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Section 1.2: Conduction of heat
How does heat “move”’?

Consider the thermal energy in an ideal 1D rod:

g ¢(::QO )¢(:+A:t) ) l :y
z

T T+ Az

Figure 1.2.1 One-dimensional rod with heat energy flowing into
and out of a thin slice.

» ¢(x,t) = Heat flux ( energy per unit time flowing per unit surface area)
A
> Total energy in a slice (x,x + Ax): [ e(z,1)dz

eot) = ulx1) clx)px) (1)
S~—~— e
Energy density =~ Temperature

— ¢(x) = heat capacity energy per unit mass to raise the temperature 1 unit
— p(x) = mass density

» Conservation law: total energy = flow in — out + generated

= study heat conduction via temperature evolution
Section 1.2: Conduction of heat



Section 1.2: Conduction of heat
How does heat “move”?
Conservation of energy (rate of change in-time in (x,x + Ax))

total energy = flow in — out + generated (2)
d x+Ax

x+Ax
o e(z,t)dz = ¢(x,1) — d(x + Ax, 1) + / O(z,t)dz  (3)

Ax — 0, (Recall FTC: 2 [ f(y)dy — f(x) for f € C([x, x + b]))

X

Ore = —0cd + Q(x, 1) (4)
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Section 1.2: Conduction of heat
How does heat “move”?

Conservation of energy (rate of change in-time in (x,x + Ax))
total energy = flow in — out 4 generated (2)

d x+Ax

x+Ax
o e(z,t)dz = ¢(x,1) — d(x + Ax, 1) + / O(z,t)dz  (3)

Ax — 0, (Recall FTC: 2 [ f(y)dy — f(x) for f € C([x, x + b]))

Oe = =0, + Q(x, t) (4)

Recall e(x, ) = u(x, 1)c(x)p(x), and
Fourier’s law: ¢ = —K(O,u [i.e., the heat flow depends linearly on ]

| Que()p(x) = Koduatt + O(x.1) |

K- no source Q = 0; then
0P0

Heat Equation:

If uniform rod: c(x) = ¢y, p(x) = py — £ =
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Heat/Diffusion Equation:

Diffusion: spread of heat/chemical/...
» diffusion of heat

— u(x,t) temperature;  thermal diffusivity
— Conservation of energy; Fourier’s law

Section 1.2: Conduction of heat
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Heat/Diffusion Equation:

Diffusion: spread of heat/chemical/...
» diffusion of heat
— u(x, 1) temperature; « thermal diffusivity
— Conservation of energy; Fourier’s law
» diffusion of chemicals (perfumes or pullutants)

— u(x, ) concentration density; x chemical diffusivity;
— Conservation of mass; Fick’s law

< D e € e
? =) =5 > —_—
W = =
S b b
Diffusion

Reading: Diffusion (wiki); Brownian motion (Wiki)
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Initial and boundary conditions

Heat Equation:

Any solution to it?
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Initial and boundary conditions

Heat Equation:

Any solution to it? Infinitely many

>
Constant

Linear in x

Gaussian density

Section 1.3: Initial boundary conditions

up(x, 1) = 1
up(x,t) = x
1 2
’t = T
up(x, 1) 271_\ﬂe



Initial and boundary conditions

Heat Equation:

Any solution to it? Infinitely many

>
Constant up(x,1) = 1
Linear in x up(x,t) = x
1 2
Gaussian densit X, 1) = e
y  w(x1) i

» Any linear combination of those (principle of superposition)
u(x,t) = coup + cruq + coug,

for any constant ¢y, cy,c; € R
To determine a solution, need to specify initial boundary conditions
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Initial and boundary conditions

Heat Equation:

How many initial boundary conditions do we need?

Recall ODE: for t > 1,
> V() =f,1), with y(t) = yo;

k .
> Gy =fyW, L yE ), with y(t), Y (1), - -y (10);
(Exe: what condition do we need on the k-ICs? How about IBVP? )
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Initial and boundary conditions

Heat Equation:

How many initial boundary conditions do we need?

