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Convergence of Fourier series

Convergent, i.e.,fy > fas N — co?

N
nm nm

fv(x) :=ap + Z(an co8 X + by sin fx), x€[-L,L]

n=1

> L v —£113 = 0, where |[f[[3 = [, f(x)dx
» Point-wise: fy(x) — f(x) for each x

> Uniform:  max,e_pz [fiv(x) — F(x)] = 0
— Weierstrass test: > 2 | |ax| + |ba| < co = uniform conv.



Convergence of Fourier series

Convergent, i.e.,fy > fas N — co?

n
fao+z a, cos x+b,1smlir), x€[-L,L]

> L% v = £115 — 0, where [[f[[3 = [, f(x)*dx
> Point-wise: fy(x) — f(x) for each x
> Uniform:  max,e_z [fv(x) —f(x)] = 0
— Weierstrass test: > 2 | |ax| + |ba| < co = uniform conv.
A more precise notation (assuming convergence):

NaOJrZ a cos x+b sin n%x) =f(x)

The Fourier coefficient of f (by orthogonality)
= i /fo(x)dx, an = %/fo(X) cos %xdx, by = %/L f(x)sin %xdx

—L
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Piecewise smooth functions

Definition
A function f : [a, b] — R is piecewise continuous(PC) if it is continuous
on [a, b] except jump discontinuous at finitely many points. If both f
and f’ are piecewise continuous, then f is called piecewise smooth
(PS) or piecewise C'.
» PC: may have finitely many jump discontinuity, but f(x~) and
f(xT) exist for all x € [a, D).
» If it is not defined at a jump discontinuity x, set it to be either
) orfx™).
> f satisfies Dirichlet property it is continuous except finitely many

jump discontinuities and [a, b] can be partitioned into a finitely
many intervals s.t. f is monotone in each of them. ( SV p15).
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Are these functions PC or PS? Suppose that x € [—, 7]:

function PC | PS
fi(x) = sin(10x); Yes | Yes
fax) = |x[; Yes | Yes
filx) =73 Yes | No
fa(x) = 10,17 (x) Yes | No
f5(x) = { ln(lli %), 717T§xx§<7r1; No | No
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Periodic extension. If f is defined on [—L, L], then its periodic
extension is

flx+2L), —3L<x< —L;

f =3 f), —L < xL;
f(x—=2L), L<x<3L;

» The end points?
» Example (how to make the extension in a sketch?)
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Theorem (Fourier Convergence Theorem)

Iff is piecewise smooth on [—L, L], then the Fourier series of f
converges to

1. the periodic extension f, at where f is continuous;

2. the average % [f(x™) + f(x")] at where f has a jump discontinuity.
> Setf(Ly) =f((—L)+)and f((—L)) = f(L-) — periodic extension.
» Note: 2 includes 1. Together:

nm

Hx—i—b sin
L " L

x)
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Theorem (Fourier Convergence Theorem)

Iff is piecewise smooth on [—L, L], then the Fourier series of f
converges to

1. the periodic extension f, at where f is continuous;

2. the average % [f(x™) + f(x")] at where f has a jump discontinuity.
> Setf(Ly) =f((—L)+)and f((—L)) = f(L-) — periodic extension.
» Note: 2 includes 1. Together:

1 _ + nm . nm
3 [f(x )+ f(x )] =ap+ ;(an cos —~x + b, sin Tx)
> Proof: use Dirichlet kernel: Dy(x) = 1 + SV cos(nx) = Z20F )

2

Notation: f, periodic extension f , Fourier series (limit) f(x)

Section 3.2 Convergence of Fourier series



Sketch Fourier series Given f. Can we sketch the Fourier series
f =ap+ Y o (a,cos” 58X + by sin “Fx) without knowing a,, b
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Sketch Fourier series Given f. Can we sketch the Fourier series
f =ap+ Y o (a,cos” BEx + b, sin “x) without knowing a,, b,

Yes! A simple application of the (powerful!) Fourier theorem: 3 steps
1. sketch fon [—-L, L]
2. Period extension of f to [—3L, 3L]

