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Preface

Mathematical objects of a certain sophistication are frequently accompanied by higher homotopical
structures: Maps between themmight be connected by homotopies that witness the weak commutativity
of diagrams, which might then be connected by higher homotopies expressing coherence conditions
among these witnesses, which might then be connected by even higher homotopies ad infinitum. The
natural habitat for such mathematical objects is not an ordinary 1-category but instead an∞-category
or, more precisely, an (∞, 1)-category, with the index “1” referring to the fact that the morphisms above
the lowest dimension – the homotopies just discussed – are weakly invertible.

Here the homotopies defining the higher morphisms of an∞-category are to be regarded as data
rather than as mere witnesses to an equivalence relation borne by the 1-dimensional morphisms. This
shift in perspective is illustrated by the relationship between two algebraic invariants of a topological
space: the fundamental groupoid, an ordinary 1-category, and the fundamental ∞-groupoid, an ∞-
category in which all of the morphisms are weakly invertible. The objects in both cases are the points of
the ambient topological space, but in the former, the 1-morphisms are homotopy classes of paths, while
in the latter, the 1-morphisms are the paths themselves and the 2-morphisms are explicit endpoint-
preserving homotopies. To encompass examples such as these, all of the categorical structures in an
∞-category are weak. Even at the base level of 1-morphisms, composition is not necessarily uniquely
defined but is instead witnessed by a 2-morphism and associative up to a 3-morphism whose boundary
data involves specified 2-morphism witnesses. Thus, diagrams valued in an∞-category cannot be said
to commute on the nose but are instead interpreted as homotopy coherent, with explicitly specified higher
data.

A fundamental challenge in defining∞-categories has to do with giving a precise mathematical
meaning of this notion of a weak composition law, not just for the 1-morphisms but also for the mor-
phisms in higher dimensions. Indeed, there is a sense in which our traditional set-based foundations for
mathematics are not really suitable for reasoning about∞-categories: Sets do not feature prominently
in ∞-categorical data, especially when ∞-categories are considered in a morally correct fashion as
objects that are only well-defined up to equivalence. When considered up to equivalence,∞-categories,
like ordinary categories, do not have a well-defined set of objects. In addition, the morphisms between
a fixed pair of objects in an∞-category assemble into an∞-groupoid, which describes a well-defined
homotopy type, though not a well-defined space.¹

Precision is achieved through a variety of models of (∞, 1)-categories, which are Bourbaki-style
mathematical structures that represent infinite-dimensional categories with a weak composition law
in which all morphisms above dimension 1 are weakly invertible. In order of appearance, these include
simplicial categories, quasi-categories (née weak Kan complexes), relative categories, Segal categories, complete
Segal spaces, and 1-complicial sets (née saturated 1-trivial weak complicial sets), each of which comes with an
associated array of naturally occurring examples. The proliferation of models of (∞, 1)-categories begs

¹Grothendieck’s homotopy hypothesis posits that∞-groupoids up to equivalence correspond to homotopy types.
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the question of how they might be compared. In the first decades of the twenty-first century, Julia
Bergner, André Joyal and Myles Tierney, Dominic Verity, Jacob Lurie, and Clark Barwick and Daniel
Kan built various bridges that prove that each of the models listed above “has the same homotopy
theory” in the sense of defining the fibrant objects in Quillen equivalent model categories.²

In parallel with the development ofmodels of (∞, 1)-categories and the construction of comparisons
between them, Joyal pioneered and Lurie andmany others expanded a wildly successful project to extend
basic category theory from ordinary 1-categories to (∞, 1)-categories modeled as quasi-categories in
such a way that the new quasi-categorical notions restrict along the standard embedding 𝒞𝑎𝑡 ↪ 𝒬𝒞𝑎𝑡
to the classical 1-categorical concepts. A natural question is then, does this work extend to other
models of (∞, 1)-categories? And to what extent are basic ∞-categorical notions invariant under
change of model? For instance, (∞, 1)-categories of manifolds are most naturally constructed as
complete Segal spaces, so Kazhdan–Varshavsky [65], Boavida de Brito [34], and Rasekh [95, 96, 98]
have recently endeavored to redevelop some of the category theory of quasi-categories using complete
Segal spaces instead in order to have direct access to constructions and definitions that had previously
been introduced only in the quasi-categorical model.

For practical, aesthetic, and moral reasons, the ultimate desire of practitioners is to work “model
independently,” meaning that theorems proven with any of the models of (∞, 1)-categories would apply
to them all, with the technical details inherent to any particular model never entering the discussion.
Since all models of (∞, 1)-categories “have the same homotopy theory,” the general consensus is that
the choice of model should not matter greatly, but one obstacle to proving results of this kind is
that, to a large extent, precise versions of the categorical definitions that have been established for
quasi-categories had not been given for the other models. In cases where comparable definitions do
exist in different models, an ad hoc heuristic proof of model invariance of the categorical notion in
question can typically be supplied, with details to be filled in by experts fluent in the combinatorics of
each model, but it would be more reassuring to have a systematic method of comparing the category
theory of (∞, 1)-categories in different models via arguments that are somewhat closer to the ground.

Aims

In this text we develop the theory of∞-categories from first principles in a model independent
fashion using a common axiomatic framework that is satisfied by a variety of models. In contrast with
prior “analytic” treatments of the theory of∞-categories – in which the central categorical notions are
defined in reference to the coordinates of a particular model – our approach is “synthetic,” proceeding
from definitions that can be interpreted simultaneously in many models to which our proofs then
apply. While synthetic, our work is not schematic or hand-wavy, with the details of how to make things
fully precise left to “the experts” and turtles all the way down.³ Rather, we prove our theorems starting
from a short list of clearly enumerated axioms, and our conclusions are thus valid in any model of
∞-categories satisfying these axioms.

²A recent book by Bergner surveys all but the last of these models and their interrelationships [14]. For a more
whirlwind tour, see [24].

³A less rigorous “model independent” presentation of∞-category theory might confront a problem of infinite regress,
since infinite-dimensional categories are themselves the objects of an ambient infinite-dimensional category, and in de-
veloping the theory of the former one is tempted to use the theory of the latter. We avoid this problem by using a very
concrete model for the ambient (∞, 2)-category of ∞-categories that arises frequently in practice and is designed to fa-
cilitate relatively simple proofs. While the theory of (∞, 2)-categories remains in its infancy, we are content to cut the
Gordian knot in this way.
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The synthetic theory is developed in any∞-cosmos, which axiomatizes the universe in which∞-
categories live as objects. So that our theorem statements suggest their natural interpretation, we
recast∞-category as a technical term, to mean an object in some (typically fixed)∞-cosmos. Several
common models of (∞, 1)-categories⁴ are∞-categories in this sense, but our∞-categories also include
certain models of (∞, 𝑛)-categories⁵ as well as fibered versions of all of the above. Thus each of these
objects are∞-categories in our sense and our theorems apply to all of them.⁶ This usage of the term
“∞-categories” is meant to interpolate between the classical one, which refers to any variety of weak
infinite-dimensional categories, and the common one, which is often taken to mean quasi-categories or
complete Segal spaces.

Much of the development of the theory of∞-categories takes place not in the full∞-cosmos but
in a quotient that we call the homotopy 2-category, the name chosen because an∞-cosmos is something
like a category of fibrant objects in an enriched model category and the homotopy 2-category is then a
categorification of its homotopy category. The homotopy 2-category is a strict 2-category – like the
2-category of categories, functors, and natural transformations⁷ – and in this way the foundational
proofs in the theory of∞-categories closely resemble the classical foundations of ordinary category
theory except that the universal properties they characterize, e.g., when a functor between∞-categories
defines a cartesian fibration, are slightly weaker than in the familiar case of strict 1-categories.

There are many alternate choices we could have made in selecting the axioms of an∞-cosmos. One
of our guiding principles, admittedly somewhat contrary to the setting of homotopical higher category
theory, was to allow us to work as strictly as possible, with the aim of shortening and simplifying
proofs. As a consequence of these choices, the ∞-categories in an ∞-cosmos and the functors and
natural transformations between them assemble into a 2-category rather than a bicategory. To help us
achieve this counterintuitive strictness, each∞-cosmos comes with a specified class of maps between
∞-categories called isofibrations. The isofibrations have no homotopy-theoretic meaning, as any functor
between∞-categories is equivalent to an isofibration with the same codomain. However, isofibrations
permit us to consider strictly commutative diagrams between∞-categories and allow us to require
that the limits of such diagrams satisfy a universal property up to simplicially enriched isomorphism.
Neither feature is essential for the development of∞-category theory. Similar proofs carry through to
a weaker setting, at the cost of more time spent considering coherence of higher cells.

In Part I, we define and develop the notions of equivalence and adjunction between∞-categories,
limits and colimits in∞-categories, and cartesian and cocartesian fibrations and their discrete variants,
for which we prove a version of the Yoneda lemma. The majority of these results are developed from
the comfort of the homotopy 2-category. In an interlude, we digress into abstract∞-cosmology to give
a more careful account of the full class of limit constructions present in any∞-cosmos. This analysis

⁴Quasi-categories, complete Segal spaces, Segal categories, and 1-complicial sets (naturally marked quasi-categories)
all define the∞-categories in an∞-cosmos.

⁵𝑛-quasi-categories, Θ𝑛-spaces, iterated complete Segal spaces, and 𝑛-complicial sets also define the ∞-categories in
an∞-cosmos, as do saturated (née weak) complicial sets, a model for (∞,∞)-categories.

⁶There is a sense, however, in which many of our definitions are optimized for those ∞-cosmoi whose objects are
(∞, 1)-categories. A good illustration is provided by the notion of discrete∞-category introduced in Definition 1.2.26. In
the∞-cosmoi of (∞, 1)-categories, the discrete∞-categories are the∞-groupoids. While this is not true for the∞-cosmoi
of (∞, 𝑛)-categories, we nevertheless put this concept to use in certain exotic∞-cosmoi (see, for instance, Definition 7.4.1).

⁷In fact this is another special case: there is an ∞-cosmos whose objects are ordinary categories and its homotopy
2-category is the usual category of categories, functors, and natural transformations. This 2-category is as old as category
theory itself, introduced in Eilenberg and Mac Lane’s foundational paper [42].
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is used to develop further examples of∞-cosmoi, whose objects are pointed∞-categories, or stable
∞-categories, or cartesian or cocartesian fibrations in a given∞-cosmos.⁸

What is missing from this basic account of the category theory of ∞-categories is a satisfactory
treatment of the “hom” bifunctor associated to an ∞-category, which is the prototypical example
of what we call a module. An instructive exercise for a neophyte is the challenge of defining the ∞-
groupoid-valued hom bifunctor in a preferred model. What is edifying is to learn that this construction,
so fundamental to ordinary category theory, is prohibitively difficult.⁹ In our axiomatization, any∞-
category in an∞-cosmos has an associated∞-category of arrows, equipped with domain and codomain
projection functors that respectively define cartesian and cocartesian fibrations in a compatible manner.
Such modules, which themselves assemble into an∞-cosmos, provide a convenient vehicle for encoding
universal properties as fibered equivalences. In Part II, we develop the calculus of modules between
∞-categories and apply this to define and study pointwise Kan extensions. This will give us an
opportunity to repackage universal properties proven in Part I as part of the “formal category theory”
of∞-categories.

This work is all “model-agnostic” in the sense of being blind to details about the specifications
of any particular ∞-cosmos. In Part III we prove that the category theory of ∞-categories is also
“model independent” in a precise sense: all categorical notions are preserved, reflected, and created
by any “change-of-model” functor that defines what we call a cosmological biequivalence. This model
independence theorem is stronger than our axiomatic framework might initially suggest in that it also
allows us to transfer theorems proven using analytic techniques to all biequivalent ∞-cosmoi. For
instance, the four∞-cosmoi whose objects model (∞, 1)-categories are all biequivalent.¹⁰ It follows
that the analytically-proven theorems about quasi-categories from [78] hold for complete Segal spaces,
and vice versa. We conclude with several applications of this transfer principle. For instance, in the
∞-cosmoi whose objects are (∞, 1)-categories, we demonstrate that various universal properties are
“pointwise-determined” by first proving these results for quasi-categories using analytical techniques
and then appealing to model independence to extend these results to biequivalent∞-cosmoi.

The question of the model invariance of statements about ∞-categories is more subtle than
one might expect. When passing an ∞-category from one model to another and then back, the
resulting object is typically equivalent but not identical to the original, and certain “evil” properties
of∞-categories fail to be invariant under equivalence: the assertion that an∞-category has a single
object is a famous example. A key advantage to our systematic approach to understanding the model
independence of∞-category theory is that it allows us to introduce a formal language and prove that
statement about∞-categories expressible in that language are model independent. This builds on work
of Makkai that resolves a similar question about the invariance of properties of a 2-category under
biequivalence [82].

Regrettably, space considerations have prevented us from exploring the homotopy coherent struc-
tures present in an ∞-cosmos. For instance, a companion paper [109] proves that any adjunction

⁸The impatient reader could skip this interlude and take on faith that any∞-cosmos begets various other∞ without
compromising their understanding of what follows – though they would miss out on some fun.

⁹Experts in quasi-category theory know to use Lurie’s straightening–unstraightening construction [78, 2.2.1.2] or Cisin-
ski’s universal left fibration [28, 5.2.8] and the twisted arrow quasi-category.

¹⁰A closely related observation is that the Quillen equivalences between quasi-categories, complete Segal spaces, and
Segal categories constructed by Joyal and Tierney in [64] can be understood as equivalences of (∞, 2)-categories not just
of (∞, 1)-categories by making judicious choices of simplicial enrichments (see §E.2).
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between∞-categories in an∞-cosmos extends homotopically uniquely to a homotopy coherent ad-
junction and presents a monadicity theorem for homotopy coherent monads as a mechanism for
∞-categorical universal algebra. The formal theory of homotopy coherent monads is extended further
by Sulyma [124] who develops the corresponding theory of monadic and comonadic descent and
Zaganidis [133] who defines and studies homotopy coherent monad maps. Another casualty of space
limitations is an exploration of a “macrocosm principle” for cartesian fibrations, which proves that the
codomain projection functor from the∞-cosmos of cartesian fibrations to the base∞-cosmos defines
a “cartesian fibration of ∞-cosmoi” in a suitable sense [111]. We hope to return to these topics in a
sequel.

The ideal reader might already have some acquaintance with enriched category theory, 2-category
theory, and abstract homotopy theory so that the constructions and proofs with antecedents in these
traditions will be familiar. Because∞-categories are of interest to mathematicians with a wide variety
of backgrounds, we review all of the material we need on each of these topics in Appendices A, B, and
C, respectively. Some basic facts about quasi-categories first proven by Joyal are needed to establish
the corresponding features of general∞-cosmoi in Chapter 1. We state these results in §1.1 but defer
the proofs that require lengthy combinatorial digressions to Appendix D, where we also introduce
𝑛-complicial sets, a model of (∞, 𝑛)-categories for any 0 ≤ 𝑛 ≤ ∞. The examples of ∞-cosmoi that
appear “in the wild” can be found in Appendix E, where we also present general techniques that the
reader might use to find∞-cosmoi of their own. The final appendix addresses a crucial bit of unfinished
business. Importantly, the synthetic theory developed in the ∞-cosmos of quasi-categories is fully
compatible with the analytic theory developed by Joyal, Lurie, and many others. This is the subject of
Appendix F.

We close with the obligatory disclaimer on sizes. To apply the theory developed here to the ∞-
categories of greatest interest, one should consider three infinite inaccessible cardinals 𝛼 < 𝛽 < 𝛾,
as is the common convention [4, 2]. Colloquially, 𝛼-small categories might be called “small,” while
𝛽-small categories are the default size for∞-categories. For example, the∞-categories of (small) spaces,
chain complexes of (small) abelian groups, or (small) homotopy coherent diagrams are all 𝛽-small.
These normal-sized ∞-categories are then the objects of an ∞-cosmos that is 𝛾-small – “large” in
colloquial terms. Of course, if one is only interested in small simplicial sets, then the ∞-cosmos of
small quasi-categories is 𝛽-small, rather than 𝛾-small, and the theory developed here equally applies.
For this reason, we set aside the Grothendieck universes and do not refer to these inaccessible cardinals
elsewhere.
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Part I

Basic∞-Category Theory



It is difficult and time-consuming to learn a new language. The standard advice to “fake it til
you make it” is disconcerting in mathematical contexts, where the validity of a proof hinges upon the
correctness of the statements it cites. The aim in Part I of this text is to develop a substantial portion of
the theory of∞-categories from first principles, as rapidly and painlessly as possible – at least assuming
that the reader finds classical abstract nonsense to be relatively innocuous.¹¹

The axiomatic framework that justifies this is introduced in Chapter 1, but the impatient or
particularly time-constrained reader might consider starting directly in Chapter 2 with the study of
adjunctions, limits, and colimits. In adopting this approach, one must take for granted that there is a
well-defined 2-category of∞-categories,∞-functors between them, and∞-natural transformations
between these. This 2-category is constructed in Chapter 1, where we see that any ∞-cosmos has a
homotopy 2-category and that the familiar models of (∞, 1)-categories define biequivalent∞-cosmoi,
with biequivalent homotopy 2-categories. To follow the proofs inChapter 2, it is necessary to understand
the general composition of natural transformations by pasting diagrams. This and other concepts from
2-category theory are reviewed in Appendix B, which should be consulted as needed.

The payoff for acquainting oneself with some standard 2-category theory is that numerous funda-
mental results concerning equivalences and adjunctions and limits and colimits can be proven quite
expeditiously. We prove one such theorem, that right adjoint functors between∞-categories preserve
any limits found in those∞-categories, via a formal argument that is arguably even simpler than the
classical one.

The definitions of adjunctions, limits, and colimits given in Chapter 2 are optimized for ease of
use in the homotopy 2-category of∞-categories, ∞-functors, and∞-natural transformations in an
∞-cosmos, but especially in the latter cases, these notions are not expressed in their most familiar
forms. To encode a limit of a diagram valued in an∞-category as a terminal cone, we introduce the
powerful and versatile construction of the comma∞-category built from a cospan of functors in Chapter
3. We then prove various “representability theorems” that characterize those comma∞-categories that
are equivalent to ones defined by a single functor. These general results specialize in Chapter 4 to
the expected equivalent definitions of adjunctions, limits, and colimits. This theory is then applied
to study limits and colimits of particular diagram shapes, which in turn is deployed to establish an
equivalence between various presentations of the important notion of a stable∞-category.

The basic theory of∞-categories is extended in Chapter 5 to encompass cocartesian and cartesian
fibrations, which can be understood as indexed families of ∞-categories acted upon covariantly or
contravariantly by arrows in the base∞-category. After developing the theory of the various classes of
categorical fibrations, we conclude by proving a fibrational form of the Yoneda lemma that will be
used to further develop the formal category theory of∞-categories in Part II.

¹¹Dan Freed defines the category number of a mathematician to be the largest integer 𝑛 so that they may ponder
𝑛-categories for half an hour without developing a migraine. Here we require a category number of 2, which we note is
much smaller than∞!



CHAPTER 1

∞-Cosmoi and Their Homotopy 2-Categories

In this chapter, we introduce a framework to develop the formal category theory of∞-categories,
which goes by the name of an∞-cosmos. Informally, an∞-cosmos is an (∞, 2)-category – a category
enriched over (∞, 1)-categories – that is equipped with (∞, 2)-categorical limits. In the motivating
examples of∞-cosmoi, the objects are∞-categories in some model. To focus this abstract theory on
its intended interpretation, we recast “∞-category” as a technical term, reserved to mean an object of
some∞-cosmos.

Unexpectedly, the motivating examples permit us to use a quite strict interpretation of “(∞, 2)-
category with (∞, 2)-categorical limits”: an ∞-cosmos is a particular type of simplicially enriched
category and the (∞, 2)-categorical limits are modeled by simplicially enriched limits. More precisely,
an∞-cosmos is a category enriched over quasi-categories, these being one of the models of (∞, 1)-cate-
gories defined as certain simplicial sets. The (∞, 2)-categorical limits are defined as limits of diagrams
involving specified maps called isofibrations, which have no intrinsic homotopical meaning – since
any functor between∞-categories is equivalent to an isofibration – but allow us to consider strictly
commuting diagrams.

In §1.1, we introduce quasi-categories, reviewing the classical results that are needed to show
that quasi-categories themselves assemble into an ∞-cosmos – the prototypical example. General
∞-cosmoi are defined in §1.2, where several examples are given and their basic properties are established.
In §1.3, we turn our attention to cosmological functors between ∞-cosmoi, which preserve all of the
defining structure. Cosmological functors serve dual purposes, on the one hand providing technical
simplifications in many proofs, and then later on serving as the “change of model” functors that establish
the model independence of∞-category theory.

Finally, in §1.4, we introduce a strict 2-category whose objects are∞-categories, whose 1-cells are
the∞-functors between them, and whose 2-cells define∞-natural transformations between these. Any
∞-cosmos has a 2-category of this sort, which we refer to as the homotopy 2-category of the∞-cosmos.
In fact, the reader who is eager to get on to the development of the category theory of∞-categories
can skip this chapter on first reading, taking the existence of the homotopy 2-category for granted, and
start with Chapter 2.

1.1. Quasi-Categories

Before introducing an axiomatic framework that allows us to develop∞-category theory in general,
we first consider one model in particular: quasi-categories, which were introduced in 1973 by Boardman
and Vogt [20] in their study of homotopy coherent diagrams. Ordinary 1-categories give examples of
quasi-categories via the construction of Definition 1.1.4. Joyal first undertook the task of extending
1-category theory to quasi-category theory in [61] and [63] and in several unpublished draft book
manuscripts. The majority of the results in this section are due to him.
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1.1.1. Notation (the simplex category). Let𝚫 denote the simplex category of finite nonempty ordinals
[𝑛] = {0 < 1 < ⋯ < 𝑛} and order-preserving maps. These include in particular the

elementary face operators [𝑛 − 1] [𝑛] 0 ≤ 𝑖 ≤ 𝑛

elementary degeneracy operators [𝑛 + 1] [𝑛] 0 ≤ 𝑖 ≤ 𝑛

𝛿𝑖

𝜎𝑖

whose images, respectively, omit and double up on the element 𝑖 ∈ [𝑛]. Every morphism in 𝚫 factors
uniquely as an epimorphism followed by a monomorphism; these epimorphisms, the degeneracy
operators, decompose as composites of elementary degeneracy operators, while the monomorphisms,
the face operators, decompose as composites of elementary face operators.

The category of simplicial sets is the category 𝑠𝒮𝑒𝑡 ≔ 𝒮𝑒𝑡𝚫
op

of presheaves on the simplex category.

We write Δ[𝑛] for the standard 𝑛-simplex the simplicial set represented by [𝑛] ∈ 𝚫, and Λ𝑘[𝑛] ⊂
𝜕Δ[𝑛] ⊂ Δ[𝑛] for its 𝑘-horn and boundary sphere, respectively. The sphere 𝜕Δ[𝑛] is the simplicial

subset generated by the codimension-one faces of the 𝑛-simplex, while the horn Λ𝑘[𝑛] is the further
simplicial subset that omits the face opposite the vertex 𝑘.

Given a simplicial set 𝑋, it is conventional to write 𝑋𝑛 for the set of 𝑛-simplices, defined by
evaluating at [𝑛] ∈ 𝚫. By the Yoneda lemma, each 𝑛-simplex 𝑥 ∈ 𝑋𝑛 corresponds to a map of simplicial
sets 𝑥∶ Δ[𝑛] → 𝑋. Accordingly, we write 𝑥 ⋅ 𝛿𝑖 for the 𝑖th face of the 𝑛-simplex, an (𝑛 − 1)-simplex
classified by the composite map

Δ[𝑛 − 1] Δ[𝑛] 𝑋.𝛿𝑖 𝑥

The right action of the face operator defines a map 𝑋𝑛
⋅𝛿𝑖

𝑋𝑛−1. Geometrically, 𝑥 ⋅ 𝛿𝑖 is the “face
opposite the vertex 𝑖” in the 𝑛-simplex 𝑥.
1.1.2. Definition (quasi-category). A quasi-category is a simplicial set 𝐴 in which any inner horn can
be extended to a simplex, solving the displayed lifting problem:

Λ𝑘[𝑛] 𝐴

Δ[𝑛]

for 𝑛 ≥ 2, 0 < 𝑘 < 𝑛. (1.1.3)

Quasi-categories were first introduced by Boardman and Vogt [20] under the name “weak Kan
complexes,” a Kan complex being a simplicial set admitting extensions as in (1.1.3) along all horn
inclusions 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛. Since any topological space can be encoded as a Kan complex,¹ in this
way spaces provide examples of quasi-categories.

Categories also provide examples of quasi-categories via the nerve construction.

1.1.4. Definition (nerve). The category 𝒞𝑎𝑡 of 1-categories embeds fully faithfully into the category of
simplicial sets via the nerve functor. An 𝑛-simplex in the nerve of a 1-category 𝐶 is a sequence of 𝑛
composable arrows in 𝐶, or equally a functor 𝕟 + 𝟙 → 𝐶 from the ordinal category 𝕟 + 𝟙 ≔ [𝑛] with
objects 0,… , 𝑛 and a unique arrow 𝑖 → 𝑗 just when 𝑖 ≤ 𝑗.

¹The total singular complex construction defines a functor from topological spaces to simplicial sets that is an equiv-
alence on their respective homotopy categories – weak homotopy types of spaces correspond to homotopy equivalence
classes of Kan complexes [93, §II.2]. The left adjoint constructed by Exercise 1.1.i “geometrically realizes” a simplicial set
as a topological space.
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The map [𝑛] ↦ 𝕟 + 𝟙 defines a fully faithful embedding 𝚫 ↪ 𝒞𝑎𝑡. From this point of view,
the nerve functor can be described as a “restricted Yoneda embedding” which carries a category 𝐶 to
the restriction of the representable functor hom(−, 𝐶) to the image of this inclusion. More general
“nerve-type constructions” are described in Exercise 1.1.i.

1.1.5. Remark. The nerve of a category 𝐶 is 2-coskeletal as a simplicial set, meaning that every sphere
𝜕Δ[𝑛] → 𝐶 with 𝑛 ≥ 3 is filled uniquely by an 𝑛-simplex in 𝐶 (see Definition C.5.2). Note a sphere
𝜕Δ[2] → 𝐶 extends to a 2-simplex if and only if that arrow along its diagonal edge is the composite
of the arrows along the edges in the inner horn Λ1[2] ⊂ 𝜕Δ[2] → 𝐶. The simplices in dimension 3
and above witness the associativity of the composition of the path of composable arrows found along
their spine, the 1-skeletal simplicial subset formed by the edges connecting adjacent vertices. In fact,
as suggested by the proof of Proposition 1.1.6, any simplicial set in which inner horns admit unique
fillers is isomorphic to the nerve of a 1-category (see Exercise 1.1.iv).

We decline to introduce explicit notation for the nerve functor, preferring instead to identify
1-categories with their nerves. As we shall discover the theory of 1-categories extends to∞-categories
modeled as quasi-categories in such a way that the restriction of each ∞-categorical concept along
the nerve embedding recovers the corresponding 1-categorical concept. For instance, the standard
simplex Δ[𝑛] is isomorphic to the nerve of the ordinal category 𝕟 + 1, and we frequently adopt the
latter notation – writing 𝟙 ≔ Δ[0], 𝟚 ≔ Δ[1], 𝟛 ≔ Δ[2], and so on – to suggest the correct categorical
intuition.

To begin down this path, we must first verify the implicit assertion that has just been made:

1.1.6. Proposition (nerves are quasi-categories). Nerves of categories are quasi-categories.

Proof. Via the isomorphism 𝐶 ≅ cosk2 𝐶 from Remark 1.1.5 and the adjunction sk2 ⊣ cosk2 of
C.5.2, the required lifting problem displayed below-left transposes to the one displayed below-right:

Λ𝑘[𝑛] 𝐶 ≅ cosk2 𝐶 sk2Λ𝑘[𝑛] 𝐶

Δ[𝑛] sk2 Δ[𝑛]
↭

The functor sk2 replaces a simplicial set by its 2-skeleton, the simplicial subset generated by the

simplices of dimension at most two. For 𝑛 ≥ 4, the inclusion sk2Λ𝑘[𝑛] ↪ sk2 Δ[𝑛] is an isomorphism,
in which case the lifting problems on the right admit (unique) solutions. So it remains only to solve
the lifting problems on the left in the cases 𝑛 = 2 and 𝑛 = 3.

To that end consider

Λ1[2] 𝐶 Λ1[3] 𝐶 Λ2[3] 𝐶

Δ[2] Δ[3] Δ[3]

An inner horn Λ1[2] → 𝐶 defines a composable pair of arrows in 𝐶; an extension to a 2-simplex exists
precisely because any composable pair of arrows admits a (unique) composite.
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An inner horn Λ1[3] → 𝐶 specifies the data of three composable arrows in 𝐶, as displayed in the
following diagram, together with the composites 𝑔𝑓, ℎ𝑔, and (ℎ𝑔)𝑓.

𝑐1

𝑐0 𝑐3

𝑐2

ℎ𝑔𝑓

𝑔𝑓

(ℎ𝑔)𝑓

ℎ
𝑔

Because composition is associative, the arrow (ℎ𝑔)𝑓 is also the composite of 𝑔𝑓 followed by ℎ, which
proves that the 2-simplex opposite the vertex 𝑐1 is present in 𝐶; by 2-coskeletality, the 3-simplex filling
this boundary sphere is also present in 𝐶. The filler for a hornΛ2[3] → 𝐶 is constructed similarly. �

1.1.7. Definition (homotopy relation on 1-simplices). A parallel pair of 1-simplices 𝑓 , 𝑔 in a simplicial
set 𝑋 are homotopic if there exists a 2-simplex whose boundary takes either of the following forms²

𝑦 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓𝑓

𝑔 𝑔

(1.1.8)

or if 𝑓 and 𝑔 are in the same equivalence class generated by this relation.

In a quasi-category, the relation witnessed by either of the types of 2-simplex on display in (1.1.8) is
an equivalence relation and these equivalence relations coincide.

1.1.9. Lemma (homotopic 1-simplices in a quasi-category). Parallel 1-simplices 𝑓 and 𝑔 in a quasi-category
are homotopic if and only if there exists a 2-simplex of any or equivalently all of the forms displayed in (1.1.8).

Proof. Exercise 1.1.ii. �

1.1.10. Definition (the homotopy category [44, §2.4]). By 1-truncating, any simplicial set 𝑋 has an
underlying reflexive directed graph with the 0-simplices of 𝑋 defining the objects and the 1-simplices
defining the arrows:

𝑋1 𝑋0,
⋅𝛿1

⋅𝛿0
⋅𝜎0

By convention, the source of an arrow 𝑓 ∈ 𝑋1 is its 0th face 𝑓 ⋅ 𝛿1 (the face opposite 1) while the target
is its 1st face 𝑓 ⋅ 𝛿0 (the face opposite 0). The free category on this reflexive directed graph has 𝑋0
as its object set, degenerate 1-simplices serving as identity morphisms, and nonidentity morphisms
defined to be finite directed paths of nondegenerate 1-simplices. The homotopy category h𝑋 of 𝑋 is
the quotient of the free category on its underlying reflexive directed graph by the congruence³ generated
by imposing a composition relation ℎ = 𝑔 ∘ 𝑓 witnessed by 2-simplices

𝑥1

𝑥0 𝑥2

𝑔𝑓

ℎ

²The symbol “ ” is used in diagrams to denote a degenerate simplex or an identity arrow.
³A binary relation ∼ on parallel arrows of a 1-category is a congruence if it is an equivalence relation that is closed

under pre- and post-composition: if 𝑓 ∼ 𝑔 then ℎ𝑓 𝑘 ∼ ℎ𝑔𝑘.
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This relation implies in particular that homotopic 1-simplices represent the same arrow in the homotopy
category.

The homotopy category of the nerve of a 1-category is isomorphic to the original category, as
the 2-simplices in the nerve witness all of the composition relations satisfied by the arrows in the
underlying reflexive directed graph. Indeed, the natural isomorphism h𝐶 ≅ 𝐶 forms the counit of an
adjunction, embedding 𝒞𝑎𝑡 as a reflective subcategory of 𝑠𝒮𝑒𝑡.

1.1.11. Proposition. The nerve embedding admits a left adjoint, namely the functor which sends a simplicial
set to its homotopy category:

𝒞𝑎𝑡 𝑠𝒮𝑒𝑡⊥
h

The adjunction of Proposition 1.1.11 exists for formal reasons (see Exercise 1.1.i), but nevertheless, a
direct proof can be enlightening.

Proof. For any simplicial set 𝑋, there is a natural map from 𝑋 to the nerve of its homotopy
category h𝑋; since nerves are 2-coskeletal, it suffices to define the map sk2𝑋 → h𝑋, and this is given
immediately by the construction of Definition 1.1.10. Note that the quotient map𝑋 → h𝑋 becomes an
isomorphism upon applying the homotopy category functor and is already an isomorphism whenever
𝑋 is the nerve of a category. Thus the adjointness follows from Lemma B.4.2 or by direct verification
of the triangle equalities. �

The homotopy category of a quasi-category admits a simplified description.

1.1.12. Lemma (the homotopy category of a quasi-category). If 𝐴 is a quasi-category then its homotopy
category h𝐴 has

• the set of 0-simplices 𝐴0 as its objects
• the set of homotopy classes of 1-simplices 𝐴1 as its arrows
• the identity arrow at 𝑎 ∈ 𝐴0 represented by the degenerate 1-simplex 𝑎 ⋅ 𝜎0 ∈ 𝐴1
• a composition relation ℎ = 𝑔 ∘ 𝑓 in h𝐴 between the homotopy classes of arrows represented by any given
1-simplices 𝑓 , 𝑔, ℎ ∈ 𝐴1 if and only if there exists a 2-simplex with boundary

𝑎1

𝑎0 𝑎2

𝑔𝑓

ℎ

Proof. Exercise 1.1.iii. �

1.1.13. Definition (isomorphism in a quasi-category). A 1-simplex in a quasi-category is an isomorph-
ism⁴ just when it represents an isomorphism in the homotopy category. By Lemma 1.1.12 this means
that 𝑓 ∶ 𝑎 → 𝑏 is an isomorphism if and only if there exists a 1-simplex 𝑓 −1 ∶ 𝑏 → 𝑎 together with a
pair of 2-simplices

𝑏 𝑎

𝑎 𝑎 𝑏 𝑏

𝑓 −1 𝑓𝑓 𝑓 −1

⁴Joyal refers to thesemaps as “isomorphisms” while Lurie refers to them as “equivalences.” We prefer, wherever possible,
to use the same term for∞-categorical concepts as for the analogous 1-categorical ones.
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The properties of the isomorphisms in a quasi-category are most easily proved by arguing in a closely
related category where simplicial sets have the additional structure of a “marking” on a specified subset
of the 1-simplices; maps of these so-called marked simplicial sets must then preserve the markings (see
Definition D.1.1). For instance, each quasi-category has a natural marking, where the marked 1-simplices
are exactly the isomorphisms (see Definition D.4.5). Since the property of being an isomorphism in
a quasi-category is witnessed by the presence of 2-simplices with a particular boundary, every map
between quasi-categories preserves isomorphisms, inducing a map of the corresponding naturally
marked quasi-categories. Because marked simplicial sets seldom appear outside of the proofs of certain
combinatorial lemmas about the isomorphisms in quasi-categories, we save the details for Appendix D.

Let us now motivate the first of several results proven using marked techniques. A quasi-category
𝐴 is defined to have extensions along all inner horns. But when the initial or final edges, respectively, of
an outer horn Λ0[2] → 𝐴 or Λ2[2] → 𝐴 map to isomorphisms in 𝐴, then a filler

𝑎1 𝑎1

𝑎0 𝑎2 𝑎0 𝑎2

ℎ𝑓 −1

∼

𝑔∼𝑓

ℎ

𝑔−1ℎ

ℎ

should intuitively exist. The higher-dimensional “special outer horns” behave similarly:

1.1.14. Proposition (special outer horn filling). Any quasi-category 𝐴 admits fillers for those outer horns

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ[𝑛] Δ[𝑛]

𝑔 ℎ

for 𝑛 ≥ 1

in which the edges 𝑔|{0,1} and ℎ|{𝑛−1,𝑛} are isomorphisms.⁵

The proof of Proposition 1.1.14 requires clever combinatorics, due to Joyal, and is deferred to
Proposition D.4.6. Here, we enjoy its myriad consequences. Immediately:

1.1.15. Corollary. A quasi-category is a Kan complex if and only if its homotopy category is a groupoid.

Proof. If the homotopy category of a quasi-category is a groupoid, then all of its 1-simplices are
isomorphisms, and Proposition 1.1.14 then implies that all inner and outer horns have fillers. Thus, the
quasi-category is a Kan complex. Conversely, in a Kan complex, all outer horns can be filled and in
particular fillers for the horns displayed in Definition 1.1.13 can be used to construct left and right
inverses for any 1-simplex, which can be rectified to a single two-sided inverse by Lemma 1.1.12. �

A quasi-category contains 𝐴 a canonical maximal sub Kan complex 𝐴≃, the simplicial subset
spanned by those 1-simplices that are isomorphisms. Just as the arrows in a quasi-category 𝐴 are
represented by simplicial maps 𝟚 → 𝐴 whose domain is the nerve of the free-living arrow, the
isomorphisms in a quasi-category can be represented by diagrams 𝕀 → 𝐴 whose domain, called the
homotopy coherent isomorphism, is the nerve of the free-living isomorphism:

⁵In the case 𝑛 = 1, no condition is needed on the horns; degenerate 1-simplices define the required lifts.
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1.1.16. Corollary. An arrow 𝑓 in a quasi-category𝐴 is an isomorphism if and only if it extends to a homotopy
coherent isomorphism

𝟚 𝐴

𝕀

𝑓

Proof. If 𝑓 is an isomorphism, themap 𝑓 ∶ 𝟚 → 𝐴 lands in themaximal sub Kan complex contained
in 𝐴:

𝟚 𝐴≃ ⊂ 𝐴

𝕀

𝑓

By Exercise 1.1.v, the inclusion 𝟚 ↪ 𝕀 can be expressed as a sequential composite of pushouts of outer
horn inclusions. Since 𝐴≃ is a Kan complex, this shows that the required extension exists and in fact
lands in 𝐴≃ ⊂ 𝐴. �

The category of simplicial sets, like any category of presheaves, is cartesian closed. By the Yoneda
lemma and the defining adjunction, an 𝑛-simplex in the exponential 𝑌𝑋 corresponds to a simplicial
map 𝑋 × Δ[𝑛] → 𝑌, and its faces and degeneracies are computed by precomposing in the simplex
variable. Our next aim is to show that the quasi-categories define an exponential ideal in the simplicially
enriched category of simplicial sets: if 𝑋 is a simplicial set and 𝐴 is a quasi-category, then 𝐴𝑋 is a
quasi-category. We deduce this as a corollary of the “relative” version of this result involving certain
maps called isofibrations that we now introduce.

1.1.17. Definition (isofibration). A simplicial map 𝑓 ∶ 𝐴 → 𝐵 between quasi-categories is an isofibra-
tion if it lifts against the inner horn inclusions, as displayed below-left, and also against the inclusion
of either vertex into the free-living isomorphism 𝕀.

Λ𝑘[𝑛] 𝐴 𝟙 𝐴

Δ[𝑛] 𝐵 𝕀 𝐵

𝑓 𝑓

To notationally distinguish the isofibrations, we depict them as arrows “↠” with two heads.

Proposition 1.1.14 is subsumed by its relative analogue, proven as Theorem D.5.1:

1.1.18. Proposition (special outer horn lifting). Any isofibration between quasi-categories 𝑓 ∶ 𝐴 ↠ 𝐵
admits lifts against those outer horns

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ[𝑛] 𝐵 Δ[𝑛] 𝐵

𝑔

𝑓

ℎ

𝑓

𝑘 ℓ

for 𝑛 ≥ 1

in which the edges 𝑔|{0,1}, ℎ|{𝑛−1,𝑛}, 𝑘|{0,1}, and ℓ|{𝑛−1,𝑛} are isomorphisms.

1.1.19. Observation.
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(i) For any simplicial set 𝑋, the unique map 𝑋 → 1 whose codomain is the terminal simplicial set
is an isofibration if and only if 𝑋 is a quasi-category.

(ii) Any collection of maps, such as the isofibrations, that is characterized by a right lifting property
is automatically closed under composition, product, pullback, retract, and (inverse) limits of
towers (see Lemma C.2.3).

(iii) Combining (i) and (ii), if 𝐴 ↠ 𝐵 is an isofibration, and 𝐵 is a quasi-category, then so is 𝐴.
(iv) The isofibrations generalize the eponymous categorical notion. The nerve of any functor

𝑓 ∶ 𝐴 → 𝐵 between categories defines a map of simplicial sets that lifts against the inner horn
inclusions. This map then defines an isofibration if and only if given any isomorphism in 𝐵
and specified object in 𝐴 lifting either its domain or codomain, there exists an isomorphism in
𝐴 with that domain or codomain lifting the isomorphism in 𝐵.

Much harder to establish is the stability of the isofibrations under the formation of “Leibniz⁶
exponentials” as displayed in (1.1.21). This is proven in Proposition D.5.2.

1.1.20. Proposition. If 𝑖 ∶ 𝑋 ↪ 𝑌 is a monomorphism and 𝑓 ∶ 𝐴 ↠ 𝐵 is an isofibration, then the induced
Leibniz exponential map 𝑖 �⋔ 𝑓

𝐴𝑌

• 𝐴𝑋

𝐵𝑌 𝐵𝑋

𝑖�⋔𝑓
𝐴𝑖

𝑓 𝑌
𝑓 𝑋

𝐵𝑖

(1.1.21)

is again an isofibration.⁷

1.1.22. Corollary. If 𝑋 is a simplicial set and 𝐴 is a quasi-category, then 𝐴𝑋 is a quasi-category. Moreover,
a 1-simplex in 𝐴𝑋 is an isomorphism if and only if its components at each vertex of 𝑋 are isomorphisms in 𝐴.

Proof. The first statement is a special case of Proposition 1.1.20 (see Exercise 1.1.vii), while the
second statement is proven similarly by arguing with marked simplicial sets (see Corollary D.4.19). �

1.1.23. Definition (equivalences of quasi-categories). A map 𝑓 ∶ 𝐴 → 𝐵 between quasi-categories is an
equivalence if it extends to the data of a “homotopy equivalence” with the free-living isomorphism 𝕀
serving as the interval: that is, if there exist maps 𝑔∶ 𝐵 → 𝐴,

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

ev0

ev1

𝛽

𝑓 𝑔 ev0

ev1

We write “∼ ” to decorate equivalences and 𝐴 ≃ 𝐵 to indicate the presence of an equivalence 𝐴 ∼ 𝐵.
⁶The name alludes to the Leibniz rule in differential calculus, or more specifically to the identification of the domain

of the Leibniz product of Lemma D.3.1 with the boundary of the prism (see Definition C.2.8 and Remark D.3.2).
⁷Degenerate cases of this result, taking 𝑋 = ∅ or 𝐵 = 1, imply that the other six maps in this diagram are also

isofibrations (see Exercise 1.1.vii).
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1.1.24. Remark. If 𝑓 ∶ 𝐴 → 𝐵 is an equivalence of quasi-categories, then the functor h𝑓 ∶ h𝐴 → h𝐵 is an
equivalence of categories, where the data displayed above defines an equivalence inverse h𝑔∶ h𝐵 → h𝐴
and natural isomorphisms encoded by the composite⁸ functors

h𝐴 h(𝐴𝕀) (h𝐴)𝕀 h𝐵 h(𝐵𝕀) (h𝐵)𝕀h𝛼 h𝛽

1.1.25. Definition. A map 𝑓 ∶ 𝑋 → 𝑌 between simplicial sets is a trivial fibration if it admits lifts
against the boundary inclusions for all simplices

𝜕Δ[𝑛] 𝑋

Δ[𝑛] 𝑌

∼ 𝑓 for 𝑛 ≥ 0 (1.1.26)

We write “∼ ” to decorate trivial fibrations.

1.1.27. Remark. The simplex boundary inclusions 𝜕Δ[𝑛] ↪ Δ[𝑛] “cellularly generate” the monomor-
phisms of simplicial sets (see Definition C.2.4 and Lemma C.5.9). Hence the dual of Lemma C.2.3
implies that trivial fibrations lift against any monomorphism between simplicial sets. In particular, it
follows that any trivial fibration 𝑋 ∼ 𝑌 is a split epimorphism.

The notation “∼ ” is suggestive: the trivial fibrations between quasi-categories are exactly those
maps that are both isofibrations and equivalences. This can be proven by a relatively standard although
rather technical argument in simplicial homotopy theory, appearing as Proposition D.5.6.

1.1.28. Proposition. For a map 𝑓 ∶ 𝐴 → 𝐵 between quasi-categories the following are equivalent:
(i) 𝑓 is a trivial fibration
(ii) 𝑓 is both an isofibration and an equivalence
(iii) 𝑓 is a split fiber homotopy equivalence: an isofibration admitting a section 𝑠 that is also an equivalence

inverse via a homotopy 𝛼 from id𝐴 to 𝑠𝑓 that composes with 𝑓 to the constant homotopy from 𝑓 to 𝑓.

𝐴 + 𝐴 𝐴

𝐴 × 𝕀 𝐴 𝐵

(id𝐴,𝑠𝑓 )

𝑓≀

𝜋

𝛼

𝑓
∼

As a class characterized by a right lifting property, the trivial fibrations are also closed under
composition, product, pullback, limits of towers, and contain the isomorphisms. The stability of these
maps under Leibniz exponentiation is proven along with Proposition 1.1.20 in Proposition D.5.2.

1.1.29. Proposition. If 𝑖 ∶ 𝑋 → 𝑌 is a monomorphism and 𝑓 ∶ 𝐴 → 𝐵 is an isofibration, then if either 𝑓 is a
trivial fibration or if 𝑖 is in the class cellularly generated by the inner horn inclusions and the map 𝟙 ↪ 𝕀 then
the induced Leibniz exponential map

𝐴𝑌 𝐵𝑌 ×𝐵𝑋 𝐴𝑋𝑖�⋔𝑓

a trivial fibration.

⁸Note that h(𝐴𝕀) ≇ (h𝐴)𝕀 in general. Objects in the latter are homotopy classes of isomorphisms in 𝐴, while objects
in the former are homotopy coherent isomorphisms, given by a specified 1-simplex in 𝐴, a specified inverse 1-simplex,
together with an infinite tower of coherence data indexed by the nondegenerate simplices in 𝕀.
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To illustrate the utility of these Leibniz stability results, we give an “internal” or “synthetic”
characterization of the Kan complexes.

1.1.30. Lemma. A quasi-category𝐴 is a Kan complex if and only if the map𝐴𝕀 ↠ 𝐴𝟚 induced by the inclusion
𝟚 ↪ 𝕀 is a trivial fibration.

Note that Proposition 1.1.20 implies that 𝐴𝕀 ↠ 𝐴𝟚 is an isofibration.

Proof. The lifting property that characterizes trivial fibrations transposes to another lifting
property, displayed below-right

𝜕Δ[𝑛] 𝐴𝕀

Δ[𝑛] 𝐴𝟚

↭
𝜕Δ[𝑛] × 𝕀 ∪

𝜕Δ[𝑛]×𝟚
Δ[𝑛] × 𝟚 𝐴

Δ[𝑛] × 𝕀
that asserts that 𝐴 admits extensions along maps formed by taking the Leibniz product – also known as
the pushout product – of a simplex boundary inclusion 𝜕Δ[𝑛] ↪ Δ[𝑛] with the inclusion 𝟚 ↪ 𝕀. By
Exercise 1.1.v(ii) the inclusion 𝟚 ↪ 𝕀 is a sequential composite of pushouts of left outer horn inclusions.
By Corollary D.3.11, a key step along the way to the proofs of Propositions 1.1.20 and 1.1.29, it follows
that the Leibniz product is also a sequential composite of pushouts of left and inner horn inclusions.
If 𝐴 is a Kan complex, then the extensions displayed above right exist, and, by transposing, the map
𝐴𝕀 ↠ 𝐴𝟚 is a trivial fibration.

