
Pushouts and Adjunction Spaces
This note augments material in Hatcher, Chapter 0.

Pushouts Given maps i: A → X and f : A → B, we wish to complete the commu-
tative square (a) in a canonical way.
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Definition 2 We call (1)(a) a pushout square if it commutes, j ◦ f = g ◦ i, and is
universal, in the sense that given any space Z and maps h: X → Z and k: B → Z
such that k ◦f = h ◦ i, there exists a unique map m: Y → Z that makes diagram (1)(b)
commute, m ◦ g = h and m ◦ j = k. We then call Y a pushout of i and f .

The good news is that uniqueness of pushouts is automatic.

Proposition 3 Given any maps i and f as in (1)(a), the pushout space Y is unique
up to canonical homeomorphism.

Proof Suppose Y ′, with maps g′: X → Y ′ and j′: B → Y ′, is another pushout. Take
Z = Y ′; we find a map m: Y → Y ′ such that m ◦ g = g′ and m ◦ j = j′. By reversing
the roles of Y and Y ′, we find m′: Y ′ → Y such that m′ ◦ g′ = g and m′ ◦ j′ = j. Then
m′ ◦ m ◦ g = m′ ◦ g′ = g, and similarly m′ ◦ m ◦ j = j. Now take Z = Y , h = g, and
k = j. We have two maps, m′ ◦m: Y → Y and idY : Y → Y , that make diagram (1)(b)
commute; by the uniqueness in Definition 2, m′ ◦ m = idY . Similarly, m ◦ m′ = idY ′ ,
so that m and m′ are inverse homeomorphisms.

However, existence is not automatic; pushouts must be constructed.

Proposition 4 Let i: A → X and f : A → B be any maps. Then there exists a
pushout Y as in Definition 2.

Proof Let ∼ be the smallest equivalence relation on the topological disjoint union
X

∐
B that satisfies i(a) ∼ f(a) for all a ∈ A. [It is the intersection of all equiva-

lence relations on X
∐

B that have this property.] We take Y as the quotient space
(X ∐

B)/ ∼, with quotient map q: X ∐
B → Y , and set g = q|X and j = q|B.

We have commutativity, since for any a ∈ A, g(i(a)) = q(i(a)) = q(f(a)) =
j(f(a)). Given h and k as in diagram (1)(b), we define m̃: X ∐ B → Z by m̃|X = h
and m̃|B = k. Then for any a ∈ A, m̃(i(a)) = h(i(a)) = k(f(a)) = m̃(f(a)). It
follows that m̃ is constant on each equivalence class and hence factors through the
map q: X ∐

B → Y to yield the desired map m: Y → Z. Further, m is unique because
it is required to satisfy m ◦ q = m̃, with m̃ defined as above.

Corollary 5 A subset V ⊂ Y is open (resp. closed) if and only if g−1(V ) is open
(resp. closed) in X and j−1(V ) is open (resp. closed) in B.
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2 Pushouts and Adjunction Spaces

We can stack pushout squares. The proof depends only on the universal property
in Definition 2 and is omitted. (Try it!)

Proposition 6 Suppose given a commutative diagram

X // Y // Z

A

OO

// B

OO

// C

OO

in which ABXY is a pushout square. Then ACXZ is a pushout square if and only
if BCY Z is a pushout square.

Remark The third possible implication fails: if ACXZ and BCY Z are pushout
squares, ABXY need not be one. For a simple example, take A = X = Y = C = Z
to be a point, and B any space with more than one point.

We can also take products.

Proposition 7 If diagram (1)(a) is a pushout square and W is a locally compact
space, then

X ×W
g×id

// Y ×W

A×W

i×id

OO

f×id
// B ×W

j×id

OO

is another pushout square.

Proof This follows from the standard (but non-trivial) topological result that if
q: X ∐

B → Y is a quotient map, so is q × idW : (X ∐
B) × W → Y × W . [This

statement is false without some condition on W .]

Corollary 8 “The pushout of homotopies is a homotopy.” Given the pushout
square (1)(a) and homotopies ht: X → Z and kt: B → Z such that ht ◦ i = kt ◦ f for
all t, define mt: Y → Z by mt ◦ g = ht and mt ◦ j = kt; then mt is a homotopy.

Proof We take W = I in Proposition 7.

Adjunction spaces The bad news about pushouts is that Y , being a quotient
space, is in general poorly behaved. Even if A, B and X are very nice spaces, Y need
not even be Hausdorff. In the construction, it is far from clear what the equivalence
classes in X

∐
B are, or what the points of Y really are.

We shall say no more at this level of generality. From now on, we limit attention
to the following special case.

Proposition 9 In the pushout square (1)(a), if i is a closed embedding, so is j.

Proof Under this hypothesis, it becomes clear what the equivalence classes in X
∐

B
are: they are the singletons {x} for each x ∈ X − A, and the sets i(f−1(b)) ∐{b} for
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Pushouts and Adjunction Spaces 3

each b ∈ B. Thus as a set, Y is the disjoint union of X − A and B; in particular, j
is injective. However, the topology on Y is not the disjoint union topology.

Recall that to prove j is a closed embedding, it is only necessary to show that
j(F ) is closed in Y whenever F is closed in B. Because j is injective, j−1(j(F )) = F
and g−1(j(F )) = i(f−1(F )). By Corollary 5, j(F ) is closed.

Henceforth, we simplify notation by assuming that A and B actually are closed
subspaces of X and Y , and we (usually) suppress i and j. Commutativity is simply
expressed by g|A = f , and we have a map of pairs g: (X, A) → (Y,B). Informally,
we obtain Y from B by gluing X to B along the subspace A of X as directed by the
map f ; we identify each point a ∈ A with its image f(a) ∈ B.

