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Solution to the IBVP?

∂ttu = κ∂xxu + Q(x, t), with x ∈ (0,L), t ≥ 0
IC: u(x, 0) = f (x), ∂tu(x, 0) = g(x)

BC: u(0, t) = φ(t), u(L, t) = ψ(t)
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Section 4.2: Derivation of a vertically vibrating string

Consider a vibrating string:






























































































































































Chg4 WaveEqui Vabrating Strings Membranes

Peroration's

HeatEqu Heatconduction ly Sola
Interpretation's

84.2 Derivation vibrating string
a

Consider a horizontalstring xtco.LT I funit m
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The string is on x ∈ [0,L]:
I Mass density ρ(x), body force Q(x, t)
I Motion is entirely vertical

(perfectly elastic string)
I Vertical displacement u(x, t): small

Newton’s Law
F = ma = ρ(x)∆x∂ttu

F = force+ tension = ρ(x)∆xQ(x, t)+

+ T(x + ∆x, t) sin θ(x + ∆x, t)− T(x, t) sin θ(x, t)

⇒ ρ(x)∂ttu = ∂x[T(x, t) sin θ(x, t)] + ρ(x)Q
Note: tangent slope = ∂xu = tan θ(x, t) = sin θ

cos θ ≈ sin θ when θ small ⇓
ρ(x)∂ttu = ∂x[T(x, t)∂xu] + ρ(x)Q

If ρ(x) ≡ ρ0,T(x, t) ≡ T0 and Q(x, t) = 0, then

∂ttu = c2∂xxu, c2 =
T0

ρ0
WAVE equation
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ρ(x)∂ttu = T0∂xxu + ρ(x)Q(x, t) (4.2.7)

ρ(x)∂ttu = T0∂xxu (4.2.9)

138 Chapter 4. Wave Equation

One-dimensional wave equation. If the only body force per unit mass
is gravity, then Q(x, t) = -g in (4.2.7). In many such situations, this force is small
(relative to the tensile force pog << jTo82u/8x20 and can be neglected. Alterna-
tively, gravity sags the string, and we can calculate the vibrations with respect to
the sagged equilibrium position. In either way we are often led to investigate (4.2.7)
in the case in which Q(x, t) = 0,

82u 82u
Po (x) 8t2

_ To 8x2

or

192U 02U
5j2 Ox2 ,

(4.2.8)

(4.2.9)

where c2 = Tolpo(x). Equation (4.2.9) is called the one-dimensional wave equa-
tion. The notation c2 is introduced because To/po(x) has the dimensions of velocity
squared. We will show that c is a very important velocity. For a uniform string, c
is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x)
if Q(x, t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) - uE(x) satisfies (4.2.9).

4.2.2. Show that c2 has the dimensions of velocity squared.

4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is des-
ignated by a. If its vertical and horizontal displacements are u and v,
respectively, determine its position x and y. Then show that

dy 8u/8a
dx - 1 + 8v/8a'

4.2.4. Derive equations for horizontal and vertical displacements without ignor-
ing v. Assume that the string is perfectly flexible and that the tension is
determined by an experimental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
po, you may assume the tension To is constant, and you may assume small
displacements (with small slopes).

Section 4.2: Derivation of a vertically vibrating string 5
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Section 4.3: Boundary conditions

Question: which massless string is in space (or on earth)?4.3 Boundary Conditions 141

Correct Incorrect

Figure 4.3.2 Boundary conditions for massless spring-mass sys-
tem.

the same sign change we obtained for Newton's law of cooling.
For a vibrating string, another boundary condition that can be discussed is the

free end. It is not literally free. Instead, the end is attached to a frictionless
vertically moving track as before and is free to move up and down. There is no
spring-mass system, nor external forces. However, we can obtain this boundary
condition by taking the limit as k - 0 of either (4.3.6) or (4.3.7):

To 8 (L, t) = 0. (4.3.8)

This says that the vertical component of the tensile force must vanish at the end
since there are no other vertical forces at the end. If the vertical component did
not vanish, the end would have an infinite vertical acceleration. Boundary condi-
tion (4.3.8) is exactly analogous to the insulated boundary condition for the one-
dimensional heat equation.

EXERCISES 4.3
4.3.1. If m = 0, which of the diagrams for the right end shown in Fig. 4.3.3 is

possibly correct? Briefly explain. Assume that the mass can move only
vertically.