Conversely, if 𝐴𝕀 ∼ 𝐴𝟚 is a trivial fibration then in particular it is surjective on vertices. Thus
every arrow in 𝐴 is an isomorphism, and Corollary 1.1.15 tells us that 𝐴 must be a Kan complex. �

1.1.31. Digression (the Joyal model structure). The category of simplicial sets bears a Quillen model
structure, in the sense of Definition C.3.1, whose fibrant objects are exactly the quasi-categories and
in which all objects are cofibrant. Between fibrant objects, the fibrations, weak equivalences, and
trivial fibrations are precisely the isofibrations, equivalences, and trivial fibrations just introduced.
Proposition 1.1.28 proves that the trivial fibrations are the intersection of the fibrations and the weak
equivalences. Propositions 1.1.20 and 1.1.29 reflect the fact that the Joyal model structure is a cartesian
closed model category, satisfying the additional axioms of Definition C.3.10.

We decline to elaborate further on the Joyal model structure for quasi-categories since we have
highlighted all of the features that we need. The results enumerated here suffice to show that the
category of quasi-categories defines an∞-cosmos, a concept to which we now turn.

Exercises.

1.1.i. Exercise ([103, §1.5]). Given any cosimplicial object 𝐶∶ 𝚫 → ℰ valued in any category ℰ, there
is an associated nerve functor 𝑁𝐶 defined by:

ℰ 𝑠𝒮𝑒𝑡

𝐸 hom(𝐶−, 𝐸)

𝑁𝐶 𝚫

ℰ 𝑠𝒮𝑒𝑡

𝐶 よ

𝑁𝐶

⊥
lanよ𝐶

12



By construction 𝑛-simplices in 𝑁𝐶𝐸 correspond to maps 𝐶𝑛 → 𝐸 in ℰ. Show that if ℰ is cocomplete,
then𝑁𝐶 has a left adjoint defined as the left Kan extension of the functor𝐶 along the Yoneda embedding
よ ∶ 𝚫 ↪ 𝑠𝒮𝑒𝑡. This gives a second proof of Proposition 1.1.11.

1.1.ii. Exercise (Boardman–Vogt [20]). Consider the set of 1-simplices in a quasi-category with initial
vertex 𝑎 and final vertex 𝑏.

(i) Prove that the relation defined by 𝑓 ∼ 𝑔 if and only if there exists a 2-simplex with boundary

𝑏

𝑎 𝑏

𝑓

𝑔

is an equivalence relation.

(ii) Prove that the relation defined by 𝑓 ∼ 𝑔 if and only if there exists a 2-simplex with boundary
𝑎

𝑎 𝑏

𝑓

𝑔

is an equivalence relation.

(iii) Prove that the equivalence relations defined by (i) and (ii) are the same.

This proves Lemma 1.1.9.

1.1.iii. Exercise. Consider the free category on the reflexive directed graph

𝐴1 𝐴0,
⋅𝛿1

⋅𝛿0
⋅𝜎0

underlying a quasi-category 𝐴.

(i) Consider the binary relation that identifies sequences of composable 1-simplices with common
source and common target whenever there exists a simplex of 𝐴 in which the sequences of
1-simplices define two paths from its initial vertex to its final vertex. Prove that this relation is
stable under pre- and post-composition with 1-simplices and conclude that its transitive closure
is a congruence: an equivalence relation that is closed under pre- and post-composition.⁹

(ii) Consider the congruence relation generated by imposing a composition relation ℎ = 𝑔 ∘ 𝑓
witnessed by 2-simplices

𝑎1

𝑎0 𝑎2

𝑔𝑓

ℎ
and prove that this coincides with the relation considered in (i).

(iii) In the congruence relations of (i) and (ii), prove that every sequence of composable 1-simplices
in 𝐴 is equivalent to a single 1-simplex. Conclude that every morphism in the quotient of the
free category by this congruence relation is represented by a 1-simplex in 𝐴.

(iv) Prove that for any triple of 1-simplices 𝑓 , 𝑔, ℎ in 𝐴, ℎ = 𝑔 ∘ 𝑓 in the homotopy category h𝐴 of
Definition 1.1.10 if and only if there exists a 2-simplex with boundary

𝑎1

𝑎0 𝑎2

𝑔𝑓

ℎ

⁹Given a congruence relation on the hom-sets of a 1-category, the quotient category can be formed by quotienting
each hom-set (see [81, §II.8]).
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This proves Lemma 1.1.12.

1.1.iv. Exercise. Show that any quasi-category in which inner horns admit unique fillers is isomorphic
to the nerve of its homotopy category.

1.1.v. Exercise. Let 𝕀 be the nerve of the free-living isomorphism.

(i) Prove that 𝕀 contains exactly two nondegenerate simplices in each dimension.
(ii) Inductively build 𝕀 from 𝟚 by expressing the inclusion 𝟚 ↪ 𝕀 as a sequential composite of

pushouts of left outer horn inclusions¹⁰ Λ0[𝑛] ↪ Δ[𝑛], one in each dimension starting with
𝑛 = 2.¹¹

1.1.vi. Exercise. Prove the relative version of Corollary 1.1.16: for any isofibration 𝑝∶ 𝐴 ↠ 𝐵 be-
tween quasi-categories and any 𝑓 ∶ 𝟚 → 𝐴 that defines an isomorphism in 𝐴 any homotopy coherent
isomorphism in 𝐵 extending 𝑝𝑓 lifts to a homotopy coherent isomorphism in 𝐴 extending 𝑓.

𝟚 𝐴

𝕀 𝐵

𝑓

𝑝

1.1.vii. Exercise. Specialize Proposition 1.1.20 to prove the following:

(i) If 𝐴 is a quasi-category and 𝑋 is a simplicial set then 𝐴𝑋 is a quasi-category.
(ii) If 𝐴 is a quasi-category and 𝑋 ↪ 𝑌 is a monomorphism then 𝐴𝑌 ↠ 𝐴𝑋 is an isofibration.
(iii) If 𝐴 ↠ 𝐵 is an isofibration and 𝑋 is a simplicial set then 𝐴𝑋 ↠ 𝐵𝑋 is an isofibration.

1.1.viii. Exercise. Anticipating Lemma 1.2.17:

(i) Prove that the equivalences defined in Definition 1.1.23 are closed under retracts.
(ii) Prove that the equivalences defined in Definition 1.1.23 satisfy the 2-of-3 property.

1.1.ix. Exercise. Prove that if 𝑓 ∶ 𝑋 ∼ 𝑌 is a trivial fibration between quasi-categories then the functor
h𝑓 ∶ h𝑋 ∼ h𝑌 is a surjective equivalence of categories.

1.2. ∞-Cosmoi

In §1.1, we presented “analytic” proofs of a few of the basic facts about quasi-categories. The
category theory of quasi-categories can be developed in a similar style, but we aim instead to develop
the “synthetic” theory of infinite-dimensional categories, so that our results apply to many models at
once. To achieve this, our strategy is not to axiomatize what infinite-dimensional categories are, but
rather to axiomatize the categorical “universe” in which they live.

The definition of an∞-cosmos abstracts the properties of the category of quasi-categories together
with the isofibrations, equivalences, and trivial fibrations introduced in §1.1.¹² First, the category of
quasi-categories is enriched over the category of simplicial sets – the set of morphisms from 𝐴 to 𝐵
coincides with the set of vertices of the simplicial set 𝐵𝐴 – and moreover these hom spaces are all

¹⁰By the duality described in Definition 1.2.25, the right outer horn inclusions Λ𝑛[𝑛] ↪ Δ[𝑛] can be used instead.
¹¹This decomposition of the inclusion 𝟚 ↪ 𝕀 reveals which data extends homotopically uniquely to a homotopy

coherent isomorphism. For instance, the 1- and 2-simplices of Definition 1.1.13 together with a single 3-simplex that
has these as its outer faces with its inner faces degenerate. Homotopy type theorists refer to this data as a half adjoint
equivalence [125, §4.2].

¹²Metaphorical allusions aside, our∞-cosmoi resemble the fibrational cosmoi of Street [117].
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quasi-categories. Second, certain limit constructions that can be defined in the underlying unenriched
category of quasi-categories satisfy universal properties relative to this simplicial enrichment, with the
usual isomorphism of sets extending to an isomorphism of simplicial sets. And finally, the isofibrations,
equivalences, and trivial fibrations satisfy properties that are familiar from abstract homotopy theory,
forming a category of fibrant objects à la Brown [22] (see §C.1). In particular, the use of isofibrations
in diagrams guarantees that their strict limits are equivalence invariant, so we can take advantage
of up-to-isomorphism universal properties and strict functoriality of these constructions while still
working “homotopically.”

As explained in Digression 1.2.13, there are a variety of models of infinite-dimensional categories
for which the category of “∞-categories,” as we call them, and “∞-functors” between them is enriched
over quasi-categories and admits classes of isofibrations, equivalences, and trivial fibrations satisfying
analogous properties. This motivates the following axiomatization:

1.2.1. Definition (∞-cosmos). An∞-cosmos𝒦 is a category that is enriched over quasi-categories,¹³
meaning in particular that

• its morphisms 𝑓 ∶ 𝐴 → 𝐵 define the vertices of a quasi-category denoted Fun(𝐴, 𝐵) and referred
to as a functor space,

that is also equipped with a specified collection of maps that we call isofibrations and denote by “↠”
satisfying the following two axioms:

(i) (completeness) The quasi-categorically enriched category𝒦 possesses a terminal object, small
products, pullbacks of isofibrations, limits of countable towers of isofibrations, and cotensors
with simplicial sets, each of these limit notions satisfying a universal property that is enriched
over simplicial sets.¹⁴

(ii) (isofibrations) The isofibrations contain all isomorphisms and any map whose codomain is the
terminal object; are closed under composition, product, pullback, forming inverse limits of
towers, and Leibniz cotensors with monomorphisms of simplicial sets; and have the property
that if 𝑓 ∶ 𝐴 ↠ 𝐵 is an isofibration and 𝑋 is any object then Fun(𝑋,𝐴) ↠ Fun(𝑋, 𝐵) is an
isofibration of quasi-categories.

For ease of reference, we refer to the simplicially enriched limits of diagrams of isofibrations
enumerated in (i) as the cosmological limit notions.

1.2.2. Definition. In an∞-cosmos𝒦, a morphism 𝑓 ∶ 𝐴 → 𝐵 is

• an equivalence just when the induced map 𝑓∗ ∶ Fun(𝑋,𝐴) ∼ Fun(𝑋, 𝐵) on functor spaces is an
equivalence of quasi-categories for all 𝑋 ∈ 𝒦, and

• a trivial fibration just when 𝑓 is both an isofibration and an equivalence.

These classes are denoted by “∼ ” and “∼ ”, respectively.

Put more concisely, one might say that an∞-cosmos is a “quasi-categorically enriched category of
fibrant objects” (see Definition C.1.1 and Example C.1.3).

1.2.3. Convention (∞-category, as a technical term). Henceforth, we recast∞-category as a technical
term to refer to an object in an arbitrary ambient∞-cosmos. Similarly, we use the term∞-functor –
or more commonly the elision “functor” – to refer to a morphism 𝑓 ∶ 𝐴 → 𝐵 in an ∞-cosmos. This

¹³This is to say𝒦 is a simplicially enriched category (see Digression 1.2.4) whose hom spaces are all quasi-categories.
¹⁴We elaborate on these simplicially enriched limits in Digression 1.2.6.
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explains why we refer to the quasi-category Fun(𝐴, 𝐵) between two∞-categories in an∞-cosmos as a
“functor space”: its vertices are the (∞-)functors from 𝐴 to 𝐵.

1.2.4. Digression (simplicial categories, §A.2). A simplicial category 𝒜 is given by categories 𝒜𝑛,
with a common set of objects and whose arrows are called 𝑛-arrows, that assemble into a diagram
𝚫op → 𝒞𝑎𝑡 of identity-on-objects functors

⋯𝒜3 𝒜2 𝒜1 𝒜0

⋅𝛿0
⋅𝛿1
⋅𝛿2
⋅𝛿3

⋅𝜎1

⋅𝜎0

⋅𝜎2

⋅𝛿1
⋅𝛿2

⋅𝛿0
⋅𝜎0
⋅𝜎1 ⋅𝛿1

⋅𝛿0
⋅𝜎0 ≕ 𝒜 (1.2.5)

The category𝒜0 of 0-arrows is the underlying category of the simplicial category𝒜, which forgets
the higher dimensional simplicial structure.

The data of a simplicial category can equivalently be encoded by a simplicially enriched category
with a set of objects and a simplicial set𝒜(𝑥, 𝑦) of morphisms between each ordered pair of objects:
an 𝑛-arrow in 𝒜𝑛 from 𝑥 to 𝑦 corresponds to an 𝑛-simplex in 𝒜(𝑥, 𝑦) (see Exercise 1.2.i). Each
endo-hom space contains a distinguished identity 0-arrow (the degenerate images of which define the
corresponding identity 𝑛-arrows) and composition is required to define a simplicial map

𝒜(𝑦, 𝑧) × 𝒜(𝑥, 𝑦) 𝒜(𝑥, 𝑧)∘

the single map encoding the compositions in each of the categories𝒜𝑛 and also the functoriality of
the diagram (1.2.5). The composition is required to be associative and unital, in a sense expressed by
the commutative diagrams of simplicial sets

𝒜(𝑦, 𝑧) × 𝒜(𝑥, 𝑦) × 𝒜(𝑤, 𝑥) 𝒜(𝑥, 𝑧) × 𝒜(𝑤, 𝑥)

𝒜(𝑦, 𝑧) × 𝒜(𝑤, 𝑦) 𝒜(𝑤, 𝑧)
id×∘

∘×id

∘

∘

𝒜(𝑥, 𝑦) 𝒜(𝑦, 𝑦) × 𝒜(𝑥, 𝑦)

𝒜(𝑥, 𝑦) × 𝒜(𝑥, 𝑥) 𝒜(𝑥, 𝑦)

id𝑦 × id

id
id× id𝑥 ∘

∘

On account of the equivalence between these two presentations, the terms “simplicial category” and
“simplicially enriched category” are generally taken to be synonyms.¹⁵

In particular, the underlying category𝒦0 of an∞-cosmos𝒦 is the category whose objects are the
∞-categories in𝒦 and whose morphisms are the 0-arrows, i.e., the vertices in the functor spaces. In all
of the examples to appear in what follows, this recovers the expected category of ∞-categories in a
particular model and functors between them.

1.2.6. Digression (simplicially enriched limits, §A.4-A.5). Let𝒜 be a simplicial category. The cotensor
of an object 𝐴 ∈ 𝒜 by a simplicial set 𝑈 is characterized by a natural isomorphism of simplicial sets

𝒜(𝑋,𝐴𝑈) ≅ 𝒜(𝑋,𝐴)𝑈 (1.2.7)

¹⁵The phrase “simplicial object in𝒞𝑎𝑡” is reserved for themore general yet less commonnotion of a diagram𝚫op → 𝒞𝑎𝑡
that is not necessarily comprised of identity-on-objects functors.
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Assuming such objects exist, the simplicial cotensor defines a bifunctor

𝑠𝒮𝑒𝑡op ×𝒜 𝒜

(𝑈,𝐴) 𝐴𝑈

in a unique way making the isomorphism (1.2.7) natural in 𝑈 and 𝐴 as well.
The other simplicial limit notions postulated by axiom 1.2.1(i) are conical, which is the term used

for ordinary 1-categorical limit shapes that satisfy an enriched analog of the usual universal property
(see Definition A.5.2). Such limits also define limits in the underlying category, but the usual universal
property is strengthened. By applying the covariant representable functor𝒜(𝑋, −) ∶ 𝒜0 → 𝑠𝒮𝑒𝑡 to a
limit cone (lim𝑗∈𝐽𝐴𝑗 → 𝐴𝑗)𝑗∈𝐽 in𝒜0, we obtain a natural comparison map

𝒜(𝑋, lim
𝑗∈𝐽

𝐴𝑗) lim
𝑗∈𝐽

𝒜(𝑋,𝐴𝑗). (1.2.8)

We say that lim𝑗∈𝐽𝐴𝑗 defines a simplicially enriched limit if and only if (1.2.8) is an isomorphism of
simplicial sets for all 𝑋 ∈ 𝒜.

The general theory of enriched categories is reviewed in Appendix A.

1.2.9. Preview (flexible weighted limits in∞-cosmoi). The axiom 1.2.1(i) implies that any∞-cosmos
𝒦 admits all flexible limits, a much larger class of simplicially enriched “weighted” limits (see Definition
6.2.1 and Proposition 6.2.8).

We quickly introduce the three examples of ∞-cosmoi that are most easily absorbed, deferring
more sophisticated examples to the end of this section. The first of these is the prototypical∞-cosmos.

1.2.10. Proposition (the∞-cosmos of quasi-categories). The full subcategory 𝒬𝒞𝑎𝑡 ⊂ 𝑠𝒮𝑒𝑡 of quasi-cat-
egories defines an∞-cosmos in which the isofibrations, equivalences, and trivial fibrations coincide with the
classes already bearing these names.

Proof. The subcategory 𝒬𝒞𝑎𝑡 ⊂ 𝑠𝒮𝑒𝑡 inherits its simplicial enrichment from the cartesian
closed category of simplicial sets: by Proposition 1.1.20, whenever 𝐴 and 𝐵 are quasi-categories,
Fun(𝐴, 𝐵) ≔ 𝐵𝐴 is again a quasi-category.

The cosmological limits postulated in 1.2.1(i) exist in the ambient category of simplicial sets.¹⁶ For
instance, the defining universal property of the simplicial cotensor (1.2.7) is satisfied by the exponentials
of simplicial sets. Moreover, since the category of simplicial sets is cartesian closed, each of the conical
limits is simplicially enriched in the sense discussed inDigression 1.2.6 (see Exercise 1.2.ii and Proposition
A.5.4).

We now argue that the full subcategory of quasi-categories inherits all these limit notions and at
the same time establish the stability of the isofibrations under the formation of these limits. In fact,
this latter property helps to prove the former. To see this, note that a simplicial set is a quasi-category
if and only if the map from it to the point is an isofibration. More generally, if the codomain of any
isofibration is a quasi-category then its domain must be as well. So if any of the maps in a limit cone over
a diagram of quasi-categories are isofibrations, then it follows that the limit is itself a quasi-category.

Since the isofibrations are characterized by a right lifting property, Lemma C.2.3 implies that
the isofibrations contains all isomorphism and are closed under composition, product, pullback, and
forming inverse limits of towers. In particular, the full subcategory of quasi-categories possesses these

¹⁶Any category of presheaves is cartesian closed, complete, and cocomplete – a “cosmos” in the sense of Bénabou.
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limits. This verifies all of the axioms of 1.2.1(i) and 1.2.1(ii) except for the last two: Leibniz closure and
closure under exponentiation (−)𝑋. These last closure properties are established in Proposition 1.1.20,
and in fact by Exercise 1.1.vii, the former subsumes the latter . This completes the verification of the
∞-cosmos axioms.

It remains to check that the equivalences and trivial fibrations coincide with those maps defined
by 1.1.23 and 1.1.25. By Proposition 1.1.28 the latter coincidence follows from the former, so it remains
only to show that the equivalences of 1.1.23 coincide with the representably defined equivalences:
those maps of quasi-categories 𝑓 ∶ 𝐴 → 𝐵 for which 𝐴𝑋 → 𝐵𝑋 is an equivalence of quasi-categories
in the sense of Definition 1.1.23. Taking 𝑋 = Δ[0], we see immediately that representably defined
equivalences are equivalences, and the converse holds since the exponential (−)𝑋 preserves the data
defining a simplicial homotopy. �

Two further examples fit into a common paradigm: both arise as full subcategories of the∞-cosmos
of quasi-categories and inherit their∞-cosmos structures from this inclusion (see Lemma 6.1.4). But
it is also instructive, and ultimately takes less work, to describe the resulting ∞-cosmos structures
directly.

1.2.11. Proposition (the∞-cosmos of categories). The category 𝒞𝑎𝑡 of 1-categories defines an∞-cosmos
whose isofibrations are the isofibrations: functors satisfying the displayed right lifting property:

𝟙 𝐴

𝕀 𝐵

𝑓

The equivalences are the equivalences of categories and the trivial fibrations are surjective equivalences: equiva-
lences of categories that are also surjective on objects.

Proof. It is well-known that the 2-category of categories is complete (and in fact also cocomplete)
as a 𝒞𝑎𝑡-enriched category (see Definition A.6.17 or [67]). The categorically enriched category of
categories becomes a quasi-categorically enriched category by applying the nerve functor to the hom-
categories (see §A.7). Since the nerve functor is a right adjoint, it follows formally that these 2-
categorical limits become simplicially enriched limits. In particular, as proscribed in Proposition A.7.8,
the cotensor of a category 𝐴 by a simplicial set 𝑈 is defined to be the functor category 𝐴h𝑈. This
completes the verification of axiom (i).

Since the class of isofibrations is characterized by a right lifting property, Lemma C.2.3 implies
that the isofibrations are closed under all of the limit constructions of 1.2.1(ii) except for the last two,
and by Exercise 1.1.vii, the Leibniz closure subsumes the closure under exponentiation.

To verify that isofibrations of categories 𝑓 ∶ 𝐴 ↠ 𝐵 are stable under forming Leibniz cotensors
with monomorphisms of simplicial sets 𝑖 ∶ 𝑈 ↪ 𝑉, we must solve the lifting problem below-left

𝟙 𝐴h𝑉 h𝑈 × 𝕀 ∪h𝑈 h𝑉 𝐴

𝕀 𝐵h𝑉 ×𝐵h𝑈 𝐴h𝑈 h𝑉 × 𝕀 𝐵

𝑠

𝑗 h𝑖�⋔𝑓 ↭

⟨𝛼,𝑠⟩

h𝑖�×𝑗 𝑓𝛾

⟨𝛽,𝛼⟩ 𝛽

𝛾

which transposes to the lifting problem above-right, which we can solve by hand. Here the map 𝛽
defines a natural isomorphism between 𝑓 𝑠 ∶ h𝑉 → 𝐵 and a second functor. Our task is to lift this
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to a natural isomorphism 𝛾 from 𝑠 to another functor that extends the natural isomorphism 𝛼 along
h𝑖 ∶ h𝑈 → h𝑉. Note this functor h𝑖 need not be an inclusion, but it is injective on objects, which is
enough.

We define the components of 𝛾 by cases. If an object 𝑣 ∈ h𝑉 is equal to 𝑖(𝑢) for some 𝑢 ∈ h𝑈
define 𝛾𝑖(𝑢) ≔ 𝛼𝑢; otherwise, use the fact that 𝑓 is an isofibration to define 𝛾𝑣 to be any lift of the
isomorphism 𝛽𝑣 to an isomorphism in 𝐴 with domain 𝑠(𝑣). The data of the map 𝛾∶ h𝑉 × 𝕀 → 𝐴 also
entails the specification of the functor h𝑉 → 𝐴 that is the codomain of the natural isomorphism 𝛾.
On objects, this functor is given by 𝑣 ↦ cod(𝛾𝑣). On morphisms, this functor defined in the unique
way that makes 𝛾 into a natural transformation:

(𝑘 ∶ 𝑣 → 𝑣′) ↦ 𝛾𝑣′ ∘ 𝑠(𝑘) ∘ 𝛾−1
𝑣 .

This completes the proof that 𝒞𝑎𝑡 defines an∞-cosmos. Since the nerve of a functor category, such
as 𝐴𝕀, is isomorphic to the exponential between their nerves, the equivalences of categories coincide
with the equivalences of Definition 1.1.23. It follows that the equivalences in the∞-cosmos of categories
coincide with equivalences of categories, and since the surjective equivalences are the intersection of
the equivalences and the isofibrations, this completes the proof. �

1.2.12. Proposition (the∞-cosmos of Kan complexes). The category𝒦𝑎𝑛 of Kan complexes defines an
∞-cosmos whose isofibrations are the Kan fibrations: maps that lift against all horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛]
for 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛.

The proof proceeds along the lines of Lemma 6.1.4. We show that the subcategory of Kan complexes
inherits an∞-cosmos structure by restricting structure from the∞-cosmos of quasi-categories.

Proof. By Proposition 1.1.18, an isofibration between Kan complexes is a Kan fibration. Conversely,
since the homotopy coherent isomorphism 𝕀 can be built from the point 𝟙 by attaching fillers to a
sequence of outer horns, all Kan fibrations define isofibrations. This shows that between Kan complexes,
isofibrations and Kan fibrations coincide. So to show that the category of Kan complexes inherits an
∞-cosmos structure by restriction from the∞-cosmos of quasi-categories, we need only verify that the
full subcategory𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 is closed under all of the limit constructions of axiom 1.2.1(i). For the
conical limits, the argument mirrors the one given in the proof of Proposition 1.2.10, while the closure
under cotensors is a consequence of Corollary D.3.11, which implies that the Kan complexes also define
an exponential ideal in the category of simplicial sets. The remaining axiom 1.2.1(ii) is inherited from
the analogous properties established for quasi-categories in Proposition 1.2.10. �

We mention a common source of∞-cosmoi found in nature to build intuition for readers familiar
with Quillen’s model categories, a popular framework for abstract homotopy theory, but reassure
newcomers that model categories are not needed outside of Appendix E where these results are proven.

1.2.13. Digression (a source of ∞-cosmoi in nature). As explained in §E.1, certain easily described
properties of a model category imply that the full subcategory of fibrant objects defines an∞-cosmos
whose isofibrations, equivalences, and trivial fibrations are the fibrations, weak equivalences, and trivial
fibrations between fibrant objects. Namely, any model category that is enriched as such over the Joyal
model structure on simplicial sets in which all fibrant objects are cofibrant presents an ∞-cosmos
(see Proposition E.1.1). This model-categorical enrichment over quasi-categories can be defined when
the model category is cartesian closed and equipped with a right Quillen adjoint to the Joyal model
structure on simplicial sets whose left adjoint preserves finite products (see Corollary E.1.4). In this
case, the right adjoint becomes the underlying quasi-category functor (see Proposition 1.3.4(ii)) and
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the∞-cosmoi so-produced is cartesian closed (see Definition 1.2.23). The∞-cosmoi listed in Example
1.2.24 all arise in this way.

The following results are consequences of the axioms of Definition 1.2.1. To begin, observe that the
trivial fibrations enjoy the same stability properties satisfied by the isofibrations.

1.2.14. Lemma (stability of trivial fibrations). The trivial fibrations in an∞-cosmos define a subcategory
containing the isomorphisms and are stable under product, pullback, and forming inverse limits of towers.
Moreover, the Leibniz cotensors of any trivial fibration with a monomorphism of simplicial sets is a trivial
fibration as is the Leibniz cotensor of an isofibration with a map in the class cellularly generated by the inner
horn inclusions and the map 𝟙 ↪ 𝕀, and if 𝐸 ∼ 𝐵 is a trivial fibration then so is Fun(𝑋, 𝐸) ∼ Fun(𝑋, 𝐵).

Proof. We prove these statements in the reverse order. By axiom 1.2.1(ii) and the definition of
the trivial fibrations in an∞-cosmos, we know that if 𝐸 ∼ 𝐵 is a trivial fibration then Fun(𝑋, 𝐸) ∼

Fun(𝑋, 𝐵) is both an isofibration and an equivalence, and hence by Proposition 1.1.28 a trivial fibration.
For stability under the remaining constructions, we know in each case that the maps in question
are isofibrations in the∞-cosmos; it remains to show only that the maps are also equivalences. The
equivalences in an ∞-cosmos are defined to be the maps that Fun(𝑋, −) carries to equivalences of
quasi-categories, so it suffices to verify that trivial fibrations of quasi-categories satisfy the corresponding
stability properties. For the Leibniz stability properties, this is established in Proposition 1.1.29, while
the remaining properties are covered by Lemma C.2.3. �

By a Yoneda-style argument, the “homotopy equivalence” characterization of the equivalences in
the∞-cosmos of quasi-categories of Definition 1.1.23 extends to an analogous characterization of the
equivalences in any∞-cosmos:

1.2.15. Lemma (equivalences are homotopy equivalences). A map 𝑓 ∶ 𝐴 → 𝐵 between∞-categories in
an∞-cosmos𝒦 is an equivalence if and only if it extends to the data of a “homotopy equivalence” with the
free-living isomorphism 𝕀 serving as the interval: that is, if there exist maps 𝑔∶ 𝐵 → 𝐴

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

∼ ev0

∼ ev1

𝛽

𝑓 𝑔

∼ ev0

∼ ev1

(1.2.16)

in the∞-cosmos.

Proof. By hypothesis, if 𝑓 ∶ 𝐴 → 𝐵 defines an equivalence in the∞-cosmos𝒦 then the induced
map on post-composition 𝑓∗ ∶ Fun(𝐵,𝐴) ∼ Fun(𝐵, 𝐵) is an equivalence of quasi-categories in the sense
of Definition 1.1.23. Evaluating the inverse equivalence �̃� ∶ Fun(𝐵, 𝐵) ∼ Fun(𝐵,𝐴) and homotopy
�̃� ∶ Fun(𝐵, 𝐵) → Fun(𝐵, 𝐵)𝕀 at the 0-arrow id𝐵 ∈ Fun(𝐵, 𝐵), we obtain a 0-arrow 𝑔∶ 𝐵 → 𝐴 together
with an isomorphism 𝛽∶ 𝕀 → Fun(𝐵, 𝐵) from the composite 𝑓 𝑔 to id𝐵. By the defining universal
property of the cotensor (1.2.7), this isomorphism internalizes to define the map 𝛽∶ 𝐵 → 𝐵𝕀 in 𝒦
displayed on the right of (1.2.16).

Now the hypothesis that 𝑓 is an equivalence also provides an equivalence of quasi-categories
𝑓∗ ∶ Fun(𝐴,𝐴) ∼ Fun(𝐴, 𝐵), and the map 𝛽𝑓 ∶ 𝐴 → 𝐵𝕀 represents an isomorphism in Fun(𝐴, 𝐵) from
𝑓 𝑔𝑓 to 𝑓. Since 𝑓∗ is an equivalence, we conclude from Remark 1.1.24 that id𝐴 and 𝑔𝑓 are isomorphic in
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the quasi-category Fun(𝐴,𝐴): explicitly, such an isomorphism may be defined by applying the inverse

equivalence ℎ̃ ∶ Fun(𝐴, 𝐵) → Fun(𝐴,𝐴) and composing with the components at id𝐴, 𝑔𝑓 ∈ Fun(𝐴,𝐴)
of the isomorphism �̃� ∶ Fun(𝐴,𝐴) → Fun(𝐴,𝐴)𝕀 from idFun(𝐴,𝐴) to ℎ̃𝑓∗. Now by Corollary 1.1.16 this
isomorphism is represented by a map 𝕀 → Fun(𝐴,𝐴) from id𝐴 to 𝑔𝑓, which internalizes to a map
𝛼∶ 𝐴 → 𝐴𝕀 in𝒦 displayed on the left of (1.2.16).

The converse is easy: the simplicial cotensor construction commutes with Fun(𝑋, −), so a homotopy
equivalence (1.2.16) induces a homotopy equivalence of quasi-categories as in Definition 1.1.23. �

1.2.17. Lemma. The equivalences in an ∞-cosmos are closed under retracts and satisfy the 2-of-3 property:
given a composable pair of functors and their composite, if any two of these are equivalences so is the third.

By the representable definition of equivalences and functoriality, Lemma 1.2.17 follows easily from
the corresponding results for equivalences between quasi-categories (see Exercise 1.1.viii). But for sake
of completeness, we prove the general cosmological result without relying on this base case, subsuming
Exercise 1.1.viii.

Proof. Let 𝑓 ∶ 𝐴 ∼ 𝐵 be an equivalence equipped with the data of (1.2.16) and consider a retract
diagram

𝐶 𝐴 𝐶

𝐷 𝐵 𝐷

𝑢
ℎ

∼𝑓
𝑣

ℎ
𝑠 𝑡

By Lemma 1.2.15, to prove that ℎ∶ 𝐶 → 𝐷 is an equivalence, it suffices to construct the data of an
inverse homotopy equivalence. To that end define 𝑘 ∶ 𝐷 → 𝐶 to be the composite 𝑣𝑔𝑠 and then observe
from the commutative diagrams

𝐶

𝐴 𝐶 𝐴 𝐵 𝐷

𝐶 𝐴 𝐴𝕀 𝐶𝕀 𝐷 𝐵 𝐵𝕀 𝐷𝕀

𝐷 𝐵 𝐴 𝐶 𝐵 𝐷

ℎ

𝑣 𝑓

𝑣
𝑡

𝑢

ℎ 𝑓

𝛼

ev0

ev1

𝑣𝕀

ev0

ev1

𝑠

𝑘

𝑔
𝛽 𝑡𝕀

ev1

ev0

ev1

ev0

𝑠

𝑘

𝑔 𝑣 𝑡

that 𝑣𝕀𝛼𝑢∶ 𝐶 → 𝐶𝕀 and 𝑡𝕀𝛽𝑠 ∶ 𝐷 → 𝐷𝕀 define the required homotopy coherent isomorphisms.
Via Lemma 1.2.15, the 2-of-3 property for equivalences follows from the fact that the set of iso-

morphisms in a quasi-category is closed under composition. Homotopy coherent isomorphisms in a
quasi-category represent isomorphisms in the homotopy category, whose composite in the homotopy
category is then an isomorphism, which can be lifted to a representing homotopy coherent isomorphism
by Corollary 1.1.16.¹⁷ We now apply this to the homotopy coherent isomorphisms in the functor spaces
of an∞-cosmos that form part of the data of an equivalence of∞-categories.

¹⁷In fact, by Example D.5.5, homotopy coherent isomorphisms can be composed directly, but we do not need this here.
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To prove that equivalences are closed under composition, consider a composable pair of equivalences
with their inverse equivalences

𝐴 𝐵 𝐶

∼𝑓 ∼𝑔

∼
𝑘

∼
ℎ

The equivalence data of Lemma 1.2.15 defines isomorphisms 𝛼∶ id𝐴 ≅ 𝑘𝑓 ∈ Fun(𝐴,𝐴) and 𝛾∶ id𝐵 ≅
ℎ𝑔 ∈ Fun(𝐵, 𝐵), the latter of which whiskers to define 𝑘𝛾𝑓 ∶ 𝑘𝑓 ≅ 𝑘ℎ𝑔𝑓 ∈ Fun(𝐵, 𝐵). Composing these,
we obtain an isomorphism id𝐴 ≅ 𝑘ℎ𝑔𝑓 ∈ Fun(𝐴,𝐴), witnessing that 𝑘ℎ defines a left equivalence
inverse of 𝑔𝑓. The other isomorphism is constructed similarly.

To prove that the equivalences are closed under right cancelation, consider a diagram

𝐴 𝐵 𝐶∼𝑓 𝑔

∼
𝑘

∼ℓ

with 𝑘 an inverse equivalence to 𝑓 and ℓ and inverse equivalence to 𝑔𝑓. We claim that 𝑓 ℓ defines an
inverse equivalence to 𝑔. One of the required isomorphisms id𝐶 ≅ 𝑔𝑓 ℓ is given already. The other is
obtained by composing three isomorphisms in Fun(𝐵, 𝐵)

id𝐵 𝑓 𝑘 𝑓 ℓ𝑔𝑓 𝑘 𝑓 ℓ𝑔.≃𝛽−1 ≃𝑓 𝛿𝑘 ≃𝑓 ℓ𝑔𝛽

The proof of stability of equivalence under left cancelation is dual. �

The trivial fibrations admit a similar characterization as split fiber homotopy equivalences.

1.2.18. Lemma (trivial fibrations split). Every trivial fibration admits a section

𝐸

𝐵 𝐵

∼ 𝑝𝑠

that defines a split fiber homotopy equivalence

𝐸 𝐸𝕀 𝐸 × 𝐸

𝐵 𝐵𝕀

𝛼

(id𝐸,𝑠𝑝)

𝑝 𝑝𝕀
(ev0,ev1)

Δ

and conversely any isofibration that defines a split fiber homotopy equivalence is a trivial fibration.

Proof. If 𝑝∶ 𝐸 ∼ 𝐵 is a trivial fibration, then by the final stability property of Lemma 1.2.14, so
is 𝑝∗ ∶ Fun(𝑋, 𝐸) ∼ 𝐹𝑢𝑛(𝑋, 𝐵) for any∞-category 𝑋. By Definition 1.1.25, we may solve the lifting
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problem below-left

∅ = 𝜕Δ[0] Fun(𝐵, 𝐸) 𝟙 + 𝟙 Fun(𝐸, 𝐸)

𝟙 = Δ[0] Fun(𝐵, 𝐵) 𝕀 𝟙 Fun(𝐸, 𝐵)

∼ 𝑝∗

(id𝐸,𝑠𝑝)

∼ 𝑝∗𝑠

id𝐵 !

𝛼

𝑝

to find a map 𝑠 ∶ 𝐵 → 𝐸 so that 𝑝𝑠 = id𝐵, and then solve the lifting problem above-right to construct
the desired fibered homotopy. The converse is immediate from Lemma 1.2.15. �

A classical construction in abstract homotopy theory proves the following:

1.2.19. Lemma (Brown factorization lemma). Any functor 𝑓 ∶ 𝐴 → 𝐵 in an∞-cosmos may be factored as
an equivalence followed by an isofibration, where this equivalence is constructed as a section of a trivial fibration.

𝑃𝑓

𝐴 𝐵

𝑝

∼𝑞

𝑓

∼ 𝑠
(1.2.20)

Moreover, 𝑓 is an equivalence if and only if the isofibration 𝑝 is a trivial fibration.

Proof. The displayed factorization is constructed by the pullback of an isofibration formed by
the simplicial cotensor of the inclusion 𝟙 + 𝟙 ↪ 𝕀 into the∞-category 𝐵.

𝐴𝕀

𝐴 𝑃𝑓 𝐵𝕀

𝐴 × 𝐵 𝐵 × 𝐵

𝑓 𝕀

∼
𝑠

Δ

(𝐴,𝑓 )
(𝑞,𝑝) (ev0,ev1)

𝑓 ×𝐵

Note the map 𝑞 is a pullback of the trivial fibration ev0 ∶ 𝐵𝕀 ∼ 𝐵 and is hence a trivial fibration.
Its section 𝑠, constructed by applying the universal property of the pullback to the displayed cone
with summit 𝐴, is thus an equivalence by the 2-of-3 property. Again by 2-of-3, it follows that 𝑓 is an
equivalence if and only if 𝑝 is. �

1.2.21. Remark (equivalences satisfy the 2-of-6 property). In fact the equivalences in any∞-cosmos
satisfy the stronger 2-of-6 property: for any composable triple of functors

𝐵

𝐴 𝐷

𝐶

∼

ℎ𝑔𝑓

∼
𝑔𝑓

ℎ𝑔𝑓

𝑔
ℎ
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if 𝑔𝑓 and ℎ𝑔 are equivalences then 𝑓, 𝑔, ℎ, and ℎ𝑔𝑓 are too. An argument of Blumberg and Mandell [19,
6.4] reproduced in Proposition C.1.8 uses Lemmas 1.2.17, 1.2.18, and 1.2.19 to prove that the equivalences
have the 2-of-6 property (see Corollary C.1.9).

One of the key advantages of the∞-cosmological approach to abstract category theory is that there
are a myriad varieties of “fibered”∞-cosmoi that can be built from a given∞-cosmos, which means
that any theorem proven in this axiomatic framework specializes and generalizes to those contexts.
The most basic of these derived∞-cosmoi is the∞-cosmos of isofibrations over a fixed base, which
we introduce now. Other examples of∞-cosmoi are developed in Chapter 6, once we have a deeper
understanding of the cosmological limits of axiom 1.2.1(i).

1.2.22. Proposition (sliced ∞-cosmoi). For any ∞-cosmos 𝒦 and any ∞-category 𝐵 ∈ 𝒦 there is an
∞-cosmos 𝒦/𝐵 of isofibrations over 𝐵 whose

(i) objects are isofibrations 𝑝∶ 𝐸 ↠ 𝐵 with codomain 𝐵
(ii) functor spaces, say from 𝑝∶ 𝐸 ↠ 𝐵 to 𝑞 ∶ 𝐹 ↠ 𝐵, are defined by pullback

Fun𝐵(𝑝 ∶ 𝐸 ↠ 𝐵, 𝑞 ∶ 𝐹 ↠ 𝐵) Fun(𝐸, 𝐹)

𝟙 Fun(𝐸, 𝐵)

𝑞∗
𝑝

and abbreviated to Fun𝐵(𝐸, 𝐹) when the specified isofibrations are clear from context
(iii) isofibrations are commutative triangles of isofibrations over 𝐵

𝐸 𝐹

𝐵

𝑟

𝑝 𝑞

(iv) terminal object is id ∶ 𝐵 ↠ 𝐵 and products are defined by the pullback along the diagonal

×𝐵
𝑖 𝐸𝑖 ∏

𝑖 𝐸𝑖

𝐵 ∏
𝑖 𝐵

∏𝑖 𝑝𝑖
Δ

(v) pullbacks and limits of towers of isofibrations are created by the forgetful functor𝒦/𝐵 → 𝒦
(vi) simplicial cotensor of 𝑝∶ 𝐸 ↠ 𝐵 with 𝑈 ∈ 𝑠𝒮𝑒𝑡 is constructed by the pullback

𝑈 ⋔𝐵 𝑝 𝐸𝑈

𝐵 𝐵𝑈

𝑝𝑈

Δ

(vii) and in which a map over 𝐵

𝐸 𝐹

𝐵

𝑓

𝑝 𝑞

is an equivalence in the∞-cosmos𝒦/𝐵 if and only if 𝑓 is an equivalence in𝒦.
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Proof. The functor spaces are quasi-categories since axiom 1.2.1(ii) asserts that for any isofibration
𝑞 ∶ 𝐹 ↠ 𝐵 in 𝒦 the map 𝑞∗ ∶ Fun(𝐸, 𝐹) ↠ Fun(𝐸, 𝐵) is an isofibration of quasi-categories. Other
parts of this axiom imply that each of the limit constructions – such as the products and cotensors
constructed in (iv) and (vi) – define isofibrations over 𝐵. The closure properties of the isofibrations in
𝒦/𝐵 follow from the corresponding ones in𝒦. The most complicated of these is the Leibniz cotensor
stability of the isofibrations in𝒦/𝐵, which follows from the corresponding property in𝒦, since for
a monomorphism of simplicial sets 𝑖 ∶ 𝑋 ↪ 𝑌 and an isofibration 𝑟 over 𝐵 as in (iii) above, the map

𝑖 �⋔𝐵 𝑟 is constructed by pulling back 𝑖 �⋔ 𝑟 along Δ∶ 𝐵 → 𝐵𝑌.
The fact that the above constructions define simplicially enriched limits in a simplicially enriched

slice category are standard from enriched category theory. It remains only to verify that the equivalences
in the∞-cosmos of isofibrations are created by the forgetful functor𝒦/𝐵 → 𝒦. Suppose first that the
map 𝑓 displayed in (vii) defines an equivalence in𝒦. Then for any isofibration 𝑠 ∶ 𝐴 ↠ 𝐵 the induced
map on functor spaces in𝒦/𝐵 is defined by the pullback:

Fun𝐵(𝐴, 𝐸) Fun(𝐴, 𝐸)

Fun𝐵(𝐴, 𝐹) Fun(𝐴, 𝐹)

𝟙 Fun(𝐴, 𝐵)

∼𝑓∗ 𝑝∗

∼𝑓∗

𝑞∗
𝑠

Since 𝑓 is an equivalence in𝒦, the map 𝑓∗ ∶ Fun(𝐴, 𝐸) → Fun(𝐴, 𝐹) is an equivalence, and so it follows
that the induced map on fibers over 𝑠 is an equivalence as well.¹⁸

For the converse implication, we appeal to Lemma 1.2.15. If 𝑓 ∶ 𝐸 → 𝐹 is an equivalence in 𝒦/𝐵
then it admits a homotopy inverse in𝒦/𝐵. The inverse equivalence 𝑔∶ 𝐹 → 𝐸 also defines an inverse
equivalence in𝒦 and the required simplicial homotopies in𝒦

𝐸 𝕀 ⋔𝐵 𝑝 𝐸𝕀 𝐹 𝕀 ⋔𝐵 𝑞 → 𝐹𝕀𝛼 𝛽

are defined by composing with the top horizontal leg of the pullback defining the cotensor in𝒦/𝐵. �

As mentioned in Digression 1.2.13, many of the∞-cosmoi we encounter “in the wild” satisfy an
additional axiom. Note, however, that this axiom is not inherited by the sliced∞-cosmoi of Proposition
1.2.22, which is one of the reasons it was not included in Definition 1.2.1.

1.2.23. Definition (cartesian closed∞-cosmoi). An∞-cosmos𝒦 is cartesian closed if the product
bifunctor − × −∶ 𝒦 ×𝒦 → 𝒦 extends to a simplicially enriched two-variable adjunction

Fun(𝐴 × 𝐵,𝐶) ≅ Fun(𝐴, 𝐶𝐵) ≅ Fun(𝐵, 𝐶𝐴)
in which the right adjoints (−)𝐴 ∶ 𝒦 → 𝒦 preserve isofibrations for all 𝐴 ∈ 𝒦.

For instance, the∞-cosmos of quasi-categories is cartesian closed, with the exponentials defined
as (special cases of) simplicial cotensors. This is one of the reasons that we use the same notation for
cotensor and for exponential.¹⁹ Note in this case the functor spaces and the exponentials coincide. The
same is true for the cartesian closed ∞-cosmoi of categories and of Kan complexes. In general, the

¹⁸The stability of equivalences between isofibrations under pullback can be proven either as a consequence of Lem-
mas 1.2.14 and 1.2.19 using standard techniques from simplicial homotopy theory (see Lemma C.1.11) or by arguing 2-
categorically (see Proposition 3.3.4).

¹⁹Other advantages of this convenient notational conflation are discussed in §2.3 and in Proposition 10.3.5.
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functor space from 𝐴 to 𝐵 is the “underlying quasi-category” of the exponential 𝐵𝐴 whenever it exists
(see Remark 1.3.11).

1.2.24. Example (∞-cosmoi of (∞, 1)-categories; §E.2). The following models of (∞, 1)-categories
define cartesian closed∞-cosmoi:

(i) Rezk’s complete Segal spaces define the objects of an∞-cosmos 𝒞𝒮𝒮, in which the isofibra-
tions, equivalences, and trivial fibrations are the corresponding classes of the model structure
of [100].²⁰

(ii) The Segal categories defined by Dwyer, Kan, and Smith [38] and developed by Hirschowitz and
Simpson [56] define the objects of an∞-cosmos𝒮𝑒𝑔𝑎𝑙, in which the isofibrations, equivalences,
and trivial fibrations are the corresponding classes of the model structure of [12, 90].²¹

(iii) The 1-complicial sets of [129], equivalently the “naturally marked quasi-categories” of [78],
define the objects of an∞-cosmos 1-𝒞𝑜𝑚𝑝 in which the isofibrations, equivalences, and trivial
fibrations are the corresponding classes of the model structure from either of these sources.

In §E.3, we show that certain models of (∞, 𝑛)-categories or even (∞,∞)-categories define∞-cos-
moi: 𝑛-quasi-categories,Θ𝑛-spaces, iterated complete Segal spaces, and 𝑛-complicial sets.

1.2.25. Definition (co-dual∞-cosmoi). There is an identity-on-objects involutive functor (−)∘ ∶ 𝚫 →
𝚫 that reverses the ordering of the elements in each ordinal [𝑛] ∈ 𝚫. In the notation of 1.1.1, the
functor (−)∘ sends a face map 𝛿𝑖 ∶ [𝑛 − 1] ↣ [𝑛] to the face map 𝛿𝑛−𝑖 ∶ [𝑛 − 1] ↣ [𝑛] and sends the
degeneracy map 𝜎𝑖 ∶ [𝑛 + 1] ↠ [𝑛] to the degeneracy map 𝜎𝑛−𝑖 ∶ [𝑛 + 1] ↠ [𝑛]. Precomposition with
this involutive automorphism induces an involution (−)op ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 that sends a simplicial set 𝑋
to its opposite simplicial set 𝑋op, with the orientation of the vertices in each simplex reversed. This
construction preserves all conical limits and colimits and induces an isomorphism (𝑌𝑋)op ≅ (𝑌op)𝑋op

on exponentials.
For any∞-cosmos𝒦, there is a dual∞-cosmos𝒦co with the same objects but with functor spaces

defined by:
Fun𝒦co(𝐴, 𝐵) ≔ Fun𝒦(𝐴, 𝐵)op.