Recall ODE: for t > 1,
> V() =f,1), with y(t) = yo;

k .
> Gy =fyW, L yE ), with y(t), Y (1), - -y (10);
(Exe: what condition do we need on the k-ICs? How about IBVP? )

Domain of equation
t>ty,x €D, withD =R orD = (0,L).
Initial condition for HE
u(x,fp) =f(x), forallx e D

» when D = R?: IC determines the solution
» when D = (0,L): need Boundary conditions

Section 1.3: Initial boundary conditions



IVBP

Heat equation on a bounded interval
Ou = kOuu, Withxe (0,L),t>0
Initial condition u(x,0) = f(x),x € [0, L]

Boundary conditions boundaries x = 0,x =L

Dirichlet  u(0,7) = ¢(1),u(L,1) = 1(r) prescribed tempt.
Neumann 9.u(0,1) = ¢(¢),Ou(L,t) = ¢(r) heat flux

Ou(0,1) = Ou(L,1) =0 insulated bd
Robin a1 0xu(0,1) + aou(0,1) = ¢(1) Newton’s law of cooling
mixed b1Osu(L,t) + bou(L,t) = (1)

Exe: read Section 1.3.

Section 1.3: Initial boundary conditions
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Equilibrium Temperature Distribution

Q: What is Equilibrium and why?

The steady state; a state of rest or balance due to equal action of opposing forces.

Recall ODE: y’ = f(y), how to find its equilibrium? Stability?

Reading for fun: Equilibrium of dynamics systems

Section 1.4: Equilibrium 11
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1. Prescribed Temperature Consider the IBVP
Ou = kOuu, Withxe (0,L),t>0
u(x,0) = f(x)
u(0,1) = (1), u(L, 1) = (1)
At equilibrium: 0 = 0, u(0,7) = ¢(t) = Ty, u(L,t) = P(t) = T»:
axxﬁ =0,
u0)=T,u(l) =T
A 2nd order ODE! (What about the IC?)
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1. Prescribed Temperature Consider the IBVP
Ou = kOuu, Withxe (0,L),t>0
u(x,0) = f(x)
u(0,1) = (1), u(L, 1) = (1)
At equilibrium: 0 = 0, u(0,7) = ¢(t) = Ty, u(L,t) = P(t) = T»:
axxﬁ =0,
u0)=T,u(l) =T
A 2nd order ODE! (What about the IC?)

Solution: u(z)
T
- T, —T
u(x) =T + 2 7 Ly. T,
z=0 r=1L

Approach to equilibrium

tl_l}Holo u(t,x) = u(x).

Section 1.4: Equilibrium
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2. Insulated BC

Ou = KOuu, Withxe (0,L),1>0

u(x,0) = f(x)
Owu(0,1) = 0,0u(L,t) =0

At equilibrium:

Section 1.4: Equilibrium 13



2. Insulated BC

Ou = KOuu, Withxe (0,L),1>0

u(x,0) = f(x)
Owu(0,1) = 0,0u(L,t) =0

At equilibrium:

Solution:

Figure?
Arbitrary C? J

Section 1.4: Equilibrium
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3. Mixed BC

Ou = KOuu, Withxe (0,L),1>0

u(x, 0) = f(x)
u(0,1) = T,u(L,t) + Owu(L,t) =0

At equilibrium: d,u = 0,%(0) = T,u(L) + d,u(L) = 0.
Solution:

) Figure?

Section 1.4: Equilibrium 14



Exel.4.11
1.4.11. Suppose 8¢ = &% +z, u(z,0) = f(z), 32(0,t) = B, L(L,t) ="T.

(a) Calculate the total thermal energy in the one-dimensional rod (as a
function of time).

(b) From part (a), determine a value of 3 for which an equilibrium exists.
For this value of 3, determine tlinano u(z,t).

