symmetry. The other possibility namely that v u always 
points in the same direction is easily eliminated as there are no global non-nega- 
tive solutions of 

for any direction T through the origin, it is symmetric in some plane x T = A 2 0. 

u" + f( u )  = 0. 

This completes the proof. 
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