The isofibrations, equivalences, and trivial fibrations in𝒦co coincide with those of𝒦.
Conical limits in 𝒦co coincide with those in 𝒦, while the cotensor of 𝐴 ∈ 𝒦 with 𝑈 ∈ 𝑠𝒮𝑒𝑡 is

defined to be 𝐴𝑈op
.

A 2-categorical justification for this notation is given in Exercise 1.4.ii.

1.2.26. Definition (discrete∞-categories). An∞-category 𝐸 in an∞-cosmos𝒦 is discrete just when
for all 𝑋 ∈ 𝒦 the functor space Fun(𝑋, 𝐸) is a Kan complex.

In the ∞-cosmos of quasi-categories, the discrete ∞-categories are exactly the Kan complexes.
Similarly, in the∞-cosmoi of Example 1.2.24 whose∞-categories are (∞, 1)-categories in some model,

²⁰Warning: the model category of complete Segal spaces is enriched over simplicial sets in two distinct “directions”
– one enrichment makes the simplicial set of maps between two complete Segal spaces into a Kan complex that probes
the “spacial” structure while another enrichment makes the simplicial set of maps into a quasi-category that probes the
“categorical” structure [64]. It is this latter enrichment that we want.

²¹Here we reserve the term “Segal category” for those simplicial objects with a discrete set of objects that are Reedy
fibrant and satisfy the Segal condition. The traditional definition does not include the Reedy fibrancy condition because
it is not satisfied by the simplicial object defined as the nerve of a Kan complex enriched category. Since Kan complex
enriched categories are not among our preferred models of (∞, 1)-categories this does not bother us.
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the discrete∞-categories are the∞-groupoids. Importantly for what follows, the discrete∞-categories
can be characterized “internally” to the∞-cosmos as follows:

1.2.27. Lemma. An∞-category 𝐸 is discrete if and only if 𝐸𝕀 ∼ 𝐸𝟚 is a trivial fibration.

Proof. By Definition 1.2.2, the isofibration 𝐸𝕀 ↠ 𝐸𝟚 is a trivial fibration if and only if for all
∞-categories 𝑋 the induced map on functor spaces

Fun(𝑋, 𝐸𝕀) Fun(𝑋, 𝐸𝟚)

Fun(𝑋, 𝐸)𝕀 Fun(𝑋, 𝐸)𝟚

≅ ≅

is a trivial fibration of quasi-categories. Via the universal property of the simplicial cotensor, Lemma
1.1.30 tells us that this map is a trivial fibration if and only if Fun(𝑋, 𝐸) is a Kan complex. �

The reader may check that the discrete∞-categories in any∞-cosmos assemble into an∞-cosmos
𝒦≃. A proof appears in Proposition 6.1.6 where general techniques for producing new∞-cosmoi from
given ones are developed.

Exercises.

1.2.i. Exercise. Define an equivalence between the categories of:

(i) simplicial categories, as in (1.2.5), and
(ii) categories enriched over simplicial sets.

1.2.ii. Exercise. Elaborate on the proof of Proposition 1.2.10 by proving that the simplicially enriched
category 𝒬𝒞𝑎𝑡 admits conical products satisfying the universal property of Digression 1.2.6. That is:

(i) Define the cartesian product𝐴×𝐵 and the projectionmaps𝜋𝐴 ∶ 𝐴×𝐵 → 𝐴 and𝜋𝐵 ∶ 𝐴×𝐵 →
𝐵 for a pair of quasi-categories𝐴 and 𝐵 and prove that this data satisfies the usual (unenriched)
universal property.

(ii) Given another quasi-category 𝑋, use (i) and the Yoneda lemma to show that the projection
maps induce an isomorphism of quasi-categories

(𝐴 × 𝐵)𝑋 𝐴𝑋 × 𝐵𝑋.≃

(iii) Explain how this relates to the universal property of Digression 1.2.6.
(iv) Express the usual 1-categorical universal property of (i) as the “0-dimensional aspect” of the

universal property of (ii).

1.2.iii. Exercise. Prove that any object in an∞-cosmos has a path object

𝐵𝕀

𝐵 𝐵 × 𝐵

(ev0,ev1)

∼

∼

Δ

constructed by cotensoring with the free-living isomorphism.

1.2.iv. Exercise. Show that if𝒦 is a cartesian closed∞-cosmos then𝒦co is as well.

1.2.v. Exercise (6.1.6). Use Proposition 1.2.12 to show that the discrete∞-categories in any∞-cosmos
define an∞-cosmos whose functor spaces are all Kan complexes.
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1.3. Cosmological Functors

Certain “right adjoint type” constructions define maps between ∞-cosmoi that preserve all of
the structures axiomatized in Definition 1.2.1. The simple observation that such constructions define
cosmological functors between∞-cosmoi streamlines many proofs.

1.3.1. Definition (cosmological functor). A cosmological functor is a simplicial functor (see Definition
A.2.6) between∞-cosmoi that preserves the specified isofibrations and all of the cosmological limits.

In general, cosmological functors preserve any ∞-categorical notion that can be characterized
internally to the∞-cosmos – for instance, as a map equipped with additional structure – as opposed
to externally – for instance, by a statement that involves a universal or existential quantifier. For
example, the equivalences in an∞-cosmos are characterized externally in Definition 1.2.2, which might
lead one to suspect that a nonsurjective cosmological functor could fail to preserve them. However,
Lemma 1.2.15 characterizes equivalences in terms of the presence of structures defined internally to an
∞-cosmos, so as a result:

1.3.2. Lemma. Any cosmological functor also preserves equivalences and trivial fibrations.

Proof. By Lemma 1.2.15 the equivalences in an∞-cosmos coincide with the “homotopy equiva-
lences” defined by cotensoring with the free-living isomorphism. Since a cosmological functor preserves
simplicial cotensors, it preserves the data displayed in (1.2.16) and hence carries equivalences to equiva-
lences. The preservation of trivial fibrations follows. �

1.3.3. Remark. Similarly, arguing from Definition 1.2.26 it would not be clear whether cosmological
functors preserve discrete∞-categories, but using the internal characterization of Lemma 1.2.27 – an
∞-category 𝐴 is discrete if and only if 𝐴𝕀 ∼ 𝐴𝟚 is a trivial fibration – this follows from the fact that
cosmological functors preserve simplicial cotensors and trivial fibrations.

We now demonstrate that cosmological functors are abundant:

1.3.4. Proposition. The following constructions define cosmological functors for any∞-cosmos𝒦:
(i) The functor space Fun(𝑋, −) ∶ 𝒦 → 𝒬𝒞𝑎𝑡, for any∞-category 𝑋.
(ii) The underlying quasi-category functor

(−)0 ≔ Fun(1, −) ∶ 𝒦 → 𝒬𝒞𝑎𝑡,
specializing (i) to the terminal∞-category 1.

(iii) The simplicial cotensor (−)𝑈 ∶ 𝒦 → 𝒦, for any simplicial set 𝑈.
(iv) The exponential (−)𝐴 ∶ 𝒦 → 𝒦, for any∞-category 𝐴 in a cartesian closed∞-cosmos𝒦.
(v) Pullback of isofibrations 𝑓 ∗ ∶ 𝒦/𝐵 → 𝒦/𝐴 along any functor 𝑓 ∶ 𝐴 → 𝐵 in an∞-cosmos𝒦.
(vi) Moreover, for any cosmological functor 𝐹∶ 𝒦 → ℒ and any∞-category 𝐴 ∈ 𝒦, the induced map on

slices 𝐹∶ 𝒦/𝐴 → ℒ/𝐹𝐴 defines a cosmological functor.

Proof. The first four of these statements are nearly immediate, the preservation of isofibrations
being asserted explicitly as a hypothesis in each case and the preservation of limits following from
familiar arguments.

For (v), pullback in an∞-cosmos𝒦 is a simplicially enriched limit construction; one consequence
of this is that 𝑓 ∗ ∶ 𝒦/𝐵 → 𝒦/𝐴 defines a simplicial functor. The action of the functor 𝑓 ∗ on a 0-arrow
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𝑔 in𝒦/𝐵 is also defined by a pullback square: since the front and back squares in the displayed diagram
are pullbacks the top square is as well

𝑓 ∗𝐸 𝐸

𝑓 ∗𝐹 𝐹

𝐴 𝐵

𝑓 ∗𝑝 𝑓 ∗(𝑔)
𝑝

𝑔

𝑓 ∗𝑞 𝑞

𝑓

Since isofibrations are stable under pullback, it follows that 𝑓 ∗ ∶ 𝒦/𝐵 → 𝒦/𝐴 preserves isofibrations.
It remains to prove that this functor preserves the simplicial limits constructed in Proposition 1.2.22,
which is fundamentally a consequence of the commutativity of limit constructions. In each case, this
can be verified explicitly. We illustrate this computation for simplicial cotensors by constructing the
commutative cube:

𝑈 ⋔𝐴 𝑓 ∗𝑝 (𝑓 ∗𝐸)𝑈

𝑈 ⋔𝐵 𝑝 𝐸𝑈

𝐴 𝐴𝑈

𝐵 𝐵𝑈

(𝑓 ∗𝑝)𝑈

Δ

𝑓 𝑓 𝑈

Δ

𝑝𝑈

Since the front, back, and right faces are pullbacks, the left is as well.
The final statement (vi) is left as Exercise 1.3.i. �

1.3.5. Example. By Propositions 1.2.11 and 1.2.12, the full subcategory inclusions 𝒞𝑎𝑡 ↪ 𝒬𝒞𝑎𝑡 and
𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 both define cosmological functors (see also Lemma 6.1.4). These cosmological embed-
dings explicate the intuition that the formal category theory of 1-categories or of∞-groupoids can be
recovered as a special case of the formal category theory of (∞, 1)-categories.

Non-examples of cosmological functors are also instructive:

1.3.6. Non-Example. The forgetful functor𝒦/𝐵 → 𝒦 is simplicial and preserves isofibrations but does
not define a cosmological functor, failing to preserve cotensors and products. However, by Proposition
1.3.4(v), its right adjoint − × 𝐵∶ 𝒦 → 𝒦/𝐵 does define a cosmological functor.

1.3.7. Non-Example. The cosmological embedding𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 has a right adjoint (−)≃ ∶ 𝒬𝒞𝑎𝑡 →
𝒦𝑎𝑛 that carries each quasi-category to its “∞-groupoid core” or maximal sub Kan complex, the
simplicial subset containing those 𝑛-simplices whose edges are all isomorphisms. This core functor
preserves isofibrations and 1-categorical limits but is not cosmological since it is not simplicially
enriched: any functor 𝐾 → 𝑄 whose domain is a Kan complex and whose codomain is a quasi-category
factors through the inclusion 𝑄≃ ↪ 𝑄 via a unique map 𝐾 → 𝑄≃ but in general Fun(𝐾,𝑄) ≇
Fun(𝐾,𝑄≃), since a natural transformation 𝐾 × Δ[1] → 𝑄 only factors through 𝑄≃ ↪ 𝑄 in the case
where its components are invertible (see Lemma 12.1.12 however).

Certain cosmological functors are especially well-behaved:

1.3.8. Definition (cosmological biequivalence). A cosmological functor defines a cosmological bi-
equivalence 𝐹∶ 𝒦 ∼ ℒ if it additionally
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(i) is essentially surjective on objects up to equivalence: for all 𝐶 ∈ ℒ there exists 𝐴 ∈ 𝒦 so that
𝐹𝐴 ≃ 𝐶 and

(ii) defines a local equivalence: for all 𝐴,𝐵 ∈ 𝒦, the action of 𝐹 on functor spaces defines an
equivalence of quasi-categories

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵).∼

Cosmological biequivalences are studied more systematically in Chapter 10, where we think of them
as “change-of-model” functors. Crucially for our proof of the “model independence” of (∞, 1)-category
theory in Chapter 11, there are a variety of cosmological biequivalences between the ∞-cosmoi of
(∞, 1)-categories:

1.3.9. Example (biequivalences between∞-cosmoi of (∞, 1)-categories; §E.2).
(i) The underlying quasi-category functors defined on the ∞-cosmoi of complete Segal spaces,

Segal categories, and 1-complicial sets

𝒞𝒮𝒮 𝒬𝒞𝑎𝑡 𝒮𝑒𝑔𝑎𝑙 𝒬𝒞𝑎𝑡 1-𝒞𝑜𝑚𝑝 𝒬𝒞𝑎𝑡∼(−)0 ∼(−)0 ∼(−)0

are all biequivalences. In the first two cases these are defined by “evaluating at the 0th row”
and in the last case this is defined by “forgetting the markings.”

(ii) There are also cosmological biequivalences nerve ∶ 𝒬𝒞𝑎𝑡 ∼ 𝒞𝒮𝒮 and nerve ∶ 𝒬𝒞𝑎𝑡 ∼ 𝒮𝑒𝑔𝑎𝑙
defined by Joyal and Tierney [64].

(iii) The functor disc ∶ 𝒞𝒮𝒮 ∼ 𝒮𝑒𝑔𝑎𝑙 defined by Bergner [13] that “discretizes” a complete Segal
spaces also defines a cosmological biequivalence.

(iv) Another cosmological biequivalence (−)♮ ∶ 𝒬𝒞𝑎𝑡 ∼ 1-𝒞𝑜𝑚𝑝 that gives each quasi-category its
“natural marking.”

In terminology justified by Proposition 10.2.1:

1.3.10. Definition. An∞-cosmos𝒦 is an∞-cosmos of (∞, 1)-categories just when the underlying
quasi-category (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 is a cosmological biequivalence.

1.3.11. Remark. The underlying quasi-category functor (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 carries the internal homs of
a cartesian closed∞-cosmos𝒦 to the corresponding functor spaces: for any∞-categories 𝐴 and 𝐵 in
𝒦, we have

(𝐵𝐴)0 ≔ Fun(1, 𝐵𝐴) ≅ Fun(𝐴, 𝐵).
In the case where the ∞-cosmos 𝒦 is biequivalent to 𝒬𝒞𝑎𝑡, we see in Chapters 10 and 11 that this
entails no essential loss of categorical information.

Cosmological biequivalences not only preserve equivalences but also reflect and create them.

1.3.12. Lemma. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence. Then:

(i) A functor 𝑓 ∶ 𝐴 → 𝐵 between∞-categories in𝒦 is an equivalence if and only if 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 is an
equivalence inℒ.

(ii) A pair of∞-categories in𝒦 are equivalent if and only if their images inℒ are equivalent.

Proof. Lemma 1.3.2 implies that cosmological functors preserve equivalences and thus also the
existence of an equivalence between a pair of ∞-categories in 𝒦. To see that equivalences are also
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reflected, suppose 𝑓 ∶ 𝐴 → 𝐵 is a functor in𝒦 with the property that 𝐹𝑓∶ 𝐹𝐴 ∼ 𝐹𝐵 is an equivalence
inℒ. Now for any∞-category 𝑋, simplicial functoriality provides a commutative diagram

Fun(𝑋,𝐴) Fun(𝑋, 𝐵)

Fun(𝐹𝑋, 𝐹𝐴) Fun(𝐹𝑋, 𝐹𝐵)

𝑓∗

∼ ∼

∼𝐹𝑓∗

so from the 2-of-3 property we conclude that 𝑓∗ ∶ Fun(𝑋,𝐴) ∼ Fun(𝑋, 𝐵) is an equivalence, proving
that 𝑓 is an equivalence in𝒦.

To see that equivalences are created, suppose now that 𝐴 and 𝐵 are∞-categories in𝒦 equipped
with an equivalence:

𝐹𝐴 𝐹𝐵

𝐹𝐴 𝐹𝐵 𝐹𝐴 𝐹𝐴𝕀 𝐹𝐵 𝐹𝐵𝕀

𝐹𝐴 𝐹𝐵

∼

̃𝑓

∼
�̃�

�̃� ̃𝑓

�̃�

∼ ev0

∼ ev1

�̃�

̃𝑓 �̃�

∼ ev0

∼ ev1

inℒ. Since Fun(𝐴, 𝐵) ∼ Fun(𝐹𝐴, 𝐹𝐵) and Fun(𝐵,𝐴) ∼ Fun(𝐹𝐵, 𝐹𝐴) are equivalences of quasi-cate-
gories the induced functors between their homotopy categories h(Fun(𝐴, 𝐵)) ∼ h(Fun(𝐹𝐴, 𝐹𝐵)) and
h(Fun(𝐵,𝐴)) ∼ h(Fun(𝐹𝐵, 𝐹𝐴)) are equivalences of categories, by Remark 1.1.24, and in particular

essentially surjective. So we may lift ̃𝑓 and �̃� to functors 𝑓 ∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 in h(Fun(𝐴, 𝐵)) and
h(Fun(𝐵,𝐴)), respectively, so that 𝐹𝑓 ≅ ̃𝑓 and 𝐹𝑔 ≅ �̃�. The commutative diagram of quasi-categories

Fun(𝐵,𝐴) × Fun(𝐴, 𝐵) Fun(𝐴,𝐴)

Fun(𝐹𝐵, 𝐹𝐴) × Fun(𝐹𝐴, 𝐹𝐵) Fun(𝐹𝐴, 𝐹𝐴)

∘

∼ ∼

∘

induces a commutative diagram between their homotopy categories. In particular, by applying the

composition bifunctor to the isomorphisms 𝐹𝑓 ≅ ̃𝑓 and 𝐹𝑔 ≅ �̃�, we see that
𝐹(id𝐴) = id𝐹𝐴 ≅ �̃� ∘ ̃𝑓 ≅ 𝐹𝑔 ∘ 𝐹𝑓 = 𝐹(𝑔 ∘ 𝑓 )

in h(Fun(𝐴,𝐴)). By fully faithfulness of h(Fun(𝐴,𝐴)) ∼ h(Fun(𝐹𝐴, 𝐹𝐴)), this isomorphism lifts to
an isomorphism id𝐴 ≅ 𝑔 ∘ 𝑓 in h(Fun(𝐴,𝐴)). By Corollary 1.1.16, this isomorphism can be represented
by a homotopy coherent isomorphism 𝕀 → Fun(𝐴,𝐴), which internalizes to define a map 𝛼∶ 𝐴 → 𝐴𝕀

as required. The construction of the homotopy coherent isomorphism 𝛽∶ 𝐵 → 𝐵𝕀 from 𝑓 ∘ 𝑔 to id𝐵
proceeds similarly. �

The proof of the creation of equivalences in Lemma 1.3.12 is surprisingly delicate, passing to
the homotopy categories of the functor spaces to avoid lifting and composing homotopy coherent
isomorphisms; an argument along those lines is also possible, and left to the reader as Exercise 1.3.ii.
The next section provides context for the argument just given by introducing the homotopy 2-category of
an∞-cosmos. The reader is then invited to revisit the creation of equivalences in Exercise 1.4.vi.
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Exercises.

1.3.i. Exercise. Prove that for any cosmological functor 𝐹∶ 𝒦 → ℒ and any 𝐴 ∈ 𝒦, the induced map
𝐹∶ 𝒦/𝐴 → ℒ/𝐹𝐴 defines a cosmological functor.

1.3.ii. Exercise. Sketch a proof that cosmological biequivalences create equivalences between∞-cat-
egor ies without passing to homotopy categories, by lifting and composing the homotopy coherent
isomorphisms given as part of the data of the hypothesized equivalences.

1.3.iii. Exercise. Suppose 𝐹∶ 𝒦 → ℒ, 𝐺∶ ℒ → ℳ, and 𝐻∶ ℳ → 𝒩 are cosmological functors,
and assume that 𝐺𝐹 and 𝐻𝐺 are cosmological biequivalences. Show that 𝐹, 𝐺, 𝐻, and 𝐻𝐺𝐹 are
cosmological biequivalences.

1.4. The Homotopy 2-Category

Small 1-categories define the objects of a strict 2-category²² 𝒞𝑎𝑡 of categories, functors, and natural
transformations. Many basic categorical notions – those defined in terms of categories, functors, and
natural transformations – can be defined internally to the 2-category𝒞𝑎𝑡. This suggests a natural avenue
for generalization: reinterpreting these same definitions in a generic 2-category using its objects in place
of small categories, its 1-cells in place of functors, and its 2-cells in place of natural transformations.

In Chapter 2, we develop a significant portion of the theory of ∞-categories in any fixed ∞-
cosmos following exactly this outline, working internally to a 2-category that we refer to as the
homotopy 2-category that we associate to any∞-cosmos. The homotopy 2-category of an∞-cosmos is a
quotient of the full∞-cosmos, replacing each quasi-categorical functor space by its homotopy category.
Surprisingly, this rather destructive quotienting operation preserves quite a lot of information. Indeed,
essentially all of the development of the theory of∞-categories in Part I takes place in the homotopy
2-category of an ∞-cosmos. This said, we caution the reader against becoming overly seduced by
homotopy 2-categories, which are more of a technical convenience for reducing the complexity of our
arguments than a fundamental notion of∞-category theory.

The homotopy 2-category for the∞-cosmos of quasi-categories was first introduced by Joyal in his
work on the foundations of quasi-category theory [63].

1.4.1. Definition (homotopy 2-category). Let 𝒦 be an ∞-cosmos. Its homotopy 2-category is the
2-category 𝔥𝒦 whose

• objects are the the objects 𝐴,𝐵 of𝒦, i.e., the∞-categories;
• 1-cells 𝑓 ∶ 𝐴 → 𝐵 are the 0-arrows in the functor space Fun(𝐴, 𝐵), i.e., the∞-functors; and

• 2-cells 𝐴 𝐵
𝑓

𝑔
⇓𝛼 are homotopy classes of 1-simplices in Fun(𝐴, 𝐵), which we call∞-natural

transformations.

²²Appendix B introduces 2-categories and 2-functors, reviewing the 2-category theory needed here. Succinctly, in
parallel with Digression 1.2.4, 2-categories (see Definition B.1.1) can be understood equally as:

• “two-dimensional” categories, with objects; 1-cells, whose boundary are given by a pair of objects; and 2-cells, whose
boundary are given by a parallel pair of 1-cells between a pair of objects – together with partially defined composition
operations governed by this boundary data

• or as categories enriched over 𝒞𝑎𝑡.
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Put another way 𝔥𝒦 is the 2-category with the same objects as𝒦 and with hom-categories defined by

hFun(𝐴, 𝐵) ≔ h(Fun(𝐴, 𝐵)),
that is, hFun(𝐴, 𝐵) is the homotopy category of the quasi-category Fun(𝐴, 𝐵).

The underlying category of a 2-category is defined by simply forgetting its 2-cells. Note that an
∞-cosmos𝒦 and its homotopy 2-category 𝔥𝒦 share the same underlying category𝒦0 of∞-categories
and∞-functors in𝒦.

1.4.2. Digression (change of base, §A.7). The homotopy category functor preserves finite products,
as of course does its right adjoint. It follows that the adjunction of Proposition 1.1.11 induces a
change-of-base adjunction

2-𝒞𝑎𝑡 𝑠𝒮𝑒𝑡-𝒞𝑎𝑡⊥
h∗

whose left and right adjoints change the enrichment by applying the homotopy category functor
or the nerve functor to the hom objects of the enriched category. Here 2-𝒞𝑎𝑡 and 𝑠𝒮𝑒𝑡-𝒞𝑎𝑡 can
each be understood as 2-categories – of enriched categories, enriched functors, and enriched natural
transformations – and both change of base constructions define 2-functors (see Propositions A.7.3 and
A.7.5). Since the nerve embedding is fully faithful, 2-categories can be identified as a full subcategory
comprised of those simplicial categories whose hom spaces are nerves of categories.

The proof of Lemma 1.3.12 uses an observation worth highlighting:

1.4.3. Lemma.

(i) Every 2-cell 𝐴 𝐵
𝑓

𝑔
⇓𝛼 in the homotopy 2-category of an ∞-cosmos is represented by a map of

quasi-categories as below-left or equivalently by a functor as below-right

𝟙 + 𝟙 𝐴 𝐵𝟚

𝟚 Fun(𝐴, 𝐵) 𝐵 × 𝐵

(𝑓 ,𝑔)
𝛼

(𝑔,𝑓 ) (𝑝1,𝑝0)
𝛼

↭

and two such maps represent the same 2-cell if and only if they are homotopic as 1-simplices in Fun(𝐴, 𝐵).

(ii) Every invertible 2-cell 𝐴 𝐵
𝑓

𝑔
≅⇓𝛼 in the homotopy 2-category of an∞-cosmos is represented by

a map of quasi-categories as below-left or equivalently by a functor as below-right

𝟙 + 𝟙 𝐴 𝐵𝕀

𝕀 Fun(𝐴, 𝐵) 𝐵 × 𝐵

(𝑓 ,𝑔)
𝛼

(𝑔,𝑓 ) (𝑝1,𝑝0)
𝛼

↭

and two such maps represent the same invertible 2-cell if and only if their common restrictions along
𝟚 ↪ 𝕀 are homotopic as 1-simplices in Fun(𝐴, 𝐵).

The notion of homotopic 1-simplices referenced here is defined in Lemma 1.1.9. Since the 2-cells
in the homotopy 2-category are referred to as∞-natural transformations, we refer to the invertible
2-cells in the homotopy 2-category as∞-natural isomorphisms.
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Proof. The statement (i) records the definition of the 2-cells in the homotopy 2-category and
the universal property (1.2.7) of the simplicial cotensor. For (ii), a 2-cell in the homotopy 2-category
is invertible if and only if it defines an isomorphism in the appropriate hom-category hFun(𝐴, 𝐵).
By Corollary 1.1.16 it follows that each invertible 2-cell 𝛼 is represented by a homotopy coherent
isomorphism 𝛼∶ 𝕀 → Fun(𝐴, 𝐵), which similarly internalizes to define a functor 𝛼∶ 𝐴 → 𝐵𝕀. �

An upshot of Digression 1.4.2 is that change of base is an operation that applies to enriched functors
as well as enriched categories, as can be directly verified in the case of greatest interest.

1.4.4. Lemma. Any simplicial functor 𝐹∶ 𝒦 → ℒ between∞-cosmoi induces a 2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ
between their homotopy 2-categories.

Proof. The action of the induced 2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ on objects and 1-cells is given by the
corresponding action of 𝐹∶ 𝒦 → ℒ; recall an∞-cosmos and its homotopy 2-category have the same
underlying 1-category. Each 2-cell in 𝔥𝒦 is represented by a 1-simplex in Fun(𝐴, 𝐵) which is mapped
via

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵)𝐹

𝐴 𝐵 𝐹𝐴 𝐹𝐵
𝑓

𝑔
⇓𝛼

𝐹𝑓

𝐹𝑔

⇓𝐹𝛼

to a 1-simplex representing a 2-cell in 𝔥ℒ. Since the action 𝐹∶ Fun(𝐴, 𝐵) → Fun(𝐹𝐴, 𝐹𝐵) on functor
spaces defines a morphism of simplicial sets, it preserves faces and degeneracies. In particular, homo-
topic 1-simplices in Fun(𝐴, 𝐵) are carried to homotopic 1-simplices in Fun(𝐹𝐴, 𝐹𝐵) so the action on
2-cells just described is well-defined. The 2-functoriality of these mappings follows from the simplicial
functoriality of the original mapping. �

We now begin to relate the simplicially enriched structures of an∞-cosmos to the 2-categorical
structures in its homotopy 2-category by proving that homotopy 2-categories inherit products from
their∞-cosmoi that satisfy a 2-categorical universal property. To illustrate, recall that the terminal
∞-category 1 ∈ 𝒦 has the universal property Fun(𝑋, 1) ≅ 𝟙 for all 𝑋 ∈ 𝒦. Applying the homotopy
category functor we see that 1 ∈ 𝔥𝒦 has the universal property hFun(𝑋, 1) ≅ 𝟙 for all 𝑋 ∈ 𝔥𝒦, which
is expressed by saying that the∞-category 1 defines a 2-terminal object in the homotopy 2-category.
This 2-categorical universal property has both a 1-dimensional and a 2-dimensional aspect. Since
hFun(𝑋, 1) ≅ 𝟙 is a category with a single object, there exists a unique morphism 𝑋 → 1 in𝒦, and
since hFun(𝑋, 1) ≅ 𝟙 has only a single morphism, the only 2-cells in 𝔥𝒦 with codomain 1 are identities.

1.4.5. Proposition (cartesian (closure)).

(i) The homotopy 2-category of any∞-cosmos has 2-categorical products.
(ii) The homotopy 2-category of a cartesian closed∞-cosmos is cartesian closed as a 2-category.

Proof. While the functor h ∶ 𝑠𝒮𝑒𝑡 → 𝒞𝑎𝑡 only preserves finite products, the restricted functor
h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 preserves all products on account of the simplified description of the homotopy
category of a quasi-category given in Lemma 1.1.12. Thus for any set 𝐼 and family of∞-categories (𝐴𝑖)𝑖∈𝐼
in𝒦, the homotopy category functor carries the isomorphism of functor spaces to an isomorphism of
hom-categories

Fun(𝑋,∏𝑖∈𝐼𝐴𝑖) ∏
𝑖∈𝐼 Fun(𝑋,𝐴𝑖) hFun(𝑋,∏𝑖∈𝐼𝐴𝑖) ∏

𝑖∈𝐼 hFun(𝑋,𝐴𝑖).
≅ h ≅
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This proves that the homotopy 2-category 𝔥𝒦 has products whose universal properties have both a 1-
and 2-dimensional component, as described in the empty case for terminal objects above.

If𝒦 is a cartesian closed∞-cosmos, then for any triple of∞-categories 𝐴,𝐵, 𝐶 ∈ 𝒦 there exist
exponential objects 𝐶𝐴, 𝐶𝐵 ∈ 𝒦 characterized by natural isomorphisms

Fun(𝐴 × 𝐵,𝐶) ≅ Fun(𝐴, 𝐶𝐵) ≅ Fun(𝐵, 𝐶𝐴).
Passing to homotopy categories we have natural isomorphisms

hFun(𝐴 × 𝐵,𝐶) ≅ hFun(𝐴, 𝐶𝐵) ≅ hFun(𝐵, 𝐶𝐴),
which demonstrates that 𝔥𝒦 is cartesian closed as a 2-category: functors 𝐴 × 𝐵 → 𝐶 transpose to
define functors 𝐴 → 𝐶𝐵 and 𝐵 → 𝐶𝐴, and natural transformations transpose similarly. �

There is a standard definition of isomorphism between two objects in any 1-category, preserved
by any functor. Similarly, there is a standard definition of equivalence between two objects in any
2-category, preserved by any 2-functor:

1.4.6. Definition (equivalence). An equivalence in a 2-category is given by

• a pair of objects 𝐴 and 𝐵;
• a pair of 1-cells 𝑓 ∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴; and
• a pair of invertible 2-cells

𝐴 𝐴 and 𝐵 𝐵
𝑔𝑓

≅⇓𝛼 ≅⇓𝛽

When𝐴 and 𝐵 are equivalent, we write𝐴 ≃ 𝐵 and refer to the 1-cells 𝑓 and 𝑔 as equivalences, denoted
by “∼ .”

In the case of the homotopy 2-category of an∞-cosmos we have a competing definition of equiva-
lence from 1.2.1: namely a 1-cell 𝑓 ∶ 𝐴 ∼ 𝐵 that induces an equivalence 𝑓∗ ∶ Fun(𝑋,𝐴) ∼ Fun(𝑋, 𝐵)
on functor spaces – or equivalently, by Lemma 1.2.15, a homotopy equivalence defined relative to the
interval 𝕀. Crucially, all three notions of equivalence coincide:

1.4.7. Theorem (equivalences are equivalences). In any∞-cosmos 𝒦, the following are equivalent and
characterize what it means for a functor 𝑓 ∶ 𝐴 → 𝐵 between∞-categories to define an equivalence.

(i) For all 𝑋 ∈ 𝒦, the post-composition map 𝑓∗ ∶ Fun(𝑋,𝐴) ∼ Fun(𝑋, 𝐵) defines an equivalence of
quasi-categories.

(ii) There exists a functor 𝑔∶ 𝐵 → 𝐴 and natural isomorphisms 𝛼∶ id𝐴 ≅ 𝑔𝑓 and 𝛽∶ 𝑓 𝑔 ≅ id𝐵 in the
homotopy 2-category.

(iii) There exists a functor 𝑔∶ 𝐵 → 𝐴 and maps

𝐴 𝐵

𝐴 𝐴𝕀 and 𝐵 𝐵𝕀

𝐴 𝐵
𝑔𝑓

𝛼

∼ ev0

∼ ev1

𝛽

𝑓 𝑔

∼ ev0

∼ ev1

in the∞-cosmos in𝒦.
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As an illustrative comparison of 2-categorical and quasi-categorical techniques, rather than appeal-
ing to Lemma 1.2.15 to prove (i)⇔(iii), we re-prove it.

Proof. For (i)⇒(ii), if the induced map 𝑓∗ ∶ Fun(𝑋,𝐴) ∼ Fun(𝑋, 𝐵) defines an equivalence of
quasi-categories then the functor 𝑓∗ ∶ hFun(𝑋,𝐴) ∼ hFun(𝑋, 𝐵) defines an equivalence of categories,
by Remark 1.1.24. In particular, the equialence 𝑓∗ ∶ hFun(𝐵,𝐴) ∼ hFun(𝐵, 𝐵) is essentially surjec-
tive so there exists 𝑔 ∈ hFun(𝐵,𝐴) and an isomorphism 𝛽∶ 𝑓 𝑔 ≅ id𝐵 ∈ hFun(𝐵, 𝐵). Now since
𝑓∗ ∶ hFun(𝐴,𝐴) ∼ hFun(𝐴, 𝐵) is fully faithful, the isomorphism 𝛽𝑓 ∶ 𝑓 𝑔𝑓 ≅ 𝑓 ∈ hFun(𝐴, 𝐵) can be
lifted to define an isomorphism 𝛼−1 ∶ 𝑔𝑓 ≅ id𝐴 ∈ hFun(𝐴,𝐴). This defines the data of a 2-categorical
equivalence in Definition 1.4.6.

To see that (ii)⇒(iii) recall from Lemma 1.4.3 that the natural isomorphisms 𝛼∶ id𝐴 ≅ 𝑔𝑓 and
𝛽∶ 𝑓 𝑔 ≅ id𝐵 in 𝔥𝒦 are represented by maps 𝛼∶ 𝐴 → 𝐴𝕀 and 𝛽∶ 𝐵 → 𝐵𝕀 in𝒦 as in (1.2.16).

Finally, (iii)⇒(i) since Fun(𝑋, −) carries the data of (iii) to the data of an equivalence of quasi-cat-
egories as in Definition 1.1.23. �

It is hard to overstate the importance of Theorem 1.4.7 for the work that follows. The categorical
constructions that we introduce for ∞-categories, ∞-functors, and ∞-natural transformations are
invariant under 2-categorical equivalence in the homotopy 2-category and the universal properties we
develop similarly characterize 2-categorical equivalence classes of∞-categories. Theorem 1.4.7 then
asserts that such constructions are “homotopically correct”: both invariant under equivalence in the
∞-cosmos and precisely identifying equivalence classes of objects.

The equivalence invariance of the functor space in the codomain variable is axiomatic, but equiva-
lence invariance in the domain variable is not.²³ Nor is it evident how this could be proven from either
(i) or (iii) of Theorem 1.4.7. But using (ii) and 2-categorical techniques, there is now a short proof.

1.4.8. Corollary. Equivalences of∞-categories 𝐴′ ∼ 𝐴 and 𝐵 ∼ 𝐵′ induce an equivalence of functor
spaces Fun(𝐴, 𝐵) ∼ Fun(𝐴′, 𝐵′).

Proof. The representable simplicial functors Fun(𝐴, −) ∶ 𝒦 → 𝒬𝒞𝑎𝑡 and Fun(−, 𝐵) ∶ 𝒦op →
𝒬𝒞𝑎𝑡 induce 2-functors Fun(𝐴, −) ∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡 and Fun(−, 𝐵) ∶ 𝔥𝒦op → 𝔥𝒬𝒞𝑎𝑡, which preserve
the 2-categorical equivalences of Definition 1.4.6. By Theorem 1.4.7 this is what we wanted to show. �

There is also a standard 2-categorical notion of an isofibration, defined in the statement of Proposi-
tion 1.4.9 and elaborated upon in Definition B.4.4. We now show that any isofibration in an∞-cosmos
defines an isofibration in its homotopy 2-category.

1.4.9. Proposition (isofibrations are isofibrations). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an∞-cosmos𝒦 also
defines an isofibration in the homotopy 2-category 𝔥𝒦: given any invertible 2-cell as displayed below-left
abutting to 𝐵 with a specified lift of one of its boundary 1-cells through 𝑝, there exists an invertible 2-cell abutting
to 𝐸 with this boundary 1-cell as displayed below-right that whiskers with 𝑝 to the original 2-cell.

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

𝑝≅⇓𝛽 =

𝑒

�̄�
≅⇓𝛾

𝑝

²³Lemma 1.3.2 does not apply since Fun(−, 𝐵) is not cosmological.
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Proof. The universal property of the statement says that the functor

𝑝∗ ∶ hFun(𝑋, 𝐸) ↠ hFun(𝑋, 𝐵)
is an isofibration of categories in the sense defined in Proposition 1.2.11. By axiom 1.2.1(ii), since
𝑝∶ 𝐸 ↠ 𝐵 is an isofibration in 𝒦, the induced map 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) is an isofibration
of quasi-categories. So it suffices to show that the functor h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 carries isofibrations of
quasi-categories to isofibrations of categories.

So let us now consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories. By Corollary 1.1.16,
every isomorphism 𝛽 in the homotopy category h𝐵 of the quasi-category 𝐵 is represented by a simplicial
map 𝛽∶ 𝕀 → 𝐵. By Definition 1.1.17, the lifting problem

𝟙 𝐸

𝕀 𝐵

𝑒

𝑝𝛾

𝛽

can be solved, and the map 𝛾∶ 𝕀 → 𝐸 so produced represents a lift of the isomorphism from h𝐵 to an
isomorphism in h𝐸 with domain 𝑒. �

1.4.10. Convention (on isofibrations in homotopy 2-categories). Since the converse to Proposition
1.4.9 does not hold, there is a potential ambiguity when using the term “isofibration” to refer to a map
in the homotopy 2-category of an∞-cosmos. We adopt the convention that when we declare a map in
𝔥𝒦 to be an isofibration we always mean this is the stronger sense of defining an isofibration in 𝒦.
This stronger condition gives us access to the 2-categorical lifting property of Proposition 1.4.9 and
also to homotopical properties axiomatized in Definition 1.2.1, which ensure that the strictly defined
limits of 1.2.1(i) are automatically equivalence invariant constructions (see §C.1 and Proposition 6.2.8).

We conclude this chapter with a final definition that can be extracted from the homotopy 2-category
of an∞-cosmos. The 1- and 2-cells in the homotopy 2-category from the terminal∞-category 1 ∈ 𝒦
to a generic ∞-category 𝐴 ∈ 𝒦 define the objects and morphisms in the homotopy category of the
∞-category 𝐴.

1.4.11. Definition (homotopy category of an∞-category). The homotopy category of an∞-category
𝐴 in an∞-cosmos𝒦 is defined to be the homotopy category of its underlying quasi-category, that is:

h𝐴 ≔ hFun(1, 𝐴) ≔ h(Fun(1, 𝐴)).

As we shall discover, homotopy categories generally inherit “derived” analogues of structures present
at the level of∞-categories. An early example of this appears in Proposition 2.1.7(ii).

Exercises.

1.4.i. Exercise.

(i) What is the homotopy 2-category of the∞-cosmos 𝒞𝑎𝑡 of 1-categories?
(ii) Prove that the nerve defines a 2-functor 𝒞𝑎𝑡 ↪ 𝔥𝒬𝒞𝑎𝑡 that is locally fully faithful.

1.4.ii. Exercise. Demonstrate that the homotopy 2-category of the dual cosmos𝒦co of an∞-cosmos
𝒦 is the co-dual of the homotopy 2-category 𝔥𝒦 – in symbols 𝔥(𝒦co) ≅ (𝔥𝒦)co – with the domains
and codomains of 2-cells but not 1-cells reversed (see Definition B.1.6).
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1.4.iii. Exercise. Consider a natural isomorphism 𝐴 𝐵
𝑓

𝑔
≅⇓𝛼 between a parallel pair of functors

in an∞-cosmos. Give two proofs that if either 𝑓 or 𝑔 is an equivalence then both functors are, either
by arguing entirely in the homotopy 2-category or by appealing to Lemma 1.4.3.

1.4.iv. Exercise. Extend Lemma 1.2.27 to show that the following four conditions are equivalent,
characterizing the discrete objects 𝐸 in an∞-cosmos𝒦:

(i) 𝐸 is a discrete object in the homotopy 2-category 𝔥𝒦, that is, every 2-cell with codomain 𝐸 is
invertible.

(ii) For each 𝑋 ∈ 𝒦, the hom-category hFun(𝑋, 𝐸) is a groupoid.
(iii) For each 𝑋 ∈ 𝒦, the mapping quasi-category Fun(𝑋, 𝐸) is a Kan complex.
(iv) The isofibration 𝐸𝕀 ↠ 𝐸𝟚, induced by the inclusion of simplicial sets 𝟚 ↪ 𝕀, is a trivial

fibration.

1.4.v. Exercise (10.3.1). Extend Lemma 1.4.4 to show that if 𝐹∶ 𝒦 → ℒ is a cosmological biequivalence
then 𝐹∶ 𝔥𝒦 → 𝔥ℒ is a 2-categorical biequivalence, a 2-functor that is essentially surjective on objects
up to equivalence that locally defines an equivalence of hom-categories.

1.4.vi. Exercise. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence and let 𝐴,𝐵 ∈ 𝒦. Re-prove part of
the statement of Lemma 1.3.12: that if 𝐹𝐴 ≃ 𝐹𝐵 inℒ then 𝐴 ≃ 𝐵 in𝒦.

1.4.vii. Exercise (3.6.2). Let 𝐵 be an∞-category in the∞-cosmos𝒦 and let 𝔥𝒦/𝐵 denote the 2-category
whose

• objects are isofibrations 𝐸 ↠ 𝐵 in𝒦 with codomain 𝐵;
• 1-cells are 1-cells in 𝔥𝒦 over 𝐵; and

𝐸 𝐹

𝐵
• 2-cells are 2-cells 𝛼 in 𝔥𝒦

𝐸 𝐹

𝐵
𝑝

𝑓

𝑔
⇓𝛼

𝑞

that lie over 𝐵 in the sense that 𝑞𝛼 = id𝑝.

Argue that the homotopy 2-category 𝔥(𝒦/𝐵) of the sliced∞-cosmos has the same underlying 1-category
but different 2-cells. How do these compare with the 2-cells of 𝔥𝒦/𝐵?
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CHAPTER 2

Adjunctions, Limits, and Colimits I

Heuristically,∞-categories generalize ordinary 1-categories by adding in higher dimensional mor-
phisms and weakening the composition law. One could imagine “∞-tizing” other types of categorical
structure similarly, by adding in higher dimension and weakening properties. The naïve hope is that
proofs establishing the theory of 1-categories might similarly generalize to give proofs for∞-categories,
just by adding a prefix “∞-” everywhere. In this chapter, we make this dream a reality – at least
for a library of basic propositions concerning equivalences, adjunctions, limits, and colimits and the
interrelationships between these notions.

Recall that categories, functors, and natural transformations assemble into a 2-category 𝒞𝑎𝑡.
Similarly, the∞-categories,∞-functors, and∞-natural transformations in any∞-cosmos assemble
into a 2-category, namely the homotopy 2-category of the ∞-cosmos, introduced in §1.4. In fact, 𝒞𝑎𝑡
can be regarded as a special case of a homotopy 2-category (by Exercise 1.4.i). In this chapter, we use
2-categorical techniques to define adjunctions between∞-categories and limits and colimits of diagrams
valued in an∞-category and prove that these notions interact in the expected ways. In the homotopy
2-category of categories, this recovers classical results from 1-category theory, and in some cases even
specializes to the standard proofs. As these arguments are equally valid in any homotopy 2-category,
our proofs also establish the desired generalizations by simply appending the prefix “∞-.”

In §2.1, we define an adjunction between ∞-categories to be an adjunction in the homotopy
2-category of ∞-categories, ∞-functors, and ∞-natural transformations. While it takes some work
to justify the moral correctness of this simple definition, it has the great advantage that proofs of a
number of results concerning the calculus of adjunctions and equivalences can be taken “off the shelf”
in the sense that anyone who is sufficiently well-acquainted with 2-categories might know them already.
In §2.2, we specialize the theory of adjunctions between∞-categories to define and study initial and
terminal elements inside an ∞-category. This section also serves as a warmup for the more subtle
general theory of limits and colimits of diagrams valued in an∞-category, which is the subject of §2.3.
Finally, in §2.4, we study the interactions between these notions, proving that right adjoints preserve
limits and left adjoints preserve colimits.

Missing from this discussion is an account of the universal properties associated to the unit of an
adjunction or to a limit cone. These will be incorporated when we return to these topics in Chapter 4
after introducing an appropriate “hom∞-category” with which to state them.

2.1. Adjunctions and Equivalences

In §1.4, we encounter the definition of an equivalence between a pair of objects in a 2-category. In
the case where the ambient 2-category is the homotopy 2-category of an ∞-cosmos, Theorem 1.4.7
observes that the 2-categorical notion of equivalence precisely recaptures the notion of equivalence
between∞-categories in the full∞-cosmos. In each of the examples of∞-cosmoi we have considered,

39



the representably defined equivalences in the∞-cosmos coincide with the standard notion of equiva-
lences between∞-categories as presented in that particular model.¹ Thus, the 2-categorical notion of
equivalence is the “correct” notion of equivalence between∞-categories.

Similarly, there is a standard definition of an adjunction between a pair of objects in a 2-category,
which, when interpreted in the homotopy 2-category of∞-categories, functors, and natural transfor-
mations in an∞-cosmos, will define the correct notion of adjunction between∞-categories.

2.1.1. Definition (adjunction). An adjunction between∞-categories is comprised of:

• a pair of∞-categories 𝐴 and 𝐵;
• a pair of∞-functors 𝑢∶ 𝐴 → 𝐵 and 𝑓 ∶ 𝐵 → 𝐴; and
• a pair of∞-natural transformations 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴, called the unit and counit

respectively,

so that the triangle equalities hold:²

𝐵 𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴
⇓𝜖 𝑓 ⇓𝜂 = =

𝑓
⇓𝜂 ⇓𝜖

𝑓 = = 𝑓𝑓𝑢
𝑢 𝑢 𝑢 𝑢

The functor 𝑓 is called the left adjoint and 𝑢 is called the right adjoint, a relationship that is denoted
symbolically in text by writing 𝑓 ⊣ 𝑢 or in a displayed diagram such as³

𝐴 𝐵
𝑢
⊥
𝑓

We typically drop the prefix “∞” from the functors and natural transformations between∞-cate-
gories.

2.1.2. Digression (justifying the 2-categorical definition of an adjunction). We offer a few words of
justification for those who find Definition 2.1.1 implausible – perhaps too simple to be trusted. Joyal
was the first to propose using the standard 2-categorical definition to define an adjunction between
∞-categories, defining an adjunction between quasi-categories to be an adjunction in the homotopy
2-category 𝔥𝒬𝒞𝑎𝑡 in the preface to [63]. However, this definition was not widely adopted, with most
practitioners instead using Lurie’s definition of adjunction between quasi-categories [78, §5.2], which
takes a quite different form. In §F.5, we prove that in the ∞-cosmos of quasi-categories, Joyal’s 2-
categorical definition of adjunction precisely recovers Lurie’s. As explained in Part III, each of the
models of (∞, 1)-categories described in Example 1.2.24 “has the same category theory,” so Definition
2.1.1 agrees with the community consensus notion of adjunction between (∞, 1)-categories.

In the ∞-cosmoi whose objects model (∞, 𝑛)- or (∞,∞)-categories, the adjunctions defined in
the homotopy 2-category are the “pseudo-style” adjunctions. While these are not the most general
adjunctions that might be considered – for instance, one might have the triangle equality relations

¹For instance, as outlined in Digression 1.2.13, the equivalences in the∞-cosmoi of Example 1.2.24 recapture the weak
equivalences between fibrant–cofibrant objects in the usual model structure.

