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Solution to the IBVP?

O = kOuu + Q(x,t), withxe (0,L),1>0
u(x,0) = f(x)
BC: u(0,1) = ¢(t), u(L,t) = (1)

Section 2.2: Linearity and Principle of Superposition
Section 2.3: HE with zero boundaries
Section 2.4: HE with other boundary values



Solution to the IBVP?

Ou = kOuu+ Q(x,1), withxe (0,L),r>0

u(x,0) = f(x)
u(0,t) = ¢(t),u(L,t) = (1)
Recall ODEs:
ay” + by +cy =g(x); y(x) = a;y(x1) = S.
Ly

» Step 1: solve the linear equation Ly = 0 = y;(x), y2(x)
» Step 2: find the specific solution Ly = g = y,(x)
= general solution: y = ¢;y; + c2y2 + ys with ¢, ¢, TBD by BC/IC.

Same for PDE? key principles?
linear homogeneous =- Principle of Superposition (PoS)
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Section 2.2: Linearity

Linear operator: for any ¢i,c; € R,
L(ciuy + coup) = e1L(w) + c2L(uz),  Vuy,uy € Dom(L)

Examples: which operator(s) is nonlinear?

A. L =0. B. L =0 — k0,
C. L(u) = O(sin(x)0cu); D. L(u) = Opu + udsu
E. L) =u(x0) F. L(u) = cu(0,1) + c205u(l,1)

Section 2.2: Linearity and Principle of Superposition



Section 2.2: Linearity

Linear operator: for any ¢i,c; € R,
L(ciuy + coup) = e1L(w) + c2L(uz),  Vuy,uy € Dom(L)

Examples: which operator(s) is nonlinear?

A. L =0. B. L =0 — k0,
C. L(u) = O(sin(x)0cu); D. L(u) = Opu + udsu
E. L) =u(x0) F. L(u) = cu(0,1) + c205u(l,1)

Linear homogeneous equation L(u) = f withf =0
otherwise (if f # 0), nonhomogeneous.

» linearity and homogeneity also apply to BC.

Section 2.2: Linearity and Principle of Superposition



Principle of Superposition L linear,

if L(ul) = L(uz) =0, then L(C]Ml + C2M2) =0.
» if u;,u; solve L(u) = 0, then so does cju; + cup
» T/F? L(ul) :fl,L(uz) =fH = L(u1 + uz) =fi+1.

Section 2.2: Linearity and Principle of Superposition



Principle of Superposition L linear,

if L(ul) = L(uz) =0, then L(C]Lt] + Czuz) =0.
» if u;,u; solve L(u) = 0, then so does cju; + cup
» T/F? L(ul) :fl,L(Mz) =fH = L(u1 + uz) =fi+1.

Application: Solution Decomposition. Decompose the solution of

O = KOt + O(x,1), with x € (0,L),t > 0;
IC: u(x,0) = f(x) with x € [0, L],
BC: u(0,7) = ¢(z),u(L,t) = (r) withr>0.

to u(x,t) = v(x,t) + w(x, r) such that

Oy = KOwV, Ow = KOuw + O(x,1),

IC: v(x,0) =f(x), IC: w(x,0) =0,

BC: v(0,7) = 0,v(L,t) = 0. BC: w(0,7) = ¢(¢),u(L,t) = ¢(z).
HomoEg+ HomoBC; HomolC

Section 2.2: Linearity and Principle of Superposition



Application 2. Consider

O = KOy, with x € (0,L),7 > 0;
IC: u(x,0) =f(x) withx € [0,L],
BC: u(0,7) =A,u(L,r) =B witht>0.

The displacement trick:
» Equilibrium solution: uz(x) = A + 7 (B — A).
> Displacement from the equilibrium: v(x,7) = u(x,t) — ug(x).
> We get

Oy = KOV, with x € (0,L),7 > 0;
IC: v(x,0) = f(x) —ug(x) withxe[0,L],
BC: v(0,7) =0,v(L,1) =0 withtr>0.

We will discuss the general Non-homogeneous case in Chapter 8.