3. skecch f: same as f except average at jumps

0, —L<x<L/%
Example: f(x) = {1 L/2 < </L

Section 3.2 Convergence of Fourier series



Sketch Fourier series Given f. Can we sketch the Fourier series
f =ap+ Y o (a,cos” BEx + b, sin “x) without knowing a,, b,

Yes! A simple application of the (powerful!) Fourier theorem: 3 steps
1. sketch fon [—-L, L]

2. Period extension of f to [—3L, 3L]

3. skecch f: same as f except average at jumps

0, —L<x<L/%
Example: f(x) = {1 L/2 < </L

0, x<O0;

Q1: what if unbounded domain? f(x) = {1 >0
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Sketch Fourier series Given f. Can we sketch the Fourier series
f =ap+ Y o (a,cos” BEx + b, sin “x) without knowing a,, b,

Yes! A simple application of the (powerful!) Fourier theorem: 3 steps
1. sketch fon [—-L, L]
2. Period extension of f to [—3L, 3L]

3. skecch f: same as f except average at jumps

0, —L<x<L/%
Example: f(x) = {1 L/2 < </L

Q1: what if unbounded domain? f(x) = (1)7 s %%

Q2: half domain: f(x) defined only for x € [0, L]?

( Recall in HE+BC(Dirichlet/Neumann) + IC: x € [0,L] )
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Fourier sine series

Fourier series of odd functions
When f(x) on [-L,L] is odd: a, =?b, =7

Section 3.3 Fourier cosine and sine series
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Fourier sine series

Fourier series of odd functions
When f(x) on [-L,L] is odd: a, =?b, =7

L L

2

anzi/f(x)cosn—wxdx:()ybnzi/f(x)Sinnj)Cdx:Bn
L J, L L Jo L

fx) ~ Zl by, sin n%x

Fourier sine series: for f(x) on [0, L]

o0
nw
~ Bl’l 51 S
f(x) g sin —-x

n=1

Section 3.3 Fourier cosine and sine series
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Sketch Fourier sine series Given f, sketch the Fourier sine series
f =2, Bysin *Tx without knowing B,?

1. sketch fon [0, L]

2. Odd periodic extension of f to [3L,3L]: f, .,

3. skecch f: same as f,,,, except average at jumps

Section 3.3 Fourier cosine and sine series
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Sketch Fourier sine series Given f, sketch the Fourier sine series
f =2, Bysin *Tx without knowing B,?

1. sketch fon [0, L]

2. Odd periodic extension of f to [3L,3L]: f, .,

3. skecch f: same as f,,, except average at jumps

Example: f(x) = 100, x € [0,L]?
sketch:

Compute B,: B, = %foLf(x) sin “Txdx = 2% fOL sin ZTxdx = 901, 44y

_ 4 1
IOO—ZB,,m i 7?_0 sin %x—i—gsm%x—i— , x€(0,L)

> A series representation for m: 5 = sin Tx + §sin 3Tx+ - forx € (0,L)
atx=5=5=1-3+5+=2,0(-1";

» Equality holds on x € (0,L), butnotatx = 0,x =L

» Discontinuity: £(0) = 0,f(L) = 0, but f(x) = 100

Section 3.3 Fourier cosine and sine series
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Physical example: HE+BC(Dirichlet) + IC: x € [0, L]

Ou = KkOwu, Withx e (0,L),>0
u(0,t) =0,u(L,1) =0
u(x,0) =f(x) =100, xe€(0,L)

Solution: IF
f(x)“=" 3202, By sin "Ex, e o
S B
l/t(x7 t) = ZIBH Sin(fx)e_kum’ z=0 u=100°z=1L ’
n—

» “ =" does not hold! The series f £ fatx=0, x = L.
» Physical meaning?
» numerical approximation |

Section 3.3 Fourier cosine and sine series
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Fourier series computation and the Gibbs Phenomenon

In numerical computation, we can only have finitely many terms.