²The left-hand equality of pasting diagrams asserts the composition relation 𝑢𝜖 ⋅ 𝜂𝑢 = id𝑢 in the hom-category
hFun(𝐴, 𝐵), while the right-hand equality asserts that 𝜖𝑓 ⋅ 𝑓 𝜂 = id𝑓 in hFun(𝐵,𝐴). The calculus of pasting diagrams is

surveyed in §B.1.
³Some authors contort adjunction diagrams so that the left adjoint is always oriented in a particular direction; we

instead use the turnstile symbol “⊥” to indicate which adjoint is the left adjoint.
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satisfied only up to coherent noninvertible 3-cells – they are an important class of adjunctions. One
reason for the relevance of Definition 2.1.1 in all ∞-cosmoi is its relationships to the equivalences,
which Theorem 1.4.7 establishes are morally “correct,” and to the notions of limits and colimits to be
introduced.

Finally, a reasonable objection is that Definition 2.1.1 appears too “low dimensional,” comprised of
data found entirely in the homotopy 2-category and ignoring the higher dimensional morphisms in
an∞-cosmos. In fact, any adjunction between∞-categories extends to a homotopy coherent adjunction
involving data in all dimensions, and moreover such extensions are homotopically unique [109].

The definition of an adjunction given in Definition 2.1.1 is “equational” in character: stated in
terms of the objects, 1-cells, and 2-cells of a 2-category and their composites. Immediately:

2.1.3. Lemma. An adjunction in a 2-category is preserved by any 2-functor. �

2.1.4. Example (adjunctions between 1-categories). Via the nerve embedding 𝒞𝑎𝑡 ↪ 𝔥𝒬𝒞𝑎𝑡, any ad-
junction between 1-categories induces an adjunction between their nerves regarded as quasi-categories.

2.1.5. Example (adjunctions between topological categories). Cordier’s homotopy coherent nerve [29, 30]
defines a 2-functor 𝔑∶ 𝒦𝑎𝑛-𝒞𝑎𝑡 → 𝔥𝒬𝒞𝑎𝑡 from the 2-category of Kan complex enriched categories,
simplicially enriched functors, and simplicial natural transformations, to the homotopy 2-category
𝔥𝒬𝒞𝑎𝑡. In this way, topologically enriched adjunctions define adjunctions between quasi-categories.

2.1.6. Example (Quillen adjunctions). Topologically enriched adjunctions are relatively rare. More
prevalent are “up-to-homotopy” topologically enriched adjunctions, such as those presented by Quillen
adjunctions between (simplicial) model categories. These also define adjunctions between quasi-cate-
gories (see Mazel-Gee [85] or [108, §6.2]).

These examples define adjunctions between quasi-categories, but Lemma 2.1.3 applies to the 2-
functors underlying the cosmological functors of Example 1.3.9 to transfer adjunctions defined in one
model of (∞, 1)-categories to adjunctions defined in each of the other models. The preservation of
adjunctions by 2-functors, such as those given by Lemma 1.4.4, also proves:

2.1.7. Proposition. Given an adjunction 𝐴 𝐵
𝑢
⊥
𝑓

between∞-categories:

(i) for any∞-category 𝑋,

Fun(𝑋,𝐴) Fun(𝑋, 𝐵)
𝑢∗
⊥
𝑓∗

defines an adjunction between quasi-categories;
(ii) for any∞-category 𝑋,

hFun(𝑋,𝐴) hFun(𝑋, 𝐵)
𝑢∗
⊥
𝑓∗

defines an adjunction between categories;
(iii) for any simplicial set 𝑈,

𝐴𝑈 𝐵𝑈

𝑢𝑈
⊥
𝑓 𝑈
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defines an adjunction between∞-categories; and
(iv) if the ambient∞-cosmos is cartesian closed, then for any∞-category 𝐶,

𝐴𝐶 𝐵𝐶

𝑢𝐶
⊥
𝑓 𝐶

defines an adjunction between∞-categories.

For instance, taking 𝑋 = 1 in (ii) yields a “derived” adjunction between the homotopy categories
of the∞-categories 𝐴 and 𝐵 (see Definition 1.4.11):

h𝐴 h𝐵
𝑢∗
⊥
𝑓∗

Proof. Any adjunction 𝑓 ⊣ 𝑢 in the homotopy 2-category 𝔥𝒦 is preserved by each of the 2-
functors Fun(𝑋, −) ∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡, hFun(𝑋, −) ∶ 𝔥𝒦 → 𝒞𝑎𝑡, (−)𝑈 ∶ 𝔥𝒦 → 𝔥𝒦, and (−)𝐶 ∶ 𝔥𝒦 →
𝔥𝒦. �

2.1.8. Remark. There are contravariant versions of each of the adjunction-preservation results of
Proposition 2.1.7, the first of which we explain in detail (see Exercise 2.1.i for further discussion). Fixing
the codomain variable of the functor space at any∞-category 𝐶 ∈ 𝒦 defines a 2-functor

Fun(−, 𝐶) ∶ 𝔥𝒦op 𝔥𝒬𝒞𝑎𝑡
that is contravariant on 1-cells and covariant on 2-cells.⁴ Such 2-functors preserve adjunctions, but
exchange left and right adjoints: for instance, given 𝑓 ⊣ 𝑢 in𝒦, we obtain an adjunction

Fun(𝐴, 𝐶) Fun(𝐵, 𝐶)
𝑓 ∗
⊥
𝑢∗

between the functor spaces.

The next five results have standard proofs that can be taken “off the shelf” by querying any 2-
category theorist who may happen to be standing nearby. The only novelty is the observation that
these standard arguments can be applied to the theory of adjunctions between∞-categories.

2.1.9. Proposition. Adjunctions compose: given adjoint functors

𝐶 𝐵 𝐴 ⇝ 𝐶 𝐴
𝑓 ′

⊥
𝑓

⊥
𝑢′ 𝑢

𝑓 𝑓 ′

⊥
𝑢′𝑢

the composite functors are adjoint.

⁴On a 2-category, the superscript “op” is used to signal that the 1-cells should be reversed but not the 2-cells, the
superscript “co” is used to signal that the 2-cells should be reversed but not the 1-cells, and the superscript “coop” is used
to signal that both the 1- and 2-cells should be reversed (see Definition B.1.6).
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Proof. Writing 𝜂∶ id𝐵 ⇒ 𝑢𝑓, 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴, 𝜂′ ∶ id𝐶 ⇒ 𝑢′𝑓 ′, and 𝜖′ ∶ 𝑓 ′𝑢′ ⇒ id𝐵 for the
respective units and counits, the pasting diagrams

𝐶 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴

𝑓 ′ ⇓𝜂′ ⇓𝜖′
𝑓 ′

𝑓
⇓𝜂

𝑢′

and

𝑢′

⇓𝜖
𝑓

𝑢
𝑢

define the unit and counit of 𝑓 𝑓 ′ ⊣ 𝑢′𝑢 so that the triangle equalities hold:

𝐶 𝐶 𝐶 𝐶 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴

𝑓 ′ ⇓𝜂′ ⇓𝜖′
𝑓 ′

𝑓 ′𝑓 ′ = ⇓𝜖′ 𝑓
′

⇓𝜂′

𝑓
⇓𝜂

𝑢′

⇓𝜖
𝑓

=
𝑓 𝑓=

𝑢′

⇓𝜖 𝑓 ⇓𝜂

𝑢′

=
𝑢′ 𝑢′=

𝑢 𝑢
𝑢

𝑢 𝑢=

�

An adjoint to a given functor is unique up to natural isomorphism:

2.1.10. Proposition (uniqueness of adjoints).

(i) If 𝑓 ⊣ 𝑢 and 𝑓 ′ ⊣ 𝑢, then 𝑓 ≅ 𝑓 ′.
(ii) Conversely, if 𝑓 ⊣ 𝑢 and 𝑓 ≅ 𝑓 ′, then 𝑓 ′ ⊣ 𝑢.
Proof. Writing 𝜂∶ id𝐵 ⇒ 𝑢𝑓, 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴, 𝜂′ ∶ id𝐵 ⇒ 𝑢𝑓 ′, and 𝜖′ ∶ 𝑓 ′𝑢 ⇒ id𝐴 for the

respective units and counits, the pasting diagrams

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴
𝑓 ′

⇓𝜂′
𝑓

𝑓
⇓𝜂

𝑓 ′
𝑢 ⇓𝜖 𝑢 ⇓𝜖′

define 2-cells 𝑓 ⇒ 𝑓 ′ and 𝑓 ′ ⇒ 𝑓. The composites 𝑓 ⇒ 𝑓 ′ ⇒ 𝑓 and 𝑓 ′ ⇒ 𝑓 ⇒ 𝑓 ′ are computed
by pasting these diagrams together horizontally on one side or on the other. Applying the triangle
equalities for the adjunctions 𝑓 ⊣ 𝑢 and 𝑓 ′ ⊣ 𝑢 both composites are easily seen to be identities. Hence
𝑓 ≅ 𝑓 ′ as functors from 𝐵 to 𝐴.

Part (ii) is left as Exercise 2.1.ii. �

The following result weakens the hypotheses of Definition 2.1.1.

2.1.11. Lemma (minimal adjunction data). A pair of functors 𝑓 ∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 form an adjoint
pair 𝑓 ⊣ 𝑢 if and only if there exist natural transformations id𝐵 ⇒ 𝑢𝑓 and 𝑓 𝑢 ⇒ id𝐴 so that the triangle
equality composites 𝑓 ⇒ 𝑓 𝑢𝑓 ⇒ 𝑓 and 𝑢 ⇒ 𝑢𝑓 𝑢 ⇒ 𝑢 are both invertible.

Proof. The unit and counit of an adjunction certainly satisfy these hypotheses. For the converse,
consider natural transformations 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and 𝜖′ ∶ 𝑓 𝑢 ⇒ id𝐴 so that the triangle equality
composites

𝜙 ≔ 𝑓 𝑓 𝑢𝑓 𝑓 𝜓 ≔ 𝑢 𝑢𝑓 𝑢 𝑢
𝑓 𝜂 𝜖′𝑓 𝜂𝑢 𝑢𝜖′
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are isomorphisms. We construct an adjunction 𝑓 ⊣ 𝑢 with unit 𝜂 by modifying 𝜖′ to form the counit
𝜖.⁵ To explain the idea of the construction, note that for a fixed pair of generalized elements 𝑏 ∶ 𝑋 → 𝐵
and 𝑎 ∶ 𝑋 → 𝐴, pasting with 𝜂 and with 𝜖′ defines functions between the displayed sets of natural
transformations:

⎧⎪⎪
⎨⎪⎪⎩

𝑋 𝐵

𝐴

𝑏

𝑎 ⇓ 𝑢

⎫⎪⎪
⎬⎪⎪
⎭

⎧⎪⎪
⎨⎪⎪⎩

𝐵

𝑋 𝐴

𝑓𝑏

𝑎
⇓

⎫⎪⎪
⎬⎪⎪
⎭

⎧⎪⎪
⎨⎪⎪⎩

𝑋 𝐵

𝐴

𝑏

𝑎 ⇓ 𝑢

⎫⎪⎪
⎬⎪⎪
⎭

⎧⎪⎪
⎨⎪⎪⎩

𝐵

𝑋 𝐴

𝑓𝑏

𝑎
⇓

⎫⎪⎪
⎬⎪⎪
⎭

𝜖′⋅𝑓 (−)

𝑢(−)⋅𝜂

𝜓⋅−
≅

−⋅𝜙

≅

𝜖′⋅𝑓 (−)

From the hypothesis that the triangle equality composites are isomorphisms, two of these functions are
invertible, and then by the 2-of-6 property for isomorphisms all six maps are bijections.

Define the “corrected” counit to be the composite:

𝜖 ≔
𝐵

𝐴 𝐴
𝑓

𝑓
≅⇓𝜙−1𝑢

⇓𝜖′

so that one of the triangle equality composites reduces to the identity:

𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴
𝑓

⇓𝜂 ⇓𝜖
𝑓

𝑓
⇓𝜂

𝑓

𝑓
≅⇓𝜙−1 = 𝑓𝑓𝑢 = 𝑢 ⇓𝜖′ =

Now from the pasting equality

𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴

𝑓 ⇓𝜂
𝑓

𝑓
≅⇓𝜙−1 ⇓𝜂 = 𝑓 ⇓𝜂𝑢

⇓𝜖′ 𝑢 ⇓𝜖′ 𝑢
𝑢

⇓𝜖′ 𝑢

we see that (𝑢𝜖 ⋅ 𝜂𝑢) ⋅ 𝜓 = 𝜓. Since 𝜓 is invertible, we may cancel to conclude that 𝑢𝜖 ⋅ 𝜂𝑢 = id𝑢. �

A standard 2-categorical result is that any equivalence in a 2-category can be promoted to an
equivalence that also defines an adjunction:

⁵By the co-dual of this construction, we could alternatively take 𝜖′ to be the counit at the cost of modifying 𝜂 to form
the unit (see Exercise 2.1.iii).
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2.1.12. Proposition (adjoint equivalences). Any equivalence can be promoted to an adjoint equivalence by
modifying one of the 2-cells. That is, the invertible 2-cells in an equivalence can be chosen so as to satisfy the
triangle equalities. Hence, if 𝑓 and 𝑔 are inverse equivalences then 𝑓 ⊣ 𝑔 and 𝑔 ⊣ 𝑓.

Proof. Consider an equivalence comprised of functors 𝑓 ∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 and invertible
2-cells

𝐴 𝐴 and 𝐵 𝐵
𝑔𝑓
≅⇓𝛼

𝑓 𝑔
≅⇓𝛽

Since 𝛼 and 𝛽 are both invertible, the triangle equality composites are as well, and the construction of
Lemma 2.1.11 applies. �

One use of Proposition 2.1.12 is to show that adjunctions are equivalence invariant:

2.1.13. Proposition (equivalence invariance of adjunctions). A functor 𝑢∶ 𝐴 → 𝐵 between∞-categories
admits a left adjoint if and only if, for any pair of equivalent∞-categories 𝐴′ ≃ 𝐴 and 𝐵′ ≃ 𝐵, the equivalent
functor 𝑢′ ∶ 𝐴′ → 𝐵′ admits a left adjoint.

As we shall discover, all of∞-category theory is equivalence invariant in this way.

Proof. If 𝑢∶ 𝐴 → 𝐵 admits a left adjoint then by composing 𝑓 ⊣ 𝑢 with the adjoint equivalences
𝐴′ ≃ 𝐴 and 𝐵 ≃ 𝐵′ we obtain an equivalent adjunction:

𝐴′ 𝐴 𝐵 𝐵′

∼⊥
𝑢
⊥

∼

∼⊥
𝑓 ∼

Conversely, if the equivalent functor 𝑢′ ∶ 𝐴′ ∼ 𝐴
𝑢
𝐵 ∼ 𝐵′ admits a left adjoint 𝑓 ′ then again we

obtain a composite adjunction:

𝐴 𝐴′ 𝐴 𝐵 𝐵′ 𝐵∼⊥ ∼

∼

𝑢

⊥

∼

𝑓 ′

∼⊥
∼

whose right adjoint is naturally isomorphic to the original functor 𝑢. By Proposition 2.1.10 the displayed
left adjoint is then a left adjoint to 𝑢. �

For later use, we close with an example of an abstractly defined adjunction that can be constructed
for any∞-category in any∞-cosmos via the results proven in this section.

2.1.14. Lemma. For any∞-category 𝐴, the “composition” functor

𝐴𝟚 ×
𝐴
𝐴𝟚 𝐴𝟚∘

(−,iddom(−))
⊥

(idcod(−),−)
⊥

(2.1.15)

admits left and right adjoints, which extend an arrow into a composable pair by pairing it with the identities at
its domain or its codomain, respectively.

45



Proof. There is a dual adjunction in 𝚫 ⊂ 𝒞𝑎𝑡 whose functors we describe using notation for
simplicial operators introduced in 1.1.1:

𝟛 𝟚 ⇝ 𝐴𝟛 𝐴𝟚
𝜎0
⊤

𝜎1
⊤

𝛿1 𝐴𝛿1

𝐴𝜎0

⊥

𝐴𝜎1
⊥

For any ∞-category 𝐴 in an ∞-cosmos 𝒦, Exercise 2.1.i describes a 2-functor 𝐴(−) ∶ 𝒞𝑎𝑡op → 𝔥𝒦
carrying the adjoint triple displayed above-left to the one displayed above-right.

Now we claim there is a trivial fibration𝐴𝟛 ∼ 𝐴𝟚 ×𝐴 𝐴𝟚 constructed as follows. The pushout dia-
gram of simplicial sets displayed below-left is carried by the simplicial cotensor𝐴(−) ∶ 𝑠𝒮𝑒𝑡op → 𝒦 to a
pullback diagram of∞-categories below-right; since the legs of the pushout square are monomorphisms,
the legs of the pullback square are isofibrations by 1.2.1(ii):

Λ1[2] 𝟚 𝐴Λ1[2] 𝐴𝟚

𝟚 𝟙 𝐴𝟚 𝐴

ev0

𝛿0

𝛿1

ev1

By Lemma 1.2.14, the cotensor of the inner horn inclusion Λ1[2] ↪ Δ[2] ≅ 𝟛 with the ∞-category

𝐴 defines a trivial fibration 𝑞 ∶ 𝐴𝟛 ∼ 𝐴Λ1[2] ≅ 𝐴𝟚 ×𝐴 𝐴𝟚. By Lemma 1.2.18, the trivial fibration
𝑞 ∶ 𝐴𝟛 ∼ 𝐴𝟚 ×𝐴 𝐴𝟚 admits a section 𝑠, which defines an equivalence inverse. By Proposition 2.1.12,
these functors are both left and right adjoints. The desired adjoint triple may then be constructed as
the composite adjunction:

𝐴𝟚 ×
𝐴
𝐴𝟚 𝐴𝟛 𝐴𝟚𝑠

𝑞
⊥

𝑞
⊥ 𝐴𝛿1

𝐴𝜎0

⊥

𝐴𝜎1
⊥

�

Note that the adjoint functors of (2.1.15) commute with the “endpoint evaluation” functors to
𝐴 × 𝐴. In fact, the units and counits can similarly be fibered over 𝐴 × 𝐴 (see Example 3.6.13).

Exercises.

2.1.i. Exercise. The aim of this exercise is to spell out the most subtle of the dual adjunction-
preservation results discussed in Remark 2.1.8.

(i) Let 𝐴 be an ∞-category is an ∞-cosmos 𝒦. Show that the simplicial cotensor restricts to
define a 2-functor 𝐴(−) ∶ 𝔥𝒬𝒞𝑎𝑡op → 𝔥𝒦.

(ii) Argue that the 2-functor of (i) restricts further along the nerve embedding to define a 2-functor
𝐴(−) ∶ 𝒞𝑎𝑡op → 𝔥𝒦.

(iii) Conclude that for any adjunction between 1-categories as below-left there is an induced
adjunction between∞-categories as below-right:

𝐼 𝐽
𝑢
⊥
𝑓

⇝ 𝐴𝐼 𝐴𝐽

𝑓 ∗
⊥
𝑢∗
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2.1.ii. Exercise. Prove Proposition 2.1.10(ii).

2.1.iii. Exercise. Dualize the proof of Lemma 2.1.11 so that it applies in the context of Proposition
2.1.12 to show that any equivalence can be promoted into an adjoint equivalence in which the counit is
part of the originally specified data.

2.1.iv. Exercise. Prove that an adjoint equivalence between ∞-categories descends to an adjoint
equivalence between their homotopy categories.

2.2. Initial and Terminal Elements

Employing the tactic used in Definition 1.4.11 to define the homotopy category of an∞-category,
we use the terminal ∞-category 1 to probe inside an ∞-category 𝐴. An object 𝑎 in the homotopy
category h𝐴 is defined to be a map of ∞-categories 𝑎 ∶ 1 → 𝐴. To avoid the proliferation of the
term “objects,” and in deference to Lawvere’s notion of (generalized) elements [74], we refer to maps
𝑎 ∶ 1 → 𝐴 as elements⁶ of the∞-category 𝐴 henceforth. This terminology will help us keep track of
the “category level” under discussion: elements 𝑎 live inside∞-categories 𝐴, which are the objects of
∞-cosmoi𝒦 – which themselves define “infinite-dimensional categories,” albeit of a different sort.

2.2.1. Definition (initial/terminal element). An initial element in an∞-category 𝐴 is a left adjoint
to the unique functor ! ∶ 𝐴 → 1, as displayed below-left, while a terminal element in an∞-category
𝐴 is a right adjoint, as displayed below-right.

1 𝐴 1 𝐴
𝑖
⊥
! 𝑡

⊥
!

Let us unpack the definition of an initial element; dual remarks apply to terminal elements.

2.2.2. Lemma (minimal data). To define an initial element in an∞-category 𝐴, it suffices to specify
• an element 𝑖 ∶ 1 → 𝐴 and

• a natural transformation
1

𝐴 𝐴
𝑖

⇓𝜖
! from the constant functor at 𝑖 to the identity functor

so that the component 𝜖𝑖 ∶ 𝑖 ⇒ 𝑖, an arrow from 𝑖 to 𝑖 in h𝐴, is invertible.

Proof. Proposition 1.4.5, whose proof starts in the paragraph before its statement, demonstrates
that the∞-category 1 ∈ 𝒦 is 2-terminal in the homotopy 2-category 𝔥𝒦. The 1-dimensional aspect
of this universal property implies that any element 𝑖 ∶ 1 → 𝐴 defines a section of the unique map
! ∶ 𝐴 → 1, while the 2-dimensional aspect asserts that there exist no nonidentity 2-cells with codomain
1. In particular, the unit of the adjunction 𝑖 ⊣ ! is necessarily an identity and one of the triangle
equalities comes for free. What remains of Definition 2.1.1 in this setting is the data of a counit natural
transformation 𝜖 ∶ 𝑖! ⇒ id𝐴 together with the condition that its component 𝜖𝑖 = id𝑖. But in fact we
can prove that this natural transformation must be the identity from the weaker and more natural
assumption that 𝜖𝑖 ∶ 𝑖 ≅ 𝑖 is invertible.

⁶A generalized element of 𝐴 is a functor 𝑓 ∶ 𝑋 → 𝐴. By the Yoneda lemma, an ∞-category is determined by its
generalized elements.
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To see this consider, the horizontal composite

1 1

1 𝐴 𝐴 𝐴
𝑖

⇓𝜖
𝑖

⇓𝜖𝑖
! ! ↭

𝑖!𝑖!𝑖 𝑖!𝑖

𝑖!𝑖 𝑖

𝜖𝑖!𝑖

𝑖!𝜖𝑖 𝜖𝑖

𝜖𝑖

By naturality of whiskering,⁷ we can evaluate this composite as a vertical composite in two ways. Since
1 is 2-terminal, the whiskered cell !𝜖 = id!, so the composition relation reduces to 𝜖𝑖 ⋅ 𝜖𝑖 = 𝜖𝑖. Thus 𝜖𝑖
is an idempotent isomorphism, and hence, by cancelation, an identity. �

Put more concisely, an initial element defines a left adjoint right inverse to the functor ! ∶ 𝐴 ↠ 1,
while a terminal element defines a right adjoint right inverse (see §B.4).

2.2.3. Lemma (uniqueness). Any two initial elements in an∞-category 𝐴 are isomorphic in h𝐴 and any
element of h𝐴 that is isomorphic to an initial element is initial.

Proof. By Proposition 2.1.10, any two left adjoints 𝑖 and 𝑖′ to the functor ! ∶ 𝐴 → 1 are naturally
isomorphic, and any 𝑎 ∶ 1 → 𝐴 that is isomorphic to a left adjoint to ! ∶ 𝐴 → 1 is itself a left adjoint. A
natural isomorphism between a pair of functors 𝑖, 𝑖′ ∶ 1 → 𝐴 gives exactly the data of an isomorphism
𝑖 ≅ 𝑖′ between the corresponding elements of the homotopy category h𝐴. �

2.2.4. Remark. Applying the 2-functor Fun(𝑋, −) ∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡 to an initial element 𝑖 ∶ 1 → 𝐴 of
an∞-category 𝐴 ∈ 𝒦 yields an adjunction

𝟙 ≅ Fun(𝑋, 1) Fun(𝑋,𝐴)
𝑖∗
⊥
!

Via the isomorphism Fun(𝑋, 1) ≅ 𝟙 that expresses the universal property of the terminal∞-category
1, the constant functor at an initial element

𝑋 1 𝐴! 𝑖

defines an initial element of the functor space Fun(𝑋,𝐴). This observation can be summarized by
saying that initial elements are representably initial at the level of the∞-cosmos.

Conversely, if 𝑖 ∶ 1 → 𝐴 is representability initial, then 𝑖 defines an initial element of 𝐴. This is
most easily seen by passing to the homotopy 2-category, where we can show that an initial element
𝑖 ∶ 1 → 𝐴 is initial among all generalized elements 𝑓 ∶ 𝑋 → 𝐴 in the following precise sense.

2.2.5. Lemma. An element 𝑖 ∶ 1 → 𝐴 is initial if and only if for all 𝑓 ∶ 𝑋 → 𝐴 there exists a unique 2-cell
with boundary

1

𝑋 𝐴
𝑖

⇓∃!
!

𝑓

⁷“Naturality of whiskering” refers to the observation of Lemma B.1.3 that any horizontal-composite of 2-cells in a
2-category can be expressed as a vertical composite of whiskerings of those cells in two different ways, in this case giving
rise to the commutative diagram in h𝐴 ≔ hFun(1, 𝐴) displayed above-right.
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Proof. If 𝑖 ∶ 1 → 𝐴 is initial, then the adjunction of Definition 2.2.1 is preserved by the 2-functor
hFun(𝑋, −) ∶ 𝔥𝒦 → 𝒞𝑎𝑡, defining an adjunction

𝟙 ≅ hFun(𝑋, 1) hFun(𝑋,𝐴)
𝑖∗
⊥
!

Via the isomorphism hFun(𝑋, 1) ≅ 𝟙, this adjunction proves that the constant functor 𝑖! ∶ 𝑋 → 𝐴 is
initial in the category hFun(𝑋,𝐴) and thus has the universal property of the statement.

Conversely, if 𝑖 ∶ 1 → 𝐴 satisfies the universal property of the statement, applying this to the
generic element of 𝐴 (the identity map id𝐴 ∶ 𝐴 → 𝐴) produces the data of Lemma 2.2.2. �

Lemma 2.2.5 says that initial elements are representably initial in the homotopy 2-category. Spe-
cializing the generalized elements to ordinary elements, we see that initial and terminal elements in 𝐴
respectively define initial and terminal elements in its homotopy category:

𝟙 h𝐴
𝑖
⊥

𝑡
⊥

! (2.2.6)

In general the property of being “homotopy initial,” i.e., initial in the homotopy category, is weaker
than being initial in the∞-category. However Nguyen, Raptis, and Schrade observe that a homotopy
initial element in a complete (∞, 1)-category necessarily defines an initial element [88, 2.2.2].

Continuing the theme of the equivalence invariance of∞-categorical notions:

2.2.7. Lemma. If 𝐴 has an initial element and 𝐴 ≃ 𝐴′ then 𝐴′ has an initial element and these elements are
preserved up to isomorphism by the equivalences.

Proof. By Proposition 2.1.12, the equivalence 𝐴 ≃ 𝐴′ can be promoted to an adjoint equivalence,
which can immediately be composed with the adjunction characterizing an initial element 𝑖 of 𝐴:

1 𝐴 𝐴′
𝑖

⊥
!

∼
⊥∼

The composite adjunction provided by Proposition 2.1.9 proves that the image of 𝑖 defines an initial
element of 𝐴′, which by construction is preserved by the equivalence 𝐴 ∼ 𝐴′. By the uniqueness of
initial elements established in Lemma 2.2.3, this argument also shows that the equivalence 𝐴′ ∼ 𝐴
preserves initial elements. �

We now turn to the general theory of limits and colimits of diagrams valued in an∞-category. The
theory of initial elements previews this material well since in fact an initial element can be understood
as an example of both notions: an initial element is the colimit of the empty diagram and also the limit
of the diagram encoded by the identity functor, as we explain in Example 2.3.11.

Exercises.

2.2.i. Exercise. Use Lemma 2.2.5 to show that a representably initial element, as described in Remark
2.2.4, necessarily defines an initial element in 𝐴.

2.2.ii. Exercise. Prove that initial elements are preserved by left adjoints and terminal elements are
preserved by right adjoints.
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2.3. Limits and Colimits

We now introduce limits and colimits of diagram valued inside an∞-category𝐴 in some∞-cosmos.
We consider two varieties of diagrams:

• diagrams indexed by a simplicial set 𝐽 and valued in an∞-category 𝐴 in a generic∞-cosmos and
• diagrams indexed by an∞-category 𝐽 and valued in an∞-category 𝐴 in a cartesian closed∞-cos-

mos.⁸

2.3.1. Definition (diagram ∞-category). For an ∞-category 𝐴 and a simplicial set 𝐽 – or possibly,
in the case of a cartesian closed ∞-cosmos, an ∞-category 𝐽 – we refer to 𝐴𝐽 as the ∞-category of
𝐽-shaped diagrams in 𝐴. A diagram of shape 𝐽 in 𝐴 is an element 𝑑∶ 1 → 𝐴𝐽.⁹

Both constructions of the∞-category of diagrams in an∞-cosmos𝒦 define simplicial bifunctors

𝑠𝒮𝑒𝑡op ×𝒦 𝒦 𝒦op ×𝒦 𝒦

(𝐽, 𝐴) 𝐴𝐽 (𝐽 , 𝐴) 𝐴𝐽

In either indexing context, there is a terminal object 1 with the property that 𝐴1 ≅ 𝐴 for any
∞-category 𝐴. Restriction along the unique map ! ∶ 𝐽 → 1 induces the constant diagram functor
Δ∶ 𝐴 → 𝐴𝐽.

We deliberately conflate the notation for∞-categories of diagrams indexed by a simplicial set or
by another∞-category because all of the results we prove in Part I about the former case also apply to
the latter. For economy of language, we refer only to simplicial set indexed diagrams for the remainder
of this section.

2.3.2. Definition (limit and colimit functor). An∞-category 𝐴 admits all colimits of shape 𝐽 if the
constant diagram functor Δ∶ 𝐴 → 𝐴𝐽 admits a left adjoint, while 𝐴 admits all limits of shape 𝐽 if the
constant diagram functor admits a right adjoint:

𝐴𝐽 𝐴
colim
⊥

lim

⊥
Δ

In the∞-cosmos of categories, Definition 2.3.2 reduces to the classically defined limit and colimit
functors, but in a general ∞-category limits and colimits should be thought of as analogous to the
classical notions of “homotopy limits” and “homotopy colimits.” In certain cases, this correspondence
can be made precise. Every quasi-category is equivalent to the homotopy coherent nerve of a Kan
complex enriched category [111, 7.2.2], and homotopy limit or homotopy colimit cones in the Kan
complex enriched category correspond exactly to limit or colimit cones in the homotopy coherent
nerve (see Lurie’s [78, 4.2.4.1] or [113, 6.1.4, 6.2.7]). In the∞-categorical context, no stricter notion of
limit or colimit is available, so the “homotopy” qualifier is typically dropped.

Limits or colimits of set-indexed diagrams – the case where the indexing shape is a coproduct of
the terminal object 1 indexed by a set 𝐽 – are called products or coproducts, respectively.

⁸For the ∞-cosmoi of (∞, 1)-categories of Example 1.2.24, there is no essential difference between these notions: in
𝒬𝒞𝑎𝑡 they are tautologically the same, and in all biequivalent ∞-cosmoi the ∞-category of diagrams indexed by an ∞-
category 𝐽 is equivalent to the ∞-category of diagrams indexed by its underlying quasi-category, regarded as a simplicial
set (see Proposition 10.3.5).

⁹When 𝐴𝐽 is the exponential of a cartesian closed∞-cosmos, diagrams stand in bijection with functors 𝑑∶ 𝐽 → 𝐴.
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2.3.3. Lemma. Products or coproducts in an∞-category 𝐴 also define products or coproducts in its homotopy
category h𝐴.

Proof. When 𝐽 is a set, the ∞-category of diagrams itself decomposes as a product 𝐴𝐽 ≅ ∏
𝐽𝐴.

Since the 2-functor that carries an∞-category to its homotopy category

𝔥𝒦 𝒞𝑎𝑡

𝐴 h𝐴

hFun(1,−)

preserves products, there is a chain of isomorphisms

h(𝐴𝐽) ≅ h(∏𝐽𝐴) ≅ ∏
𝐽 h𝐴 ≅ (h𝐴)𝐽

when 𝐽 is a set. Thus, in this special case, the adjunctions of Definition 2.3.2 that define products or
coproducts in an ∞-category descend to the adjunctions that define products or coproducts in its
homotopy category:

(h𝐴)𝐽 ≅ h(𝐴𝐽) h𝐴
colim

⊥

lim

⊥
Δ

This remains true in the case 𝐽 = ∅, explaining the observation made in (2.2.6). �

2.3.4. Warning. This argument does not extend to more general limit or colimit notions, and such∞-
categorical limits or colimits do not typically descend to limits or colimits in the homotopy category.¹⁰
In §3.2, we observe that the homotopy category construction fails to preserve more complicated
cotensors, even in the relatively simple case of 𝐽 = 𝟚.

The problem with Definition 2.3.2 is that it is insufficiently general: many ∞-categories have
certain, but not all, limits of diagrams of a particular indexing shape. So it would be desirable to
re-express Definition 2.3.2 in a form that allows us to consider the limit of a single diagram 𝑑∶ 1 → 𝐴𝐽

or of a family of diagrams. To achieve this, we make use of the following 2-categorical notion that
op-dualizes the more familiar absolute (Kan) extension diagrams.

2.3.5. Definition (absolute lifting diagram). Given a cospan 𝐶
𝑔
𝐴

𝑓
𝐵 in a 2-category, an absolute

left lifting of 𝑔 through 𝑓 is given by a 1-cell ℓ and 2-cell 𝜆 as displayed below-left

𝐵 𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴 𝐶 𝐴
⇑𝜆

𝑓 ⇑𝜒

𝑏

𝑐 𝑓 =
∃!⇑𝜁

⇑𝜆

𝑏

𝑐 𝑓

𝑔

ℓ

𝑔

ℓ

𝑔

so that any 2-cell as displayed above-center factors uniquely through (ℓ, 𝜆) as displayed above-right.

¹⁰This sort of behavior is familiar from abstract homotopy theory: homotopy limits and colimits are not generally
limits or colimits in the homotopy category.
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Dually, an absolute right lifting of 𝑔 through 𝑓 is given by a 1-cell 𝑟 and 2-cell 𝜌 as displayed
below-left

𝐵 𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴 𝐶 𝐴
⇓𝜌

𝑓 ⇓𝜒

𝑏

𝑐 𝑓 =
∃!⇓𝜁

⇓𝜌

𝑏

𝑐 𝑓

𝑔

𝑟

𝑔

𝑟

𝑔

so that any 2-cell as displayed above-center factors uniquely through (𝑟, 𝜌) as displayed above-right.

When these exist, left and right liftings respectively define left and right adjoints to the composition
functor 𝑓∗ ∶ hFun(𝐶, 𝐵) → hFun(𝐶,𝐴), with the 2-cells defining the components of the unit and counit
of these adjunctions, respectively, at the object 𝑔. The adjective “absolute” refers to the following
stability property.

2.3.6. Lemma. Absolute left or right lifting diagrams are stable under restriction of their domain object: if
(ℓ, 𝜆) defines an absolute left lifting of 𝑔 through 𝑓, then for any 𝑐 ∶ 𝑋 → 𝐶, the restricted diagram (ℓ𝑐, 𝜆𝑐)
defines an absolute left lifting of 𝑔𝑐 through 𝑓.

𝐵

𝑋 𝐶 𝐴
⇑𝜆

𝑓

𝑐 𝑔

ℓ

Proof. Exercise 2.3.ii. �

Units and counits of adjunctions provide important examples of absolute left and right lifting
diagrams, respectively:

2.3.7. Lemma. A 2-cell 𝜂∶ id𝐵 ⇒ 𝑢𝑓 defines the unit of an adjunction 𝑓 ⊣ 𝑢 if and only if (𝑓 , 𝜂) defines an
absolute left lifting diagram, displayed below-left.

𝐴 𝐵

𝐵 𝐵 𝐴 𝐴
⇑𝜂

𝑢
⇓𝜖

𝑓𝑓 𝑢

Dually a 2-cell 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 defines the counit of an adjunction if and only if (𝑢, 𝜖) defines an absolute right
lifting diagram, displayed above-right.

Proof. The universal property of the absolute right lifting diagram

𝑋 𝐵 𝑋 𝐵

𝐴 𝐴 𝐴 𝐴

𝑏

𝑎 ⇓𝛼 𝑓 =

𝑏

𝑎
∃!⇓𝛽

⇓𝜖
𝑓𝑢

asserts that every natural transformation 𝛼∶ 𝑓 𝑏 ⇒ 𝑎 has a unique transpose 𝛽∶ 𝑏 ⇒ 𝑢𝑎 across the
adjunction between the hom-categories of the homotopy 2-category:

hFun(𝑋, 𝐵) hFun(𝑋,𝐴)
𝑓∗

⊥
𝑢∗
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Thus if 𝑓 ⊣ 𝑢 with counit 𝜖, Proposition 2.1.7(ii) supplies this induced adjunction and (𝑢, 𝜖) defines
an absolute right lifting of id𝐴 through 𝑓.

Conversely, the unit and triangle equalities of an adjunction can extracted from the universal
property of the absolute right lifting diagram. The details are left as Exercise 2.3.iii. �

In particular, the unit and counit of the adjunctions colim ⊣ Δ ⊣ lim of Definition 2.3.2 define
absolute left and right lifting diagrams:

𝐴 𝐴

𝐴𝐽 𝐴𝐽 𝐴𝐽 𝐴𝐽
⇑𝜂

Δ
⇓𝜖

Δcolim lim

By Lemma 2.3.6, these universal properties are retained upon restricting to any subobject of the
∞-category of diagrams. This motivates the following definition:

2.3.8. Definition (limit and colimit). A colimit of a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 of shape 𝐽 in an
∞-category 𝐴 is given by an absolute left lifting diagram

𝐴

𝐷 𝐴𝐽
⇑𝜂

Δcolim 𝑑

𝑑

comprised of a generalized element colim 𝑑∶ 𝐷 → 𝐴 and a colimit cone 𝜂∶ 𝑑 ⇒ Δ colim 𝑑.
Dually, a limit of a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 of shape 𝐽 in an ∞-category 𝐴 is given by an

absolute right lifting diagram

𝐴

𝐷 𝐴𝐽
⇓𝜖

Δlim 𝑑

𝑑
comprised of a generalized element lim 𝑑∶ 𝐷 → 𝐴 and a limit cone 𝜖 ∶ Δ lim 𝑑 ⇒ 𝑑.

2.3.9. Remark. If 𝐴 has all limits of shape 𝐽, then Lemma 2.3.6 implies that any family of diagrams
𝑑∶ 𝐷 → 𝐴𝐽 has a limit, defined by composing the limit functor lim ∶ 𝐴𝐽 → 𝐴 with 𝑑. In an∞-cosmos
of (∞, 1)-categories, if every diagram 𝑑∶ 1 → 𝐴𝐽 has a limit, then 𝐴 admits all limits of shape 𝐽 (see
Corollary 12.2.10), but in general families of diagrams cannot be reduced to single diagrams.

2.3.10. Example. An initial element 𝑖 ∶ 1 → 𝐴 can be regarded as a colimit of the empty diagram. The
∞-category 𝐴∅ ≃ 1 of empty diagrams in 𝐴 is terminal, so the constant diagram functor reduces to
! ∶ 𝐴 → 1. To show that initial elements are colimits in the sense of Definition 2.3.8, we must verify
that an initial element defines an absolute left lifting diagram whose 2-cell is the identity:

𝐴 𝑋 𝐴 𝑋 𝐴

1 1 1 1 1 1

=

! ⇑𝜒

𝑓

! ! =
∃!⇑𝜁

=

𝑓

! !𝑖 𝑖
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Since the∞-category 1 is 2-terminal, there is a unique 2-cell 𝜒 inhabiting the central square above,
namely the identity. Thus, the universal property of the absolute left lifting diagram asserts the
existence of a unique 2-cell 𝜁∶ 𝑖! ⇒ 𝑓 for any 𝑓 ∶ 𝑋 → 𝐴, exactly as provided by Lemma 2.2.5.

2.3.11. Example. In a cartesian closed∞-cosmos, an initial element 𝑖 ∶ 1 → 𝐴 can also be regarded as a
limit of the identity functor id𝐴 ∶ 𝐴 → 𝐴.¹¹ The counit 𝜖 ∶ 𝑖! ⇒ id𝐴 of the adjunction 𝑖 ⊣ ! transposes
across the 2-adjunction𝐴×− ⊣ (−)𝐴 of Proposition 1.4.5 to define the limit cone displayed below-left:

𝐴 𝑋 𝐴 𝑋 𝐴

1 𝐴𝐴 1 𝐴𝐴 1 𝐴𝐴
⇓ ̌𝜖

Δ ⇓𝜒

𝑓

! Δ =
∃!⇓𝜁

⇓ ̌𝜖

𝑓

! Δ

id𝐴

𝑖

id𝐴

𝑖

id𝐴

The universal property displayed above-right is easiest to verify by transposing across the 2-adjunction
𝐴 × − ⊣ (−)𝐴 again, where we must establish the pasting equality

𝑋 𝑋

𝑋 × 𝐴 𝑋 × 𝐴 1 𝐴

𝐴 𝐴

𝑓

𝑓

!
∃!⇓𝜁

𝜋𝑋

𝜋𝐴

⇓�̂� =

𝜋𝑋

𝜋𝐴

𝑖
!

⇓𝜖

(2.3.12)

Observe that when we restrict the right-hand side of (2.3.12) along the functor id𝑋 ×𝑖 ∶ 𝑋 ≅ 𝑋 × 1 →
𝑋 × 𝐴 we recover the 2-cell 𝜁, since 𝜖𝑖 = id𝑖. This tells us that given 𝜒, we must necessarily define the
2-cell 𝜁∶ 𝑓 ⇒ 𝑖! to be the restriction of �̂� along the functor id𝑋 ×𝑖 ∶ 𝑋 → 𝑋 × 𝐴.

From this definition of 𝜁 and the 2-functoriality of the cartesian product – which tells us that
𝜖𝜋𝐴 = 𝜋𝐴(𝑋 × 𝜖) – we have

𝑋 𝑋 × 1 𝑋

𝑋 × 𝐴 1 𝐴 𝑋 × 𝐴 𝑋 × 𝐴

𝐴 𝐴

𝑓

!
⇓𝜁

id𝑋 ×𝑖

𝑓

𝜋𝑋

𝜋𝐴

𝑖 =

id𝑋 ×!
⇓𝑋×𝜖

𝜋𝐴

𝜋𝑋

⇓�̂�
!

⇓𝜖

By “naturality of whiskering” (see Lemma B.1.3), the right-hand pasted composite can be computed
as the vertical composite of 𝜋𝑋(𝑋 × 𝜖) followed by �̂�, but 𝜋𝑋(𝑋 × 𝜖) is the identity 2-cell, so this
composite is just �̂�. This verifies the desired pasting equality (2.3.12).

Certain limits and colimits in ∞-categories exist for formal reasons. For example, an abstract
2-categorical lemma enables a formal proof of a classical result from homotopy theory that computes
the colimits, typically called geometric realizations, of “split” simplicial objects. Before proving this, we
introduce the indexing shapes involved.

2.3.13. Definition (split augmented (co)simplicial object). The simplex category 𝚫 of finite nonempty
ordinals and order-preserving maps introduced in 1.1.1 defines a full subcategory of the category 𝚫+
of finite ordinals and order-preserving maps, which freely appends the empty ordinal “[−1]” as an
initial object. The category 𝚫+ in turn defines a wide subcategory of a category 𝚫⊥, which adds

¹¹This result is extended to∞-cosmoi that are not cartesian closed in Proposition 9.4.10.
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an “extra” degeneracy 𝜎−1 ∶ [𝑛 + 1] ↠ [𝑛] between each pair of consecutive ordinals, including
𝜎−1 ∶ [0] ↠ [−1]. The category 𝚫+ also defines a wide subcategory of a category 𝚫⊤, which adds an
“extra” degeneracy 𝜎𝑛+1 ∶ [𝑛 + 1] ↠ [𝑛] on the other side between each pair of consecutive ordinals,
including 𝜎0 ∶ [0] ↠ [−1]. The categories 𝚫⊥ and 𝚫⊤ can be described in another way: there are
faithful embeddings of these categories into 𝚫 that act on objects by [𝑛] ↦ [𝑛 + 1] and identify 𝚫⊥
and 𝚫⊤ with the subcategories of finite nonempty ordinals and order-preserving maps that preserve
the bottom and top elements respectively.

Covariant diagrams indexed by 𝚫 ⊂ 𝚫+ ⊂ 𝚫⊥, 𝚫⊤ are respectively called cosimplicial objects,
coaugmented cosimplicial objects, and split coaugmented cosimplicial objects (in the case of either𝚫⊥
or 𝚫⊤), while contravariant diagrams are respectively called simplicial objects, augmented simplicial
objects, and split augmented simplicial objects. When it is useful to disambiguate between 𝚫⊥ and
𝚫⊤ we refer to the former category as a “bottom splitting” and the latter category as a “top splitting,”
but this terminology is not standard.

A cosimplicial object 𝑑∶ 1 → 𝐴𝚫 in an ∞-category 𝐴 admits a coaugmentation or admits a
splitting if it lifts along the restriction functors

𝐴𝚫⊥

𝐴𝚫+

1 𝐴𝚫

res

res

𝑑

where in the case of a top splitting, 𝚫⊥ is replaced by 𝚫⊤. The family of cosimplicial objects admitting
a coaugmentation and splitting is represented by the generalized element res ∶ 𝐴𝚫⊥ ↠ 𝐴𝚫. In any
augmented cosimplicial object, there is a cone over the underlying cosimplicial object whose summit
is obtained by evaluating at [−1] ∈ 𝚫+. This cone is defined by cotensoring with the unique natural
transformation

𝚫 𝚫+

𝟙
! [−1]

∃!⇑𝜈 (2.3.14)

that exists because [−1] ∶ 𝟙 → 𝚫+ is initial (see Lemma 2.2.5).

2.3.15. Proposition (totalization/geometric realization). Let 𝐴 be any∞-category. Every cosimplicial
object in 𝐴 that admits a coaugmentation and a splitting has a limit, whose limit cone is defined by the
coaugmentation. Dually, every simplicial object in 𝐴 that admits an augmentation and a splitting has a colimit,
whose colimit cone is defined by the augmentation. That is, there exist absolute right and left lifting diagrams

𝐴 𝐴

𝐴𝚫⊥ 𝐴𝚫+ 𝐴𝚫 𝐴𝚫op
⊥ 𝐴𝚫op

+ 𝐴𝚫op
⇓𝐴𝜈

Δ
⇑𝐴𝜈op

Δ

res

ev[−1]

res res res

ev[−1]
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𝐴 𝐴

𝐴𝚫⊤ 𝐴𝚫+ 𝐴𝚫 𝐴𝚫op
⊤ 𝐴𝚫op

+ 𝐴𝚫op
⇓𝐴𝜈

Δ
⇑𝐴𝜈op

Δ

res

ev[−1]

res res res

ev[−1]

in which the 2-cells are obtained as restrictions of the cotensor of the 2-cell (2.3.14) into𝐴. Moreover, such limits
and colimits are absolute, preserved by any functor 𝑓 ∶ 𝐴 → 𝐵 of∞-categories.

Proof. By Example B.5.2, the inclusion 𝚫 ↪ 𝚫⊥ admits a right adjoint, which can automatically
be regarded as an adjunction “over 𝟙” since 𝟙 is 2-terminal in 𝒞𝑎𝑡. The initial element [−1] ∈ 𝚫+ ⊂ 𝚫⊥
defines a left adjoint to the constant functor:

𝚫 𝚫+ 𝚫⊥

𝟙

!
!