Equilibrium position

(a)

of spring -

(b)

Figure 4.3.3

4.3.2. Consider two vibrating strings connected at x = L to a spring-mass system
on a vertical frictionless track as in Fig. 4.3.4. Assume that the spring is

Honey in space (Youtube)

Section 4.3: Boundary conditions 7

https://www.youtube.com/watch?v=Say3pUbllSA


More interesting: the spring’s base vibrates
I u(0, t) = y(t), u(L, t) = 0

I the spring: position y(t)− ys(t),
equilibrium length l

I Newton + Hooke’s laws
m d2y

dt2 = −k(y − ys(t)− l) + force

140 Chapter 4. Wave Equation

Figure 4.3.1 Spring-mass system with a variable support
attached to a stretched string.

and an external force 9(t)) is

mu(0, t) = -k(u(0, t) - y, (t) - 1) +To (0, t+ 9(t).dt2 a
Let us consider some special cases in which there are no external forces on the

mass, g(t) = 0. If, in addition, the mass is sufficiently small so that the forces on
the mass are in balance, then

azTo (0, t) = k(u(0, t) - uE(t)), (4.3.5)

where uE(t) is the equilibrium position of the mass, uE(t) = y,(t) + 1. This form,
known as the nonhomogeneous elastic boundary condition, is exactly analogous
to Newton's law of cooling (with an external temperature of UE(t)) for the heat
equation. If the equilibrium position of the mass coincides with the equilibrium
position of the string, UE(t) = 0, the homogeneous version of the elastic boundary
condition results:

To a7 (0, t) = ku(0, t). (4.3.6)

8u/8x is proportional to u. Since for physical reasons To > 0 and k > 0, the signs in
(4.3.6) are prescribed. This is the same choice of signs that occurs for Newton's law
of cooling. A diagram (Fig. 4.3.2) illustrates both the correct and incorrect choice
of signs. This figure shows that (assuming u = 0 is an equilibrium position for both
string and mass) if u > 0 at x = 0, then 0u/Ox > 0 in order to get a balance of
vertical forces on the massless spring-mass system. A similar argument shows that
there is an important sign change if the elastic boundary condition occurs at x = L:

To Bx
(L, t) = -k(u(L, t) - UE(t)), (4.3.7)

tension: T(0, t) sin θ(0, t) ≈ T(0, t) tan θ(0, t) = T(0, t)∂xu(0, t)⇒

m
d2u(0, t)

dt2 = −k[u(0, t)− ys(t)− l] + T(0, t)∂xu(0, t) + G(t)

I when the external force G = mg with g = 0 and small mass m = 0:

k[u(0, t)− ys(t)− l] = T(0, t)∂xu(0, t)

⇒ upwards if [u(0, t)− ys(t)− l] > 0.

Question: what about right end point u(L, t)?

Section 4.3: Boundary conditions 8
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Correct Incorrect
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tem.

the same sign change we obtained for Newton's law of cooling.
For a vibrating string, another boundary condition that can be discussed is the

free end. It is not literally free. Instead, the end is attached to a frictionless
vertically moving track as before and is free to move up and down. There is no
spring-mass system, nor external forces. However, we can obtain this boundary
condition by taking the limit as k - 0 of either (4.3.6) or (4.3.7):

To 8 (L, t) = 0. (4.3.8)

This says that the vertical component of the tensile force must vanish at the end
since there are no other vertical forces at the end. If the vertical component did
not vanish, the end would have an infinite vertical acceleration. Boundary condi-
tion (4.3.8) is exactly analogous to the insulated boundary condition for the one-
dimensional heat equation.
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4.3.1. If m = 0, which of the diagrams for the right end shown in Fig. 4.3.3 is

possibly correct? Briefly explain. Assume that the mass can move only
vertically.
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of spring -
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Section 4.4: Vibrating string with fixed ends

How to solve the wave equation IBVP?

∂ttu = c2∂xxu,

u(0, t) = 0, u(L, t) = 0
u(x, 0) = f (x), ∂tu(x, 0) = g(x)

Separation of variables

Section 4.4: Vibrating string with fixed ends 11



Section 4.4: Vibrating string with fixed ends

How to solve the wave equation IBVP?

∂ttu = c2∂xxu,

u(0, t) = 0, u(L, t) = 0
u(x, 0) = f (x), ∂tu(x, 0) = g(x)

Separation of variables v.s. method of eigenfunction expansion
u(x, t) =

∑∞
n=0[an cos nπct

L + bn sin nπct
L ] sin nπx

L

Is it a solution? conditions for TBTD

Uniqueness of solution?

Section 4.4: Vibrating string with fixed ends 12



Section 4.4: Vibrating string with fixed ends

∂ttu = c2∂xxu,

u(0, t) = 0, u(L, t) = 0
u(x, 0) = f (x), ∂tu(x, 0) = g(x)

Solution: u(x, t) =
∑∞

n=0[an cos nπct
L + bn sin nπct

L ] sin nπx
L

Interpretation: musical stringed instruments
I normal modes of vibration: [an cos nπct

L + bn sin nπct
L ] sin nπx

L

I sound intensity (amplitude):
√

a2
n + b2

n

I circular frequency nπc/L (# of oscillations in 2π unit time)

