Pushouts and Adjunction Spaces

This note augments material in Hatcher, Chapter 0.

Pushouts Given maps $i: A \to X$ and $f: A \to B$, we wish to complete the commutative square (a) in a canonical way.

DEFINITION 2 We call (1)(a) a *pushout square* if it commutes, $j \circ f = g \circ i$, and is *universal*, in the sense that given *any* space Z and maps $h: X \to Z$ and $k: B \to Z$ such that $k \circ f = h \circ i$, there exists a unique map $m: Y \to Z$ that makes diagram (1)(b) commute, $m \circ g = h$ and $m \circ j = k$. We then call Y a *pushout* of i and f.

The good news is that uniqueness of pushouts is automatic.

PROPOSITION 3 Given any maps i and f as in (1)(a), the pushout space Y is unique up to canonical homeomorphism.

Proof Suppose Y', with maps $g': X \to Y'$ and $j': B \to Y'$, is another pushout. Take Z = Y'; we find a map $m: Y \to Y'$ such that $m \circ g = g'$ and $m \circ j = j'$. By reversing the roles of Y and Y', we find $m': Y' \to Y$ such that $m' \circ g' = g$ and $m' \circ j' = j$. Then $m' \circ m \circ g = m' \circ g' = g$, and similarly $m' \circ m \circ j = j$. Now take Z = Y, h = g, and k = j. We have two maps, $m' \circ m: Y \to Y$ and $\mathrm{id}_Y: Y \to Y$, that make diagram (1)(b) commute; by the uniqueness in Definition 2, $m' \circ m = \mathrm{id}_Y$. Similarly, $m \circ m' = \mathrm{id}_{Y'}$, so that m and m' are inverse homeomorphisms. \Box

However, existence is *not* automatic; pushouts must be constructed.

PROPOSITION 4 Let $i: A \to X$ and $f: A \to B$ be any maps. Then there exists a pushout Y as in Definition 2.

Proof Let \sim be the smallest equivalence relation on the topological disjoint union $X \coprod B$ that satisfies $i(a) \sim f(a)$ for all $a \in A$. [It is the intersection of all equivalence relations on $X \coprod B$ that have this property.] We take Y as the quotient space $(X \amalg B) / \sim$, with quotient map $q: X \amalg B \to Y$, and set g = q | X and j = q | B.

We have commutativity, since for any $a \in A$, g(i(a)) = q(i(a)) = q(f(a)) = j(f(a)). Given h and k as in diagram (1)(b), we define $\widetilde{m}: X \coprod B \to Z$ by $\widetilde{m} | X = h$ and $\widetilde{m} | B = k$. Then for any $a \in A$, $\widetilde{m}(i(a)) = h(i(a)) = k(f(a)) = \widetilde{m}(f(a))$. It follows that \widetilde{m} is constant on each equivalence class and hence factors through the map $q: X \coprod B \to Y$ to yield the desired map $m: Y \to Z$. Further, m is unique because it is required to satisfy $m \circ q = \widetilde{m}$, with \widetilde{m} defined as above. \Box

COROLLARY 5 A subset $V \subset Y$ is open (resp. closed) if and only if $g^{-1}(V)$ is open (resp. closed) in X and $j^{-1}(V)$ is open (resp. closed) in B. \Box

We can stack pushout squares. The proof depends *only* on the universal property in Definition 2 and is omitted. (Try it!)

PROPOSITION 6 Suppose given a commutative diagram

in which ABXY is a pushout square. Then ACXZ is a pushout square if and only if BCYZ is a pushout square. \Box

Remark The third possible implication fails: if ACXZ and BCYZ are pushout squares, ABXY need not be one. For a simple example, take A = X = Y = C = Z to be a point, and B any space with more than one point.

We can also take products.

PROPOSITION 7 If diagram (1)(a) is a pushout square and W is a locally compact space, then

is another pushout square.

Proof This follows from the standard (but non-trivial) topological result that if $q: X \coprod B \to Y$ is a quotient map, so is $q \times id_W: (X \coprod B) \times W \to Y \times W$. [This statement is false without some condition on W.] \Box

COROLLARY 8 "The pushout of homotopies is a homotopy." Given the pushout square (1)(a) and homotopies $h_t: X \to Z$ and $k_t: B \to Z$ such that $h_t \circ i = k_t \circ f$ for all t, define $m_t: Y \to Z$ by $m_t \circ g = h_t$ and $m_t \circ j = k_t$; then m_t is a homotopy.