⊤

[−1] ⊥

and the counit of this adjunction restricts along the inclusions 𝚫 ⊂ 𝚫+ ⊂ 𝚫⊥ to the 2-cell (2.3.14). For
any∞-category𝐴 in an∞-cosmos𝒦, these adjunctions are preserved by the 2-functor𝐴(−) ∶ 𝒞𝑎𝑡op →
𝔥𝒦, yielding a diagram

𝐴

𝐴𝚫⊥ 𝐴𝚫+ 𝐴𝚫
⇓𝐴𝜈

⊥ Δ

!

res

ev[−1]

res
⊤

By Lemma B.5.1 these adjunctions witness the fact that evaluation at [−1] and the 2-cell from (2.3.14)
define an absolute right lifting of the canonical restriction functor 𝐴𝚫⊥ ↠ 𝐴𝚫 through the constant
diagram functor, as claimed. The colimit case is proven similarly by applying the composite 2-functor

𝒞𝑎𝑡coop 𝒞𝑎𝑡op 𝔥𝒦(−)op 𝐴(−)

A similar argument, starting from Example B.5.3, constructs the absolute lifting diagrams from the top
splitting.

Finally, by 2-functoriality of the simplicial cotensor, any functor 𝑓 ∶ 𝐴 → 𝐵 commutes with the
2-cells defined by cotensoring with 𝜈 or its opposite:

𝐴 𝐵 𝐵

𝐴𝚫⊥ 𝐴𝚫+ 𝐴𝚫 𝐵𝚫 𝐴𝚫⊥ 𝐵𝚫⊥ 𝐵𝚫+ 𝐵𝚫
⇓𝐴𝜈

Δ

𝑓

Δ =
⇓𝐴𝜈

Δ

res

ev[−1]

res 𝑓 𝚫 𝑓 𝚫⊥ res

ev[−1]

res

Since the right-hand composite is an absolute right lifting diagram by Lemma 2.3.6, so is the left-hand
composite, and thus 𝑓 ∶ 𝐴 → 𝐵 preserves the totalization of any split coaugmented cosimplicial object
in 𝐴. �
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Exercises.

2.3.i. Exercise. Prove that if an∞-category 𝐴 has binary products then it also has ternary products
(and in fact 𝑛-ary products for all 𝑛 ≥ 1). Show further that the ternary product functor can be defined
from the binary product functor − × −∶ 𝐴 × 𝐴 → 𝐴 either as the composite (− × −) × − or as the
composite − × (− × −); that is, show that these composites are naturally isomorphic and both satisfy
the universal property that characterizes ternary products.

2.3.ii. Exercise. Prove Lemma 2.3.6.

2.3.iii. Exercise. Re-prove the forwards implication of Lemma 2.3.7 by a pasting diagram calculation
and prove the converse similarly.

2.3.iv. Exercise. Let be the category defined by gluing two arrows along their codomain. Diagrams of
shape are called cospans. Consider either of the surjective functors 𝜋∶ → 𝟚 that send one of these
arrows to an identity. Show that for any ∞-category 𝐴, the corresponding functor 𝐴𝜋 ∶ 𝐴𝟚 → 𝐴
admits an absolute right lifting through the constant diagram functor Δ∶ 𝐴 → 𝐴 . That is, show that
any∞-category admits pullbacks of cospans in which one of the two arrows is an identity.

2.3.v. Exercise (3.5.6). Show that for any functor 𝑓 ∶ 𝐴 → 𝐵, the identity

𝐴

𝐴 𝐵

=

𝑓

𝑓

defines an absolute right lifting of 𝑓 through itself if and only if the identity defines an absolute left
lifting of 𝑓 through itself by proving that each of these conditions is equivalent to the assertion that for
any∞-category 𝑋 the induced functor

𝑓∗ ∶ hFun(𝑋,𝐴) → hFun(𝑋, 𝐵)
is fully faithful. A fourth equivalent characterization of what it means for a functor between∞-catego-
ries to be fully faithful appears in Corollary 3.5.6.

2.3.vi. Exercise. Show that diagrams that are isomorphic to absolute right lifting diagrams are them-
selves absolute right lifting: given an absolute right lifting diagram and natural isomorphisms

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟 𝐶 𝐵 𝐵 𝐴 𝐶 𝐴
𝑟′

𝑟
≅⇓𝜃

𝑓 ′

𝑓
≅⇓𝜙

𝑔

𝑔′
≅⇓𝜓

show that the pasted composite is an absolute right lifting diagram.

𝐵

𝐶 𝐴
⇓𝜌

𝑓 ⇐𝜙≅ 𝑓 ′

𝑔

𝑔′
≅⇓𝜓

𝑟′
≅⇓𝜃 𝑟

Conclude that limits and colimits are invariant under natural isomorphism.
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2.4. Preservation of Limits and Colimits

A functor 𝑓 ∶ 𝐴 → 𝐵 preserves limits if the image of a limit cone in 𝐴 also defines a limit cone in 𝐵.
In the other direction, a functor 𝑓 ∶ 𝐴 → 𝐵 reflects limits if a cone in 𝐴 that defines a limit cone in 𝐵 is
also a limit cone in 𝐴. A functor 𝑓 ∶ 𝐴 → 𝐵 creates limits if whenever a diagram in 𝐴 admits a limit
cone in 𝐵, then there must exist a limit cone in𝐴 whose image under 𝑓 is isomorphic to the given limit
cone in 𝐵.

Famously, right adjoint functors preserve limits and left adjoints preserve colimits. Our aim in this
section is to prove this in the∞-categorical context and exhibit the first examples of initial and final
functors, in the sense introduced in Definition 2.4.5. We conclude with a result about the reflection of
limits whose proof relies in a crucial way on a result – that cosmological functors preserve absolute
lifting diagrams – that motivates Chapter 3.

The commutativity of right adjoints and limits is very easily established in the case where the
∞-categories in question admit all limits of a given shape: under these hypotheses, the limit functor is
right adjoint to the constant diagram functor, which commutes with all functors between the base
∞-categories. Since the left adjoints commute, the uniqueness of adjoints (Proposition 2.1.10) implies
that the right adjoints commute up to isomorphism. This outline gives a hint for Exercise 2.4.i.

A more delicate argument is needed in the general case, involving, say, the preservation of a single
limit diagram without a priori assuming that any other limits exist. We appeal to a general lemma
about composition and cancelation of absolute lifting diagrams:

2.4.1. Lemma (composition and cancelation of absolute lifting diagrams). Suppose (𝑟, 𝜌) defines an
absolute right lifting of ℎ through 𝑓:

𝐶

𝐵

𝐷 𝐴

⇓𝜎
𝑔

⇓𝜌
𝑓

ℎ

𝑟

𝑠

Then (𝑠, 𝜎) defines an absolute right lifting of 𝑟 through 𝑔 if and only if (𝑠, 𝜌 ⋅ 𝑓 𝜎) defines an absolute right
lifting of ℎ through 𝑓 𝑔.

Proof. Exercise 2.4.ii. �

2.4.2. Theorem. Right adjoints preserve limits and left adjoints preserve colimits.

The usual argument that right adjoints preserve limits is this: a cone over a 𝐽-shaped diagram in the
image of a right adjoint 𝑢 transposes across the adjunction 𝑓 𝐽 ⊣ 𝑢𝐽 to a cone over the original diagram,
which factors uniquely through the designated limit cone. This factorization transposes across the
adjunction 𝑓 ⊣ 𝑢 to define the sought-for unique factorization through the image of the limit cone.
An ∞-categorical proof along these lines can be given as well (see Exercise 2.4.iii), but instead we
present a slicker packaging of the standard argument. We use absolute lifting diagrams to express the
universal properties of limits and colimits (Definition 2.3.8) and adjoint transposition (Lemma 2.3.7),
allowing us to suppress consideration of a generic test cone that must be shown to uniquely factor
through the limit cone.

Proof. We prove that right adjoints preserve limits. By taking co-duals the same argument
demonstrates that left adjoints preserve colimits.
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Suppose a functor 𝑢∶ 𝐴 → 𝐵 in an ∞-cosmos 𝒦 admits a left adjoint 𝑓 ∶ 𝐵 → 𝐴 with counit
𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴. Our aim is to show that any absolute right lifting diagram as displayed below-left is
carried to an absolute right lifting diagram as displayed below-right:

𝐴 𝐴 𝐵

𝐷 𝐴𝐽 𝐷 𝐴𝐽 𝐵𝐽
⇓𝜌

Δ
⇓𝜌

Δ

𝑢

Δlim 𝑑

𝑑

lim 𝑑

𝑑 𝑢𝐽

(2.4.3)

By Proposition 2.1.7, the cotensor (−)𝐽 ∶ 𝔥𝒦 → 𝔥𝒦 carries the adjunction 𝑓 ⊣ 𝑢 to an adjunction
𝑓 𝐽 ⊣ 𝑢𝐽 with counit 𝜖𝐽. In particular, by Lemma 2.3.7, (𝑢𝐽, 𝜖𝐽) defines an absolute right lifting of the
identity through 𝑓 𝐽, which is then preserved by restriction along the functor 𝑑. Thus, by Lemma
2.4.1, the diagram on the right of (2.4.3) is an absolute right lifting diagram if and only if the pasted
composite displayed below-left defines an absolute right lifting diagram:

𝐴 𝐵 𝐵 𝐵

𝐷 𝐴𝐽 𝐵𝐽 𝐴 𝐴 𝐴

𝐴𝐽 𝐷 𝐴𝐽 𝐴𝐽 𝐷 𝐴𝐽

⇓𝜌
Δ

𝑢

Δ
⇓𝜖

𝑓
⇓𝜖 lim 𝑑

𝑓lim 𝑑

𝑑
𝑢𝐽

𝑓 𝐽⇓𝜖𝐽
=

⇓𝜌

𝑢

Δ Δ

=

⇓𝜌
Δ

𝑑

lim 𝑑

𝑑

lim 𝑑

𝑢 lim 𝑑

As noted in the proof of Lemma 2.3.7, pasting the 2-cell on the right of (2.4.3) with the counit in this
way amounts to transposing the cone 𝑢𝐽𝜌 across the adjunction 𝑓 𝐽 ⊣ 𝑢𝐽.

We now argue that this transposed cone above-left factors through the limit cone (lim 𝑑, 𝜌) in a
canonical way. From the 2-functoriality of the simplicial cotensor in its exponent variable, 𝑓 𝐽Δ = Δ𝑓
and 𝜖𝐽Δ = Δ𝜖. Hence, the pasting diagram displayed above-left equals the one displayed above-center,
which equals the diagram above-right. This latter diagram is a pasted composite of two absolute right
lifting diagrams, and is then an absolute right lifting diagram in its own right by Lemma 2.4.1; this
universal property says that any cone over 𝑑 whose summit factors through 𝑓 factors uniquely through
the limit cone (lim 𝑑, 𝜌) through a map that then transposes along the adjunction 𝑓 ⊣ 𝑢. Hence the
diagram on the right-hand side of (2.4.3) is an absolute right lifting diagram as claimed. �

2.4.4. Proposition. An equivalence 𝑓 ∶ 𝐴 ∼ 𝐵 preserves, reflects, and creates limits and colimits.

Proof. By Proposition 2.1.12, equivalences define adjoint functors, so Theorem 2.4.2 implies that
equivalences preserve limits. To see that limits are reflected, consider a 𝐽-shaped cone 𝜌 in 𝐴 whose
image 𝑓 𝐽𝜌 is a limit cone in 𝐵. The inverse equivalence 𝑔∶ 𝐵 ∼ 𝐴 carries this to a limit cone 𝑔𝐽𝑓 𝐽𝜌 in
𝐴, which is naturally isomorphic to the original cone 𝜌. By Exercise 2.3.vi, 𝜌 must also define a limit
cone. Finally to see that limits are created, consider a diagram 𝑑∶ 𝐷 → 𝐴𝐽 so that 𝑓 𝑑 has a limit cone
𝜈 in 𝐵. Then 𝑔𝐽𝜈 defines a limit cone for the diagram 𝑔𝑓 𝑑 in 𝐴, and by Exercise 2.3.vi, a limit cone for
𝑑 may be defined by composing with the isomorphism 𝑔𝑓 𝑑 ≅ 𝑑. �

We turn now to a limit-preservation result of another sort, which can be used to simplify the
calculation of limits or colimits of diagrams with particular shapes. This simplification comes about by
reindexing the diagrams, by restricting along a functor 𝑘 ∶ 𝐼 → 𝐽. For certain functors, called “initial”
or “final,” this reindexing preserves and reflects limits or colimits, respectively.
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At present, we give a teleological, rather than an intrinsic, description of these functors. The
following definition makes sense for an arbitrary functor in a cartesian closed∞-cosmos or for a map
between simplicial sets serving as indexing shapes in an arbitrary∞-cosmos. In Definition 9.4.11 we
extend the adjectives “initial” and “final” to functors between∞-categories in an arbitrary∞-cosmos
and prove that the functors characterized there satisfy the property described here.

2.4.5. Definition (initial and final functor). A functor 𝑘 ∶ 𝐼 → 𝐽 is final if a 𝐽-shaped cone defines a
colimit cone if and only if the restricted 𝐼-shaped cone is a colimit cone and initial if any 𝐽-shaped cone
defines a limit cone if and only if the restricted 𝐼-shaped cone is a limit cone. That is, 𝑘 ∶ 𝐼 → 𝐽 is final
if and only if for any∞-category 𝐴, the square

𝐴 𝐴

𝐴𝐽 𝐴𝐼

Δ Δ

𝐴𝑘

preserves and reflects all absolute left lifting diagrams, and initial if and only if this squares preserves
and reflects all absolute right lifting diagrams.

Historically, final functors were called “cofinal” with no obvious name for the dual notion. Our
preferred terminology hinges on the following mnemonic: the inclusion of an initial element defines an
initial functor, while the inclusion of a terminal (aka final) element defines a final functor. These facts
are special cases of a more general result we now establish, using exactly the same tactics as deployed to
prove Theorem 2.4.2.

2.4.6. Proposition. Left adjoints define initial functors and right adjoints define final functors.

Proof. If 𝑘 ⊣ 𝑟 with counit 𝜖 ∶ 𝑘𝑟 ⇒ id𝐽, then cotensoring into 𝐴 yields an adjunction

𝐴𝐽 𝐴𝐼

𝐴𝑘

⊥
𝐴𝑟

with counit 𝐴𝜖 ∶ 𝐴𝑟𝐴𝑘 ⇒ id𝐴𝐽 .

To prove that 𝑘 is initial we must show that for any cone 𝜌∶ Δℓ ⇒ 𝑑 as displayed below-left,

𝐴 𝐴 𝐴

𝐷 𝐴𝐽 𝐷 𝐴𝐽 𝐴𝐼
⇓𝜌

Δ
⇓𝜌

Δ Δℓ

𝑑

ℓ

𝑑 𝐴𝑘

the left-hand diagram is an absolute right lifting diagram if and only if the right-hand diagram is an
absolute right lifting diagram.
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By Lemmas 2.3.7 and 2.4.1, the right-hand diagram is an absolute right lifting diagram if and only if
the pasted composite displayed below-left is also an absolute right lifting diagram.

𝐴 𝐴 𝐴

𝐷 𝐴𝐽 𝐴𝐼 𝐷 𝐴𝐽

𝐴𝐽

⇓𝜌
Δ Δ

⇓𝜌
Δℓ

𝑑
𝐴𝑘

𝐴𝑟⇓𝐴𝜖
=

ℓ

𝑑

Since 𝐴𝑟Δ = Δ and 𝐴𝜖Δ = idΔ, the left-hand side reduces to the right-hand side, which proves the
claim. �

Exercise 2.3.v defines a functor 𝑓 ∶ 𝐴 → 𝐵 between∞-categories to be fully faithful just when

𝐴

𝐴 𝐵
=

𝑓

𝑓

defines absolute right lifting diagram or equivalently an absolute left lifting diagram. Modulo a result
we borrow from Chapter 3, we show:

2.4.7. Proposition. A fully faithful functor 𝑓 ∶ 𝐴 → 𝐵 reflects any limits or colimits that exist in 𝐵.

Proof. The statement for limits asserts that for any family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 of shape 𝐽 in𝐴,
any functor ℓ ∶ 𝐷 → 𝐴, and any cone 𝜌∶ Δℓ ⇒ 𝑑 so that the whiskered composite with 𝑓 𝐽 ∶ 𝐴𝐽 → 𝐵𝐽

is an absolute right lifting diagram

𝐴 𝐵

𝐷 𝐴𝐽 𝐵𝐽
⇓𝜌

Δ

𝑓

Δℓ

𝑑 𝑓 𝐽

then (ℓ, 𝜌) defines an absolute right lifting of 𝑑∶ 𝐷 → 𝐴𝐽 through Δ∶ 𝐴 → 𝐴𝐽. By Exercise 2.3.v, to
say that 𝑓 is fully faithful is to say that id𝐴 ∶ 𝐴 → 𝐴 defines an absolute right lifting of 𝑓 through
itself. So by Lemma 2.4.1, the composite diagram below-left is an absolute right lifting diagram, and by
2-functoriality of the simplicial cotensor with 𝐽, the diagram below-left coincides with the diagram
below-right:

𝐴 𝐴

𝐴 𝐵 𝐴𝐽

𝐷 𝐴𝐽 𝐵𝐽 𝐷 𝐴𝐽 𝐵𝐽

𝑓 Δ

⇓𝜌
Δ

𝑓
Δ

=
⇓𝜌

𝑓 𝐽ℓ

𝑑 𝑓 𝐽 𝑑

ℓ

𝑓 𝐽
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Now if we knew that id𝐴𝐽 ∶ 𝐴𝐽 → 𝐴𝐽 defines an absolute right lifting of 𝑓 𝐽 through itself – that
is, if we know that 𝑓 𝐽 ∶ 𝐴𝐽 → 𝐵𝐽 is also fully faithful – then we could apply Lemma 2.4.1 again to
conclude that (ℓ, 𝜌) is an absolute right lifting of 𝑑 through Δ as required. And indeed this is the case:
by Corollary 3.5.7, any cosmological functor, such as (−)𝐽, preserves absolute lifting diagrams. �

It is worth asking why we have not already proven that cosmological functors preserve absolute
lifting diagrams, since after all, by Lemma 1.4.4, cosmological functors induce 2-functors between
homotopy 2-categories, which is where absolute lifting diagrams are defined. But unlike adjunctions,
which are defined by pasting equations in a 2-category, absolute lifting diagrams are defined using
universal quantifiers and hence are not preserved by all 2-functors. However, the 2-functors that
underlie cosmological functors do preserve absolute lifting diagrams, even when the cosmological
functor is “forgetful” or fails to be essentially surjective. This is because the universal property of
absolute lifting diagrams can be re-expressed internally to the ambient∞-cosmos by deploying the
axiomatized limits of 1.2.1(i), at which point their preservation by cosmological functors is a direct
corollary (see Theorem 3.5.3 and Corollary 3.5.7). In pursuit of results such as these, we now turn our
attention to the 2-categorical properties of the cosmological limits.

Exercises.

2.4.i. Exercise. Show that any left adjoint 𝑓 ∶ 𝐵 → 𝐴 between∞-categories admitting all 𝐽-shaped
colimits preserves them in the sense that the square of functors commutes up to isomorphism.

𝐵𝐽 𝐴𝐽

𝐵 𝐴
colim

𝑓 𝐽

colim≅

𝑓

2.4.ii. Exercise. Prove Lemma 2.4.1.

2.4.iii. Exercise. Give a proof of Theorem 2.4.2 that does not appeal to Lemma 2.4.1 by directly
verifying that the diagram on the right of (2.4.3) is an absolute right lifting diagram.

2.4.iv. Exercise. Use Lemma 2.4.1 to give a new proof that adjunctions compose (Proposition 2.1.9).

2.4.v. Exercise. For any composable pair of maps 𝑘 ∶ 𝐼 → 𝐽 and ℓ ∶ 𝐽 → 𝐾, show that if 𝑘 and ℓ𝑘 are
final, then so is ℓ.
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CHAPTER 3

Comma∞-Categories

In Chapter 2, we introduce adjunctions between ∞-categories and limits of diagrams valued
within an∞-category through definitions that are particularly expedient for establishing the expected
interrelationships, as illustrated by the proof that right adjoints preserve limits. These definitions
are 2-categorical in nature – stated in reference to the ∞-categories, ∞-functors, and ∞-natural
transformations of the homotopy 2-category – but neither clearly articulates the universal properties
of these notions. Definition 2.3.8 does not obviously express the expected universal property of the
limit cone: namely, that a limit cone over a diagram 𝑑 defines a terminal element in some∞-category
of cones over 𝑑. Nor does Definition 2.1.1 explain how an adjunction 𝑓 ⊣ 𝑢 induces an equivalence
between hom-spaces Hom𝐴(𝑓 𝑏, 𝑎) ≃ Hom𝐵(𝑏, 𝑢𝑎).¹ In this chapter, we make use of the axiomatized
limits in an∞-cosmos to exhibit a general construction that specializes to define both this∞-category
of cones and also these hom-spaces. This construction also permits us to represent a functor between
∞-categories as an∞-category, in dual “left” or “right” fashions, so that an adjunction consists of a
pair of functors 𝑓 ∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 so that the left representation of 𝑓 is equivalent to the right
representation of 𝑢 over 𝐴 × 𝐵 (see Proposition 4.1.1).

Our vehicle for all of these new definitions is the comma∞-category associated to a cospan:

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐴 𝐵 ⇝ 𝐶 𝐵

𝐴

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

𝑔 𝑓

Our aim in this chapter is to develop the general theory of comma constructions from the point of view
of the homotopy 2-category of an∞-cosmos. Our first payoff for this work appears in Chapter 4 where
we study the universal properties of adjunctions, limits, and colimits along these lines. The comma
construction also provides the essential vehicle in Part III for establishing the model independence of
the categorical notions we introduce throughout this text.

There is a standard definition of a “comma object” that can be stated in any 2-category, defined as
a particular weighted limit (see Example A.6.14). Comma∞-categories do not satisfy this universal
property in the homotopy 2-category, however. Instead, they satisfy a somewhat peculiar “weak” variant
of the usual 2-categorical universal property that to our knowledge has not appeared elsewhere in the
literature. The weak universal property is encoded by something we call a smothering functor, which
relates homotopy coherent and homotopy commutative diagrams of suitable shapes. To introduce
these universal properties in a concrete rather than abstract framework, we start in §3.1 by considering
smothering functors involving homotopy categories of quasi-categories.

¹A 2-categorical version of this result – exhibiting a bijection between sets of 2-cells – appears as Lemma 2.3.7, but in
an∞-category one would expect a similar equivalence of hom-spaces.
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In §3.2, we use a smothering functor to encode the weak universal property of the∞-category of
arrows 𝐴𝟚 associated to an∞-category 𝐴, considered as an object in the homotopy 2-category. In §3.3,
we briefly study the analogous weak universal properties associated to the pullback of an isofibration,
which we exploit to prove that the pullback of an equivalence along an isofibration is an equivalence.

Comma∞-categories are introduced in §3.4 where we describe both their strict universal properties
as simplicially enriched limits as well as their weak universal properties in the homotopy 2-category.
Each have their uses, for instance in describing the induced actions on comma∞-categories of various
types of morphisms between their generating cospans. The weak 2-categorical universal property
is deployed in §3.5 to prove a general representability theorem that characterizes those comma ∞-
categories that are right or left represented by a functor. In Chapter 4, we reap the payoff for this work,
achieving the desired representable characterizations of adjunctions, limits, and colimits as special
cases of these general results.

In §3.6, we tighten the main theorem of §3.5 to say that a comma∞-category is right represented
by a functor if and only if its codomain-projection functor admits a terminal element, when considered
as an object in the sliced ∞-cosmos. This result requires a careful analysis of the subtle difference
between the homotopy 2-category of a sliced ∞-cosmos and the sliced 2-category of the homotopy
2-category of an∞-cosmos. Those readers who would rather stay out of the weeds are invited to take
note of Definition 3.6.5 and Corollary 3.6.10 but otherwise skip this section.

3.1. Smothering Functors

Let 𝑄 be a quasi-category. Recall from Lemma 1.1.12 that its homotopy category h𝑄 has

• elements of 𝑄 as its objects;
• homotopy classes of 1-simplices of 𝑄 as its arrows, where parallel 1-simplices are homotopic just
when they bound a 2-simplex whose remaining outer edge is degenerate; and

• a composition relation if and only if any chosen 1-simplices representing the three arrows bound a
2-simplex.

For a 1-category 𝐽, it is well-known in classical homotopy theory that the homotopy category of diagrams
h(𝑄𝐽) is not equivalent to the category (h𝑄)𝐽 of diagrams in the homotopy category – except in very
special cases, such as when 𝐽 is a set (see Lemma 2.3.3). The objects of h(𝑄𝐽) are homotopy coherent
diagrams of shape 𝐽 in 𝑄, while the objects of (h𝑄)𝐽 are mere homotopy commutative diagrams. There is,
however, a canonical comparison functor

h(𝑄𝐽) (h𝑄)𝐽

defined by applying h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 to the evaluation functor 𝑄𝐽 × 𝐽 → 𝑄 and then transposing; a
homotopy coherent diagram is in particular homotopy commutative.

Our first aim in this section is to better understand the relationship between the arrows in the
homotopy category h𝑄 and the arrows of 𝑄, meaning the 1-simplices in the quasi-category. To study
this, we consider the quasi-category 𝑄𝟚 in which the arrows of 𝑄 live as elements, where 𝟚 = Δ[1]
is the nerve of the walking arrow. Our notation deliberately imitates the notation commonly used
for the category of arrows: if 𝐶 is a 1-category, then 𝐶𝟚 is the category whose objects are arrows in 𝐶
and whose morphisms are commutative squares, regarded as a morphism from the arrow displayed
vertically on the left-hand side to the arrow displayed vertically on the right-hand side. This notational
conflation suggests our first question: how does the homotopy category of 𝑄𝟚 relate to the category of
arrows in the homotopy category h𝑄?
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3.1.1. Lemma. The canonical functor h(𝑄𝟚) → (h𝑄)𝟚 is
(i) surjective on objects,
(ii) full, and
(iii) conservative, i.e., reflects invertibility of morphisms,

but not necessarily injective on objects nor faithful.

Proof. Surjectivity on objects asserts that every arrow in the homotopy category h𝑄 is represented
by a 1-simplex in 𝑄. This is the conclusion of Exercise 1.1.iii(iii) which outlines the proof of Lemma
1.1.12.

To prove fullness, consider a pair of arrows 𝑓 and 𝑔 in 𝑄 that form the source and target of a
commutative square in h𝑄. By (i), we may choose arbitrary 1-simplices representing each morphism in
h𝑄 and their common composite:

• •

• •
𝑓

ℎ

ℓ 𝑔

𝑘
By Lemma 1.1.12, every composition relation in h𝑄 is witnessed by a 2-simplex in𝑄; choosing a pair of
such 2-simplices defines a diagram 𝟚 × 𝟚 → 𝑄, which represents a morphism from 𝑓 to 𝑔 in h(𝑄𝟚),
proving fullness.

Surjectivity on objects and fullness of the functor h(𝑄𝟚) → (h𝑄)𝟚 are special properties having
to do with the diagram shape 𝟚, while conservativity holds for generic diagram shapes by Corollary
1.1.22. The construction of counterexamples illustrating the general failure of injectivity on objects and
faithfulness is left to Exercise 3.1.i, with a hint. �

The properties of the canonical functor h(𝑄𝟚) → (h𝑄)𝟚 frequently reappear, so we bestow them
with a suggestive name:

3.1.2. Definition (smothering functor). A functor 𝑓 ∶ 𝐴 → 𝐵 between 1-categories is smothering if it
is surjective on objects, full, and conservative. That is, a functor is smothering if and only if it has the
right lifting property with respect to the set of functors:

⎧⎪⎪
⎨⎪⎪⎩

∅ 𝟙 + 𝟙 𝟚

𝟙 𝟚 𝕀

, ,

⎫⎪⎪
⎬⎪⎪
⎭

Various elementary properties of smothering functors are established in Exercise 3.1.ii; here we
highlight one worthy of particular attention:

3.1.3. Lemma (smothering fibers). Each fiber of a smothering functor is a nonempty connected groupoid.

Proof. Suppose 𝑓 ∶ 𝐴 → 𝐵 is smothering and consider the fiber

𝐴𝑏 𝐴

𝟙 𝐵

𝑓

𝑏
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over an object 𝑏 of 𝐵. By surjectivity on objects, the fiber is nonempty. Its morphisms are defined
to be arrows between objects in the fiber of 𝑏 that map to the identity on 𝑏. By fullness, any two
objects in the fiber are connected by a morphism, indeed, by morphisms pointing in both directions.
By conservativity, all the morphisms in the fiber are necessarily invertible. �

The argument used to prove Lemma 3.1.1 generalizes to:

3.1.4. Lemma. If 𝐽 is a 1-category that is free on a reflexive directed graph and 𝑄 is a quasi-category, then the
canonical functor h(𝑄𝐽) → (h𝑄)𝐽 is smothering.

Proof. Exercise 3.1.iii. �

Cotensors are one of the cosmological limits axiomatized in Definition 1.2.1. Other limit construc-
tions listed there also give rise to smothering functors.

3.1.5. Lemma. For any pullback diagram of quasi-categories in which 𝑝 is an isofibration

𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵

𝑝

𝑓

the canonical functor h(𝐴 ×
𝐵
𝐸) → h𝐴 ×

h𝐵
h𝐸 is smothering.

Proof. As h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 does not preserve pullbacks, the canonical comparison functor of the
statement is not an isomorphism. It is however bijective on objects since the composite functor

𝒬𝒞𝑎𝑡 𝒞𝑎𝑡 𝒮𝑒𝑡h obj

passes to the underlying set of vertices of each quasi-category, and this functor does preserve pullbacks.
For fullness, note that a morphism in h𝐴×h𝐵h𝐸 is represented by a pair of 1-simplices 𝛼∶ 𝑎 → 𝑎′

in 𝐴 and 𝜖 ∶ 𝑒 → 𝑒′ in 𝐸 whose images are homotopic in 𝐵, a condition that implies in particular that
𝑓 (𝑎) = 𝑝(𝑒) and 𝑓 (𝑎′) = 𝑝(𝑒′). By Lemma 1.1.9, we can configure this homotopy however we like, and
thus we choose a 2-simplex witness 𝛽 so as to define a lifting problem

Λ1[2] 𝐸 ∋

Δ[2] 𝐵 ∋

𝑝

𝛽

𝑒

𝑒 𝑒′

↧

𝑝(𝑒)

𝑓 (𝑎) 𝑓 (𝑎′) = 𝑝(𝑒′)

𝜖

𝑝(𝜖)

𝑓 (𝛼)

Since 𝑝 is an isofibration, a solution exists, defining an arrow ̃𝜖 ∶ 𝑒 → 𝑒′ in 𝐸 in the same homotopy
class as 𝜖 so that 𝑝( ̃𝜖) = 𝑓 (𝛼). The pair (𝛼, ̃𝜖) now defines the lifted arrow in h(𝐸 ×𝐵 𝐴).

Finally, consider an arrow 𝟚 → 𝐴 ×
𝐵
𝐸 whose image in h𝐴 ×

h𝐵
h𝐸 is an isomorphism, which is the

case just when the projections to 𝐸 and 𝐴 define isomorphisms. By Corollary 1.1.16, we may choose a

66



homotopy coherent isomorphism 𝕀 → 𝐴 extending the given isomorphism 𝟚 → 𝐴. This data presents
us with a lifting problem

𝟚 𝐴 ×
𝐵
𝐸 𝐸

𝕀 𝐴 𝐵

𝑝

𝑓

which Exercise 1.1.vi tells us we can solve. This proves that h(𝐴 ×
𝐵
𝐸) → h𝐴 ×

h𝐵
h𝐸 is conservative and

hence also smothering. �

A similar argument proves:

3.1.6. Lemma. For any tower of isofibrations between quasi-categories

⋯ 𝐸𝑛 𝐸𝑛−1 ⋯ 𝐸2 𝐸1 𝐸0

the canonical functor h(lim𝑛 𝐸𝑛) → lim𝑛 h𝐸𝑛 is smothering.

Proof. Exercise 3.1.iv. �

3.1.7. Lemma. For any cospan between quasi-categories 𝐶
𝑔
𝐴

𝑓
𝐵 consider the quasi-category defined by

the pullback

Hom𝐴(𝑓 , 𝑔) 𝐴𝟚

𝐶 × 𝐵 𝐴 × 𝐴

(cod,dom)

𝑔×𝑓

The canonical functor hHom𝐴(𝑓 , 𝑔) → Homh𝐴(h𝑓 , h𝑔) is smothering.

Proof. The codomain of this functor is the category defined by an analogous pullback in 𝒞𝑎𝑡

Homh𝐴(h𝑓 , h𝑔) (h𝐴)𝟚

h𝐶 × h𝐵 h𝐴 × h𝐴

(cod,dom)

h𝑔×h𝑓

and the canonical functor factors as

hHom𝐴(𝑓 , 𝑔) h(𝐴𝟚) ×h𝐴×h𝐴 (h𝐶 × h𝐵) (h𝐴)𝟚 ×h𝐴×h𝐴 (h𝐶 × h𝐵)
By Lemma 3.1.5 the first of these functors is smothering. By Lemma 3.1.1 the second is a pullback of a
smothering functor. By Exercise 3.1.ii(i) it follows that the composite functor is smothering. �

In the sections that follow, we discover that the smothering functors just constructed express weak
universal properties of arrow, pullback, and comma constructions in the homotopy 2-category of any
∞-cosmos.
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Exercises.

3.1.i. Exercise. Find an explicit example of a quasi-category 𝑄 for which the canonical smothering
functor h(𝑄𝟚) → (h𝑄)𝟚 fails to be injective on objects and faithful for instance by defining 𝑄 to be
the total singular complex of a suitable topological space.

3.1.ii. Exercise. Prove that:

(i) Smothering functors are closed under composition, retract, product, pullback, and limits of
towers.

(ii) Surjective equivalences of categories are smothering functors.
(iii) Smothering functors are isofibrations, that is, maps that have the right lifting property with

respect to 𝟙 ↪ 𝕀.
(iv) Prove that if 𝑓 and 𝑔𝑓 are smothering functors, then 𝑔 is a smothering functor.²

3.1.iii. Exercise. Prove Lemma 3.1.4.

3.1.iv. Exercise. Prove Lemma 3.1.6.

3.2. ∞-Categories of Arrows

In this section, we replicate the discussion from the start of §3.1 using an arbitrary∞-category𝐴 in
place of the quasi-category𝑄. The analysis of the previous section could have been developed natively
in this general setting but at the cost of an extra layer of abstraction and more confusing notation –
with a functor space Fun(𝑋,𝐴) replacing the quasi-category 𝑄.

Recall an element of an ∞-category is defined to be a functor 𝑎 ∶ 1 → 𝐴. Tautologically, the
elements of 𝐴 are the vertices of the underlying quasi-category Fun(1, 𝐴) of 𝐴. In this section, we
define and study an∞-category𝐴𝟚 whose elements are the 1-simplices in the underlying quasi-category
of 𝐴. We refer to 𝐴𝟚 as the ∞-category of arrows in 𝐴 and call its elements simply arrows of 𝐴. In
fact, we have tacitly introduced this construction already. Recall 𝟚 is our preferred notation for the
quasi-category Δ[1], the nerve of the category 𝟚 with a single nonidentity morphism 0 → 1.

3.2.1. Definition (arrow∞-category). Let𝐴 be an∞-category. The∞-category of arrows in𝐴 is the
simplicial cotensor 𝐴𝟚 together with the canonical endpoint evaluation isofibration

𝐴𝟚 ≔ 𝐴Δ[1] 𝐴𝜕Δ[1] ≅ 𝐴 × 𝐴
(𝑝1,𝑝0)

induced by the inclusion 𝜕Δ[1] ↪ Δ[1]. For conciseness, we write 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 for the domain
evaluation induced by the inclusion 0∶ 𝟙 ↪ 𝟚 and write 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴 for the codomain evaluation
induced by 1∶ 𝟙 ↪ 𝟚.

As an object of the homotopy 2-category, the∞-category of arrows comes equipped with a canonical
2-cell that we now construct.

3.2.2. Lemma (generic arrow). For any∞-category 𝐴, the∞-category of arrows 𝐴𝟚 comes equipped with a
canonical 2-cell

𝐴𝟚 𝐴
𝑝0

𝑝1
⇓𝜅 (3.2.3)

that we refer to as the generic arrow with codomain 𝐴.
²In fact, it suffices to merely assume that 𝑓 is surjective on objects and arrows.
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Proof. The simplicial cotensor has a strict universal property described in Digression 1.2.6: namely
𝐴𝟚 is characterized by the natural isomorphism

Fun(𝑋,𝐴𝟚) ≅ Fun(𝑋,𝐴)𝟚. (3.2.4)

By the Yoneda lemma, the data of the natural isomorphism (3.2.4) is encoded by its “universal element”,
which is defined to be the image of the identity at the representing object. Here the identity functor
id ∶ 𝐴𝟚 → 𝐴𝟚 is mapped to an element of Fun(𝐴𝟚, 𝐴)𝟚, a 1-simplex in Fun(𝐴𝟚, 𝐴), which by Lemma
1.4.3 represents a 2-cell 𝜅 in the homotopy 2-category.

To see that the source and target of 𝜅 must be the domain evaluation and codomain evaluation
functors, defined by cotensoring with the endpoint inclusion 𝟙 + 𝟙 ↪ 𝟚, we use the naturality of the
isomorphism (3.2.4) in the cotensor variable:

Fun(𝑋,𝐴𝟚) Fun(𝑋,𝐴)𝟚

Fun(𝑋,𝐴 × 𝐴) Fun(𝑋,𝐴) × Fun(𝑋,𝐴)

≅
(𝑝1,𝑝0)∗ (cod,dom)

≅

The identity functor maps around the top-right composite to the pair of functors (cod𝜅, dom𝜅) and
around the left-bottom composite to the pair (𝑝1, 𝑝0). �

There is a 2-categorical limit notion that is analogous to Definition 3.2.1, which constructs, for any
object 𝐴, the universal 2-cell with codomain 𝐴: namely the (categorical) cotensor with the 1-category
𝟚. Its universal property is analogous to (3.2.4) but with the hom-categories of the 2-category in place
of the functor spaces (see Definition A.4.1). In the 2-category of categories, the 𝟚-cotensor defines the
arrow category.

In the homotopy 2-category, by the Yoneda lemma again, the data (3.2.3) encodes a natural trans-
formation

hFun(𝑋,𝐴𝟚) → hFun(𝑋,𝐴)𝟚

of categories but this is not a natural isomorphism, nor even a natural equivalence of categories.
However, it does furnish the∞-category of arrows with a “weak” universal property of the following
form:

3.2.5. Proposition (the weak universal property of the arrow∞-category). The generic arrow (3.2.3)
with codomain 𝐴 has a weak universal property in the homotopy 2-category given by three operations:

(i) 1-cell induction: Given a natural transformation over 𝐴 as below-left

𝑋 𝑋

= 𝐴𝟚

𝐴 𝐴

𝑠𝑡
𝛼
⇐ 𝑠𝑡

𝛼

𝑝0𝑝1 𝜅⇐

there exists a functor 𝛼∶ 𝑋 → 𝐴𝟚 so that 𝑠 = 𝑝0𝛼, 𝑡 = 𝑝1𝛼, and 𝛼 = 𝜅𝛼.
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(ii) 2-cell induction: Given functors 𝑎, 𝑎′ ∶ 𝑋 → 𝐴𝟚 and natural transformations 𝜏1 and 𝜏0 so that

𝑋 𝑋

𝐴𝟚 𝐴𝟚 = 𝐴𝟚 𝐴𝟚

𝐴 𝐴

𝑎𝑎′
𝜏1
⇐

𝑎𝑎′
𝜏0
⇐

𝑝1

𝑝1

𝑝0

𝜅⇐
𝑝1

𝑝0
𝜅⇐ 𝑝0

there exists a natural transformation 𝜏∶ 𝑎 ⇒ 𝑎′ so that 𝑝1𝜏 = 𝜏1 and 𝑝0𝜏 = 𝜏0.

(iii) 2-cell conservativity: For any natural transformation 𝑋 𝐴𝟚
𝑎

𝑎′
⇓𝜏 if both 𝑝1𝜏 and 𝑝0𝜏 are

isomorphisms then 𝜏 is an isomorphism.

Proof. Let 𝑄 = Fun(𝑋,𝐴) and apply Lemma 3.1.1 to observe that the natural map of hom-
categories

hFun(𝑋,𝐴𝟚) hFun(𝑋,𝐴)𝟚

hFun(𝑋,𝐴) × hFun(𝑋,𝐴)
((𝑝1)∗,(𝑝0)∗) (cod,dom)

over hFun(𝑋,𝐴 × 𝐴) ≅ hFun(𝑋,𝐴) × hFun(𝑋,𝐴) is a smothering functor. Surjectivity on objects is
expressed by 1-cell induction, fullness by 2-cell induction, and conservativity by 2-cell conservativity.

�

Note that the functors 𝛼∶ 𝑋 → 𝐴𝟚 that represent a given natural transformation 𝛼 with domain𝑋
and codomain 𝐴 are not unique. However, they are unique up to “fibered” isomorphisms that whisker
with (𝑝1, 𝑝0) ∶ 𝐴𝟚 ↠ 𝐴×𝐴 to identities:

3.2.6. Proposition. Whiskering with (3.2.3) induces a bijection between natural transformations with domain
𝑋 and codomain 𝐴 as displayed below-left

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑋

𝐴

𝑠𝑡 𝛼⇐

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭

↭

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑋

𝐴 𝐴

𝐴𝟚

𝑡 𝑠

𝛼

𝑝0𝑝1

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭/≅

and fibered isomorphism classes of functors 𝑋 → 𝐴𝟚 as displayed above-right, where the fibered isomorphisms
are given by invertible 2-cells

𝑋

𝐴 𝐴

𝐴𝟚

𝑡 𝑠

𝛼𝛼′
𝛾
≅

𝑝0𝑝1

so that 𝑝1𝛾 = id𝑡 and 𝑝0𝛾 = id𝑠.
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Proof. Lemma 3.1.3 proves that the fibers of the smothering functor of Proposition 3.2.5 are
connected groupoids. The objects of the fiber over 𝛼 are functors 𝑋 → 𝐴𝟚 that whisker with the
generic arrow 𝜅 to 𝛼, and the morphisms are invertible 2-cells that whisker with (𝑝1, 𝑝0) ∶ 𝐴𝟚 ↠ 𝐴×𝐴
to the identity 2-cell (id𝑡, id𝑠). The action of the smothering functor defines a bijection between the
objects of its codomain and their corresponding fibers. �

Our final task is to observe that the universal property of Proposition 3.2.5 is also enjoyed by any
object (𝑒1, 𝑒0) ∶ 𝐸 ↠ 𝐴 × 𝐴 that is equivalent to the∞-category of arrows (𝑝1, 𝑝0) ∶ 𝐴𝟚 ↠ 𝐴×𝐴 in
the slice∞-cosmos over 𝐴 × 𝐴. We have special terminology to allow us to concisely express the type
of equivalence we have in mind.

3.2.7. Definition (fibered equivalence). A fibered equivalence over an∞-category 𝐵 in an∞-cosmos
𝒦 is an equivalence

𝐸 𝐹

𝐵

∼
(3.2.8)

in the sliced∞-cosmos𝒦/𝐵. We write 𝐸 ≃𝐵 𝐹 to indicate that the specified isofibrations with these
domains are equivalent over 𝐵.

By Proposition 1.2.22(vii), a fibered equivalence is just a map between a pair of isofibrations over a
common base that defines an equivalence in the underlying∞-cosmos: the forgetful functor𝒦/𝐵 → 𝒦
preserves and reflects equivalences. Note, however, that it does not create them: It is possible for two
∞-categories 𝐸 and 𝐹 to be equivalent without there existing any equivalence compatible with a pair
of specified isofibrations 𝐸 ↠ 𝐵 and 𝐹 ↠ 𝐵.

3.2.9. Warning. At this point, there is some ambiguity about the 2-categorical data that presents a
fibered equivalence in an ∞-cosmos 𝒦/𝐵 related to the question posed in Exercise 1.4.vii about the
relationship between the 2-categories 𝔥(𝒦/𝐵) and (𝔥𝒦)/𝐵. But since Proposition 1.2.22(vii) tells us that
a mere equivalence in 𝔥𝒦 involving a functor of the form (3.2.8) is sufficient to guarantee that this
as-yet-unspecified 2-categorical data exists, we defer a careful analysis of this issue to Proposition 3.6.4.

3.2.10. Proposition (uniqueness of arrow∞-categories). For any isofibration (𝑒1, 𝑒0) ∶ 𝐸 ↠ 𝐴×𝐴 that
is fibered equivalent to (𝑝1, 𝑝0) ∶ 𝐴𝟚 ↠ 𝐴×𝐴 the 2-cell

𝐸 𝐴
𝑒0

𝑒1
⇓𝜖

encoded by the equivalence 𝑒 ∶ 𝐸 ∼ 𝐴𝟚 satisfies the weak universal property of Proposition 3.2.5. Conversely, if
the isofibrations (𝑑1, 𝑑0) ∶ 𝐷 ↠ 𝐴 × 𝐴 and (𝑒1, 𝑒0) ∶ 𝐸 ↠ 𝐴 × 𝐴 are equipped with 2-cells

𝐷 𝐴 and 𝐸 𝐴
𝑑0

𝑑1

⇓𝛿

𝑒0

𝑒1
⇓𝜖

satisfying the weak universal property of Proposition 3.2.5, then 𝐷 ≃𝐴×𝐴 𝐸.
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Proof. We prove the first statement. By the defining equation of 1-cell induction 𝜖 = 𝜅𝑒, where 𝜅
is the generic arrow (3.2.3). Hence, the functor induced by pasting with 𝜖 factors as a composite

hFun(𝑋, 𝐸) hFun(𝑋,𝐴𝟚) hFun(𝑋,𝐴)𝟚

hFun(𝑋,𝐴) × hFun(𝑋,𝐴)

∼𝑒∗

((𝑝1)∗,(𝑝0)∗) (cod,dom)

and our task is to prove that this composite functor is smothering. The first functor, defined by
postcomposing with the equivalence 𝑒 ∶ 𝐸 ∼ 𝐴𝟚, is an equivalence of categories, and the second functor
is smothering. Thus, the composite is clearly full and conservative. To see that it is also surjective on
objects, note first that by 1-cell induction any 2-cell

𝑋 𝐴
𝑠

𝑡
⇓𝛼

is represented by a functor 𝛼∶ 𝑋 → 𝐴𝟚 over 𝐴 × 𝐴. Composing with any fibered inverse equivalence
𝑒′ to 𝑒 yields a functor

𝑋 𝐴𝟚 𝐸

𝐴 × 𝐴

𝛼

(𝑡,𝑠)
(𝑝1,𝑝0)

∼𝑒′

(𝑒1,𝑒0)

whose image after postcomposing with 𝑒 is isomorphic to 𝛼 over 𝐴 × 𝐴. Because this isomorph-
ism is fibered in the sense of Proposition 3.2.6, the image of 𝑒′𝛼 under the functor hFun(𝑋, 𝐸) →
hFun(𝑋,𝐴)𝟚 returns the 2-cell 𝛼. This proves that this mapping is surjective on objects and hence
defines a smothering functor as claimed.

The converse is left to Exercise 3.2.ii and proven in a more general context in Proposition 3.4.11. �

3.2.11. Convention. On account of Proposition 3.2.10, we extend the appellation “∞-category of
arrows” from the strictmodel constructed inDefinition 3.2.1 to any∞-category that is fibered equivalent
to it.

Via Lemma 3.1.4, the results of this section extend to corresponding weak universal properties for
the cotensors 𝐴𝐽 of an∞-category 𝐴 with a free category 𝐽, as the reader is invited to explore.

Exercises.

3.2.i. Exercise. This exercise revisits the result of Proposition 3.2.6.

(i) Prove that a parallel pair of 1-simplices 𝑓 , 𝑔 ∶ 𝑥 → 𝑦 in a quasi-category𝑄 are homotopic if and
only if they are isomorphic as elements of 𝑄𝟚 via an isomorphism that projects to an identity
along (𝑝1, 𝑝0) ∶ 𝑄𝟚 ↠ 𝑄×𝑄.