Definition 10 When A ⊂ X is a closed subspace, we call Y an adjunction space
and f : A → B the attaching map. We write Y = B ∪f X (or B tf X in Hatcher).

Example If the subspaces A and B of a space X are both open or both closed, then

A
⊂ // A ∪B

A ∩B

∪

OO

⊂ // B

∪

OO

is a pushout square. This is simply a restatement of the standard result that given a
function f : A ∪B → Y , if f |A and f |B are continuous, then f itself is continuous.

In general (though not always), j inherits properties from i and g from f .

Proposition 11 Assume diagram (1)(a) is an adjunction square with A ⊂ X a
closed subspace. Then:

(a) If A = X, then B = Y ;

(b) g|(X−A): X−A → Y −B is a homeomorphism;

(c) If B and X are T1 spaces, so is Y ;

(d) If B and X are normal spaces, so is Y ;

(e) If F is a closed subspace of X with F ∩ A = ∅, then g|F : F → Y is a closed
embedding;

(f) If A is a retract of X, then B is a retract of Y ;

(g) If (X, A) satisfies the homotopy extension property, so does (Y,B);

(h) If A is a deformation retract of X, then B is a deformation retract of Y .

Proof By now, (a) is trivial.
In (b), the map is obviously a continuous bijection. To see that it is an open map,

take an open set V in X −A; then g(V )∩B = ∅ and g−1(g(V )) = V show that g(V )
is open. Similarly for (e).

For (c), the equivalence classes in X ∐ B in Proposition 9 are obviously closed.
For (d), it is convenient to understand “normal” as not implying T1; then the

Tietze Extension Theorem can be restated as: Y is normal if and only if any map
u: G → R from a closed subspace G of Y extends to a map v: Y → R.
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4 Pushouts and Adjunction Spaces

Given u, because B is normal, the map u|(B ∩ G) extends to a map vB: B →
R. Now we put F = g−1(G) and work in X. The two maps vB ◦ f : A → R and
u ◦ (g|F ): F → R agree on A ∩ F and so define a map A ∪ F → R. Because X is
normal, this extends to a map vX : X → R. Since vX |A = vB ◦ f , we find a map
v: Y → R that satisfies v ◦ g = vX and v|B = vB. By construction, v extends u.

In (f), suppose r: X → A is a retraction, so that r|A = idA. We define the
retraction s: Y → B by s ◦ g = f ◦ r and s|B = idB.

In (g), suppose given a homotopy kt: B → Z and a map m0: Y → Z such that
m0|B = k0. We have a homotopy kt ◦ f : A → Z and a map m0 ◦ g: X → Z such that
(m0 ◦ g)|A = m0 ◦ g ◦ i = m0 ◦ j ◦ f = k0 ◦ f ; by the hep for (X, A), there is a homotopy
ht: X → Z such that h0 = m0 ◦ g and ht|A = kt ◦ f . For each t, define mt: Y → Z by
mt ◦ g = ht and mt|B = kt. By Corollary 8, this is the desired homotopy.

In (h), let dt: X → X be a deformation retraction, so that dt|A = i, d0 = idX ,
and d1 = r. We use the homotopy ht = g ◦ dt: X → Y and the constant homotopy
kt = j: B → Y to construct mt: Y → Y , which is a homotopy by Corollary 8. We see
that by uniqueness, m0 = idY and m1 = s, the retraction in (f).

Examples of adjunction spaces
1. The quotient space X/A is obtained by taking B to be a one-point space.

As a set, its points are those of X − A together with one point corresponding to A.
2. The wedge X ∨ Y of two spaces X and Y with basepoints x0 and y0 is the

quotient space (X ∐ Y )/{x0, y0} obtained from the disjoint union X ∐ Y by identifying
the two basepoints. (It is often defined as the subspace X × y0 ∪ x0 × Y of X × Y ; it
is easy to construct homeomorphisms between these two definitions.)

More generally, one can form the wedge
∨

α Xα of any collection of based spaces
(Xα, xα) as the quotient space (

∐
α Xα)/(

∐
α xα).

3. The cone CX on X is the quotient (X×I)/(X×0). By (e), it contains a copy
of X as the image of X × 1.

4. The suspension SX of X is the pushout of X×∂I ⊂ X×I and the projection
X × ∂I → ∂I = {0, 1}. It contains a copy of X as the image of X × (1/2).

5. The mapping cylinder Mf of f : A → B is obtained by taking X = A × I,
with inclusion A ∼= A× 1 ⊂ A× I. By (h), B is a deformation retract of Mf . Also,
by (e), Mf contains a copy of A as the image of A× 0, as well as B.

6. The mapping cone Cf of f : A → B is obtained by taking X = CA, with the
inclusion A ⊂ CA, or equivalently as Mf/A (with the help of Proposition 6).

7. If we take X = Dn, the closed unit n-disk in Rn, and A = Sn−1, its boundary
sphere, the resulting space Y = B ∪f Dn, commonly written Y = B ∪f en, is said to
be obtained from B by attaching an n-cell, using the attaching map f : Sn−1 → B.
Then g: (Dn, Sn−1) → (Y,B) is called the characteristic map of the n-cell.

One can attach many n-cells by taking X =
∐

α Dn
α and A =

∐
α Sn−1

α , using
attaching maps fα: Sn−1

α → B, where each Dn
α is a copy of Dn, with boundary Sn−1

α .
8. The smash product X ∧ Y is the quotient space (X×Y )/(X ∨ Y ).
9. The join X ∗ Y is the pushout of X × ∂I × Y ⊂ X × I × Y and the map

X×∂I×Y → X ∐ Y formed from the projections X×0×Y → X and X×1×Y → Y .
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