Section 4.4: Vibrating string with fixed ends 13



u(x, t) =

∞∑
n=0

[an cos
nπct

L
+ bn sin

nπct
L

] sin
nπx
L

Standing wave: sin nπct
L sin nπx

L
Traveling wave: the standing wave = two traveling waves

sin
nπct

L
sin

nπx
L

=
1
2

cos
nπ
L

(x− ct)︸ ︷︷ ︸
wave traveling to the right

−1
2

cos
nπ
L

(x + ct)︸ ︷︷ ︸
wave traveling to the left

I Recall that: cos(α+ β) = cosα cosβ − sinα sinβ
I cos nπ

L (x− ct): wave traveling to the right, with velocity c
cos nπ

L (x + ct): wave traveling to the left, with velocity c

Standing and traveling wave (Wiki)
Wave equation (Hojun Lee’s simulation)

Section 4.4: Vibrating string with fixed ends 14
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4.4.3. Consider a slightly damped vibrating string that satisfies
211

Po &2 T o - ) 9 -
(a) Briefly explain why /3 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0, t) = 0 and u(L, t) = 0

and the initial conditions

u(x,0) = f(x) and 8t(x,0) = g(x)-

You can assume that this frictional coefficient Q is relatively small
()32 < 4rr2poTo/L2).

4.4.4. Redo Exercise 4.4.3(b) by the eigenfunction expansion method.

4.4.5. Redo Exercise 4.4.3(b) if 4rr2poTo/L2 < p2 < 16rr2poTo/L2.

4.4.6. For (4.4.1)-(4.4.3), from (4.4.11) show that

u(x, t) = R(x - ct) + S(x + ct),

where R and S are some functions.

4.4.7. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially at rest, g(x) = 0,
show that

u(x, t) = I [F(x - ct) + F(x + ct)],

where F(x) is the odd periodic extension of f (x). Hints.

1. For all x, F(x) _ An sin !.
2. sin a cos b = [sin(a + b) + sin(a - b)].

Comment: This result shows that the practical difficulty of summing an
infinite number of terms of a Fourier series may be avoided for the one-
dimensional wave equation.

4.4.8. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially unperturbed, f (x) _
0, with the initial velocity given, show that

Ect
u(x, t) = 1 G(x) dam,

2c t

where G(x) is the odd periodic extension of g(x). Hints:

1. For all x, G(x) _ °O_1 nir-c sin nT

Section 4.4: Vibrating string with fixed ends 15



Question: Will there be a solution to the IBVP?

∂ttu = c2∂xxu− β∂xu

u(0, t) = 0, u(L, t) = 0
u(x, 0) = f (x), ∂tu(x, 0) = g(x)

Section 4.4: Vibrating string with fixed ends 16
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Section 4.5: Vibrating membrane

∂ttu = c2∇2u

2D wave equation: ∇2u = (∂xx + ∂yy)u

I The derivation of the equation: similar to the 1D string.
I Boundary treatment (Stokes’ theorem)∫ ∫

∇× B · ndA =

∫
B · tds

where dA is differential surface area, ds is diff. arc length.
150 Chapter 4. Wave Equation

Figure 4.5.1 Perturbed stretched
membrane with approximately constant
tension To. The normal vector to the surface
is fi and the tangent vector to the edge is L.

some of the details we discussed for a vibrating string. We again introduce the dis-
placement z = u(x, y, t), which depends on x, y and t (as illustrated in Fig. 4.5.1).
If all slopes (i.e., au/ax and au/ay) are small, then as an approximation we may
assume that the vibrations are entirely vertical and the tension is approximately
constant. Then the mass density (mass per unit surface area), po(x, y), of the mem-
brane in the unperturbed position does not change appreciably when the membrane
is perturbed.

The tensile force (per unit arc length), FT, is tangent to the membrane and acts
along the entire edge. The direction of the tensile force (see Fig. 4.5.1) is obtained
by crossing the unit tangent vector to the edge, t, with the unit normal vector to
the membrane, f1. Since the tensile force has constant magnitude (IFTI = To), it
follows that

FT = Toi X A,
where the vertical component is obtained by FT F. k.

Newton's law for vertical motion must be applied to each differential section of
the membrane and then summed (integrated). The sum (surface integral) of the
mass (po dA) times the vertical acceleration (&U'7&2) equals the total (closed line
integral) vertical tensile force (ignoring body forces)

PO ate dA = To£x fi k da = /To(fl x da, (4.5.2)if
2

where ds is the differential arc length, dA is differential surface area, and the vector
triple product relation has been used (A x B C = B x C C. A). Stokes' theorem
(ff V x B n dA = f B t ds), will be applied (for the only time in this text):

if
a2upo2 dA = JJT0(V x (n x dA. (4.5.3)

Since the region is arbitrary, we derive

Z =
PO To[Vx (Axk)]'_ )n. (4-5.4)

A point on the membrane is described by z = u(x, y). Thus, the unit normal to
the vibrating membrane (using the gradient; see Appendix to Sec. 1.5) is calculated
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