Section 2.2: Linearity and Principle of Superposition
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HE:

Section 2.3:

homogeneous IBVP

Ot = KO,

u(x,0) = f(x)
u(0,1) =0,u(L,1) =0

)

equation and BC: linear homogeneous

physical meaning:

1D rod with no sources and both ends immersed at 0°.
How the temperature evolve to Equilibrium?

a first step for general IBVP (from previous slide)
can be solved by method of separation of variables |

HE with zero boundaries



Separation of variables

Seek solutions in the form (Daniel Bernoulli 1700s)
u(x, 1) = ¢(x)G(t)
Reduce PDE to ODEs:

Section 2.3: HE with zero boundaries



Separation of variables

Seek solutions in the form (Daniel Bernoulli 1700s)

u(x, 1) = ¢(x)G(t)

Reduce PDE to ODEs:
O = $(x)G' (1) = kduu = ¢ (x)G(1)

kG(t)  o(x)
» )\ is aconstant TBD

» two ODEs:
In time: G'(f) = = kG(t) =
Inspace: ¢"(x) = —Xp(x) =
» |C: trivial solution when f(x) = 0, u = 0 with G = 0;
otherwise, u(x,0) = G(0)¢(x) = f(x): G(0) TBD
» BC: for non-trivial solution = ¢(0) = ¢(L) =0

Gl(t) ¢H (x) for any x,t )

Section 2.3: HE with zero boundaries



Time dependent ODE
G'(t) = - G(t) = G(1) = G(0)e .

Assume that G(0) > 0,
> A<0:G() T oo
> A=0:
> A>0:

Physical setting: A > 0

Section 2.3: HE with zero boundaries
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Boundary value problem

¢"(x) = =g (x),

Section 2.3: HE with zero boundaries

1



Boundary value problem

¢"(x) = =Ap(x), 6(0) =¢(L) =0

Eigenfunctions: L¢ = A, $(0) = ¢(L) = 0, with L¢ := —¢”

bn(x) = sin(n%x), A, = (”T”

Section 2.3: HE with zero boundaries

)23 n:l723'“

)
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Solution to HE-IBVP:

O = KOw U,

u(x,0) = f(x)
u(0,¢) = 0,u(L,1) =0

Section 2.3: HE with zero boundaries
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Solution to HE-IBVP:

O = KOw U,

u(x,0) = f(x) u(x, 1) = ¢n(x)G,(t) = sin(%x)ef)‘”m
u(0,¢) = 0,u(L,1) =0
PoS:

N
n _ _
E B, sin Tx) MLy u(x, 1) ZB sin( —x Antit

n=1 n=1

> if f(x) = S0_, B,sin(“Tx), uy is a solution
> if f(x) = >, Bysin(“Fx), u is a solution
( convergence of function series: Chp3:Fourier series)

For a general f, how to determine B,?

Section 2.3: HE with zero boundaries
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Solution to HE-IBVP:

O = KOw U,

u(x,0) = f(x) u(x, 1) = ¢n(x)G,(t) = sin(%x)ef)‘”m
u(0,¢) = 0,u(L,1) =0
PoS:

N
n _ _
E B, sin Tx) MLy u(x, 1) ZB sin( —x Antit

n=1 n=1

> if f(x) = S0_, B,sin(“Tx), uy is a solution
> if f(x) = >, Bysin(“Fx), u is a solution
( convergence of function series: Chp3:Fourier series)
For a general f, how to determine B,? Orthogonality

L
/0 sin(" x)sin( T )dx = 5m_,,§

% /()Lf(x) sin(n%x)dx

Section 2.3: HE with zero boundaries 12



Compute B,, Multiply both sides by sin(“*x), and integrate them

/OLf( ) sin( fxdx ZB / sin( x)bln(mx)dx

L
L
= B / s1n2(@x)dx — Bul .
0 L 2
(when can we exchange >°°° and [ ?)
2 L
= Z/O fx) sin(%x)dx

Example: f(x) = 100,

L L
B, = z/ 100 51n(n—7rx)dx e cos(n—ﬂx)
L/ L L ™

200

nm

0 neven:
1 - _ b
=2 (1 = cos(nr)) { 400 odd.