N
Jx) = fv(x) = ZB” sin n%x

n=1

For f(x) = 100, x € [0, L], what will happen as N — co?

Section 3.3 Fourier cosine and sine series
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Fourier series computation and the Gibbs Phenomenon

In numerical computation, we can only have finitely many terms.

N
Jx) = fv(x) = ZB” sin n%x

n=1
For f(x) = 100, x € [0, L], what will happen as N — co?
» forx € (0,L), fy(x) — f(x)

> fv(0) = f(0) =0, fy(L) = f(L) =0

» Gibbs phenomenon:
overshoot(undershoot) at the jump
discontinuity

Jim 0+ 555) % £(0F) + [F(0) — £(07)] + 0.0895

Section 3.3 Fourier cosine and sine series
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Fourier cosine series

Similar to sine series:
» When f(x) on [-L,L] is EVEN: b, = 0 — Fourier cosine series
» For f(x) on [0,L], even extension — Fourier cosine series

flx) ~ ZA” cos n%x
n=0

» Odd periodic extension to sketch f.

Section 3.3 Fourier cosine and sine series 15



f(x) on (0,L) by both sine and cosine series
Example: f(x) = cos Zx on x € (0,L)

2 [ 2
Sine series: f(x ZB sin fx with B, = L/ cos %xsin n%xdx
0

n=1

Cosine series: f(x) ZA cos Tx with A, =0ifn #2,4, = 1
n=0

Section 3.3 Fourier cosine and sine series
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f(x) on (0,L) by both sine and cosine series
Example: f(x) = cos Zx on x € (0,L)

2 [ 2
Sine series: f(x ZB sin fx with B, = L/ cos %xsin n%xdx
0

n=1

Cosine series: f(x) ZA cos Tx with A, =0ifn #2,4, = 1
n=0

Even and odd parts
£ = foen () + foa(x) = 3 [F(3) +£ (0] + 3 7(0) £ (=)

F(x) = faven(x) + foaa(x) = Cosine series + Sine Series

Section 3.3 Fourier cosine and sine series
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Continuous Fourier Series
What condition on f makes its Fourier series continuous (€ C)?

Let f be piecewise smooth, and denote its Fourier (sine/cosine) series by f.
» Fourier series f € C and f = f on [—L, L] iff f(—~L) = f(L) and f € C;

> Fourier sine series f € Cand f = f on [0, L] iff f(0) = f(L) = 0 and f € C;

> Fourier cosine seties f € Candf =f on [—L,L] iff f € C.

Section 3.3 Fourier cosine and sine series 17
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Section 3.5 Term-by-term Integration

Question: can we exchange the order of the two operations:

Section 3.4 Term-by-term differentiation
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Section 3.5 Term-by-term Integration

Question: can we exchange the order of the two operations:

Motivation: when solving PDE by separation of variables
Ou = KOnu, Withx € (0,L),>0
u(0,¢) =0,u(L,t) =0
u(x,0) =f(x), x€]l0,L]

To be addressed:
» Does the series converge?

>
o0 ? oo
Weget 0y = Kklu
u(x, t) = Z B, sin(%x)e_k”m, n=1 n=l
_ n=1 ? &Ziil :Z;ilat
with B, determined by 20y =2 O

f(x)= 32,2 Busin ‘Fx.

Section 3.4 Term-by-term differentiation
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Example: Consider Fourier Sine series of f(x) = x, x € [0, L]:
» Find the Fourier sine series of f
» Try term by term Diff. (TBTD)

Section 3.4 Term-by-term differentiation
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Example: Consider Fourier Sine series of f(x) = x, x € [0, L]:

» Find the Fourier sine series of f
» Try term by term Diff. (TBTD)

Z )" n%rlx = f, xel0,L)

n=1

TBTD:
cc _» Z 2 n+l nmx
L )

atx = 0: the RHS=2%"" (—1)"*! diverges!
= no TBTD
Q: f(x) = x is such a “good" function. What’s the problem?