(ii) Conclude that a parallel pair of 1-arrows in the functor space between two ∞-categories 𝑋
and 𝐴 in any ∞-cosmos represent the same natural transformation if and only if they are
isomorphic as elements of Fun(𝑋,𝐴)𝟚 ≅ Fun(𝑋,𝐴𝟚) via an isomorphism whose domain and
codomain components are an identity.
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(iii) Conclude that a parallel pair of 1-arrows in Fun(𝑋,𝐴), which may be encoded as functors
𝑋 → 𝐴𝟚, represent the same natural transformation if and only if they are connected by a
fibered isomorphism:

𝑋 𝐴𝟚

𝐴 × 𝐴

≅

(𝑝1,𝑝0)

3.2.ii. Exercise. Prove the converse implication of Proposition 3.2.10.

3.2.iii. Exercise. Extend the results of Propositions 3.2.5 and Proposition 3.2.6 to describe the weak
universal property of the cotensor 𝐴𝐽 of an∞-category 𝐴 by a category 𝐽 that is freely generated from
some reflexive directed graph.

3.3. Pullbacks of Isofibrations

Pullbacks and limits of towers of isofibrations in an ∞-cosmos also have weak 2-dimensional
universal properties in the homotopy 2-category, though we generally exploit the strict universal
properties of the simplicially enriched limits instead. However, the weak 2-dimensional universal
property of pullbacks can be used to prove that equivalences pull back along isofibrations to equivalences,
which in turn is used to establish the equivalence invariance of pullbacks in an∞-cosmos.

3.3.1. Proposition (the weak universal property of the pullback). The pullback of an isofibration along a
functor in an∞-cosmos

𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵

𝑔

𝑞 𝑝

𝑓

has a weak universal property in the homotopy 2-category given by three operations:

(i) 1-cell induction: Commutative squares 𝑝𝑒 = 𝑓 𝑎 over the cospan underlying a pullback diagram factor
uniquely through the pullback square

𝑋

𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵

𝑒

𝑎

∃!𝑥

𝑔

𝑞 𝑝

𝑓

(ii) 2-cell induction: Given functors 𝑥, 𝑥′ ∶ 𝑋 → 𝐴 ×
𝐵
𝐸 and natural transformations 𝛼∶ 𝑞𝑥 ⇒ 𝑞𝑥′ and

𝜖 ∶ 𝑔𝑥 ⇒ 𝑔𝑥′ so that 𝑝𝜖 = 𝑓 𝛼, there exists a natural transformation 𝜏∶ 𝑥 ⇒ 𝑥′ so that 𝑞𝜏 = 𝛼 and
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𝑔𝜏 = 𝜖.
𝑋 𝑋

𝐸 𝐴 ×
𝐵
𝐸 𝐸

𝐴 𝐵 𝐴 𝐵

𝑞𝑥𝑞𝑥′
𝛼⇙

𝑔𝑥

𝑔𝑥′

𝜖⇙
𝑥

𝑥′
∃𝜏⇙

= 𝑝

𝑔

𝑞 𝑝

𝑓 𝑓

(iii) 2-cell conservativity: For any 𝑋 𝐴 ×
𝐵
𝐸

𝑥

𝑥′
𝜏⇓ if both 𝑞𝜏 and 𝑔𝜏 are isomorphisms then 𝜏 is an

isomorphism.

Proof. Apply Lemma 3.1.5 to the pullback diagram of quasi-categories

Fun(𝑋,𝐴 ×
𝐵
𝐸) Fun(𝑋, 𝐸)

Fun(𝑋,𝐴) Fun(𝑋, 𝐵)

𝑔∗

𝑞∗ 𝑝∗

𝑓∗

to observe that the natural map of hom-categories

hFun(𝑋,𝐴 ×
𝐵
𝐸) hFun(𝑋,𝐴) ×

hFun(𝑋,𝐵)
hFun(𝑋, 𝐸)

is a bijective-on-objects smothering functor. Bijectivity on objects is expressed by 1-cell induction,
fullness by 2-cell induction, and conservativity by 2-cell conservativity. �

3.3.2. Digression (weakly cartesian squares). A commutative square between parallel isofibrations is
weakly cartesian if the induced map to the pullback is an equivalence:

𝐹 𝐸
•

𝐴 𝐵

𝑞

𝑔
∼

𝑝

𝑓

Weakly cartesian squares also satisfy 2-cell induction and 2-cell conservativity as well as a modified
form of the 1-cell induction property, where the essentially unique induced functor commutes strictly
over 𝐵 and up to an isomorphism over 𝐸 that projects along 𝑝 to the identity [110, 3.5.4].

It follows from the weak 2-categorical universal property of the pullback that∞-cosmoi are right
proper, meaning that the pullback of any equivalence along an isofibration defines an equivalence.

3.3.3. Proposition. In any∞-cosmos, the pullback of an equivalence along an isofibration is an equivalence.

𝐹 𝐸

𝐴 𝐵

𝑞

∼𝑔

𝑝

∼
𝑓
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Proof. By Proposition 2.1.12, we may choose an adjoint equivalence inverse to 𝑓 and pick invertible
2-cells 𝛼∶ id𝐴 ≅ 𝑓 −1𝑓 and 𝛽∶ 𝑓 𝑓 −1 ≅ id𝐵 satisfying the triangle equalities in the homotopy 2-
category.³ Now since the map 𝑝 is an isofibration, we may use Proposition 1.4.9 to lift the isomorphism
𝛽𝑝∶ 𝑓 𝑓 −1𝑝 ≅ 𝑝 along 𝑝 to define an isomorphism 𝜖 ∶ 𝑒 ≅ id𝐸 with codomain id𝐸 ∶ 𝐸 → 𝐸. By
construction 𝑝𝑒 = 𝑓 𝑓 −1𝑝, so by 1-cell induction the pair (𝑓 −1𝑝, 𝑒) induces a map 𝑔−1 ∶ 𝐸 → 𝐹 so that
𝑞𝑔−1 = 𝑓 −1𝑝 and 𝑔𝑔−1 = 𝑒. In this way we obtain an isomorphism 𝜖 ∶ 𝑔𝑔−1 ≅ id𝐸 with 𝑝𝜖 = 𝛽𝑝.

Now by 2-cell induction and conservativity of Proposition 3.3.1, to define an isomorphism id𝐹 ≅
𝑔−1𝑔, it suffices to exhibit a pair of isomorphisms

𝛼𝑞∶ 𝑞 ≅ 𝑓 −1𝑓 𝑞 = 𝑓 −1𝑝𝑔 = 𝑞𝑔−1𝑔 and 𝜖−1𝑔∶ 𝑔 ≅ 𝑔𝑔−1𝑔
so that 𝑓 𝛼𝑞 = 𝑝𝜖−1𝑔. This latter equation holds because 𝑝𝜖−1𝑔 = 𝛽−1𝑝𝑔 = 𝛽−1𝑓 𝑞 = 𝑓 𝛼𝑞 by the
triangle equality 𝛽𝑓 ⋅ 𝑓 𝛼 = id𝑓 for the adjoint equivalence 𝑓 ⊣ 𝑓 −1. Thus, we may lift the data of an
inverse equivalence to 𝑓 to define an inverse equivalence to its pullback 𝑔. �

As a consequence of right properness, pullback is an equivalence invariant construction in any
∞-cosmos.

3.3.4. Proposition. Given a diagram of isofibrations and equivalences in any∞-cosmos

𝐶 𝐴 𝐵

�̄� �̄� �̄�

∼𝑟

𝑔

∼ 𝑝 ∼ 𝑞

𝑓

�̄� ̄𝑓

the induced map 𝐶 ×𝐴 𝐵 → �̄� ×�̄� �̄� between the pullbacks of the horizontal rows is again an equivalence.

Proof. By factoring via Lemma 1.2.19, we can replace the map �̄� by an isofibration. By the 2-of-3
property and the right properness of Proposition 3.3.3, the pullback of this isofibration along the
equivalence 𝑝 is equivalent to the map 𝑔:

𝐶 𝑃 𝐴 𝐶 ×
𝐴
𝐵 𝑃 ×

𝐴
𝐵 𝐵

�̄� �̄� �̄� 𝐶 𝑃 𝐴

𝑔

∼

∼𝑟 ∼ ∼ 𝑝

∼

𝑓

�̄�

∼ ∼

By right properness again, the pullback of 𝑃 ↠ 𝐴 along 𝑓 is equivalent to the pullback of 𝑔∶ 𝐶 → 𝐴
along 𝑓 and similarly for the lower-horizontal maps. So without loss of generality, we may assume that
the maps 𝑔 and �̄� of the statement are isofibrations and the left-hand square is a pullback.

³It is for this reason that we work with the weak 2-categorical universal property of the pullback rather than the
simplicially enriched universal property.
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Under these new hypothesis, the top, bottom, and front faces of the cube are pullback squares:

𝐶 ×
𝐴
𝐵 𝐵

𝐶 𝐴

�̄� ×̄
𝐴
�̄� �̄�

�̄� �̄�

∼ 𝑞

𝑓

𝑔

∼𝑟

̄𝑓

�̄�

𝑝≀

so by pullback composition and cancelation, the back face is a pullback square as well. Now the induced
map 𝐶 ×𝐴 𝐵 → �̄� ×�̄� �̄� is the pullback of the equivalence 𝑞 along an isofibration and hence is an
equivalence by Proposition 3.3.3. �

Exercises.

3.3.i. Exercise. Use Proposition 3.3.1 to prove that for any isofibration and parallel pair of isomorphic
functors

𝐸

𝐴 𝐵

𝑝
𝑓

𝑓 ′
≅⇓𝛼

their pullbacks are equivalent over 𝐴.

3.3.ii. Exercise. State and prove an analogous result to Proposition 3.3.1 that describes the weak
2-categorical universal property of limits of towers of isofibrations.

3.3.iii. Exercise. Use the result of Exercise 3.3.ii to prove that a natural equivalence between towers of
isofibrations induces an equivalence between their limits by adapting the construction given in the
proofs of Propositions 3.3.3 and 3.3.4.

3.4. The Comma Construction

The comma∞-category is defined by restricting the domain and codomain of the∞-category of
arrows 𝐴𝟚 along a pair of specified functors with codomain 𝐴.

3.4.1. Definition (comma∞-category). Let 𝐶
𝑔
𝐴

𝑓
𝐵 be a diagram of∞-categories. The comma

∞-category is constructed as a pullback of the simplicial cotensor 𝐴𝟚 along 𝑔 × 𝑓

Hom𝐴(𝑓 , 𝑔) 𝐴𝟚

𝐶 × 𝐵 𝐴 × 𝐴

(𝑝1,𝑝0)

𝜙

(𝑝1,𝑝0)

𝑔×𝑓

(3.4.2)
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This construction equips the comma∞-category with a specified isofibration (𝑝1, 𝑝0) ∶ Hom𝐴(𝑓 , 𝑔) ↠
𝐶 × 𝐵 and a canonical natural transformation

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

(3.4.3)

in the homotopy 2-category called the comma cone.

By the universal property (3.4.2), an element (𝛼, 𝑏, 𝑐) ∶ 1 → Hom𝐴(𝑓 , 𝑔) of the comma∞-category
is a triple where 𝑏 and 𝑐 are elements of 𝐵 and 𝐶, respectively, and 𝛼∶ 𝑓 𝑏 → 𝑔𝑐 is an arrow in 𝐴 with
domain 𝑓 𝑏 and codomain 𝑔𝑐.
3.4.4. Example. The∞-category of arrows arises as a special case of the comma construction applied
to the identity span. This provides us with alternate notation for the generic arrow of (3.2.3), which
may be regarded as a particular instance of a comma cone.

Hom𝐴

𝐴 𝐴

𝐴

𝑝1 𝑝0
𝜙
⇐

The following proposition encodes the homotopical properties of the comma construction.

3.4.5. Proposition (maps between commas). A commutative diagram

𝐶 𝐴 𝐵

�̄� �̄� �̄�

𝑟

𝑔

𝑝 𝑞

𝑓

�̄� ̄𝑓

induces a map between the comma∞-categories

Hom𝐴(𝑓 , 𝑔) Hom�̄�( ̄𝑓 , �̄�)

𝐶 × 𝐵 �̄� × �̄�

(𝑝1,𝑝0)

Hom𝑝(𝑞,𝑟)

(𝑝1,𝑝0)
𝑟×𝑞

Moreover, if 𝑝, 𝑞, and 𝑟 are all isofibrations, all trivial fibrations, or all equivalences then the induced map is
again an isofibration, trivial fibration, or equivalence, respectively.

Proof. The map of cospans gives rise to a commutative diagram

𝐶 × 𝐵 𝐴 × 𝐴 𝐴𝟚

•

�̄� × �̄� �̄� × �̄� �̄�𝟚

𝑟×𝑞

𝑔×𝑓

𝑝×𝑝

(𝑝1,𝑝0)

𝑝𝟚

�̄�× ̄𝑓 (𝑝1,𝑝0)
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in which the dotted map is the Leibniz tensor of the monomorphism 𝟙 + 𝟙 ↪ 𝟚 with 𝑝. If 𝑝, 𝑞, and 𝑟
are isofibrations or trivial fibrations, then this map and the four other downwards pointing maps are
all isofibrations or trivial fibrations, respectively, by axiom 1.2.1(ii) and Lemma 1.2.14. By Proposition
C.1.12, the map Hom𝑝(𝑞, 𝑟) is again a isofibration or trivial fibration (see Exercise 3.4.i). In the case

where 𝑝, 𝑞, and 𝑟 are equivalences, Lemma 1.2.15 implies that the maps 𝑟 × 𝑞, 𝑝 × 𝑝, and 𝑝𝟚 are as well,
so Proposition 3.3.4 applies to prove that Hom𝑝(𝑞, 𝑟) is an equivalence. �

There is a 2-categorical limit notion that is analogous to Definition 3.4.1, which constructs the
universal 2-cell inhabiting a square over a specified cospan. In 𝒞𝑎𝑡 this universal property characterizes
the comma category, from which we borrow the name. As with the case of ∞-categories of arrows,
comma∞-categories do not satisfy this 2-universal property strictly. Instead:

3.4.6. Proposition (the weak universal property of the comma∞-category). The comma cone (3.4.3)
has a weak universal property in the homotopy 2-category given by three operations:

(i) 1-cell induction: Given a natural transformation over 𝐶
𝑔
𝐴

𝑓
𝐵 as below-left

𝑋

𝐶 𝐵

𝐴

𝑐 𝑏

𝛼
⇐

𝑔 𝑓

=

𝑋

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑐 𝑏
𝛼

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

there exists a functor 𝛼∶ 𝑋 → Hom𝐴(𝑓 , 𝑔) so that 𝑏 = 𝑝0𝛼, 𝑐 = 𝑝1𝛼, and 𝛼 = 𝜙𝛼.
(ii) 2-cell induction: Given functors 𝑎, 𝑎′ ∶ 𝑋 → Hom𝐴(𝑓 , 𝑔) and natural transformations 𝜏1 and 𝜏0 so

that

𝑋 𝑋

Hom𝐴(𝑓 , 𝑔) Hom𝐴(𝑓 , 𝑔) = Hom𝐴(𝑓 , 𝑔) Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵 𝐶 𝐵

𝐴 𝐴

𝑎𝑎′

𝜏1
⇐

𝑎𝑎′

𝜏0
⇐

𝑝1
𝑝1 𝑝0

𝜙
⇐

𝑝1 𝑝0

𝜙
⇐

𝑝0

𝑔 𝑓 𝑔 𝑓

there exists a natural transformation 𝜏∶ 𝑎 ⇒ 𝑎′ so that 𝑝1𝜏 = 𝜏1 and 𝑝0𝜏 = 𝜏0.

(iii) 2-cell conservativity: For any 𝑋 Hom𝐴(𝑓 , 𝑔)
𝑎

𝑎′
⇓𝜏 if both 𝑝1𝜏 and 𝑝0𝜏 are isomorphisms

then 𝜏 is an isomorphism.
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Proof. The cosmological functor Fun(𝑋, −) ∶ 𝒦 → 𝒬𝒞𝑎𝑡 carries the pullback (3.4.2) to a pullback

Fun(𝑋,Hom𝐴(𝑓 , 𝑔)) ≅ HomFun(𝑋,𝐴)(Fun(𝑋, 𝑓 ),Fun(𝑋, 𝑔)) Fun(𝑋,𝐴)𝟚

Fun(𝑋, 𝐶) × Fun(𝑋, 𝐵) Fun(𝑋,𝐴) × Fun(𝑋,𝐴)

(𝑝1,𝑝0)

𝜙

(𝑝1,𝑝0)

Fun(𝑋,𝑔)×Fun(𝑋,𝑓 )

of quasi-categories. Now Lemma 3.1.7 demonstrates that the canonical 2-cell (3.4.3) induces a natural
map of hom-categories

hFun(𝑋,Hom𝐴(𝑓 , 𝑔)) HomhFun(𝑋,𝐴)(hFun(𝑋, 𝑓 ), hFun(𝑋, 𝑔))

hFun(𝑋, 𝐶) × hFun(𝑋, 𝐵)
((𝑝1)∗,(𝑝0)∗) (cod,dom)

over hFun(𝑋, 𝐶 × 𝐵) ≅ hFun(𝑋, 𝐶) × hFun(𝑋, 𝐵) that is a smothering functor. The properties of
1-cell induction, 2-cell induction, and 2-cell conservativity follow from surjectivity on objects, fullness,
and conservativity of this smothering functor, respectively. �

The functors 𝛼∶ 𝑋 → Hom𝐴(𝑓 , 𝑔) induced by a fixed natural transformation 𝛼∶ 𝑓 𝑏 ⇒ 𝑔𝑐 are
unique up to fibered isomorphism over 𝐶 × 𝐵.
3.4.7. Proposition. Whiskering with the comma cone (3.4.3) induces a bijection between natural transforma-
tions as displayed below-left

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑋

𝐶 𝐵

𝐴

𝑐 𝑏

𝛼
⇐

𝑔 𝑓

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪
⎭

↭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑋

𝐶 𝐵

Hom𝐴(𝑓 , 𝑔)

𝑐 𝑏

𝛼

𝑝0𝑝1

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪
⎭/≅

and fibered isomorphism classes of maps of spans from 𝐶 to 𝐵 as displayed above-right, where the fibered
isomorphisms are given by invertible 2-cells

𝑋

𝐶 𝐵

Hom𝐴(𝑓 , 𝑔)

𝑐 𝑏

𝛼𝛼′ 𝛾
≅

𝑝0𝑝1

so that 𝑝1𝛾 = id𝑐 and 𝑝0𝛾 = id𝑏.

Proof. Lemma 3.1.3 proves that the fibers of the smothering functor of Proposition 3.4.6 are
connected groupoids. The objects of the fiber over 𝛼 are functors 𝑋 → Hom𝐴(𝑓 , 𝑔) that whisker with
the comma cone 𝜙 to 𝛼, and the morphisms are invertible 2-cells that whisker with

(𝑝1, 𝑝0) ∶ Hom𝐴(𝑓 , 𝑔) 𝐶 × 𝐵
to the identity 2-cell (id𝑐, id𝑏). The action of the smothering functor defines a bijection between the
objects of its codomain and their corresponding fibers. �
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Oplax maps of cospans in the homotopy 2-category also induce maps of comma∞-categories:

3.4.8. Observation. By 1-cell induction a diagram

𝐶 𝐴 𝐵

�̄� �̄� �̄�

𝑟

𝑔

⇓𝛾 𝑝 ⇓𝛽 𝑞

𝑓

�̄� ̄𝑓

induces a map between comma∞-categories as displayed below-right:

Hom𝐴(𝑓 , 𝑔) Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵 Hom�̄�( ̄𝑓 , �̄�)

�̄� 𝐴 �̄� �̄� �̄�

�̄� �̄�

𝑝1 𝑝0

𝜙
⇐

𝛽↓𝛾
𝑞𝑝0𝑟𝑝1

𝑔𝑟 𝑓 𝑞 =
𝑝1 𝑝0

𝜙
⇐⇐𝛾

�̄�
𝑝

⇐𝛽

̄𝑓 �̄� ̄𝑓

that is well-defined and functorial up to fibered isomorphism (see Exercise 3.4.ii).

One of many uses of comma∞-categories is to define the internal mapping spaces between two
elements of an∞-category 𝐴. This is one motivation for our notation “Hom𝐴.”

3.4.9. Definition (mapping space). The mapping space between two elements 𝑥, 𝑦 ∶ 1 → 𝐴 of an
∞-category is the comma∞-category Hom𝐴(𝑥, 𝑦) defined by the pullback diagram

Hom𝐴(𝑥, 𝑦) 𝐴𝟚

1 𝐴 × 𝐴

(𝑝1,𝑝0)

𝜙

(𝑝1,𝑝0)

(𝑦,𝑥)

Mapping spaces are discrete in the sense of Definition 1.2.26:

3.4.10. Proposition (mapping spaces are discrete). For any pair of elements 𝑥, 𝑦 ∶ 1 → 𝐴 of an∞-category
𝐴, the mapping space Hom𝐴(𝑥, 𝑦) is discrete.

Proof. We must show that the functor space Fun(𝑋,Hom𝐴(𝑥, 𝑦)) is a Kan complex for any ∞-
category𝑋. This is so just when hFun(𝑋,Hom𝐴(𝑥, 𝑦)) is a groupoid, i.e., when any 2-cell with codomain
Hom𝐴(𝑥, 𝑦) is invertible. By 2-cell conservativity, a 2-cell with codomain Hom𝐴(𝑥, 𝑦) is invertible just
when its whiskered composite with the isofibration (𝑝1, 𝑝0) ∶ Hom𝐴(𝑥, 𝑦) ↠ 1 × 1 is an invertible
2-cell, but in fact this whiskered composite is an identity since 1 is 2-terminal. �

The weak universal property of Proposition 3.4.6 characterizes comma∞-categories up to fibered
equivalence (see Definition 3.2.7) over 𝐶 × 𝐵.

80



3.4.11. Proposition (uniqueness of comma ∞-categories). For any isofibration (𝑒1, 𝑒0) ∶ 𝐸 ↠ 𝐶 × 𝐵
that is fibered equivalent to Hom𝐴(𝑓 , 𝑔) ↠ 𝐶 × 𝐵 the 2-cell

𝐸

𝐶 𝐵

𝐴

𝑒1 𝑒0

𝜖
⇐

𝑔 𝑓

encoded by the equivalence 𝑒 ∶ 𝐸 ∼ Hom𝐴(𝑓 , 𝑔) satisfies the weak universal property of Proposition 3.4.6.
Conversely, if (𝑑1, 𝑑0) ∶ 𝐷 ↠ 𝐶 × 𝐵 and (𝑒1, 𝑒0) ∶ 𝐸 ↠ 𝐶 × 𝐵 are equipped with 2-cells

𝐷 𝐸

𝐶 𝐵 and 𝐶 𝐵

𝐴 𝐴

𝑑1 𝑑0

𝛿
⇐

𝑒1 𝑒0

𝜖
⇐

𝑔 𝑓 𝑔 𝑓

(3.4.12)

satisfying the weak universal property of Proposition 3.4.6, then 𝐷 ≃𝐶×𝐵 𝐸.

Proof. The proof of the first statement proceeds exactly as in the special case of Proposition 3.2.10.
We prove the converse, solving Exercise 3.2.ii.

Consider a pair of 2-cells (3.4.12) satisfying the weak universal properties enumerated in Proposition
3.4.6. 1-cell induction supplies maps of spans

𝐷

𝐶 𝐵

𝐴

𝑑1 𝑑0

𝛿
⇐

𝑔 𝑓

=

𝐷

𝐸

𝐶 𝐵

𝐴

𝑑1 𝑑0𝛿

𝑒1 𝑒0

𝜖
⇐

𝑔 𝑓

and

𝐸

𝐶 𝐵

𝐴

𝑒1 𝑒0

𝜖
⇐

𝑔 𝑓

=

𝐸

𝐷

𝐶 𝐵

𝐴

𝑒1 𝑒0
𝜖

𝑑1 𝑑0

𝛿
⇐

𝑔 𝑓

with the property that 𝜖𝛿𝜖 = 𝜖 and 𝛿𝜖𝛿 = 𝛿. By Proposition 3.4.7 it follows that 𝛿𝜖 ≅ id𝐸 over 𝐶 × 𝐵
and 𝜖𝛿 ≅ id𝐷 over 𝐶 × 𝐵. This defines the data of a fibered equivalence 𝐷 ≃ 𝐸.⁴ �

As is our convention for∞-categories of arrows, it is convenient extend the appellation “comma
∞-category” from the strict model constructed in Definition 3.4.1 to any∞-category that is fibered
equivalent to it and refer to its accompanying 2-cell as the “comma cone.” For example, in §4.2, we
introduce multiple models for the∞-category of cones over a fixed simplicial set indexed diagram, which
are useful in developing various equivalent formulations of the universal property of limits.

Exercises.

3.4.i. Exercise (C.1.12). Complete the proof of Proposition 3.4.5 by observing that the map Hom𝑝(𝑞, 𝑟)
factors as a pullback of the Leibniz cotensor of 𝜕Δ[1] ↪ Δ[1] with 𝑝 followed by a pullback of 𝑟 × 𝑞.

⁴As alluded to inWarning 3.2.9, there is a slight ambiguity in the 2-categorical data that encodes a fibered equivalence.
Proposition 3.6.4 provides a small boost to finish this proof.
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3.4.ii. Exercise. Use Proposition 3.4.7 to justify the functoriality up to isomorphism of the comma
construction in oplax morphisms described in Observation 3.4.8.

3.4.iii. Exercise. Exercises 3.4.i and 3.4.ii illustrate the relative advantages and disadvantages of strict
simplicial and weak 2-categorical universal properties of the comma ∞-category construction: the
former gives a strictly functorial action but only of strictly commutative maps of cospans, while the
latter gives an action of oplax transformations of cospans that is only functorial up to isomorphism.
Mediating between these two constructions, use Lemma 1.2.19 and Proposition 1.4.9 to rectify a
pseudo-commutative diagram

𝐶 𝐴 𝐵

�̄� �̄� �̄�

𝑟

𝑔

≅⇓𝛾 𝑝 ≅⇓𝛽 𝑞

𝑓

�̄� ̄𝑓

into an equivalent strictly commutative diagram and prove that the induced map Hom𝑝(𝑞, 𝑟) is equiva-
lent to 𝛽 ↓ 𝛾.

3.4.iv. Exercise. Show that the functor between comma∞-categories induced by a diagram

𝐶 𝐴 𝐵

�̄� �̄� �̄�

∼𝑟

𝑔

≅⇓𝛾 ∼ 𝑝 ≅⇓𝛽 ∼ 𝑞

𝑓

�̄� ̄𝑓

in which 𝛽 and 𝛾 are isomorphisms and 𝑝, 𝑞, and 𝑟 are equivalences defines an equivalence over 𝑟 × 𝑞.

Hom𝐴(𝑓 , 𝑔) Hom�̄�( ̄𝑓 , �̄�)

𝐶 × 𝐵 �̄� × �̄�

∼𝛽↓𝛾

(𝑝1,𝑝0) (𝑝1,𝑝0)

∼
𝑟×𝑞

3.5. Representable Comma∞-Categories

Definition 3.4.1 constructs a comma∞-category for any cospan. In the special cases where one of
the legs of the cospan is an identity, this provides two dual mechanisms to encode a functor between
∞-categories as an∞-category itself.

3.5.1. Definition (left and right representations). Any functor 𝑓 ∶ 𝐴 → 𝐵 admits a left representation
and a right representation as a comma∞-category, displayed below-left and below-right:

Hom𝐵(𝑓 , 𝐵) Hom𝐵(𝐵, 𝑓 )

𝐵 𝐴 𝐴 𝐵

𝑝1 𝑝0𝜙
⇐

𝑝1 𝑝0𝜙
⇐

𝑓 𝑓

where we save space by depicting the left comma cone over 𝑓 displayed above-left and the right comma
cone over 𝑓 displayed above-right as inhabiting triangles rather than squares.
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By Proposition 3.4.11, the weak universal property of the comma cone characterizes the comma
span up to fibered equivalence over the product of the codomain objects. Thus:

3.5.2. Definition. Given a cospan 𝐶
𝑔
𝐴

𝑓
𝐵, the comma∞-category Hom𝐴(𝑓 , 𝑔) ↠ 𝐶 × 𝐵 is left

representable if there exists a functor ℓ ∶ 𝐵 → 𝐶 so that

Hom𝐴(𝑓 , 𝑔) ≃𝐶×𝐵 Hom𝐶(ℓ, 𝐶)
and right representable if there exists a functor 𝑟 ∶ 𝐶 → 𝐵 so that

Hom𝐴(𝑓 , 𝑔) ≃𝐶×𝐵 Hom𝐵(𝐵, 𝑟).

In this section, we prove a representability theorem: a comma ∞-category Hom𝐴(𝑓 , 𝑔) is right
representable if and only if 𝑔∶ 𝐶 → 𝐴 admits an absolute right lifting along 𝑓 ∶ 𝐵 → 𝐴, in which case
the representing functor 𝑟 ∶ 𝐶 → 𝐵 defines the postulated lifting. We prove this result over the course
of three theorems, each strengthening the previous statement.

The first theorem characterizes those natural transformations

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟

that define absolute right lifting diagrams as those that induce fibered equivalences Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵
Hom𝐴(𝑓 , 𝑔) between comma ∞-categories. The second theorem proves that a functor 𝑟 defines an
absolute right lifting of 𝑔 through 𝑓 just when Hom𝐴(𝑓 , 𝑔) is right represented by 𝑟; the difference
is that no natural transformation 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 need be provided. The final theorem gives a general
right representability criterion that can be applied to construct a right representation to Hom𝐴(𝑓 , 𝑔)
without a priori specifying the representing functor 𝑟. Dual results characterize left representable
comma∞-categories.

3.5.3. Theorem. The triangle below-left defines an absolute right lifting diagram if and only if the induced
functor below-right

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟 ⇝

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

(3.5.4)

defines a fibered equivalence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓 , 𝑔).

In [123], Street and Walters interpret the equivalence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓 , 𝑔) encoding
an absolute right lifting diagram as asserting that “𝑓 is left adjoint to 𝑟 relative to 𝑔.” This notion of
relative adjunction, first studied by Ulmer [126], should be compared with the definitions of adjunction
given in Lemma 2.3.7 and Proposition 4.1.1.
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Proof. Suppose that (𝑟, 𝜌) defines an absolute right lifting of 𝑔 through 𝑓, and consider the unique
factorization of the comma cone under Hom𝐴(𝑓 , 𝑔) through 𝜌 displayed by the left-hand pasting
equality:

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0∃!𝜁
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐴(𝑓 , 𝑔)

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑧

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐴(𝑓 , 𝑔)

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝑧

𝑝1 𝑝0

𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

(3.5.5)
By 1-cell induction, the natural transformation 𝜁 factors through the right comma cone over 𝑟 as
displayed above-center. Substituting (3.5.4), we see that 𝑦𝑧 ∶ Hom𝐴(𝑓 , 𝑔) → Hom𝐴(𝑓 , 𝑔) is a functor
that factors the comma cone for Hom𝐴(𝑓 , 𝑔) through itself. Applying the universal property of
Proposition 3.4.7, it follows that there is a fibered isomorphism 𝑦𝑧 ≅ idHom𝐴(𝑓 ,𝑔) over 𝐶 × 𝐵.

To prove that 𝑧𝑦 ≅ idHom𝐵(𝐵,𝑟) it suffices to argue similarly that the right comma cone over 𝑟
restricts along 𝑧𝑦 to itself. Since (𝑟, 𝜌) is absolute right lifting, it suffices to verify the equality 𝜙𝑧𝑦 = 𝜙
after pasting below with 𝜌. But now reversing the order of the equalities in (3.5.5) and (3.5.4) we have

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝑦

𝑝1 𝑝0

𝑧

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑦

𝑝1 𝑝0𝜁
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

which is exactly what we wanted to show. Thus, we see that if (𝑟, 𝜌) is an absolute right lifting of 𝑔
through 𝑓, then the induced map (3.5.4) defines a fibered equivalence Hom𝐵(𝐵, 𝑟) ≃ Hom𝐴(𝑓 , 𝑔).

Now, conversely, suppose the functor 𝑦 defined by (3.5.4) is a fibered equivalence and let us argue
that (𝑟, 𝜌) is an absolute right lifting of 𝑔 through 𝑓. By Proposition 3.4.11, the natural transformation
displayed on the left-hand side of the equality in (3.5.4) inherits the weak universal property of a comma
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cone from Hom𝐴(𝑓 , 𝑔). So Proposition 3.4.7 supplies a bijection displayed below-left

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑋

𝐶 𝐵

𝐴

𝑐 𝑏

𝛼
⇐

𝑔 𝑓

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪
⎭

↭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑋

𝐶 𝐵

Hom𝐵(𝐵, 𝑟)

𝑐 𝑏

𝑎

𝑝0𝑝1

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪
⎭/≅

↭

⎧⎪⎪
⎨⎪⎪⎩

𝑋

𝐶 𝐵

𝑐 𝑏𝜉
⇐
𝑟

⎫⎪⎪
⎬⎪⎪
⎭

between 2-cells over the cospan and fibered isomorphism classes of maps of spans that is implemented,
from center to left, by whiskering with the 2-cell 𝜌𝑝1 ⋅ 𝑓 𝜙∶ 𝑓 𝑝0 ⇒ 𝑔𝑝1 in the center of (3.5.4).
Proposition 3.4.7 also applies to the right comma cone 𝜙 over 𝑟 ∶ 𝐶 → 𝐵 giving us a second bijection,
displayed above-center-right between the same fibered isomorphism classes of maps of spans and 2-cells
over 𝑟. This second bijection is implemented, from center to right, by pasting with the right comma
cone 𝜙∶ 𝑝0 ⇒ 𝑟𝑝1. Combining these yields a bijection between the 2-cells displayed on the right
and the 2-cells displayed on the left implemented by pasting with 𝜌, which is precisely the universal
property that characterizes absolute right lifting diagrams. �

As a special case of this result:

3.5.6. Corollary. The following are equivalent, and define what it means for a functor 𝑓 ∶ 𝐴 → 𝐵 between
∞-categories to be fully faithful:

(i) The identity defines an absolute right lifting diagram:

𝐴

𝐴 𝐵

=

𝑓

𝑓

(ii) The identity defines an absolute left lifting diagram:

𝐴

𝐴 𝐵

=

𝑓

𝑓

(iii) For any∞-category 𝑋 the induced functor

𝑓∗ ∶ hFun(𝑋,𝐴) → hFun(𝑋, 𝐵)
is a fully faithful functor of 1-categories.

(iv) The functor induced by the identity 2-cell id𝑓 defines a fibered equivalence 𝐴𝟚 ≃𝐴×𝐴 Hom𝐵(𝑓 , 𝑓 ).

𝐴𝟚

𝐴 𝐴

Hom𝐵(𝑓 , 𝑓 )

𝑝1 𝑝0

∼ 𝑓 𝜅

𝑝1 𝑝0
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Proof. The statement (iii) is an unpacking of the meaning of both (i) and (ii). Theorem 3.5.3
specializes to prove (i)⇔(iv) or dually (ii)⇔(iv). �

It is not surprising that postcomposition with a fully faithful functor of∞-categories induces a
fully faithful functor of hom-categories in the homotopy 2-category, and in particular between the
homotopy categories (see Definition 1.4.11). What is less apparent is that this condition is strong
enough to capture the∞-categorical notion of fully faithfulness, when certainly it would not be enough
to merely require that the functor h𝑓 ∶ h𝐴 → h𝐵 is fully faithful. The unexpected power of condition
(iii) is that its statement quantifies over all generalized elements 𝑎 ∶ 𝑋 → 𝐴 of 𝐴, in contrast to the
objects of h𝐴 which are limited to the elements 𝑎 ∶ 1 → 𝐴. This provides a retroactive justification for
our work in the homotopy 2-category.

Theorem 3.5.3 has another important consequence cited in the proof of Proposition 2.4.7.

3.5.7. Corollary. Cosmological functors preserve absolute lifting diagrams.

Proof. Consider a cosmological functor𝐹∶ 𝒦 → ℒ together with an absolute right lifting diagram
in𝒦:

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟

By Theorem 3.5.3, the induced functor of (3.5.4) defines a fibered equivalence 𝑦∶ Hom𝐵(𝐵, 𝑟) ∼

Hom𝐴(𝑓 , 𝑔) over 𝐶 × 𝐵.
Since cosmological functors preserve the simplicial limits and isofibrations of (3.4.2), 𝐹 carries

𝑦 to a functor 𝐹𝑦∶ Hom𝐹𝐵(𝐹𝐵, 𝐹𝑟) → Hom𝐹𝐴(𝐹𝑓 , 𝐹𝑔) over 𝐹𝐶 × 𝐹𝐵. By Lemma 1.3.2, this functor
is again a fibered equivalence. Since cosmological functors define 2-functors, this functor satisfies a
pasting equation

Hom𝐹𝐵(𝐹𝐵, 𝐹𝑟)

𝐹𝐶 𝐹𝐵

𝐹𝐴

𝑝1 𝑝0𝐹𝜙
⇐

𝐹𝜌
⇐

𝑟

𝐹𝑔 𝐹𝑓

=

Hom𝐹𝐵(𝐹𝐵, 𝐹𝑟)

Hom𝐹𝐴(𝐹𝑓 , 𝐹𝑔)

𝐹𝐶 𝐹𝐵

𝐹𝐴

𝑝1 𝑝0

∼ 𝐹𝑦

𝑝1 𝑝0

𝐹𝜙
⇐

𝐹𝑔 𝑓

inℒ. By Theorem 3.5.3, this fibered equivalence witnesses the fact that

𝐹𝐵

𝐹𝐶 𝐹𝐴
⇓𝐹𝜌

𝐹𝑓

𝐹𝑔

𝐹𝑟

defines an absolute right lifting diagram inℒ. �
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Having proven Theorem 3.5.3 our immediate aim is to strengthen it to show that a fibered equiv-
alence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓 , 𝑔) implies that 𝑟 ∶ 𝐶 → 𝐵 defines an absolute right lifting of 𝑔
through 𝑓 without a previously specified 2-cell 𝜌∶ 𝑓 𝑟 ⇒ 𝑔.

3.5.8. Theorem. Given a trio of functors 𝑟 ∶ 𝐶 → 𝐵, 𝑓 ∶ 𝐵 → 𝐴, and 𝑔∶ 𝐶 → 𝐴 there is a bijection between
natural transformations as displayed below-left and fibered isomorphism classes of maps of spans as displayed
below-right

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭

↭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

Hom𝐴(𝑓 , 𝑔)

𝑝1 𝑝0

𝑦

𝑝0𝑝1

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪
⎭/≅

that is constructed by pasting with the right comma cone over 𝑟 and then applying 1-cell induction to factor
through the comma cone for Hom𝐴(𝑓 , 𝑔).

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

Moreover, a natural transformation 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 displays 𝑟 as an absolute right lifting of 𝑔 through 𝑓 if and only
if the corresponding map of spans 𝑦∶ Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓 , 𝑔) is an equivalence.

The second clause is the statement of Theorem 3.5.3, so it remains only to prove the first. We show
the claimed construction is a bijection by exhibiting its inverse, the construction of which involves a
rather mysterious lemma whose significance will gradually become apparent.

3.5.9. Lemma. For any functor 𝑓 ∶ 𝐴 → 𝐵, the codomain projection functor 𝑝1 ∶ Hom𝐵(𝐵, 𝑓 ) ↠ 𝐴 from its
right representation admits a right adjoint right inverse⁵ 𝑖 ≔ id𝑓 induced from the identity 2-cell id𝑓, defining
an adjunction over𝐴 whose counit is an identity and whose unit 𝜂∶ id ⇒ 𝑖𝑝1 satisfies the conditions 𝜂𝑖 = id𝑖,

⁵A functor admits a right adjoint right inverse just when it is the left adjoint in an adjunctionwhose counit is invertible
(see §B.4). When the original functor is an isofibration, as is the case here, any right adjoint right inverse adjunction can
be upgraded to one in which the counit is an identity, which can then be upgraded further to a fibered adjunction (see
Definition 3.6.5 and Lemma 3.6.9).
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𝑝1𝜂 = id𝑝1 , and 𝑝0𝜂 = 𝜙.

𝐴

𝐴 𝐵

𝑓
=

𝑓

=

𝐴

Hom𝐵(𝐵, 𝑓 )

𝐴 𝐵

𝑓𝑖

𝑝1 𝑝0𝜙⇐

𝑓

⇜
𝐴 ⊥ Hom𝐵(𝐵, 𝑓 )

𝐴
𝑖 𝑝1

𝑝1

This lemma figures prominently in the proof of the Yoneda lemma in §5.7 and is also the main
ingredient in a “cheap” version of the Yoneda lemma appearing as Corollary 3.5.11.

Proof. This adjunction is constructed via the weak universal properties of the right comma cone
over 𝑓. The identity 2-cell id𝑓 induces a functor 𝑖 ≔ id𝑓 over the right comma cone over 𝑓 as displayed
in the statement. Note that 𝑝1𝑖 = id𝐴, so we may take the counit to be the identity 2-cell. Since
𝜙𝑖 = id𝑓, we have a pasting equality:

Hom𝐵(𝐵, 𝑓 )

Hom𝐵(𝐵, 𝑓 ) 𝐴

Hom𝐵(𝐵, 𝑓 ) Hom𝐵(𝐵, 𝑓 ) Hom𝐵(𝐵, 𝑓 )

𝐴 𝐵 𝐴 𝐵

𝑝0

𝑝1

𝜙⇐
𝑖𝑝1

=

𝑖 𝑓

𝑝1
𝑝1 𝑝0𝜙

⇐

=
𝑝1 𝑝0𝜙

⇐

𝑓 𝑓

which induces a 2-cell 𝜂∶ id ⇒ 𝑖𝑝1 with defining equations 𝑝1𝜂 = id𝑝1 and 𝑝0𝜂 = 𝜙. The first of
these conditions provides one triangle equality; for the other, we must verify that 𝜂𝑖 = id𝑖. By 2-cell
conservativity, 𝜂𝑖 is an isomorphism since 𝑝1𝜂𝑖 = id𝐴 and 𝑝0𝜂𝑖 = id𝑓 are both invertible. By naturality
of whiskering, we have

𝑖 𝑖

𝑖 𝑖

𝜂𝑖

𝜂𝑖 𝜂𝑖

𝑖𝑝1𝜂𝑖

and since 𝑝1𝜂 = id𝑝1 the bottom edge is an identity. So 𝜂𝑖 ⋅ 𝜂𝑖 = 𝜂𝑖 and since 𝜂𝑖 is an isomorphism
cancelation implies that 𝜂𝑖 = id𝑖 as required. �

One interpretation of Lemma 3.5.9 is best revealed through a special case:

3.5.10. Corollary. For any element 𝑏 ∶ 1 → 𝐵, the identity at 𝑏 defines a terminal element in Hom𝐵(𝐵, 𝑏).

Proof. By Lemma 3.5.9, the codomain projection – which in this case reduces to the unique functor
! ∶ Hom𝐵(𝐵, 𝑏) → 1 – admits a right adjoint right inverse induced from its identity 2-cell. Thus, by
Definition 2.2.1, this right adjoint identifies a terminal element id𝑏 ∶ 1 → Hom𝐵(𝐵, 𝑏) corresponding
to the identity morphism id𝑏 ∶ 𝑏 → 𝑏 in the homotopy category h𝐵. �
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The general version of Lemma 3.5.9 has a similar interpretation: id𝑓 induces a terminal element in
Hom𝐵(𝐵, 𝑓 ) “over 𝐴,” that is, in the sliced∞-cosmos (see Definition 3.6.8 and Example 3.6.12).

Proof of Theorem 3.5.8. It remains to construct an inverse to the function in the statement
that takes a natural transformation 𝑓 𝑟 ⇒ 𝑔 and produces a fibered isomorphism class of functors
Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓 , 𝑔) over 𝐶 × 𝐵. Our construction makes use of the right adjoint right inverse
𝑖 ∶ 𝐶 → Hom𝐵(𝐵, 𝑟) of Lemma 3.5.9. Given a functor Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓 , 𝑔), restrict along 𝑖, and
paste with the comma cone for Hom𝐴(𝑓 , 𝑔) to define a natural transformation 𝑓 𝑟 ⇒ 𝑔.

Starting from a natural transformation 𝜌∶ 𝑓 𝑟 ⇒ 𝑔, the composite of these two functions constructs
the natural transformation displayed below-left

𝐶

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑖

𝑟

𝑝1 𝑝0

𝑦

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

𝐶

Hom𝐵(𝐵, 𝑟)

𝐶 𝐵

𝐴

𝑖
𝑟

𝑝1 𝑝0𝜙
⇐

𝜌
⇐

𝑟

𝑔 𝑓

=
𝐶 𝐵

𝐴

𝑟

𝑔
𝜌
⇐ 𝑓

which equals the above-center pasted composite by the definition of 𝑦 from 𝜌, and equals the above-
right composite since 𝜙𝑖 = id𝑟. Thus, when a natural transformation 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 is encoded as a map
𝑦∶ Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓 , 𝑔) over 𝐶 × 𝐵, and then re-converted into a natural transformation, the
original natural transformation 𝜌 is recovered.

For the converse, starting with a map 𝑧 ∶ Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓 , 𝑔) over 𝐶 × 𝐵, the composite
of these two functions constructs an isomorphism class of maps of spans 𝑤 displayed below-left by
applying 1-cell induction for the comma cone for Hom𝐴(𝑓 , 𝑔) to the composite natural transformation
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pasted below-center-left:

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝑤

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

𝐶

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1

𝑝0

𝜙
⇐

𝑖

𝑟

𝑝1 𝑝0

𝑧

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

𝐶

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1

𝜂
⇐

𝑖

𝑝1 𝑝0

𝑧

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

=

Hom𝐵(𝐵, 𝑟)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0

𝑧

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑓

By Lemma 3.5.9, there exists a natural transformation 𝜂∶ id ⇒ 𝑖𝑝1 so that 𝑝0𝜂 = 𝜙 – this gives the
pasting equality above center – and 𝑝1𝜂 = id – which gives the pasting equality above right. Proposition
3.4.7 now implies that 𝑤 ≅ 𝑧 over 𝐶 × 𝐵. �

A dual version of Theorem 3.5.8 represents natural transformations 𝑔 ⇒ 𝑓 ℓ as fibered isomorphism
classes of maps Hom𝐵(ℓ, 𝐵) → Hom𝐴(𝑔, 𝑓 ) over 𝐵 × 𝐶. Specializing these results to the case where
one of 𝑓 or 𝑔 is the identity, we immediately recover a “cheap” form of the Yoneda lemma:

3.5.11. Corollary. Given a parallel pair of functors, 𝑓 , 𝑔 ∶ 𝐴 → 𝐵, there are bijections between natural
transformations as displayed below-center and fibered isomorphism classes of maps between their left and right
representations as comma∞-categories, as displayed below-left and below-right:

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

Hom𝐵(𝑔, 𝐵)

𝐵 𝐴

Hom𝐵(𝑓 , 𝐵)

𝑝1 𝑝0

𝛼∗

𝑝0𝑝1

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪
⎭/≅

↭
⎧⎪
⎨⎪⎩

𝐴 𝐵
𝑓

𝑔
⇓𝛼

⎫⎪
⎬⎪
⎭

↭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

Hom𝐵(𝐵, 𝑓 )

𝐴 𝐵

Hom𝐵(𝐵, 𝑔)

𝑝1 𝑝0

𝛼∗

𝑝0𝑝1

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪
⎭/≅

that are constructed by pasting with the left comma cone over 𝑔 and right comma cone over 𝑓, respectively:

Hom𝐵(𝑔, 𝐵)

𝐵 𝐴

𝑝1 𝑝0
⇐
𝜙

𝑔

𝑓
⇑𝛼

=

Hom𝐵(𝑔, 𝐵)

Hom𝐵(𝑓 , 𝐵)

𝐵 𝐴

𝑝1 𝑝0
𝛼∗

𝑝1 𝑝0
𝜙
⇐

𝑓

Hom𝐵(𝐵, 𝑓 )

𝐴 𝐵

𝑝1 𝑝0

𝑓

𝑔
⇓𝛼

⇐
𝜙 =

Hom𝐵(𝐵, 𝑓 )

Hom𝐵(𝐵, 𝑔)

𝐴 𝐵

𝑝1 𝑝0
𝛼∗

𝑝1 𝑝0𝜙
⇐

𝑔

90



and then applying 1-cell induction to factor through the left comma cone over 𝑓 in the former case or the right
comma cone over 𝑔 in the latter. �

Combining the results of this section, we prove one final representability theorem that allows
us to recognize when a comma∞-category is right representable in the absence of a predetermined
representing functor. This result specializes to give existence theorems for adjoint functors and for
limits and colimits in the next chapter.