Proof We take W = I in Proposition 7. \Box

Adjunction spaces The bad news about pushouts is that Y, being a quotient space, is in general poorly behaved. Even if A, B and X are very nice spaces, Y need not even be Hausdorff. In the construction, it is far from clear what the equivalence classes in $X \coprod B$ are, or what the points of Y really are.

We shall say no more at this level of generality. From now on, we limit attention to the following special case.

PROPOSITION 9 In the pushout square (1)(a), if i is a closed embedding, so is j.

Proof Under this hypothesis, it becomes clear what the equivalence classes in $X \amalg B$ are: they are the singletons $\{x\}$ for each $x \in X - A$, and the sets $i(f^{-1}(b)) \amalg \{b\}$ for

each $b \in B$. Thus as a *set*, Y is the disjoint union of X - A and B; in particular, j is injective. However, the topology on Y is not the disjoint union topology.

Recall that to prove j is a closed embedding, it is only necessary to show that j(F) is closed in Y whenever F is closed in B. Because j is injective, $j^{-1}(j(F)) = F$ and $g^{-1}(j(F)) = i(f^{-1}(F))$. By Corollary 5, j(F) is closed. \Box

Henceforth, we simplify notation by assuming that A and B actually are closed subspaces of X and Y, and we (usually) suppress i and j. Commutativity is simply expressed by g|A = f, and we have a map of pairs $g: (X, A) \to (Y, B)$. Informally, we obtain Y from B by gluing X to B along the subspace A of X as directed by the map f; we identify each point $a \in A$ with its image $f(a) \in B$.

DEFINITION 10 When $A \subset X$ is a closed subspace, we call Y an *adjunction space* and $f: A \to B$ the *attaching map*. We write $Y = B \cup_f X$ (or $B \sqcup_f X$ in Hatcher).

Example If the subspaces A and B of a space X are both open or both closed, then

is a pushout square. This is simply a restatement of the standard result that given a function $f: A \cup B \to Y$, if f|A and f|B are continuous, then f itself is continuous.

In general (though not always), j inherits properties from i and g from f.

PROPOSITION 11 Assume diagram (1)(a) is an adjunction square with $A \subset X$ a closed subspace. Then:

- (a) If A = X, then B = Y;
- (b) $g|(X-A): X-A \to Y-B$ is a homeomorphism;
- (c) If B and X are T_1 spaces, so is Y;
- (d) If B and X are normal spaces, so is Y;

(e) If F is a closed subspace of X with $F \cap A = \emptyset$, then $g|F: F \to Y$ is a closed embedding;

- (f) If A is a retract of X, then B is a retract of Y;
- (g) If (X, A) satisfies the homotopy extension property, so does (Y, B);
- (h) If A is a deformation retract of X, then B is a deformation retract of Y.

Proof By now, (a) is trivial.

In (b), the map is obviously a continuous bijection. To see that it is an open map, take an open set V in X - A; then $g(V) \cap B = \emptyset$ and $g^{-1}(g(V)) = V$ show that g(V) is open. Similarly for (e).

For (c), the equivalence classes in $X \coprod B$ in Proposition 9 are obviously closed.

For (d), it is convenient to understand "normal" as *not* implying T_1 ; then the Tietze Extension Theorem can be restated as: Y is normal if and only if any map $u: G \to \mathbb{R}$ from a closed subspace G of Y extends to a map $v: Y \to \mathbb{R}$.

Given u, because B is normal, the map $u|(B \cap G)$ extends to a map $v_B: B \to \mathbb{R}$. Now we put $F = g^{-1}(G)$ and work in X. The two maps $v_B \circ f: A \to \mathbb{R}$ and $u \circ (g|F): F \to \mathbb{R}$ agree on $A \cap F$ and so define a map $A \cup F \to \mathbb{R}$. Because X is normal, this extends to a map $v_X: X \to \mathbb{R}$. Since $v_X|A = v_B \circ f$, we find a map $v: Y \to \mathbb{R}$ that satisfies $v \circ g = v_X$ and $v|B = v_B$. By construction, v extends u.