nm

Section 2.3: HE with zero boundaries
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Review of the method: separation of variables (SoV)

PDE B I
&gr + L o+

linear, homo linear, homo

1. linear + homo = PoS

2. SoV: PDE+BC = ODEs
3. Solve EigenvalueP

4. IC = coefficients
(orthogonality | )

5. Conclude solution

Section 2.3: HE with zero boundaries

Ot = KOy,
u(0,1) =0,u(L,t) =0

u(x,0) = f(x)
W _ ¢
RG(t) o)

G(1) = G(0)e .
¢"(x) = =A¢(x), ¢(0) = (L) =0

bn(x) = Sin(%x)v An = (7)277’ 21

oo
u(x,t) = Z B, sin(%x)e_)‘"“’
n=1

L
B, = %/0 F(x) sin(%x)dx

14



Orthogonality
In finite dimensional space: a = (ay,as, . .

albe( Za,b =0
For functions: ¢, 4 € C[0, L] (connection? )

¢ L= (o) = /O d(x)(x)dx =0

Recall {¢,, Ay} with ¢,(x) = sin(“Fx) and A\, = “F solve:

¢"(x) = =Ad(x), 6(0) =¢(L) =0

We have (¢, ¢m) = Sn—n.

Section 2.3: HE with zero boundaries

. 7(1]\]),'2) € RY:

15
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Section 2.4: HE with other boundary values

HE+ BcNeumann, homo + IC

linear homo: = PoS
SoV: u(x,t) = ¢(x)G(r)
Solve EigenvalueP

O = KO,
Ou(0,1) =0,0u(L,t) =0
u(x,0) = f(x)

AR R

Conclude solution

() = Ao+ 3 A 00, () = cos("T)

n=1
limy, o0 u(x, 1) =7

Section 2.4: HE with other boundary values

Determine coefs. by IC/BC.
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From the IC u(x,0) = f(x) and the orthogonality relation:
0 m#n;

L
/cos(n—ﬂx)cos(mx)dxzz L/2 m=n#0;
0 L L

L m=n=0,

we have for A,, ( assuming exchange of >~ = and fOL )

1 L 2 L
Ao:Z/Of(x)dx, Am:Z/Of(x)cos(%x)dx,mzl’z’....

Then as 1 — oo, the solution approaches a steady state:

. Lt
tlg})lo u(x,t) = Ag = i/o f(x)dx.

Section 2.4: HE with other boundary values
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HE in a circular ring
Ou = KOul,
u(L,t) = u(—L,1)
Ou(L,t) = du(—L,1)
u(x, O) :f(x)

linear homo: = PoS

SoV: u(x, 1) = ¢(x)G(t)
Solve EigenvalueP
Determine coefs. by IC/BC.

S S A

Conclude solution

u(x,t) = ap + Z 6_/\"Kt[an¢n(x) + bt (x)]

limy o0 u(x, 1) =7
Section 2.4: HE with other boundary values 19



Summary of boundary value problems for ¢’ = —\¢:

BOUNDARY VALUE PROBLEMS

d¢
—=(0)=0 ¢(-L) = &(L)
"7 Boundary $(0)=0 da:( )
conditions é(L) =0 dep d¢ do
2y = —(=L)=—(L,
Z(=0 D=2
2 2 2
Eigenvalues (%) (n—Z) (%)
An n=1, 2, 3, n=0,1, 2 3, n=0, 1,2 3,..
Ei f ti - . NTT nrT . NTT d T
igenfunctions sin — cos —— sin —— and cos —
&, nw
flz) = Zan cos ——
. " nmx had T 6=0 L
Series flz) = ZB,. sin — | f(z) = ZA" cos ——
n=1 L n=0 el . nmz
+an sin ——
n=1 L
_ 1 L "
. a0 = [0 S de
L a0 == [“1@ ax . .
Coefficients B"=Z/o (=) sin N dz _r e anzzf_Lf(z)coa = dz
" /0 [ eon PR 1 L nre
by = Z/_L](::)ain = dw

Section 2.4: HE with other boundary values
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