3.5.12. Theorem. The comma ∞-category Hom𝐴(𝑓 , 𝑔) associated to a cospan 𝐶
𝑔

𝐴
𝑓

𝐵 is right
representable if and only if its codomain projection functor admits a right adjoint right inverse

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝑝0𝑝1
⊥
𝑖

in which case the composite 𝑝0𝑖 ∶ 𝐶 → 𝐵 defines the representing functor and the natural transformation
encoded by the functor 𝑖 ∶ 𝐶 → Hom𝐴(𝑓 , 𝑔) defines an absolute right lifting of 𝑔 through 𝑓.

Proof. Suppose that the comma Hom𝐴(𝑓 , 𝑔) is represented on the right by a functor 𝑟 ∶ 𝐶 → 𝐵.
By Lemma 3.5.9, 𝑝1 ∶ Hom𝐵(𝐵, 𝑟) ↠ 𝐶 admits a right adjoint right inverse 𝑖′, which composes with the
fibered equivalence to define a right adjoint right inverse for the equivalent functor 𝑝1 ∶ Hom𝐴(𝑓 , 𝑔) ↠
𝐶.

𝐶 Hom𝐵(𝐵, 𝑟) Hom𝐴(𝑓 , 𝑔)

𝐶 × 𝐵

𝑖′

𝑖

(id𝐶,𝑟)

∼

(𝑝1,𝑝0) (𝑝1,𝑝0)

Note that 𝑟 = 𝑝0𝑖, and by the construction in the proof of Theorem 3.5.8, the functor 𝑖 ∶ 𝐶 →
Hom𝐴(𝑓 , 𝑔) encodes an absolute right lifting diagram 𝜌∶ 𝑟𝑓 ⇒ 𝑔. Thus, it remains only to prove the
converse.

To that end, suppose we are given a right adjoint right inverse adjunction 𝑝1 ⊣ 𝑖. Unpacking the
definition, this provides an adjunction

𝐶 Hom𝐴(𝑓 , 𝑔)

𝐶

𝑖
⊥

𝑝1

𝑝1

over 𝐶 whose counit is an identity and whose unit 𝜂∶ id ⇒ 𝑖𝑝1 satisfies the conditions 𝜂𝑖 = id𝑖 and
𝑝1𝜂 = id𝑝1 . By Theorem 3.5.8, to construct the fibered equivalence Hom𝐵(𝐵, 𝑟) ≃𝐶×𝐵 Hom𝐴(𝑓 , 𝑔)
with 𝑟 ≔ 𝑝0𝑖, it suffices to demonstrate that the natural transformation defined by restricting the
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comma cone for Hom𝐴(𝑓 , 𝑔) along 𝑖

𝐶

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑟𝑖

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

defines an absolute right lifting diagram.
By 1-cell induction any natural transformation 𝜒 as displayed below-left induces a functor 𝜒 as

displayed below-center:

𝑋 𝐵

𝐶 𝐴

𝑏

𝑐 ⇓𝜒 𝑓

𝑔

=
𝑋 Hom𝐴(𝑓 , 𝑔) 𝐵

𝐶 𝐴

𝑏

𝜒

𝑐
𝑝1

𝑝0

⇓𝜙 𝑓

𝑔

=
𝑋 Hom𝐴(𝑓 , 𝑔) Hom𝐴(𝑓 , 𝑔) 𝐵

𝐶 𝐶 𝐴

𝑏

𝜒

𝑐
𝑝1

⇓𝜂 𝑝1

𝑝0

⇓𝜙 𝑓
𝑖

𝑔

Inserting the triangle equality 𝑝1𝜂 = id𝑝1 as displayed above-right constructs the desired factorization
𝑝0𝜂𝜒∶ 𝑏 ⇒ 𝑟𝑐 of 𝜒 through 𝜙𝑖.

In fact, given any natural transformation 𝜏0 ∶ 𝑏 ⇒ 𝑟𝑐 that defines a factorization of 𝜒∶ 𝑓 𝑏 ⇒ 𝑔𝑐
through 𝜙𝑖, the pair (id𝑐, 𝜏0) satisfies the compatibility condition of Proposition 3.4.6(ii), inducing
a natural transformation 𝜏∶ 𝜒 ⇒ 𝑖𝑐 so that id𝑐 = 𝑝1𝜏 and 𝜏0 = 𝑝0𝜏. We argue that the natural
transformation 𝜏 is unique, proving that the factorization 𝑝0𝜏∶ 𝑏 ⇒ 𝑟𝑐 is also unique.

To see this, note that the adjunction 𝑝1 ⊣ 𝑖 over 𝐶 exhibits the right adjoint as a terminal element
of the object 𝑝1 ∶ Hom𝐴(𝑓 , 𝑔) ↠ 𝐶 in the strict slice of the homotopy 2-category over 𝐶.⁶ It follows, as
in Lemma 2.2.5, that for any object 𝑐 ∶ 𝑋 → 𝐶 and any morphism 𝜒∶ 𝑋 → Hom𝐴(𝑓 , 𝑔) over 𝐶, there
exists a unique natural transformation 𝜒 ⇒ 𝑖𝑐 over 𝐶. Thus, there is a unique natural transformation
𝜏∶ 𝜒 ⇒ 𝑖𝑐 with the property that 𝑝1𝜏 = id𝑐, and so the factorization 𝑝0𝜏∶ 𝑏 ⇒ 𝑟𝑐 of 𝜒 through 𝜙𝑖
must also be unique. �

In the next section, we discover that Theorem 3.5.12 may be expressed more concisely as the
assertion that a comma ∞-category Hom𝐴(𝑓 , 𝑔) in an ∞-cosmos 𝒦 is right representable precisely
when its codomain projection functor 𝑝1 ∶ Hom𝐴(𝑓 , 𝑔) ↠ 𝐶 admits a terminal element as an object of
the sliced∞-cosmos𝒦/𝐶 (see Corollary 3.6.10). Dually, Hom𝐴(𝑓 , 𝑔) is left representable just when its
domain projection functor admits an initial element as an object of the sliced∞-cosmos𝒦/𝐵. There
is a small gap between this statement and the version proven in Theorem 3.5.12 having to do with
the discrepancy between the homotopy 2-category of the sliced ∞-cosmos 𝒦/𝐶 and the slice of the
homotopy 2-category 𝔥𝒦 over 𝐶. This is the subject to which we now turn.

⁶An object is a functor of ∞-categories 𝑐 ∶ 𝑋 → 𝐶, a 1-cell is a functor between the domain ∞-categories defining
a strictly commutative triangle, and a 2-cell is a natural transformation between such functors that whiskers to define an
identity 2-cell with codomain 𝐶.
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Exercises.

3.5.i. Exercise. Anticipate Proposition 4.1.1 by exploring how one might encode the existence of an
adjunction 𝑓 ⊣ 𝑢 between a given opposing pair of functors using comma∞-categories.

3.5.ii. Exercise. Extend the result of Exercise 2.3.vi to show that for any equivalence of cospans

𝐶 𝐴 𝐵

�̄� �̄� �̄�

∼

≅

𝑔

∼

≅

∼

𝑓

�̄� ̄𝑓

there exists an absolute right lifting of 𝑔 through 𝑓 if and only if there exists an absolute right lifting of
�̄� through ̄𝑓.

3.5.iii. Exercise ([124, 3.7]). Use Theorem 3.5.3 and Corollary 3.5.6(iv) to prove that a fully faithful
functor 𝑓 ∶ 𝐴 → 𝐵 reflects all limits or colimits that exist in 𝐴. Why does this argument not also show
that 𝑓 ∶ 𝐴 → 𝐵 preserves them?

3.6. Fibered Adjunctions and Fibered Equivalences

In Proposition 3.2.10, we discovered that the ∞-category 𝐴𝟚 of arrows in 𝐴 together with its
codomain and domain evaluation functors (𝑝1, 𝑝0) ∶ 𝐴𝟚 ↠ 𝐴×𝐴 satisfies a weak universal property
in the homotopy 2-category that characterizes it up to equivalence over 𝐴 × 𝐴. Similarly, Proposition
3.4.11 tells us that the comma∞-category associated to a given pair of functors with common codomain
is characterized up to fibered equivalence, as defined in Definition 3.2.7.

As noted in Warning 3.2.9 there is some ambiguity regarding the 2-categorical data required to
specify a fibered equivalence that we now address head-on. The issue is that, for an∞-category 𝐵 in
an∞-cosmos𝒦, the homotopy 2-category 𝔥(𝒦/𝐵) of the sliced∞-cosmos (see Proposition 1.2.22 and
Definition 1.4.1) is not isomorphic to the 2-category (𝔥𝒦)/𝐵 of isofibrations, functors, and 2-cells over
𝐵 in the homotopy 2-category 𝔥𝒦. However, there is a canonical comparison functor relating these
2-categories that satisfies a property we now introduce:

3.6.1. Definition (smothering 2-functor). A 2-functor 𝐹∶ 𝒜 → ℬ is smothering if it is

• surjective on objects;
• full on 1-cells: for any pair of objects 𝐴,𝐴′ in 𝒜 and 1-cell 𝑘 ∶ 𝐹𝐴 → 𝐹𝐴′ in ℬ, there exists
𝑓 ∶ 𝐴 → 𝐴′ in𝒜 with 𝐹𝑓 = 𝑘;

• full on 2-cells: for any parallel pair 𝑓 , 𝑔 ∶ 𝐴 → 𝐴′ in𝒜 and 2-cell 𝐹𝐴 𝐹𝐴′
𝐹𝑓

𝐹𝑔

⇓𝛽 inℬ, there

exists a 2-cell 𝛼∶ 𝑓 ⇒ 𝑔 in𝒜 with 𝐹𝛼 = 𝛽; and
• conservative on 2-cells: for any 2-cell 𝛼 in𝒜 if 𝐹𝛼 is invertible in ℬ then 𝛼 is invertible in𝒜.

This is to say, a smothering 2-functor is a surjective-on-objects 2-functor that is “locally smothering,”
meaning that the action on hom-categories is by a smothering functor, as codified in Definition 3.1.2.

The prototypical example of a smothering 2-functor solves Exercise 1.4.vii.

93



3.6.2. Proposition. Let 𝐵 be an∞-category in an∞-cosmos𝒦. There is a canonical 2-functor
𝔥(𝒦/𝐵) (𝔥𝒦)/𝐵

from the homotopy 2-category of the sliced∞-cosmos𝒦/𝐵 to the 2-category of isofibrations, functors, and 2-cells
over 𝐵 in 𝔥𝒦 and this 2-functor is smothering.

This follows more or less immediately from Lemma 3.1.5 but we spell out the details nonetheless.

Proof. The 2-categories 𝔥(𝒦/𝐵) and (𝔥𝒦)/𝐵 have the same objects – isofibrations with codomain
𝐵 – and the same 1-cells – functors between the domains that commute with these isofibrations – so
the canonical mapping may be defined to act as the identity on underlying 1-categories.

By the definition of the sliced ∞-cosmos given in Proposition 1.2.22, a 2-cell between functors
𝑓 , 𝑔 ∶ 𝐸 → 𝐹 from 𝑝∶ 𝐸 ↠ 𝐵 to 𝑞 ∶ 𝐹 ↠ 𝐵 is a homotopy class of 1-simplices in the quasi-category
defined by the pullback of simplicial sets below-left

Fun𝐵(𝐸, 𝐹) Fun(𝐸, 𝐹) (hFun)/𝐵(𝐸, 𝐹) hFun(𝐸, 𝐹)

𝟙 Fun(𝐸, 𝐵) 𝟙 hFun(𝐸, 𝐵)

𝑞∗ 𝑞∗

𝑝 𝑝

Unpacking, a 2-cell 𝛼∶ 𝑓 ⇒ 𝑔 is represented by a 1-simplex 𝛼∶ 𝑓 → 𝑔 in Fun(𝐸, 𝐹) that whiskers with
𝑞 to the degenerate 1-simplex on the vertex 𝑝 ∈ Fun(𝐸, 𝐵), and two such 1-simplices represent the same
2-cell if and only if they bound a 2-simplex of the form displayed in (1.1.8) that also whiskers with 𝑞 to
the degenerate 2-simplex on 𝑝.

By contrast, a 2-cell in (𝔥𝒦)/𝐵 is a morphism in the category defined by the pullback of categories
above-right. Such 2-cells are represented by 1-simplices 𝛼∶ 𝑓 → 𝑔 in Fun(𝐸, 𝐹) that whisker with 𝑞 to
1-simplices in Fun(𝐸, 𝐵) that are homotopic to the degenerate 1-simplex on 𝑝, and two such 1-simplices
represent the same 2-cell if and only if they are homotopic in Fun(𝐸, 𝐹).

Applying the homotopy category functor h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 to the above-left pullback produces a
cone over the above-right pullback, inducing a canonical map

h(Fun𝐵(𝐸, 𝐹)) (hFun)/𝐵(𝐸, 𝐹),
which is the action on hom-categories of the canonical 2-functor 𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵. By Lemma 3.1.5,
this canonical map defines a bijective-on-objects smothering functor. Thus, we have defined a 2-functor
𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 that is bijective on 0- and 1-cells and locally smothering, as claimed. �

Smothering 2-functors are not strictly speaking invertible, but nevertheless 2-categorical structures
from the codomain can be lifted to the domain.

3.6.3. Lemma. Smothering 2-functors reflect and create equivalences.

Proof. For any smothering 2-functor 𝐹∶ 𝒜 → ℬ and 1-cell 𝑓 ∶ 𝐴 → 𝐵 in𝒜, if 𝐹𝑓∶ 𝐹𝐴 ∼ 𝐹𝐵 is
an equivalence in ℬ, then by fullness on 1-cells, an equivalence inverse 𝑔′ ∶ 𝐹𝐵 ∼ 𝐹𝐴 to 𝐹𝑓 lifts to a
1-cell 𝑔∶ 𝐵 → 𝐴 in 𝒜. By fullness on 2-cells, the isomorphisms id𝐹𝐴 ≅ 𝑔′ ∘ 𝐹𝑓 and 𝐹𝑓 ∘ 𝑔′ ≅ id𝐹𝐵
also lift to𝒜 and by conservativity on 2-cells these lifted 2-cells are also invertible. This proves that
equivalences are reflected. To see that they are created, note that any 𝑓 ′ ∶ 𝐹𝐴 ∼ 𝐹𝐵 in ℬ lifts to a
1-cell 𝑓 ∶ 𝐴 → 𝐵, which is an equivalence by the construction just given. �
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Applying Lemma 3.6.3 to the smothering 2-functor

𝔥(𝒦/𝐵) (𝔥𝒦)/𝐵
we resolve the ambiguity about the 2-categorical data of a fibered equivalence.

3.6.4. Proposition (fibered equivalence data). Let 𝐵 be an∞-category in an∞-cosmos𝒦.
(i) Any equivalence in (𝔥𝒦)/𝐵 lifts to an equivalence in 𝔥(𝒦/𝐵). That is, fibered equivalences over 𝐵 may

be specified by defining an opposing pair of 1-cells 𝑓 ∶ 𝐸 → 𝐹 and 𝑔∶ 𝐹 → 𝐸 over 𝐵 together with
invertible 2-cells id𝐸 ≅ 𝑔𝑓 and 𝑓 𝑔 ≅ id𝐹 that lie over 𝐵 in 𝔥𝒦.

(ii) Moreover, if 𝑓 ∶ 𝐸 → 𝐹 is a map between isofibrations over 𝐵 that admits an not-necessarily fibered
equivalence inverse 𝑔∶ 𝐹 → 𝐸 with not-necessarily fibered 2-cells id𝐸 ≅ 𝑔𝑓 and 𝑓 𝑔 ≅ id𝐹, then this
data is isomorphic to a genuine fibered equivalence.

Thus, the forgetful 2-functor 𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 → 𝔥𝒦 reflects equivalences.

Proof. The first statement is proven by Lemma 3.6.3 and Proposition 3.6.2. The second statement,
which asserts that the forgetful 2-functor (𝔥𝒦)/𝐵 → 𝔥𝒦 reflects equivalences, is left as Exercise 3.6.i,
and requires only the 2-categorical lifting property of isofibrations (see Proposition 1.4.9). �

This gives a 2-categorical proof of Proposition 1.2.22(vii), that for any ∞-category 𝐵 in an ∞-
cosmos 𝒦, the forgetful functor 𝒦/𝐵 → 𝒦 preserves and reflects equivalences. The smothering
2-functor 𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 can also be used to lift adjunctions that are fibered 2-categorically over 𝐵
to adjunctions in the sliced∞-cosmos𝒦/𝐵.

3.6.5. Definition (fibered adjunction). A fibered adjunction over an∞-category 𝐵 in an∞-cosmos
𝒦 is an adjunction in the sliced∞-cosmos𝒦/𝐵.

𝐸 ⊥ 𝐹

𝐵

𝑓

𝑢

We write 𝑓 ⊣𝐵 𝑢 to indicate that specified functors over 𝐵 are adjoint over 𝐵.

3.6.6. Lemma (pullback and projection of fibered adjunctions).

(i) A fibered adjunction over 𝐵 pulls back along any functor 𝑘 ∶ 𝐴 → 𝐵 to define a fibered adjunction over
𝐴.

(ii) A fibered adjunction over 𝐴 can be composed with any isofibration⁷ 𝑝∶ 𝐴 ↠ 𝐵 to define a fibered
adjunction over 𝐵.

Proof. For any∞-cosmos𝒦, pullback along 𝑘 ∶ 𝐴 → 𝐵 defines a cosmological functor 𝑘∗ ∶ 𝒦/𝐵 →
𝒦/𝐴, by Proposition 1.3.4(v), which descends to a 2-functor 𝑘∗ ∶ 𝔥(𝒦/𝐵) → 𝔥(𝒦/𝐴) that carries fibered
adjunctions over 𝐵 to fibered adjunctions over 𝐴. This proves (i).

Compositionwith an isofibration 𝑝∶ 𝐴 ↠ 𝐵 also defines a 2-functor of slices 𝑝∗ ∶ 𝔥(𝒦/𝐴) → 𝔥(𝒦/𝐵).
Thus, composition with an isofibration carries a fibered adjunction over 𝐴 to a fibered adjunction
over 𝐵, proving (ii). �

In analogy with Lemma 3.6.3:

⁷We require 𝑝 to be an isofibration due to our convention that the objects in sliced∞-cosmoi are isofibrations over a
fixed base.
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3.6.7. Lemma. If 𝐹∶ 𝒜 → ℬ is a smothering 2-functor, then any adjunction in ℬ may be lifted to an
adjunction in𝒜. In particular, any adjunction in the slice 2-category (𝔥𝒦)/𝐵 of an ∞-cosmos 𝒦 lifts to a
fibered adjunction over 𝐵.

Proof. Exercise 3.6.iii. �

Combining Definitions 3.6.5 and 2.2.1, we obtain notions of fibered initial and terminal elements.

3.6.8. Definition. Given an isofibration 𝑝∶ 𝐸 ↠ 𝐵, we say that 𝐸 admits an initial element over 𝐵
or admits a terminal element over 𝐵 if there exists a fibered left or right adjoint, respectively, to the
unique functor from 𝑝 to id𝐵 over 𝐵:

𝐵 ⊥ 𝐸 𝐸 ⊥ 𝐵

𝐵 𝐵

𝑖

𝑝
𝑝

𝑝

𝑝

𝑡

That is, 𝐸 admits an initial or terminal element over 𝐵 just when 𝑝∶ 𝐸 ↠ 𝐵 admits an initial or
terminal element when considered as an object of the sliced∞-cosmos over 𝐵.

The next result shows that fibered initial or terminal elements exist just when the isofibration
𝑝∶ 𝐸 ↠ 𝐵 admits a left adjoint right inverse or a right adjoint right inverse, respectively.

3.6.9. Lemma. Let 𝑝∶ 𝐸 ↠ 𝐵 be any isofibration that admits a right adjoint right inverse 𝑟′ ∶ 𝐵 → 𝐸. Then
𝑟′ is isomorphic to a functor 𝑟 that defines a fibered adjunction:

𝐸 ⊥ 𝐵

𝐵
𝑝

𝑝

𝑟

Thus, an isofibration 𝑝∶ 𝐸 ↠ 𝐵 admits a right adjoint right inverse if and only if 𝐸 admits a terminal element
over 𝐵.

Proof. Since an isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an∞-cosmos𝒦 defines an isofibration in the homotopy
2-category 𝔥𝒦, the invertible counit 𝜖′ ∶ 𝑝𝑟′ ≅ id𝐵 of the adjunction 𝑝 ⊣ 𝑟′ lifts to define a functor
𝑟 ∶ 𝐵 → 𝐸 together with a natural isomorphism 𝛾∶ 𝑟′ ≅ 𝑟 so that 𝑝𝛾 = 𝜖′ and 𝑝𝑟 = id𝐵:

𝐵 𝐸 𝐵 𝐸

𝐵 𝐵

𝑟′

𝑝≅⇓𝜖′ =

𝑟′

𝑟
≅⇓𝛾

𝑝

By the construction left to the reader in Exercise 2.1.ii, 𝑝 ⊣ 𝑟 with unit 𝜂 ≔ 𝛾𝑝 ⋅ 𝜂′ defined by
composing the original unit 𝜂′ with 𝛾 and with counit 𝜖 ≔ 𝜖′ ⋅ 𝑝𝛾−1. In particular, since 𝑝𝛾 = 𝜖′, the
counit 𝜖 is the identity 2-cell, and consequently one of the triangle equality composites reduces to the
assertion that 𝑝𝜂 = id𝑝.

This constructs a right adjoint to 𝑝 considered as a functor in (𝔥𝒦)/𝐵. By Lemma 3.6.7, this
adjunction lifts along the smothering 2-functor of Proposition 3.6.2 to define a fibered adjunction over
𝐵 of the desired form in 𝔥(𝒦/𝐵) (see Exercise 3.6.iii). Definition 3.6.8 interprets the fibered adjunction
just constructed as defining a terminal element in 𝐸 over 𝐵. �
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With this observation, Theorem 3.5.12 may be summarized more compactly as follows:

3.6.10. Corollary. For any cospan𝐶
𝑔
𝐴

𝑓
𝐵, the comma∞-categoryHom𝐴(𝑓 , 𝑔) is right representable

if and only if Hom𝐴(𝑓 , 𝑔) admits a terminal element over 𝐶 – in which case the representing functor defines
an absolute right lifting of 𝑔 through 𝑓. �

3.6.11. Remark. In an∞-cosmos of (∞, 1)-categories, the representability theorem can be improved
still further to say that Hom𝐴(𝑓 , 𝑔) is right representable if and only if, for all elements 𝑐 ∶ 1 → 𝐶, the
∞-category Hom𝐴(𝑓 , 𝑔𝑐) has a terminal element (see Corollary 12.2.8). The proof requires “analytic”
techniques, in contrast with the purely synthetic reasoning in this chapter.

3.6.12. Example. By Lemmas 3.5.9 and 3.6.9, for any functor 𝑓 ∶ 𝐴 → 𝐵, there is a fibered adjunction

𝐴 Hom𝐵(𝐵, 𝑓 )

𝐴

id𝑓

⊥

𝑝1

𝑝1

which asserts that id𝑓 ∶ 𝐴 → Hom𝐵(𝐵, 𝑓 ) defines a terminal element in Hom𝐵(𝐵, 𝑓 ) over 𝐴.
By Lemma 3.6.6(i), we may pull back the fibered adjunction along any element 𝑎 ∶ 1 → 𝐴 to obtain

an adjunction that identifies a terminal element in the fiber

1 Hom𝐵(𝐵, 𝑓 𝑎)
id𝑓𝑎

=id𝑓 𝑎

⊥
! Hom𝐵(𝐵, 𝑓 𝑎) Hom𝐵(𝐵, 𝑓 )

1 𝐴

𝑝1
𝑎

generalizing the result of Corollary 3.5.10.

3.6.13. Example (the fibered adjoints to composition). For any ∞-category 𝐴, the adjoints to the
“composition” functor ∘ ∶ 𝐴𝟚 ×

𝐴
𝐴𝟚 → 𝐴𝟚 constructed in Lemma 2.1.14 are constructed by composing a

triple of adjoint functors that are fibered over the endpoint evaluation functors

𝟙 + 𝟙

𝟛 𝟚

(0,2) (0,1)
𝜎0
⊤

𝜎1
⊤
𝛿1

⇝
𝐴𝟛 𝐴𝟚

𝐴 × 𝐴

𝐴𝛿1

(𝑝2,𝑝0)

𝐴𝜎0

⊥

𝐴𝜎1
⊥

(𝑝1,𝑝0)

with an adjoint equivalence involving a functor 𝐴𝟛 ∼ 𝐴𝟚 ×
𝐴
𝐴𝟚, which also lies over 𝐴 × 𝐴. Lemma

3.6.9 and its dual implies that these adjoint equivalences can be lifted to fibered adjoint equivalences
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over 𝐴 × 𝐴, and now both adjoint triples and hence the composite adjunctions are also fibered:

𝐴𝟚 ×
𝐴
𝐴𝟚 𝐴𝟚

𝐴 × 𝐴

∘

(𝑝2,𝑝0)

(−,iddom(−))
⊥

(idcod(−),−)
⊥

(𝑝1,𝑝0)

This fibered adjunction, which allows us to work at the ∞-cosmos level rather than purely in
the homotopy 2-category, figures in the proof of a result that allows us to convert limit and colimit
diagrams into right and left Kan extension diagrams (see Proposition 4.3.4).

3.6.14. Proposition. A cospan as displayed below-left admits an absolute right lifting if and only if the cospan
displayed below-right admits an absolute right lifting

𝐵 Hom𝐴(𝑓 , 𝐴)

𝐶 𝐴 𝐶 𝐴
⇓𝜌

𝑓
⇓𝜖

𝑝1

𝑔

𝑟

𝑔

𝑖

in which case the 2-cell 𝜖 is necessarily an isomorphism and the pair (𝑖, 𝜖) can be chosen to be (𝜌, id𝑔).

Proof. By Theorem 3.5.12 and Corollary 3.6.10, to verify the existence statement it suffices to
show that Hom𝐴(𝑓 , 𝑔) admits a terminal element over 𝐶 if and only if Hom𝐴(𝑝1, 𝑔) admits a terminal
element over 𝐶.

From the defining pullback (3.4.2) that constructs the comma∞-category Hom𝐴(𝑝1, 𝑔) reproduced
below-left, we have the pullback square below-right:

Hom𝐴(𝑝1, 𝑔) Hom𝐴(𝐴, 𝑔) 𝐴𝟚

𝐶 × Hom𝐴(𝑓 , 𝐴) 𝐶 × 𝐴 𝐴 × 𝐴

Hom𝐴(𝑓 , 𝐴) 𝐴

(𝑝1,𝑝0) (𝑝1,𝑝0) (𝑝1,𝑝0)

𝐶×𝑝1
𝜋

𝑔×𝐴
𝜋

𝑝1

⇝
Hom𝐴(𝑝1, 𝑔) Hom𝐴(𝐴, 𝑔)

Hom𝐴(𝑓 , 𝐴) 𝐴

𝑝0

𝑝1

Thus, by Lemma 3.6.6, the composition-identity fibered adjunction of Example 3.6.13 pulls back along
the functors 𝑔 × 𝑓∶ 𝐶 × 𝐵 → 𝐴 × 𝐴 to define a fibered adjunction

Hom𝐴(𝑝1, 𝑔) ≅ Hom𝐴(𝐴, 𝑔) ×
𝐴

Hom𝐴(𝑓 , 𝐴) Hom𝐴(𝑓 , 𝑔)

𝐶 × 𝐵

∘

(𝑝1,𝑝0)

⊥
(−,iddom(−))

⊥
(idcod(−),−)

(𝑝1,𝑝0)
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which then composes with the projection 𝜋∶ 𝐶 × 𝐵 ↠ 𝐶 to give a fibered adjunction over 𝐶

Hom𝐴(𝑝1, 𝑔) Hom𝐴(𝑓 , 𝑔)

𝐶

∘

𝑝1

⊥
⊥

𝑝1

between the codomain projection for Hom𝐴(𝑝1, 𝑔) and the codomain projection for Hom𝐴(𝑓 , 𝑔),
considered as objects of the sliced∞-cosmos over 𝐶. Since we have right adjoints pointing in both
directions, by Theorem 2.4.2, a terminal element on either side is carried by the appropriate right
adjoint to a terminal element on the other side. This proves the equivalence of the absolute right lifting
conditions conditions.

Now we assume that either and thus both absolute right liftings exist. Observe that the rightmost
adjoint (idcod(−), −) ∶ Hom𝐴(𝑓 , 𝑔) → Hom𝐴(𝑝1, 𝑔) is characterized up to fibered isomorphism by the
pasting equality:

Hom𝐴(𝑓 , 𝑔)

Hom𝐴(𝑝1, 𝑔)

𝐶 Hom𝐴(𝑓 , 𝐴)

𝐴

𝑝1 𝜙(idcod(−),−)

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑝1

=

Hom𝐴(𝑓 , 𝑔)

𝐶 Hom𝐴(𝑓 , 𝐴)

𝐴

𝑝1 𝜙

=

𝑔 𝑝1

where 𝜙∶ Hom𝐴(𝑓 , 𝑔) → Hom𝐴(𝑓 , 𝐴) is the functor that encodes the factorization of the comma
cone for Hom𝐴(𝑓 , 𝑔) through the comma cone for Hom𝐴(𝑓 , 𝐴). By Theorem 3.5.12, the functor
𝜌∶ 𝐶 → Hom𝐴(𝑓 , 𝑔) defines a right adjoint right inverse to 𝑝1 ∶ Hom𝐴(𝑓 , 𝑔) ↠ 𝐶. Thus, by the
argument just given, the composite of 𝜌 and (idcod(−), −) defines a right adjoint right inverse to
𝑝1 ∶ Hom𝐴(𝑝1, 𝑔) ↠ 𝐶, encoding the data of an absolute right lifting of 𝑔 through 𝑝1, necessarily
isomorphic to the pair (𝑖, 𝜖). The pasting equalities

𝐶

Hom𝐴(𝑓 , 𝑔)

Hom𝐴(𝑝1, 𝑔)

𝐶 Hom𝐴(𝑓 , 𝐴)

𝐴

𝜌

𝑝1 𝜙
(idcod(−),−)

𝑝1 𝑝0

𝜙
⇐

𝑔 𝑝1

=

𝐶

Hom𝐴(𝑓 , 𝑔)

𝐶 Hom𝐴(𝑓 , 𝐴)

𝐴

𝜌 𝜌

𝑝1 𝜙

=

𝑔 𝑝1

=
Hom𝐴(𝑓 , 𝐴)

𝐶 𝐴

=

𝑝1

𝑔

𝜌
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demonstrate that this absolute right lifting diagram is given by (𝜌, id𝑔) as claimed. �

The following example hints at one application of Proposition 3.6.14.

3.6.15. Example. The left representation of a functor 𝐴𝑓 ∶ 𝐴𝑉 → 𝐴𝑈 induced by cotensoring with
a map of simplicial sets 𝑓 ∶ 𝑈 → 𝑉 is itself definable as a cotensor with the simplicial set formed by
attaching 𝑉 to the domain end of the cylinder 𝑈 × 𝟚 via the map 𝑓:

Hom𝐴(𝐴𝑓, 𝐴) ≅ 𝐴cone(𝑓 ) 𝐴𝑈×𝟚 𝑈 +𝑈 𝑉 + 𝑈

𝐴𝑈 × 𝐴𝑉 𝐴𝑈 × 𝐴𝑈 𝑈 × 𝟚 cone(𝑓 )

(𝑝1,𝑝0)

𝜙

(𝑝1,𝑝0)

𝑓 +𝑈

id×𝐴𝑓

Proposition 3.6.14 establishes a correspondence between absolute right lifting problems

𝐴𝑉 𝐴cone(𝑓 )

𝐷 𝐴𝑈 𝐷 𝐴𝑈
⇓𝜌 𝐴𝑓

=

𝑝1

𝑑

𝑟

𝑑

𝑖

under which a single functor 𝑖 ∶ 𝐷 → 𝐴cone(𝑓 ) is used to encode the data of both the functor

𝑟 ≔ 𝐷 𝐴cone(𝑓 ) 𝐴𝑉𝑖 𝑝0

and the natural transformation

𝜌 ≔ 𝐷 𝐴cone(𝑓 ) 𝐴𝑈×𝟚𝑖 𝜙

Exercises.

3.6.i. Exercise. Let 𝐵 be an object in a 2-category and consider a map

𝐸 𝐹

𝐵

𝑓

between isofibrations over 𝐵. Prove that if 𝑓 is an equivalence in the ambient 2-category then 𝑓 is also
an equivalence in the slice 2-category of isofibrations over 𝐵, 1-cells that form commutative triangles
over 𝐵, and 2-cells that lie over 𝐵 in the sense that they whisker with the codomain isofibration to the
identity 2-cell on the domain isofibration.

3.6.ii. Exercise. Under the correspondence of Corollary 3.5.11, show that the following are equivalent:

(i) 𝛼∶ 𝑓 ⇒ 𝑔 is an isomorphism.
(ii) The functor 𝛼∗ ∶ Hom𝐵(𝐵, 𝑓 ) → Hom𝐵(𝐵, 𝑔) defines a fibered equivalence over 𝐴 × 𝐵.
(iii) The functor 𝛼∗ ∶ Hom𝐵(𝑔, 𝐵) → Hom𝐵(𝑓 , 𝐵) defines a fibered equivalence over 𝐵 × 𝐴.

3.6.iii. Exercise. Let 𝐹∶ 𝒜 → ℬ be a smothering 2-functor. Use Lemma 2.1.11 to show that any
adjunction inℬ can be lifted to an adjunction in𝒜. Demonstrate furthermore that if we have previously
specified a lift of the objects, 1-cells, and either the unit or counit of the adjunction in ℬ, then there is
a lift of the remaining 2-cell that combines with the previously specified data to define an adjunction
in𝒜. This proves a more precise version of Lemma 3.6.7.
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3.6.iv. Exercise. Extend the proof of Proposition 3.6.14 to prove that a square preserves the absolute
right lifting (𝑟, 𝜌) if and only if the induced square preserves the absolute right lifting (𝑖, 𝜖):

𝐵 𝐵′ Hom𝐴(𝑓 , 𝐴) Hom𝐴′(𝑓 ′, 𝐴′)

𝐶 𝐴 𝐴′ 𝐶 𝐴 𝐴′
⇓𝜌

𝑓

𝑏

𝑓 ′
⇓𝜖

𝑝1

Hom𝑎(𝑏,𝑎)

𝑝1

𝑔

𝑟

𝑎 𝑔

𝑖

𝑎
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CHAPTER 4

Adjunctions, Limits, and Colimits II

In Chapter 2, we develop the basic theory of adjunctions between ∞-categories and limits and
colimits of diagrams valued in∞-categories by characterizing these notions in terms of absolute lifting
diagrams in the homotopy 2-category of ∞-categories, functors, and natural transformations in an
∞-cosmos. While absolute lifting diagrams are expedient for proving theorems relating adjunctions,
limits, and colimits, they do not obviously express the familiar universal properties associated to these
notions. In this chapter, we use the comma ∞-categories of Chapter 3 as a vehicle to give precise
expressions to these universal properties and prove that new characterizations of adjunctions, limits,
and colimits are equivalent to the previous definitions. In fact, many of the main results in this section
are mere special cases of the general theorems characterizing representable comma∞-categories.

Using the theory of comma∞-categories, in §4.1 we quickly prove a variety of results describing
the universal property of adjunctions. In particular, Theorem 3.5.8 specializes in Proposition 4.1.1
to characterize adjoint pairs of functors 𝑓 ∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 via a “transposing equivalence”
Hom𝐴(𝑓 , 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢), while Corollary 3.6.10 specializes in Proposition 4.1.6 to give a
criterion that guarantees that a left or right adjoint to a given functor exists.

In an interlude in §4.2, we introduce the∞-category of cones over or under a diagram as a comma
∞-category. When the indexing shape for the diagrams is given by a simplicial set, an equivalent
model can be built from Joyal’s join and slice constructions. The∞-categories of cones over or under
a diagram feature prominently in the study of the universal properties of limits and colimits in §4.3.
There we see that Theorem 3.5.8 specializes to prove Proposition 4.3.1, characterizing a limit of a
diagram as a right representation for the ∞-category of cones, while Corollary 3.6.10 specializes in
Proposition 4.3.2 to characterize a limit cone as a terminal element in the∞-category of cones.

Since the proofs of the main results in this chapter appear in Chapter 3 where they are developed
in a more general setting, we are able to focus our efforts here on applications. In §4.4 we introduce
pointed∞-categories, which have a zero element that is both initial and terminal, and show how this may
be used to construct the loops ⊢ suspension adjunction. Pointed∞-categories that admit fiber and
cofiber sequences, which define a common family of exact triangles, are called stable. While exploring the
properties of stable∞-categories, we encounter a number of equivalent characterizations, enumerated
in Theorem 4.4.12.

The fibered equivalences that characterize adjunctions, limits, and colimits can be understood as
∞-categorical analogues of Eilenberg and Mac Lane’s famous natural equivalences [42]. To express
this “naturality,” we observe that arrows in the base∞-categories act covariantly functorially on the
fibers of the codomain projection functor and contravariantly functorially on the fibers of the domain
projection functor associated to a comma∞-category. This is the subject of Chapter 5.

4.1. The Universal Property of Adjunctions

An adjunction between an opposing pair of functors can equally be encoded by a “transposing
equivalence” between their left and right representations as comma∞-categories.
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4.1.1. Proposition (adjunction as fibered equivalence). An opposing pair of functors 𝑢∶ 𝐴 → 𝐵 and
𝑓 ∶ 𝐵 → 𝐴 define an adjunction 𝑓 ⊣ 𝑢 if and only if Hom𝐴(𝑓 , 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢).

This is a special case of Theorem 3.5.8, so no further argument is required, but we proffer a short
proof nevertheless to review the results proven in §3.5.

Proof. If 𝑓 ⊣ 𝑢, then its counit 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 defines an absolute right lifting diagram by Lemma
2.3.7. By Theorem 3.5.8, the functor induced by the left-hand pasted composite

Hom𝐵(𝐵, 𝑢)

𝐴 𝐵

𝐴

𝑝1 𝑝0𝜙
⇐

𝜖
⇐

𝑢

𝑓

=

Hom𝐵(𝐵, 𝑢)

Hom𝐴(𝑓 , 𝐴)

𝐴 𝐵

𝑝1 𝑝0

𝜖⋅𝑓 (−)

𝑝1 𝑝0𝜙
⇐

𝑓

defines a fibered equivalence Hom𝐵(𝐵, 𝑢) ≃𝐴×𝐵 Hom𝐴(𝑓 , 𝐴). We interpret this result as asserting
that in the presence of an adjunction 𝑓 ⊣ 𝑢, the right comma cone over 𝑢 transposes to define the left
comma cone over 𝑓.¹

Conversely, from a fibered equivalence Hom𝐵(𝐵, 𝑢) ≃𝐴×𝐵 Hom𝐴(𝑓 , 𝐴), Theorem 3.5.8 tells us
that one can extract a 2-cell that defines an absolute right lifting diagram

𝐵

𝐴 𝐴
⇓𝜖

𝑓𝑢

which by Lemma 2.3.7 then defines the counit of an adjunction 𝑓 ⊣ 𝑢. �

4.1.2. Observation (the transposing equivalence). To justify referring to the induced functor

𝜖 ⋅ 𝑓 (−) ∶ Hom𝐵(𝐵, 𝑢) ∼ Hom𝐴(𝑓 , 𝐴)
as a transposing equivalence, recall that the transpose of a 2-cell 𝜒∶ 𝑏 ⇒ 𝑢𝑎 across the adjunction
𝑓 ⊣ 𝑢 is computed by the left-hand pasting diagram below:

𝑋

𝐴 𝐵

𝐴

𝑏𝑎 𝜒
⇐

𝜖
⇐

𝑢

𝑓

=

𝑋

Hom𝐵(𝐵, 𝑢)

𝐴 𝐵

𝐴

𝜒
𝑏𝑎

𝑝1 𝑝0𝜙
⇐

𝜖
⇐

𝑢

𝑓

=

𝑋

Hom𝐵(𝐵, 𝑢)

Hom𝐴(𝑓 , 𝐴)

𝐴 𝐵

𝜒

𝑏𝑎

𝑝1 𝑝0

𝜖⋅𝑓 (−)

𝑝1 𝑝0𝜙
⇐

𝑓

¹If desired, an inverse equivalence can be constructed by applying the dual of Theorem 3.5.8 to the absolute left lifting
diagram presented by the unit.
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By the weak universal property of the right comma cone over 𝑢, the 2-cell 𝜒 is represented by the
induced functor 𝜒∶ 𝑋 → Hom𝐵(𝐵, 𝑢), which then composes with the transposing equivalence to
define a functor 𝜖 ⋅ 𝑓 (𝜒) ∶ 𝑋 → Hom𝐴(𝑓 , 𝐴) that represents the transpose of 𝜒, by the pasting
diagram equalities from right to left. This observation also justifies our notation, in which we name
the fibered equivalence 𝜖 ⋅ 𝑓 (−) after the formula for adjoint transposition.

4.1.3. Corollary. An pair of functors 𝑢∶ 𝐴 → 𝐵 and 𝑓 ∶ 𝐵 → 𝐴 define an adjunction 𝑓 ⊣ 𝑢 if and only
if there is an equivalence Hom𝐴(𝑓 𝑏, 𝑎) ≃𝑋×𝑌 Hom𝐵(𝑏, 𝑢𝑎) for any pair of generalized elements 𝑎 ∶ 𝑋 → 𝐴
and 𝑏 ∶ 𝑌 → 𝐵.

Proof. When 𝑓 ⊣ 𝑢, pullback along 𝑎 × 𝑏∶ 𝑋 × 𝑌 → 𝐴 × 𝐵 defines a cosmological functor
that carries the equivalence Hom𝐴(𝑓 , 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢) of Proposition 4.1.1 to an equivalence
Hom𝐴(𝑓 𝑏, 𝑎) ≃𝑋×𝑌 Hom𝐵(𝑏, 𝑢𝑎). The converse is proven by the special case where the generalized
elements are the identity functors id𝐴 and id𝐵. �

4.1.4. Remark. In particular, the equivalence of Proposition 4.1.1 pulls back to define an equivalence
of internal mapping spaces, introduced in Definition 3.4.9. In Corollary 12.2.15, we see that in an∞-
cosmos of (∞, 1)-categories a natural transformation 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 defines the counit of an adjunction
if and only if the map 𝜖 ⋅ 𝑓 (−) ∶ Hom𝐵(𝐵, 𝑢) → Hom𝐴(𝑓 , 𝐴) defines equivalences of internal mapping
spaces Hom𝐵(𝑏, 𝑢𝑎) ≃ Hom𝐴(𝑓 𝑏, 𝑎) for any pair of elements 𝑎 ∶ 1 → 𝐴 and 𝑏 ∶ 1 → 𝐵.

Comma ∞-categories also provide a vehicle for expressing the universal properties of unit and
counit transformations.

4.1.5. Proposition (the universal property of units and counits). Consider an adjunction

𝐵 𝐴
𝑓

⊥
𝑢

with unit 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and counit 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 .

Then for each element 𝑎 ∶ 1 → 𝐴, the component 𝜖𝑎 defines a terminal element of Hom𝐴(𝑓 , 𝑎), and for each
element 𝑏 ∶ 1 → 𝐵, the component 𝜂𝑏 defines an initial element of Hom𝐵(𝑏, 𝑢).

Proof. The fibered equivalence Hom𝐴(𝑓 , 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢) of Proposition 4.1.1 pulls back,
by Corollary 4.1.3, to define equivalences

Hom𝐴(𝑓 , 𝑎) ≃𝐵 Hom𝐵(𝐵, 𝑢𝑎) and Hom𝐴(𝑓 𝑏, 𝐴) ≃𝐴 Hom𝐵(𝑏, 𝑢).
By Corollary 3.5.10, id𝑢𝑎 induces a terminal element in Hom𝐵(𝐵, 𝑢𝑎) and by Lemma 2.2.7 its image
across the equivalence Hom𝐵(𝐵, 𝑢𝑎) ∼ Hom𝐴(𝑓 , 𝑎) is again a terminal element. By Observation 4.1.2
this element represents the transposed 2-cell: the component of the counit 𝜖 at the element 𝑎. �

The universal property of unit and counit components captured in Proposition 4.1.5 gives the main
idea behind the adjoint functor theorems. In an∞-cosmos of (∞, 1)-categories, a functor 𝑓 ∶ 𝐵 → 𝐴
admits a right adjoint just when for each element 𝑎 ∶ 1 → 𝐴, the ∞-category Hom𝐴(𝑓 , 𝑎) admits
a terminal element (see Corollary 12.2.7).² The image of this terminal element under the domain
projection functor 𝑝0 ∶ Hom𝐴(𝑓 , 𝑎) ↠ 𝐵 defines the element 𝑢𝑎∶ 1 → 𝐵 and the comma cone defines

²Recall from Example 2.3.11 that a terminal element is a colimit of the identity functor. The technical conditions
in Freyd’s general adjoint functor theorem and special adjoint functor theorem are deployed to reduce this large colimit
to a small colimit and guarantee its existence (see [104, §4.6] for a 1-categorical exposition of these results). Analogous
theorems have been proven in the (∞, 1)-categorical context by Nguyen, Raptis, and Schrade [88].
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the component of the counit at 𝑎. The universal property of the counit components is then used to
extend the mapping on elements to a functor 𝑢∶ 𝐴 → 𝐵.

An analogous result that is true in a generic∞-cosmos is obtained by replacing the quantifier “for
each element 𝑎 ∶ 1 → 𝐴” with “for each generalized element 𝑎 ∶ 𝑋 → 𝐴,” in which case the meaning of
“terminal element” should be enhanced to “terminal element over 𝑋” (see Definition 3.6.8). Since every
generalized element factors through the universal generalized element, namely the identity functor at
𝐴, it suffices to prove:

4.1.6. Proposition. A functor 𝑓 ∶ 𝐵 → 𝐴 admits a right adjoint if and only if Hom𝐴(𝑓 , 𝐴) admits a
terminal element over𝐴. Dually, 𝑓 ∶ 𝐵 → 𝐴 admits a left adjoint if and only if Hom𝐴(𝐴, 𝑓 ) admits an initial
element over 𝐴.

Proof. By Proposition 4.1.1, 𝑓 ∶ 𝐵 → 𝐴 admits a right adjoint if and only if the comma∞-category
Hom𝐴(𝑓 , 𝐴) is right representable, which by Corollary 3.6.10 is the case just when Hom𝐴(𝑓 , 𝐴) admits
a terminal element over 𝐴. �

The same suite of results from §3.5–§3.6 specialize to theorems that encode the universal properties
of limits and colimits. Before exploring these, we first construct the∞-category of cones over or under
a diagram.

Exercises.

4.1.i. Exercise (4.3.13). Specialize Proposition 4.1.1 to the case of adjunctions

1 𝐴
𝑖
⊥
!

and 1 𝐴
𝑡
⊥
!

to discover an alternate characterization of initial and terminal elements.

4.1.ii. Exercise. For any parallel pair of fully specified adjunctions

𝐵 𝐴
𝑓

⊥
𝑢

with unit 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and counit 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴, and

𝐵 𝐴
𝑓 ′

⊥
𝑢′

with unit 𝜂′ ∶ id𝐵 ⇒ 𝑢′𝑓 ′ and counit 𝜖′ ∶ 𝑓 ′𝑢′ ⇒ id𝐴 .

there is a bijection between natural transformations 𝛼∶ 𝑓 ′ ⇒ 𝑓 and 𝛽∶ 𝑢 ⇒ 𝑢′ as a special case of
the mates correspondence (see Definition B.3.3). Argue that the transposing equivalence of Proposition
4.1.1 is natural with respect to precomposing with a 2-cell 𝛼∶ 𝑓 ′ ⇒ 𝑓 or postcomposing with its mate
𝛽∶ 𝑢 ⇒ 𝑢′ (see Corollary 3.5.11) by proving that there is a fibered natural isomorphism over 𝐴 × 𝐵
between the functors:

Hom𝐴(𝑓 , 𝐴) Hom𝐴(𝑓 ′, 𝐴)

Hom𝐵(𝐵, 𝑢) Hom𝐵(𝐵, 𝑢′)

𝛼∗

∼𝑢(−)⋅𝜂 ∼ 𝑢′(−)⋅𝜂′

𝛽∗
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4.2. ∞-Categories of Cones

The comma∞-category construction can be used to define the∞-category of cones over or under a
given diagram. Since these∞-categories feature centrally in the description of the universal properties
of limits and colimits, we present a few equivalent models for this construction.