In (f), suppose $r: X \to A$ is a retraction, so that $r|A = id_A$. We define the retraction $s: Y \to B$ by $s \circ g = f \circ r$ and $s|B = id_B$.

In (g), suppose given a homotopy $k_t: B \to Z$ and a map $m_0: Y \to Z$ such that $m_0|B = k_0$. We have a homotopy $k_t \circ f: A \to Z$ and a map $m_0 \circ g: X \to Z$ such that $(m_0 \circ g)|A = m_0 \circ g \circ i = m_0 \circ j \circ f = k_0 \circ f$; by the HEP for (X, A), there is a homotopy $h_t: X \to Z$ such that $h_0 = m_0 \circ g$ and $h_t|A = k_t \circ f$. For each t, define $m_t: Y \to Z$ by $m_t \circ g = h_t$ and $m_t|B = k_t$. By Corollary 8, this is the desired homotopy.

In (h), let $d_t: X \to X$ be a deformation retraction, so that $d_t | A = i$, $d_0 = id_X$, and $d_1 = r$. We use the homotopy $h_t = g \circ d_t: X \to Y$ and the constant homotopy $k_t = j: B \to Y$ to construct $m_t: Y \to Y$, which is a homotopy by Corollary 8. We see that by uniqueness, $m_0 = id_Y$ and $m_1 = s$, the retraction in (f). \Box

Examples of adjunction spaces

1. The **quotient space** X/A is obtained by taking B to be a one-point space. As a set, its points are those of X - A together with one point corresponding to A.

2. The wedge $X \vee Y$ of two spaces X and Y with basepoints x_0 and y_0 is the quotient space $(X \coprod Y)/\{x_0, y_0\}$ obtained from the disjoint union $X \coprod Y$ by identifying the two basepoints. (It is often defined as the subspace $X \times y_0 \cup x_0 \times Y$ of $X \times Y$; it is easy to construct homeomorphisms between these two definitions.)

More generally, one can form the wedge $\bigvee_{\alpha} X_{\alpha}$ of any collection of based spaces (X_{α}, x_{α}) as the quotient space $(\coprod_{\alpha} X_{\alpha})/(\coprod_{\alpha} x_{\alpha})$.

3. The **cone** CX on X is the quotient $(X \times I)/(X \times 0)$. By (e), it contains a copy of X as the image of $X \times 1$.

4. The suspension SX of X is the pushout of $X \times \partial I \subset X \times I$ and the projection $X \times \partial I \to \partial I = \{0, 1\}$. It contains a copy of X as the image of $X \times (1/2)$.

5. The **mapping cylinder** M_f of $f: A \to B$ is obtained by taking $X = A \times I$, with inclusion $A \cong A \times 1 \subset A \times I$. By (h), B is a deformation retract of M_f . Also, by (e), M_f contains a copy of A as the image of $A \times 0$, as well as B.

6. The **mapping cone** C_f of $f: A \to B$ is obtained by taking X = CA, with the inclusion $A \subset CA$, or equivalently as M_f/A (with the help of Proposition 6).

7. If we take $X = D^n$, the closed unit *n*-disk in \mathbb{R}^n , and $A = S^{n-1}$, its boundary sphere, the resulting space $Y = B \cup_f D^n$, commonly written $Y = B \cup_f e^n$, is said to be obtained from *B* by **attaching an** *n*-cell, using the *attaching map* $f: S^{n-1} \to B$. Then $g: (D^n, S^{n-1}) \to (Y, B)$ is called the *characteristic map* of the *n*-cell.

One can attach many n-cells by taking $X = \coprod_{\alpha} D_{\alpha}^{n}$ and $A = \coprod_{\alpha} S_{\alpha}^{n-1}$, using attaching maps $f_{\alpha}: S_{\alpha}^{n-1} \to B$, where each D_{α}^{n} is a copy of D^{n} , with boundary S_{α}^{n-1} .

8. The smash product $X \wedge Y$ is the quotient space $(X \times Y)/(X \vee Y)$.

9. The **join** X * Y is the pushout of $X \times \partial I \times Y \subset X \times I \times Y$ and the map $X \times \partial I \times Y \to X \amalg Y$ formed from the projections $X \times 0 \times Y \to X$ and $X \times 1 \times Y \to Y$.