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Chapter 4: Wave Equations
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Solution to the IBVP?

Oyt = kOuu + Q(x,t), withxe (0,L),t>0
IC: u(x,0) = f(x), Qu(x,0) = g(x)
BC: u(0,1) = ¢(2),u(L,t) = 9(z)

Section 4.2: Derivation of a vertically vibrating string
Section 4.3: Boundary conditions

Section 4.4: Vibrating string with fixed ends

Section 4.5: Vibrating membrane
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Section 4.2: Derivation of a vertically vibrating string

Consider a vibrating string: ~ The string is on x € [0, ]:
T » Mass density p(x), body force Q(x, 1)

r » Motion is entirely vertical
/W (perfectly elastic string)
» Vertical displacement u(x, ¢): small
Tt
T of .29
= ’

z
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Section 4.2: Derivation of a vertically vibrating string

Consider a vibrating string: ~ The string is on x € [0, ]:
T » Mass density p(x), body force Q(x, 1)

r » Motion is entirely vertical
/W (perfectly elastic string)
» Vertical displacement u(x, ¢): small
Tht) Newton’s Law
. F = ma = p(x) AxOyu

Tamﬁ%ﬁ’@ pi) o

] 2L > F = force+ tension = p(x)AxQ(x, 1)+

L + T(x+ Ax, 1) sinf(x + Ax,t) — T(x, ) sin0(x, 1)

X = p(x)Opu = O[T (x,1) sin O(x, 1)] + p(x)Q
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Section 4.2: Derivation of a vertically vibrating string

Consider a vibrating string: ~ The string is on x € [0, ]:
T » Mass density p(x), body force Q(x, 1)

r » Motion is entirely vertical
/W (perfectly elastic string)
» Vertical displacement u(x, ¢): small
T4t) Newton’s Law
< F=ma= Ax0,
T ﬁj’ 4. fff@ ma = p(x) AxOyu
= ’

F = force+ tension = p(x)AxQ(x, 1)+

7 + T(x+ Ax, 1) sinf(x + Ax,t) — T(x, ) sin0(x, 1)
X = p(x)Opu = O[T (x,1) sin O(x, 1)] + p(x)Q
Note: tangent slope = O,u = tan(x, 1) = j(ij;‘; ~ sind when 6 small |

p(x) O = O[T (x, 1)Oyu] + p(x)Q
If p(x) = po, T(x,1) = Ty and Q(x, ) = 0, then
Ot = 0pu, = ? WAVE equation
0
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p(x)Ouu = ToOpu + p(x)0(x, 1) (4.2.7)
P(x)Oyu = ToOyt

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position ug(z)
if Q(z,t) = —g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(z,t) = u(z,t) — ug(z) satisfies (4.2.9).

Section 4.2: Derivation of a vertically vibrating string
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Section 4.3: Boundary conditions

Question: which massless string is in space (or on earth)?

Equilibrium position
of spring Q

Honey in space (Youtube)

Section 4.3: Boundary conditions


https://www.youtube.com/watch?v=Say3pUbllSA

More interesting: the spring’s base vibrates
> u(0,1) = y(t), u(L,r) =0

» the spring: position y(7) — ys(7),
equilibrium length /

» Newton + Hooke’s laws
m% = —k(y — ys(r) — 1) + force

Section 4.3: Boundary conditions
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Figure 4.3.1 Spring-mass system with a variable support
attached to a stretched string.



More interesting: the spring’s base vibrates v Kl
> u(0,1) = y(t), u(L,r) =0 |
» the spring: position y(7) — ys(7),

equilibrium length /
» Newton + Hooke’s laws

= —k(y—y() — 1)+ force

O

Figure 4.3.1 Spring-mass system with a variable support
attached to a stretched string.

tension: T(0,¢) sin6(0,¢) ~ T(0,7) tan 6(0, ) = T(0,1)0,u(0,1) =
d*u(0, 1)

o = k(0.0) = 3y(0) = 1+ T(0,)0u(0.1) + G()
» when the external force G = mg with ¢ = 0 and small mass m = 0:

k[u(0,1) — ys(t) — ] = T(0,1)05u(0, 1)

= upwards if [u(0,7) — ys(r) — 1] > 0.
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More interesting: the spring’s base vibrates v Kl
> u(0,1) = y(t), u(L,1) =0
» the spring: position y(7) — ys(7),
equilibrium length /
> Newton + Hooke’s laws
mey = —k(y — ys(r) — 1) + force

O

Figure 4.3.1 Spring-mass system with a variable support
attached to a stretched string.

tension: T(0,¢) sin6(0,¢) ~ T(0,7) tan 6(0, ) = T(0,1)0,u(0,1) =
d*u(0, 1)

T - 71([14(0, t) - y.s‘(t) - l] + T(07 t)axu(oa t) + G(t)
» when the external force G = mg with ¢ = 0 and small mass m = 0:
k[u(0,1) — ys(t) — ] = T(0,1)05u(0, 1)
= upwards if [u(0,7) — ys(r) — 1] > 0.