Section 1.4: Equilibrium
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Heat equation in 2D and 3D:
cpdu=V- (KoVu) +Q, x€DCR?

Sketch of derivation:
1. Energy Conservation Law:

Rate of change of energy = Flow in — out + Generated (per unit time) ‘

& )] coav = gpa-nas+ [[f eav.
R AR R

where A = (A, Ay, A;) is a vector-valued function.
2. Gauss’ Divergence theorem:

/V//(V~A)dV:#A-ndS

v

3. Fick’s law: A = —K,Vu.
FTC: taking R = B.(x) with ¢ — 0.

Section 1.5 Heat equation in 2D and 3D 17



Heat equation:
cpdu =V- (KoVu) +Q, x€DCR?

IBVP: with initial and boundary conditions
Laplace’s equation (potential equation)

Vu = 0.
Poisson’s equation

Viu=f (eg., f= Q

cpKo

).

Section 1.5 Heat equation in 2D and 3D 18



Heat equation:

cpdu =V- (KoVu) +Q, x€DCR?

IBVP: with initial and boundary conditions
Laplace’s equation (potential equation)

Vu = 0.
Poisson’s equation
Viu=f (eg., f=

Polar and cylindrical coordinates

Q
cpKo

).

x=rcosf; y=rsinf, z=z
1 1 2 2
V2 3] < 8u> u  Ou

“rar\ar) TR T a2
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Heat equation:
cpdu =V- (KoVu) +Q, x€DCR?

IBVP: with initial and boundary conditions
Laplace’s equation (potential equation)

Vu = 0.
Poisson’s equation

Viu=f (eg., f=

Polar and cylindrical coordinates

Q
cpKo

).

x=rcosf; y=rsinf, z=z
V2 10 < 8u> 1 0%u  u

“rar\ar) TR T a2

Spherical coordinates
x=psingcosl; y=psingsinfd, z=pcoseo
10 Ou 1 0 Ju 1 0u
2, 1 O [ ,0U I A ey o) L ogu
Viu= p* 9p <p 0p> T s 96 (Sln¢5¢> T P sin? g 06
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1.2.9. Consider a thin one-dimensional rod without sources of thermal energy
whose lateral surface area is not insulated.

(a) Assume that the heat energy flowing out of the lateral sides per unit
surface area per unit time is w(z,t). Derive the partial differential
equation for the temperature u(z,t).

(b) Assume that w(z,t) is proportional to the temperature difference be-
tween the rod u(z, t) and a known outside temperature ~(z,t). Derive
that

=2 (m,g;)-§[u<z.t>-7<:,znh<z>, (1.2.15)

where h(z) is a positive z-dependent proportlona.lny, P is the lateral
perimeter, and A is the cross-sectional area.

(c) Compare (1.2.15) to the ion for a di ional rod whose
lateral surfaces are insulated, but with heat sources.

(d) Specialize (1.2.15) to a rod of circular cross section with constant ther-
mal properties and 0° outside temperature.

wixt) + t 4
Q ¢(zﬁO ) #(z + Az, t)J
z T+ Az
Part(a): total energy = flow in-out + generated (Q = 0)
d x+Ax x+Ax
% E(Z, t)dZA = A[d)(xa t) - QZ/)()C + AX, t)} —-P W(Zv t)dZ
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A problem is well-posed when it possesses the following properties:
1. Existence: There exists at least one solution;
2. Uniqueness: There exists at most one solution;

3. Continuity: The solution depends continuously on the data
(IC/BC/parameters).

Examples of PDEs:
1. Heat equation or diffusion: u, — kAu = 0;
2. Laplace’s or potential equation: Au = 0;
3. Wave equation:
Uy — 2 Au = 0;

4. Fisher’s equation:
u, — kAu = cu(p — u);
5. Burgers equation:

u; + cuu, = 0.

Section 1.5 Heat equation in 2D and 3D
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