Section 3.4 Term-by-term differentiation
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TBTD of Fourier sine series f on [0, L]'f odd; /' even

fPC,f PC Zb sin 2% _F
y 1 nmx
fPC,f"PC fl(x) ~ A0+,,Z:1A cos —~

Section 3.4 Term-by-term differentiation

=)
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TBTD of Fourier sine series f on [0, L]'f odd; /' even

fPC,f PC Zb sin % = F
f PC,f" PC fl(x) ~ A0+ZA cos Zx )
n=1
If TBTD: f(x) ~ Z bn% cos ”Lﬂ, (why?)
n=1
which requires Ap = 0:A, = bn%~

Thus (recall b, = £ fo ) sin 2% xdx)
= [ - %[f(L) O] = f(L)=1(0)

2 L
= i/ f'(x) cos %xdx:
0

Integration by parts: fab udv = uv|i’ - fab vdu if u,v continuous and PS.

Section 3.4 Term-by-term differentiation



TBTD of Fourier sine series f on [0, L]
» f PS = its Fourier sine series converges:

nTx 1

fx) ~ ;b,, sin =~ = - [F) + ()]

» /' PS, = Fourier series of ' converges
if in addition, f continuous: =

70~ ) =70+ 3 | b+ FU11D) (0] cos "7

Theorem: TBTD if f, /" are PS, f continuous and (L) = f(0) = 0.

Section 3.4 Term-by-term differentiation



TBTD of Fourier cosine series f on [0, L]
» f PS = its Fourier sine series converges:

x) ~ Z_;an cos? _! ™) +f()]

2

» /' PS, = Fourier series of ' converges
if in addition, f continuous: = (check it)

> nm nmx

~ — n sm—

L

n=1

Theorem: TBTD if /. /" are PS, f continuous.

Section 3.4 Term-by-term differentiation
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TBTD of Fourier series f on [—L, L]
» f PS = its Fourier series converges:

~a0+ E ancos

nmwx
+ b, sin —

L

» /' PS, = Fourier series of ' converges
if in addition, f continuous: =

fx) ~

1
2

)+

Theorem: TBTD if .,/ are PS, f continuous and f(L) = f(—L).

Section 3.4 Term-by-term differentiation
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Back to PDE:
O = KOyu, Withx € (0,L),t>0

u(0,1) =0,u(L,r) =0
u(x,0) =7(x), xe€][0,L]

We get
nm
= E B, sin(—L x)e Ml

with B, deter_mined by
f(x)=>",2, Bysin "Tx.

To be addressed:
» Does the series converge?

>
(oo} ? (oo}
812 = "faxxz
n=1 n=1
? 8:2 =1 ZZ’L 2
? a)cx Zn 1= Zn:l axx

» for each r: u(x, ) is conti.& d,u PS, BC = TBTD sine series
O.u is conti.& d..u PS = TBTD cosine series

= 8Zn1:2n18

» JuPS = 0>

Section 3.4 Term-by-term differentiation
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Method of eigenfunction expansion (a generalization separation of
variables) Seek solution of the form

oo

u(x, t) = Z a,(t) cos %x + by (1) sin %x,
n=0

» PDE+ BC determines the eigenfunctions to use
» works for equation with source d,u = kO,u + Q(x, 1)
» solve a,(1), b,(t) from the PDE + IC

Section 3.4 Term-by-term differentiation 26



*3.4.9 Consider the heat equation with a known source g(z, t):

Ou _ ka u

ot Oz
Assume that g(z,t) (for each t > 0) is a piecewise smooth function of z.
Also assume that u and Ou/dz are continuous functions of = (for ¢ > 0) and
9%u/8z? and Bu/0t are piecewise smooth. Thus,

+ q(z,t) with u(0,t) =0 and u(L,t) =

u(z,t) = Eb,.(t)sm —

What ordinary differential equation does b,(t) satisfy? Do not solve this
differential equation.

Section 3.4 Term-by-term differentiation
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Section 3.5 Term-by-term Integration
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Section 3.6 Complex form of Fourier series
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