Question: what about right end point u(L, 7)?

Section 4.3: Boundary conditions



Question: which massless string is in space (or on earth)?

F{quilibrium position
of spring Q

Section 4.3: Boundary conditions
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Section 4.4: Vibrating string with fixed ends

How to solve the wave equation IBVP?

Oyt = Ot

u(0,¢) = 0,u(L,1) =0

u(x,0) = f(x), Ou(x,0) = g(x)
Separation of variables

Section 4.4: Vibrating string with fixed ends
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Section 4.4: Vibrating string with fixed ends

How to solve the wave equation IBVP?
Ot = *0eut,
u(0,¢) = 0,u(L,1) =0
u(x,0) = f(x), Ou(x,0) = g(x)
Separation of variables v.s. method of eigenfunction expansion

u(x, 1) = 307 [a, cos "5 4 b, sin 27| sin 27

Is it a solution? conditions for TBTD

Uniqueness of solution?

Section 4.4: Vibrating string with fixed ends
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Section 4.4: Vibrating string with fixed ends

Ot = Oyt
u(0,1) =0,u(L,t) =0
u(x, O) :f(x)a alu(x7 0) = g(x)

n'n’x

Solution: u(x, 1) = >°° [a, cos "T< + by, sin 54 ] sin 27*
Interpretation: musical strlnged instruments
» normal modes of vibration: [a, cos "< + b, sin "] sin "=

» sound intensity (amplitude): /a2 + b2
» circular frequency nrc/L (# of oscillations in 27 unit time)

Section 4.4: Vibrating string with fixed ends
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o0

u(x,1) = Z[an cos %ct + b, sin %Ct] sin ?
n=0
Standing wave: sin “7< sin 7%
Traveling wave: the standing wave = two traveling waves
. nmet . nmx 1 nm 1 nm
sin sin—— = 5 cosf(x—ct) -3 cosf(x+ct)
wave traveling to the right wave traveling to the left

» Recall that: cos(a + 8) = cosacos 8 — sinasin 3
> cos “F(x — ct): wave traveling to the right, with velocity ¢
cos “F (x + ct): wave traveling to the left, with velocity ¢

Standing and traveling wave (Wiki)
Wave equation (Hojun Lee’s simulation)

Section 4.4: Vibrating string with fixed ends
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https://commons.wikimedia.org/w/index.php?curid=39309437
https://www.youtube.com/watch?v=hV4FU_hOvoM

4.4.3. Consider a slightly damped vibrating string that satisfies

d*u 3%u Ou
P ~Togm ~Py:

(a) Briefly explain why 8 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0,t) =0 and u(L,t)=0
and the initial conditions
du
u(z,0) = f(z) and g(z, 0) = g(z).

You can assume that this frictional coefficient 3 is relatively small
(8? < 4n?poTo/L?).

4.4.4. Redo Exercise 4.4.3(b) by the eigenfuncti i hod

Section 4.4: Vibrating string with fixed ends
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Question: Will there be a solution to the IBVP?

Ot = 0 — BOyu
u(0,¢) = 0,u(L,1) =0
u(x, O) :f(x)a a,M(X, 0) = g(x)

Section 4.4: Vibrating string with fixed ends
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Section 4.5: Vibrating membrane

Section 4.5: Vibrating membrane
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Section 4.5: Vibrating membrane

aﬂu = szzu

2D wave equation: V?u = (9 + dyy)u

» The derivation of the equation: similar to the 1D string.
» Boundary treatment (Stokes’ theorem)

//VxBondA:/des

where dA is differential surface area, ds is diff. arc length.

Figure 4.5.1 Perturbed stretched
membrane with approximately constant
tension Tp. The normal vector to the surface
is & and the tangent vector to the edge is .

Section 4.5: Vibrating membrane
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