A cone over a diagram 𝑑∶ 1 → 𝐴𝐽 with summit 𝑎 ∶ 1 → 𝐴 is a natural transformation 𝜆Δ𝑎 ⇒ 𝑑,
where Δ∶ 𝐴 → 𝐴𝐽 is the constant diagram functor of Definition 2.3.1. This motivates the following
definition.

4.2.1. Definition (the∞-category of cones). Let 𝑑∶ 1 → 𝐴𝐽 be a 𝐽-shaped diagram in an∞-category
𝐴. The∞-category of cones over 𝑑 is the comma∞-category Hom𝐴𝐽(Δ, 𝑑) from the constant diagram
functor Δ to 𝑑, while the∞-category of cones under 𝑑 is the comma∞-category Hom𝐴𝐽(𝑑, Δ).

Hom𝐴𝐽(Δ, 𝑑) Hom𝐴𝐽(𝑑, Δ)

1 𝐴 𝐴 1

𝐴𝐽 𝐴𝐽

𝑝1 𝑝0

𝜙
⇐

𝑝1 𝑝0
𝜙
⇐

𝑑 Δ Δ 𝑑

By replacing the diagram leg of the cospans, Definition 4.2.1 can be modified to allow 𝑑∶ 𝐷 → 𝐴𝐽

to be a family of diagrams. In the universal case, where 𝑑 is the identity functor id𝐴𝐽 ∶ 𝐴𝐽 → 𝐴𝐽, this
defines the∞-category Hom𝐴𝐽(Δ,𝐴𝐽) of cones over or under any diagram of shape 𝐽.

In the case where the indexing shape 𝐽 is a simplicial set (as opposed to an∞-category in a cartesian
closed ∞-cosmos), there is another model of the ∞-category of cones over or under a diagram that
may be constructed using the simplicial join construction first developed by Ehlers and Porter [40].
The equivalence of models is a consequence of the equivalence between the join operation and the
so-called “fat join” introduced by Joyal [63, §9]. As Lemma 4.2.3 reveals, a particular instance of the fat
join construction gives the shape of the cones appearing in Definition 4.2.1. We now introduce these
notions.

4.2.2. Definition (fat join). The fat join of simplicial sets 𝐼 and 𝐽 is the simplicial set constructed by
the following pushout:

(𝐼 × 𝐽) ⨿ (𝐼 × 𝐽) 𝐼 ⨿ 𝐽

𝐼 × 𝟚 × 𝐽 𝐼 ⋄ 𝐽

𝜋𝐼⨿𝜋𝐽

from which it follows that
(𝐼 ⋄ 𝐽)𝑛 ≔ 𝐼𝑛 ⨿ ( �

[𝑛]↠[1]
𝐼𝑛 × 𝐽𝑛) ⨿ 𝐽𝑛.

Note there is a natural map 𝐼 ⋄ 𝐽 ↠ 𝟚 induced by the projection 𝜋∶ 𝐼 × 𝟚 × 𝐽 ↠ 𝟚 so that 𝐼 is the fiber
over 0 and 𝐽 is the fiber over 1:

𝐼 ⨿ 𝐽 𝐼 ⋄ 𝐽

𝟙 + 𝟙 𝟚(0,1)
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The∞-categories of cones over or under any 𝐽-shaped diagram can be re-described as follows.

4.2.3. Lemma. For any simplicial set 𝐽 and∞-category 𝐴 in an∞-cosmos𝒦, we have natural isomorphisms
Hom𝐴𝐽(Δ,𝐴𝐽) ≅ 𝐴𝟙⋄𝐽 and Hom𝐴𝐽(𝐴𝐽, Δ) ≅ 𝐴𝐽⋄𝟙.

Proof. The simplicial cotensor 𝐴(−) ∶ 𝑠𝒮𝑒𝑡op → 𝒦 carries the pushout of Definition 4.2.2 to the
pullback squares that define the left and right representations of Δ∶ 𝐴 → 𝐴𝐽 as a comma∞-category:

𝐴𝟙⋄𝐽 (𝐴𝐽)𝟚 𝐴𝐽⋄𝟙 (𝐴𝐽)𝟚

𝐴𝐽 × 𝐴 𝐴𝐽 × 𝐴𝐽 𝐴 × 𝐴𝐽 𝐴𝐽 × 𝐴𝐽

(𝑝1,𝑝0) (𝑝1,𝑝0)

id×Δ Δ×id

�

4.2.4. Definition (join, D.2.6). The join of simplicial sets 𝐼 and 𝐽 is the simplicial set 𝐼 ⋆ 𝐽

𝐼 ⨿ 𝐽 𝐼 ⋆ 𝐽

𝟙 + 𝟙 𝟚(0,1)

with (𝐼 ⋆ 𝐽)𝑛 ∶= 𝐼𝑛 ⨿ ( �
0≤𝑘<𝑛

𝐼𝑛−𝑘−1 × 𝐽𝑘) ⨿ 𝐽𝑛

and with the vertices of these 𝑛-simplices oriented so that there is a canonical map 𝐼 ⋆ 𝐽 → 𝟚 so that 𝐼
is the fiber over 0 and 𝐽 is the fiber over 1 (see Definitions D.2.2 and D.2.6 or the original sources [40]
and [61, §3] for more details).

The join functor − ⋆ 𝐽 ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 preserves connected colimits but not the initial object or
other coproducts, but cocontinuity is achieved by replacing the codomain by the slice category under 𝐽:
the functor − ⋆ 𝐽∶ 𝑠𝒮𝑒𝑡 → 𝐽/𝑠𝒮𝑒𝑡 preserves all colimits (see Lemma D.2.7). Contextualized in this way,
the join admits a right adjoint, defined by Joyal’s slice construction, which carries a simplicial map
𝑓 ∶ 𝐽 → 𝑋 to a simplicial set traditionally denoted by 𝑋/𝑓.

4.2.5. Proposition (join ⊣ slice adjunction). The join functors admit right adjoints

𝑠𝒮𝑒𝑡 𝐼/𝑠𝒮𝑒𝑡 𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡

𝐼⋆−

⊥
−/−

−⋆𝐽

⊥
−/−

defined by the natural bijections

� Δ[𝑛] ℎ/𝑋 � ≔

⎧⎪⎪
⎨⎪⎪⎩

𝐼

𝐼 ⋆ Δ[𝑛] 𝑋
ℎ

⎫⎪⎪
⎬⎪⎪
⎭

and � Δ[𝑛] 𝑋/𝑘 � ≔

⎧⎪⎪
⎨⎪⎪⎩

𝐽

Δ[𝑛] ⋆ 𝐽 𝑋
𝑘

⎫⎪⎪
⎬⎪⎪
⎭

.

Proof. The simplicial set𝑋/𝑘 is defined to have 𝑛-simplices corresponding to maps Δ[𝑛]⋆ 𝐽 → 𝑋
under 𝐽, with the right action by the simplicial operators [𝑚] → [𝑛] given by precomposition with
Δ[𝑚] → Δ[𝑛]. Since the join functor − ⋆ 𝐽∶ 𝑠𝒮𝑒𝑡 → 𝐽/𝑠𝒮𝑒𝑡 preserves colimits, this extends to a
bijection between maps 𝐼 → 𝑋/𝑘 and maps 𝐼 ⋆𝐽 → 𝑋 under 𝐽 that is natural in 𝐼 and in 𝑘 ∶ 𝐽 → 𝑋. �
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4.2.6. Notation. For any simplicial set 𝐽, we write
𝐽 ≔ 𝟙 ⋆ 𝐽 and 𝐽 ≔ 𝐽 ⋆ 𝟙

and write ⊤ for the cone vertex of 𝐽 and ⊥ for the cone vertex of 𝐽 contributed by the terminal
simplicial set 𝟙. These simplicial sets are equipped with canonical inclusions

𝐽 𝐽 𝐽

As the terminology suggests, the join and fat join constructions define equivalent indexing shapes,
in the following sense.

4.2.7. Proposition (join vs fat join). For any simplicial sets 𝐼 and 𝐽 and any∞-category𝐴, there is a natural
equivalence

𝐴𝐼⋆𝐽 𝐴𝐼⋄𝐽

𝐴𝐼⨿𝐽

∼

res res

Proof. There is a canonical map of simplicial sets

(𝐼 × 𝐽) ⨿ (𝐼 × 𝐽) 𝐼 ⨿ 𝐽

𝐼 × 𝟚 × 𝐽 𝐼 ⋄ 𝐽 𝐼 ⋆ 𝐽

𝟚

𝜋𝐼⨿𝜋𝐽

that commutes with the inclusions of the fibers 𝐼 ⨿ 𝐽 and lies over the projections to 𝟚. An 𝑛-simplex
in 𝐼 ⋄ 𝐽 that does not lie in either fiber is given by the data of a triple (𝛼 ∶ [𝑛] ↠ [1], 𝜎 ∈ 𝐼𝑛, 𝜏 ∈ 𝐽𝑛).
The dashed map carries this simplex to the pair (𝜎|{0,…,𝑘} ∈ 𝐼𝑘, 𝜏|{𝑘+1,…,𝑛} ∈ 𝐽𝑛−𝑘−1) representing an

𝑛-simplex of 𝐼 ⋆ 𝐽, where 𝑘 ∈ [𝑛] is the maximal vertex in 𝛼−1(0). Proposition D.6.3, or Lurie’s
[78, 4.2.1.2], prove that this map induces a natural equivalence 𝑄𝐼⋆𝐽 ∼ 𝑄𝐼⋄𝐽 of quasi-categories over
𝑄𝐽 × 𝑄𝐼. Taking 𝑄 to be the functor space Fun(𝑋,𝐴) proves the claimed equivalence for general
∞-categories. �

4.2.8. Corollary. For any simplicial set 𝐽 and∞-category 𝐴, there are comma squares

𝐴𝐽 𝐴𝐽

𝐴𝐽 𝐴 𝐴 𝐴𝐽

𝐴𝐽 𝐴𝐽

res ev⊤

𝜙
⇐

ev⊥ res

𝜙
⇐

Δ Δ

(4.2.9)
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which pull back over a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 to define equivalent models for the∞-categories of cones
over or under 𝑑.

Hom𝐴𝐽(Δ, 𝑑) ≃ 𝐴/𝑑 𝐴𝐽 Hom𝐴𝐽(𝑑, Δ) ≃ 𝑑/𝐴 𝐴𝐽

𝐷 × 𝐴 𝐴𝐽 × 𝐴 𝐴 × 𝐷 𝐴 × 𝐴𝐽

res res

𝑑×id id×𝑑

Proof. Proposition 4.2.7 constructs fibered equivalences 𝐴𝟙⋄𝐽 ≃𝐴𝐽×𝐴 𝐴𝐽 and 𝐴𝐽⋄𝟙 ≃𝐴×𝐴𝐽 𝐴𝐽 . By
Lemma 4.2.3, 𝐴𝟙⋄𝐽 and 𝐴𝐽⋄𝟙 are comma∞-categories. Thus, Proposition 3.4.11 implies that the fibered
equivalences equip𝐴𝐽 and𝐴𝐽 with comma cones, satisfying the weak universal property of Proposition
3.4.6. The natural transformations in (4.2.9) are represented by the horizontal composites

𝐽 ⨿ 𝐽 𝟙 ⨿ 𝐽 𝐽 ⨿ 𝐽 𝐽 ⨿ 𝟙

𝐽 × 𝟚 𝟙 ⋄ 𝐽 𝐽 𝐽 × 𝟚 𝐽 ⋄ 𝟙 𝐽

𝟚 𝟚
which yield natural transformations upon cotensoring into 𝐴:

𝐴𝐽 (𝐴𝐽)𝟚 𝐴𝐽 𝐴𝐽 (𝐴𝐽)𝟚 𝐴𝐽

Δ ev⊤

res

𝑝0

𝑝1
⇓𝜅

Δ ev⊥

res

𝑝0

𝑝1
⇓𝜅

The fibered equivalences pullback to define equivalent models for the∞-categories of cones over or
under a fixed family of diagrams 𝑑. �

4.2.10. Warning. In the statement of Corollary 4.2.8 and elsewhere it is convenient to borrow Joyal’s
slice notation for the fibers of the restriction maps over a diagram 𝑑∶ 1 → 𝐴𝐽. This usage is justified by

Proposition D.6.4, which proves that 𝐴/𝑑 ≃𝐴 Hom𝐴𝐽(Δ, 𝑑) and 𝑑/𝐴 ≃𝐴 Hom𝐴𝐽(𝑑, Δ) in the∞-cosmos
of quasi-categories. Note, however, that in the∞-cosmos of quasi-categories the strict fibers are not
isomorphic to Joyal’s slice quasi-categories (see Exercise 4.2.ii) but are merely equivalent to them.

Exercises.

4.2.i. Exercise. Compute Δ[𝑛] ⋆ Δ[𝑚] and Δ[𝑛] ⋄ Δ[𝑚] and define a section

Δ[𝑛] ⋆ Δ[𝑚] → Δ[𝑛] ⋄ Δ[𝑚]
to the map constructed in the proof of Proposition 4.2.7.

4.2.ii. Exercise. Compute the fiber of 𝐴𝐽 ↠ 𝐴𝐽 over 𝑑∶ 1 → 𝐴𝐽 in the∞-cosmos of quasi-categories
and prove that this quasi-category is not isomorphic to 𝐴/𝑑.
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4.2.iii. Exercise ([63, 3.5]). The category of simplicial sets, as a category of presheaves, is locally
cartesian closed, meaning that the pullback functor associated to any map 𝑓 ∶ 𝑈 → 𝑉 has a right
adjointΠ𝑓 called the dependent product or pushforward.

𝑠𝒮𝑒𝑡/𝑉 𝑠𝒮𝑒𝑡/𝑈
𝑓 ∗

⊥
Π𝑓

Show that the join 𝐼 ⋆ 𝐽 can be defined as an object of 𝑠𝒮𝑒𝑡/𝟚 as the dependent product of !+! ∶ 𝐼 + 𝐽 →
1 + 1 along 1 + 1 ↪ 𝟚.

4.3. The Universal Property of Limits and Colimits

To describe the universal properties of limits and colimits we return to the general context of
Definition 2.3.1, simultaneously considering diagrams valued in an ∞-category that are indexed by
either a simplicial set or another ∞-category, in the case where the ambient ∞-cosmos is cartesian
closed. As was the case for Proposition 4.1.1, Theorem 3.5.8 specializes immediately to the setting of
Definition 2.3.8 to prove:

4.3.1. Proposition (co/limits represent cones). A family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 admits a limit if and
only if the∞-category of cones Hom𝐴𝐽(Δ, 𝑑) over 𝑑 is right representable

Hom𝐴𝐽(Δ, 𝑑) ≃𝐷×𝐴 Hom𝐴(𝐴, ℓ),
in which case the representing functor ℓ ∶ 𝐷 → 𝐴 defines the limit functor. Dually, a family of diagrams
𝑑∶ 𝐷 → 𝐴𝐽 admits a colimit if and only if the∞-category of cones Hom𝐴𝐽(𝑑, Δ) under 𝑑 is left representable

Hom𝐴𝐽(𝑑, Δ) ≃𝐴×𝐷 Hom𝐴(𝑐, 𝐴),
in which case the representing functor 𝑐 ∶ 𝐷 → 𝐴 defines the colimit functor. �

Corollary 3.6.10 specializes to tell us that such representations can be encoded by terminal or initial
elements, a result which is easiest to interpret for a single diagram rather than a family of diagrams.

4.3.2. Proposition (limits as terminal cones). A diagram 𝑑∶ 1 → 𝐴𝐽 of shape 𝐽 in an∞-category 𝐴
(i) admits a limit if and only if the∞-category Hom𝐴𝐽(Δ, 𝑑) of cones over 𝑑 admits a terminal element,

in which case the terminal element defines a limit cone, and
(ii) admits a colimit if and only if the∞-category Hom𝐴𝐽(𝑑, Δ) of cones under 𝑑 admits an initial element,

in which case the initial element defines the colimit cone. �

The uniqueness of limit and colimit cones up to isomorphism follows by applying Lemma 2.2.3.
Alternatively, this can be proven from the absolute lifting diagram characterization (see Exercise 2.3.vi).

4.3.3. Remark. Corollary 3.6.10 applies equally to say that a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 admits
a limit just when Hom𝐴𝐽(Δ, 𝑑) admits a terminal element over 𝐷 and admits a colimit just when
Hom𝐴𝐽(𝑑, Δ) admits an initial element over 𝐷.

For aesthetic reasons, we state the following two results for diagrams indexed by simplicial sets so
that we may deploy more elegant notation that may be easier to interpret. As Exercise 4.3.ii reveals,
there is no mathematical reason to restrict to this special case.³

³Indeed, the proof in fact uses the codomain projection functor 𝑝1 ∶ Hom𝐴𝐽(Δ,𝐴𝐽) ↠ 𝐴𝐽 in place of the equivalent
isofibration res ∶ 𝐴𝐽 ↠ 𝐴𝐽, and thus the plainer argument applies equally in the case of diagrams indexed by∞-categories
𝐽 in cartesian closed∞-cosmoi that may or may not have a join operation available for indexing shapes.
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4.3.4. Proposition. An∞-category 𝐴 admits a limit of a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 indexed by a
simplicial set 𝐽 if and only if there exists an absolute right lifting of 𝑑 through the restriction functor

𝐴𝐽

𝐷 𝐴𝐽
⇓𝜖

res

𝑑

ran𝑑

When these equivalent conditions hold, 𝜖 is necessarily an isomorphism and may be chosen to be the identity.

Proof. By Definition 2.3.8, a family of diagrams 𝑑 admits a limit if and only if it admits an absolute
right lifting through Δ∶ 𝐴 → 𝐴𝐽. By Proposition 3.6.14, this absolute lifting exists if and only if
𝑑 admits an absolute right lifting through codomain projection functor 𝑝1 ∶ Hom𝐴𝐽(Δ,𝐴𝐽) ↠ 𝐴𝐽,
in which case the natural isomorphism of this latter absolute right lifting diagram is invertible. By
Corollary 4.2.8, the restriction functor res ∶ 𝐴𝐽 ↠ 𝐴𝐽 is equivalent to this codomain projection functor,
so Exercise 3.5.ii implies that absolute right liftings of 𝑑 through 𝑝1 are equivalent to absolute right
liftings of 𝑑 through res. If this absolute lifting diagram is inhabited by an invertible 2-cell, the
isomorphism lifting property of the isofibration proven in Proposition 1.4.9 can be used to replace
the functor ran ∶ 𝐷 → 𝐴𝐽 with an isomorphic functor, yielding a strictly commutative triangle that
remains an absolute right lifting diagram by Exercise 2.3.vi. �

Proposition 4.3.4 specializes to give a structured characterization of those∞-categories that admit
all limits or all colimits of a particular shape (see Definition 2.3.2).

4.3.5. Corollary. An∞-category𝐴 admits all limits indexed by a simplicial set 𝐽 if and only if the restriction
functor below-left admits a fibered right adjoint over 𝐴𝐽, and 𝐴 admits all colimits indexed by a simplicial set 𝐽
if and only if the restriction functor below-right admits a fibered left adjoint over 𝐴𝐽.

𝐴𝐽 𝐴𝐽 𝐴𝐽 𝐴𝐽
res

⊥
ran res

⊥
lan

Proof. By Proposition 4.3.4 and Lemma 2.3.7,𝐴 admits all 𝐽-shaped limits if and only if the functor
res ∶ 𝐴𝐽 ↠ 𝐴𝐽 admits a right adjoint right inverse. Since the restriction functor is an isofibration,
Lemma 3.6.9 applies to rectify the right adjoint right inverse into a fibered adjunction. �

We now apply the general theory we have developed to particular indexing shapes.

4.3.6. Definition (tensors and cotensors). Let 𝐾 be a simplicial set and let 𝑎 ∶ 1 → 𝐴 be an element of
an∞-category 𝐴. The tensor 𝐾 ⊗ 𝑎 of 𝑎 by 𝐾 is the colimit of the constant 𝐾-indexed diagram valued
at 𝑎, while the cotensor 𝑎𝐾 of 𝑎 by 𝐾 is the limit of the same diagram. Thus, the tensor and cotensor
functors can be defined by the absolute lifting diagrams:

𝐴 𝐴

𝐴 𝐴𝐾 𝐴 𝐴𝐾
⇑𝜆

Δ
⇓𝜌

Δ

Δ

𝐾⊗−

Δ

(−)𝐾

By Theorem 3.5.3, these absolute lifting diagrams define fibered equivalences

Hom𝐴(𝐾 ⊗ −,𝐴) ≃𝐴×𝐴 Hom𝐴𝐾(Δ, Δ) ≃𝐴×𝐴 Hom𝐴(𝐴, (−)𝐾)
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which compose to define the fibered equivalence encoding an adjunction between the tensor and
cotensor functors:

𝐴 𝐴
𝐾⊗−
⊥
(−)𝐾

By Corollary 4.1.3, the fibered equivalences that express the universal properties of tensors and cotensors
pullback over elements 𝑎, 𝑥 ∶ 1 → 𝐴 to define equivalences of mapping spaces:

Hom𝐴(𝐾 ⊗ 𝑎, 𝑥) ≃ Hom𝐴𝐾(Δ𝑎, Δ𝑥) ≅ Hom𝐴(𝑎, 𝑥)𝐾 and

Hom𝐴(𝑥, 𝑎𝐾) ≃ Hom𝐴𝐾(Δ𝑥, Δ𝑎) ≅ Hom𝐴(𝑥, 𝑎)𝐾.

4.3.7. Definition (span and cospan). A span in an∞-category𝐴 is a diagram indexed by the simplicial
set ≔ Λ0[2] formed by gluing two 1-simplices along their domain vertices. Dually, a cospan in 𝐴
is a diagram indexed by the simplicial set ≔ Λ2[2] formed by gluing two 1-simplices along their
codomain vertices. Cospans and spans in an∞-category 𝐴 may be defined by gluing together a pair of
arrows along their common codomains or domains, respectively:

𝑋 𝑋

𝐴 𝐴𝟚 𝐴 𝐴𝟚

𝐴𝟚 𝐴 𝐴𝟚 𝐴

𝑓

𝑔

𝑔∨𝑓
ℎ

𝑘

𝑘∧ℎ

𝑝1 𝑝0

𝑝1 𝑝0

4.3.8. Definition (pushout and pullback). A pushout in an∞-category 𝐴 is a colimit indexed by the
simplicial set , while a pullback in an∞-category 𝐴 is a limit indexed by the simplicial set . Cones
over diagrams of shape or cones under diagrams of shape define commutative squares, diagrams
of shape

⊡ ≔ ≅ 𝟚 × 𝟚 ≅ .
A pullback square in an∞-category 𝐴 is an element of 𝐴⊡ that defines an absolute right lifting of

its underlying cospan:

𝐴⊡ 𝐴⊡

1 𝐴 1 𝐴

=

res

=

res

When 𝐴 admits all pullbacks, the pullback squares can be characterized as those elements of 𝐴⊡ at
which the component of the unit of the adjunction res ⊣ ran of Corollary 4.3.5 is an isomorphism
(see Exercise 4.3.v). Dually, a pushout square in 𝐴 is an element of 𝐴⊡ that defines an absolute left
lifting of its underlying span, i.e., an element at which the component of the counit of the adjunction
lan ⊣ res is an isomorphism. The notion of a family𝑋 → 𝐴⊡ of pushout or pullback squares is defined
analogously.

Pullback squares may be characterized by absolute lifting diagrams, which proves useful for estab-
lishing their basic calculus. For this, we make use of the following lemma.
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4.3.9. Lemma. Consider a family of arrows 𝑓 ∶ 𝑋 → 𝐴𝟚 representing a natural transformation 𝑋 𝐴
𝑏

𝑎
⇓𝑓 .

Then there is a span

𝐴/𝑓

Hom𝐴(𝐴, 𝑏) Hom𝐴(𝐴, 𝑎)

𝑋 × 𝐴

∼𝑝01 𝑝02

∼

𝑓∗

(𝑝1,𝑝0) (𝑝1,𝑝0)

so that any section to the trivial fibration 𝑝01 composes with 𝑝02 to define a functor 𝑓∗ representing postcomposition
with 𝑓, and every functor in the fibered isomorphism class of 𝑓∗ arises this way.⁴ Moreover, 𝑓 represents a natural
isomorphism 𝑓 ∶ 𝑎 ≅ 𝑏 if and only if the isofibration 𝑝02 is a trivial fibration.

Proof. By forming the pullbacks of each column, the span of cospans below defines the objects
and maps of the span in the statement:

𝐴𝟚 𝐴𝟛 𝐴𝟚

𝐴 𝐴

𝐴 × 𝐴 𝐴𝟚 × 𝐴 𝐴 × 𝐴

𝑋 × 𝐴 𝑋 × 𝐴 𝑋 × 𝐴

(𝑝1,𝑝0)

𝑝01 𝑝02

(𝑝12,𝑝0)

∼

(𝑝1,𝑝0)

𝑝0×id 𝑝1×id

𝑏×id 𝑓 ×id 𝑎×id

Note that the maps to the pullbacks in the tops squares respectively define a trivial fibration and
an isofibration. Thus, by Proposition C.1.12, the induced map 𝑝01 ∶ 𝐴/𝑓 ∼ Hom𝐴(𝐴, 𝑏) is a trivial
fibration while the induced map 𝑝02 ∶ 𝐴/𝑓 ↠ Hom𝐴(𝐴, 𝑎) is an isofibration.

In particular, from the pullbacks below-left, we see that sections to the trivial fibration 𝑝01 corre-
spond to maps Hom𝐴(𝐴, 𝑏) → 𝐴𝟛 that extend the composable pair of arrows 𝜙∶ Hom𝐴(𝐴, 𝑏) → 𝐴𝟚

and 𝑓 𝑝1 ∶ Hom𝐴(𝐴, 𝑏) → 𝐴𝟚 to a 2-simplex in Fun(Hom𝐴(𝐴, 𝑏), 𝐴).

𝐴/𝑓 𝐴𝟛

Hom𝐴(𝐴, 𝑏) 𝐴 𝐴𝟚

𝑋 𝐴𝟚 𝐴

∼𝑝01

∼

𝑝1 𝑝12

𝑝01

𝑝1

𝑓 𝑝0

𝑏𝑝1

𝑝0 𝑎𝑝1

𝑓 𝑝1𝜙 ∈ hFun(Hom𝐴(𝐴, 𝑏), 𝐴)

⁴Corollary 3.5.11 defines a bijection between natural transformations 𝛼∶ 𝑏 ⇒ 𝑎 in the homotopy 2-category and
functors 𝛼∗ ∶ Hom𝐴(𝐴, 𝑏) → Hom𝐴(𝐴, 𝑎) up to fibered isomorphism. Here we slightly alter our notation because we are
starting from a family of arrows 𝑓 ∶ 𝑋 → 𝐴𝟚 rather than from the natural transformation represented by that family.
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Similarly, the pullback

Fun𝑋×𝐴(Hom𝐴(𝐴, 𝑏),Hom𝐴(𝐴, 𝑎)) Fun(Hom𝐴(𝐴, 𝑏), 𝐴)𝟚

𝟙 Fun(Hom𝐴(𝐴, 𝑏), 𝐴) × Fun(Hom𝐴(𝐴, 𝑏), 𝐴)

(𝑝1,𝑝0)

(𝑝1𝑎,𝑝0)

shows that functors 𝑓∗ ∶ Hom𝐴(𝐴, 𝑏) → Hom𝐴(𝐴, 𝑎) correspond to choices of representatives 𝑓 𝑝1 ⋅
𝜙 ∶ Hom𝐴(𝐴, 𝑏) → 𝐴𝟚 for the composite arrow (compare with the proof of Corollary 3.5.11). Thus,
every section defines a map in the correct fibered isomorphism class of functors, and conversely,
since each triple of arrows that define a commutative diagram in hFun(Hom𝐴(𝐴, 𝑏), 𝐴) bound some
2-simplex in Fun(Hom𝐴(𝐴, 𝑏), 𝐴) (see Lemma 1.1.12) every representing functor arises in this way.

Finally, by Exercise 3.6.ii and Corollary 3.5.11, 𝑓 ∶ 𝑏 ⇒ 𝑎 is an isomorphism if and only if the functor
𝑓∗ ∶ Hom𝐴(𝐴, 𝑏) → Hom𝐴(𝐴, 𝑎) is a fibered equivalence. By the 2-of-3 property, it follows that 𝑓 is an
isomorphism if and only if 𝑝02 is a trivial fibration. �

4.3.10. Lemma (pullbacks as absolute lifting diagrams). A commutative square in an∞-category 𝐴 is a
pullback square if and only if the induced natural transformation (id𝑎, 𝑣) is an absolute right lifting diagram

𝑑 𝑏 Hom𝐴(𝐴, 𝑏)

𝑐 𝑎 1 Hom𝐴(𝐴, 𝑎)

𝑢

𝑣 𝑤 𝑓 ⇓(id𝑎,𝑣)
𝑓∗

𝑔 𝑔

𝑢

The statement requires some explanation. A commutative square 𝑠 ∶ 1 → 𝐴⊡ defines an element
of Fun(1, 𝐴)⊡, the data of which is given by the four vertices 𝑑, 𝑏, 𝑐, 𝑎 ∶ 1 → 𝐴 and five 1-simplices
𝑢, 𝑣, 𝑓 , 𝑔, 𝑤∶ 1 → 𝐴𝟚 in the underlying quasi-category 𝐴0 ≔ Fun(1, 𝐴) of 𝐴, displayed above-
left, together with a pair of unnamed 2-simplices that witness commutativity 𝑓 𝑢 = 𝑤 = 𝑔𝑣 in
h𝐴 ≔ hFun(1, 𝐴). By Proposition 3.4.7, the composite 𝑓∗𝑢 is isomorphic to 𝑓 𝑢. By 2-cell induction,
the natural transformation (id𝑎, 𝑣) ∶ 𝑓 𝑢 ⇒ 𝑔 displayed above-right may be constructed by specifying
its domain and codomain components, the former of which we take to be 𝑣∶ 𝑑 ⇒ 𝑐 and the latter of
which we take to be id𝑎.

Proof. By Corollary 4.2.8, the fiber of the restriction functor

𝐴⊡
𝑔∨𝑓 𝐴⊡

1 𝐴

res

𝑔∨𝑓

is equivalent to the∞-category of cones over the cospan diagram 𝑔 ∨ 𝑓. By Proposition 4.3.2, to show
that the commutative square defines a pullback diagram is to show that (𝑣, 𝑓 , 𝑢, 𝑔) ∶ 1 → 𝐴⊡

𝑔∨𝑓 defines

a terminal element. Similarly, by Corollary 3.6.10, the pair (𝑢, (id𝑎, 𝑣)) defines an absolute right lifting
diagram if and only if it represents a terminal element in the comma∞-category HomHom𝐴(𝐴,𝑎)(𝑓∗, 𝑔).
We claim that 𝐴⊡

𝑔∨𝑓 and HomHom𝐴(𝐴,𝑎)(𝑓∗, 𝑔) are equivalent via maps that identify these elements,

which proves the biconditional.
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To see this, note that the simplicial square ⊡ can be formed by gluing two 2-simplices along their
diagonal edge, giving rise to the pullback below-left:

𝐴⊡ 𝐴𝟛 HomHom𝐴(𝐴,𝑎)(𝑓∗,Hom𝐴(𝐴, 𝑎)) Hom𝐴(𝐴, 𝑎)𝟚

𝐴𝟛 𝐴𝟚 Hom𝐴(𝐴, 𝑏) Hom𝐴(𝐴, 𝑎)

𝑝02 𝑝0

𝑝02 𝑓∗

We argue that maps in the cospan whose pullback defines the comma∞-category displayed above-right
are each equivalent to pullbacks of the functor 𝑝02 ∶ 𝐴𝟛 ↠ 𝐴𝟚 to suitable fibers. By Lemma 4.3.9, the
map 𝑝02 ∶ 𝐴𝟛 ↠ 𝐴𝟚 pulls back to a map equivalent to 𝑓∗ on the fibers over 𝑓 and 𝑎 respectively, so it
remains to consider the map 𝑝0.

By applying (−)𝟚 to the pullback diagram that defines Hom𝐴(𝐴, 𝑎) we obtain a pullback square
that factors as a composite of two pullbacks:

• 𝐴𝟛 ≅ 𝐴𝟚⋆𝟙

Hom𝐴(𝐴, 𝑎)𝟚 𝐴𝟚⋄𝟙 𝐴𝟚×𝟚

1 𝐴 𝐴𝟚

∼ ∼

𝑝2 𝑝𝟚1
𝑎 Δ

Due to the equivalence 𝐴𝟚⋆𝟙 ≃ 𝐴𝟚⋄𝟙 of Proposition 4.2.7, the left-hand pullback square shows that
Hom𝐴(𝐴, 𝑎)𝟚 is equivalent to the fiber of 𝑝2 ∶ 𝐴𝟛 ↠ 𝐴 along 𝑎 ∶ 1 → 𝐴. Modulo this equivalence, the
domain projection map 𝑝0 ∶ Hom𝐴(𝐴, 𝑎)𝟚 ↠ Hom𝐴(𝐴, 𝑎) is equivalent to the map induced from

𝐴𝟛 𝐴𝟚

𝐴

𝑝02

𝑝2 𝑝1

on fibers over 𝑎 ∶ 1 → 𝐴. The codomain projection 𝑝1 ∶ Hom𝐴(𝐴, 𝑎)𝟚 ↠ Hom𝐴(𝐴, 𝑎) is similarly
equivalent to the pullback of the fibered projection map 𝑝12 ∶ 𝐴𝟛 ↠ 𝐴𝟚 over 𝑎 ∶ 1 → 𝐴.

Putting this together, the comma∞-category HomHom𝐴(𝐴,𝑎)(𝑓∗,Hom𝐴(𝐴, 𝑎)) is equivalent to the
limit of the diagram:

• 𝐴⊡ 𝐴𝟛 𝐴𝟚

𝐴𝟛 𝐴𝟚

1 𝐴𝟚

𝑝02

𝑝12

𝑝12
𝑝02

𝑓

The codomain projection 𝑝1 ∶ HomHom𝐴(𝐴,𝑎)(𝑓∗,Hom𝐴(𝐴, 𝑎)) ↠ Hom𝐴(𝐴, 𝑎) is the pullback of the

top-horizontal composite in the above diagram along the inclusion Hom𝐴(𝐴, 𝑎) → 𝐴𝟚. So the comma
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∞-categoryHomHom𝐴(𝐴,𝑎)(𝑓∗, 𝑔) is equivalent to the limit below-left, which rearranges into the pullback

below-right that defines the fiber 𝐴⊡
𝑔∨𝑓, proving the claimed equivalence:

• • 1

• 𝐴⊡ 𝐴𝟛 𝐴𝟚

𝐴𝟛 𝐴𝟚

1 𝐴𝟚

𝑔

𝑝02

𝑝12

𝑝12
𝑝02

𝑓

𝐴⊡
𝑔∨𝑓 𝐴⊡

1 𝐴

res

𝑔∨𝑓

�

There is a nonidentity automorphism of the simplicial set 𝟚 × 𝟚, which induces a “transposition”
automorphism of𝐴⊡. By symmetry, a commutative square in𝐴 is a pullback if and only if its transposed
square is a pullback. This gives a dual form of Lemma 4.3.10 with the roles of 𝑓 and 𝑔 and of 𝑢 and 𝑣
interchanged. As a corollary, we can easily prove that pullback squares compose both “vertically” and
“horizontally” and can be cancelled from the “right” and “bottom.”

4.3.11. Proposition (composition and cancelation of pullback squares). Given a composable pair of
commutative squares in 𝐴 and their composite rectangle defined via the equivalence 𝐴𝟛×𝟚 ≃ 𝐴⊡ ×

𝐴𝟚
𝐴⊡

𝑝 𝑑 𝑏

𝑒 𝑐 𝑎

𝑥

𝑦 𝑧

𝑢

𝑣 𝑤 𝑓

ℎ 𝑔

if the right-hand square is a pullback, then the left-hand square is a pullback if and only if the composite rectangle
is a pullback.

Proof. By Lemma 4.3.10, we are given an absolute right lifting diagram

Hom𝐴(𝐴, 𝑐)

1 Hom𝐴(𝐴, 𝑎)
⇓(id𝑎,𝑢)

𝑔∗

𝑓

𝑣

By Lemma 2.4.1, the composite diagram

Hom𝐴(𝐴, 𝑒)

Hom𝐴(𝐴, 𝑐)

1 Hom𝐴(𝐴, 𝑎)

⇓(id𝑐,𝑥)
ℎ∗

⇓(id𝑎,𝑢)
𝑔∗

𝑓

𝑣

𝑦
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is an absolute right lifting diagram if and only if the top triangle is an absolute right lifting diagram.
By Lemma 4.3.10, this is exactly what we wanted to show. �

4.3.12. Remark. The result of Proposition 4.3.11 also holds for 𝑋-indexed families of commutative
squares, by which we mean diagrams 𝑋 → 𝐴⊡, or equivalently, elements of Fun(𝑋,𝐴)⊡. The proof is
the same, making use of a generalization of Lemma 4.3.10 which states that an 𝑋-indexed commutative
square valued in an∞-category 𝐴 in an∞-cosmos𝒦 as below-left is a pullback square if and only if
the induced 2-cell (id𝑎, 𝑣) below-right is an absolute right lifting diagram in𝒦/𝑋:

𝑑 𝑏 Hom𝐴(𝐴, 𝑏)

𝑐 𝑎 𝑋 Hom𝐴(𝐴, 𝑎)

𝑋

𝑢

𝑣 𝑤 𝑓 ⇓(id𝑎,𝑣)
𝑓∗

𝑝1
𝑔 𝑔

𝑢

𝑝1

This characterization of𝑋-indexed pullback squares can be proven by re-implementing the construction
given in the proof of Lemma 4.3.10, using comma∞-categories and simplicial limits in the sliced∞-
cosmos𝒦/𝑋, as described in Proposition 1.2.22, in place of the analogous constructions in𝒦. Were it
not for the more complicated notation involved, we would have presented this general proof instead of
its special case above.

Alternatively, this extension can be deduced from the result we prove here. A diagram 𝑠 ∶ 𝑋 → 𝐴⊡

in𝒦 also defines a 𝑋-indexed commutative square in the∞-cosmos𝒦/𝑋 valued in 𝜋∶ 𝐴 × 𝑋 → 𝑋.
This takes the form of a functor (𝑠, id𝑋) ∶ 𝑋 → 𝐴⊡ × 𝑋 over 𝑋. It’s easy to verify that a diagram
valued in 𝜋∶ 𝐴 × 𝑋 ↠ 𝑋 whose component at 𝑋 is the identity has a limit in𝒦/𝑋 if and only if the
𝐴 component of the diagram has a limit in𝒦. Since id𝑋 is the terminal object of𝒦/𝑋, this object is
the∞-category 1 ∈ 𝒦/𝑋, so Lemma 4.3.10 applies in the∞-cosmos𝒦/𝑋 to prove the general case of
𝑋-indexed families of commutative squares in𝒦.

As discussed in Example 2.3.10, terminal and initial elements are special cases of limits and colimits,
respectively, where the diagram shape is empty. For any ∞-category 𝐴, the ∞-category 𝐴∅ ≅ 1
of empty diagrams in 𝐴 is terminal. Thus, there is a unique ∅-indexed diagram in 𝐴. It follows
immediately from the construction of the comma∞-categories in Definition 4.2.1, that both of the
∞-categories of cones over or under the unique empty diagram are isomorphic to 𝐴. In the case of
cones over an empty diagram, the domain-evaluation functor, carrying a cone to its summit, is the
identity on 𝐴, while in the case of cones under the empty diagram, the codomain-evaluation functor,
carrying a cone to its nadir, is the identity on 𝐴. The following characterization of terminal elements
can be deduced as a special case of Proposition 4.3.1, though we find it easier to argue from Proposition
4.1.1.

4.3.13. Proposition. An element 𝑎 ∶ 1 → 𝐴 of an∞-category 𝐴
(i) defines a terminal element of 𝐴 if and only if the domain projection functor 𝑝0 ∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴 is

a trivial fibration, and
(ii) defines an initial element of 𝐴 if and only if the codomain projection functor 𝑝1 ∶ Hom𝐴(𝑎, 𝐴) ↠ 𝐴

is a trivial fibration.
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Proof. Recall from Definition 2.2.1, that an element is terminal if and only if it is right adjoint to
the unique functor

1 𝐴
𝑎
⊥
!

By Proposition 4.1.1, ! ⊣ 𝑎 if and only if there is an equivalence Hom1(!, 1) ≃𝐴 Hom𝐴(𝐴, 𝑡). By the
defining pullback (3.4.2) for the comma ∞-category, the left representation of ! ∶ 𝐴 → 1 is 𝐴 itself,
with domain projection functor the identity. So the component of the equivalence Hom𝐴(𝐴, 𝑎) ∼ 𝐴
over 𝐴 must be the domain projection functor 𝑝0 ∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴, and we conclude that 𝑎 is a
terminal element if and only if this isofibration is a trivial fibration. �

4.3.14. Digression (terminal elements of a quasi-category). In the∞-cosmos of quasi-categories, the
domain of the isofibration 𝑝0 ∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴 is equivalent over 𝐴 to the slice quasi-category 𝐴/𝑎,
defined in Proposition 4.2.5 (see Corollary D.6.6). Via this equivalence, Proposition 4.3.13 proves that
𝑎 is terminal if and only if the projection 𝐴/𝑎 ↠ 𝐴 is a trivial fibration in the sense of Definition
1.1.25, which transposes to Joyal’s original definition of a terminal element of a quasi-category. See
Proposition F.1.1 for an expanded discussion.

Exercises.

4.3.i. Exercise (pointwise limits in functor∞-categories). Suppose 𝐴 admits the limit ℓ ∶ 𝐷 → 𝐴 of
a family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 of shape 𝐽. Prove that the diagram∞-category 𝐴𝐾 admits limits of
the corresponding family of 𝐽-shaped diagrams 𝑑𝐾 ∶ 𝐷𝐾 → (𝐴𝐽)𝐾 ≅ (𝐴𝐾)𝐽 defined “pointwise in 𝐾” by
the functor ℓ𝐾 ∶ 𝐷𝐾 → 𝐴𝐾.⁵

4.3.ii. Exercise. State and prove versions of Proposition 4.3.4 and Corollary 4.3.5 that apply to a family
of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 indexed by an∞-category 𝐽 in a cartesian closed∞-cosmos.

4.3.iii. Exercise. Let 𝑎 be an element of an ∞-category 𝐴 and let 𝐾 and 𝐿 be simplicial sets. Prove
that if 𝐴 has tensors and cotensors then these operations are associative in the sense that the elements

𝐾 ⊗ (𝐿 ⊗ 𝑎) ≅ (𝐾 × 𝐿) ⊗ 𝑎 ≅ 𝐿 ⊗ (𝐾 ⊗ 𝑎) and (𝑎𝐿)𝐾 ≅ 𝑎𝐾×𝐿 ≅ (𝑎𝐾)𝐿

are isomorphic.

4.3.iv. Exercise. Prove that if 𝐴 has a terminal element 𝑡 then for any element 𝑎 the mapping space
Hom𝐴(𝑎, 𝑡) is contractible, i.e., is equivalent to the terminal∞-category 1.⁶
4.3.v. Exercise. Suppose𝐴 admits pullbacks and consider a family of commutative squares 𝑑∶ 𝐷 → 𝐴⊡.
Show that the following are equivalent:

(i) The commutative triangle

𝐴⊡

𝐷 𝐴

=

res𝑑

res 𝑑
is an absolute right lifting diagram.

⁵If 𝐾 is an ∞-category in a cartesian closed ∞-cosmos 𝒦 this can be proven directly by arguing in the homotopy
2-category, but another proof applies simultaneously to this case and to the case where 𝐾 is a simplicial set: use the fact
that the cosmological functor (−)𝐾 ∶ 𝒦 → 𝒦 preserves the equivalence of Proposition 4.3.1.

⁶The converse implication holds in∞-cosmoi of (∞, 1)-categories, as argued in the proof of Proposition F.1.1.

119



(ii) The component of the unit of the adjunction res ⊣ ran

𝐷 𝐴⊡ 𝐴⊡

𝐴

𝑑

res
⇓𝜂

ran

is invertible.

4.3.vi. Exercise. Prove that a square in 𝐴 is a pullback if and only if its “transposed” square, defined
by composing with the involution 𝐴⊡ ≅ 𝐴⊡ induced from the automorphism of 𝟚 × 𝟚 that swaps the
“off-diagonal” elements, is a pulllback square.

4.3.vii. Exercise. Show that any∞-category that has pullbacks and a terminal element admits binary
products.

4.4. Pointed and Stable∞-Categories

In this section, we study∞-categories with special exactness properties, admitting certain finite
limit and colimit constructions, which coincide.

4.4.1. Definition (pointed∞-category). An∞-category 𝐴 is pointed if it admits a zero element: an
element ∗ ∶ 1 → 𝐴 that is both initial and terminal.

Recall Lemma 2.2.2, which enumerates the data required to present an initial or terminal element.
To show that an element ∗ ∶ 1 → 𝐴 defines a zero element it suffices to define a pair of natural
transformations 𝜌∶ ∗! ⇒ id𝐴 and 𝜉∶ id𝐴 ⇒ ∗! so that the components 𝜌∗ ∶ ∗ ⇒ ∗ and 𝜉∗ ∶ ∗ ⇒ ∗
are isomorphisms in h𝐴. Here 𝜌 is the counit of the adjunction ∗ ⊣ ! that witnesses the initiality of
the zero element and 𝜉 is the unit of the adjunction ! ⊣ ∗ that witnesses the terminality of the zero
element.

The counit 𝜌 is represented by a functor 𝜌∶ 𝐴 → 𝐴𝟚, whose domain component is constant at
∗ and whose codomain component is id𝐴, that we refer to as the family of points of 𝐴. Dually, the
unit 𝜉 is represented by a functor 𝜉∶ 𝐴 → 𝐴𝟚, whose domain component is id𝐴 and whose codomain
component is constant at ∗, that we refer to as the family of copoints.

4.4.2. Lemma (pointed∞-categories of based elements). If 𝐴 is an∞-category with a terminal element
𝑡 ∶ 1 → 𝐴 then the ∞-category Hom𝐴(𝑡, 𝐴) is pointed, with id𝑡 ∶ 1 → Hom𝐴(𝑡, 𝐴) serving as its zero
element. Moreover all pointed∞-categories arise in this manner.

Proof. If 𝐴 is a pointed ∞-category with zero element ∗ ∶ 1 → 𝐴 then by Proposition 4.3.13,
𝑝1 ∶ Hom𝐴(∗, 𝐴) ∼ 𝐴 defines an equivalence between 𝐴 and an∞-category of the form described in
the statement. Since the codomain projection functor 𝑝1 carries the element id∗ of Hom𝐴(∗, 𝐴) to the
zero element of 𝐴, Lemma 2.2.7 tells us that id∗ must define a zero element of Hom𝐴(∗, 𝐴).

Now suppose only that 𝐴 has a terminal element 𝑡 ∶ 1 → 𝐴. By Corollary 3.5.10, id𝑡 defines an
initial element of Hom𝐴(𝑡, 𝐴), so it remains only to show that this element is also terminal. By Lemma
2.2.2, our task is to define a natural transformation

Hom𝐴(𝑡, 𝐴) Hom𝐴(𝑡, 𝐴)

1!
⇓𝜂

id𝑡
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witnessing the terminality of id𝑡. By Proposition 3.4.6, we may use 2-cell induction to induce 𝜂 from
a pair of natural transformations (𝑝1𝜏, 𝑝0𝜏) satisfying a compatibility condition. Here necessarily
𝑝0𝜏 = id!, since its codomain∞-category is terminal, and we define 𝑝1𝜏 to be 𝜉𝑝1, where 𝜉 is the unit
of the adjunction ! ⊣ 𝑡. The compatibility condition of Proposition 3.4.6(ii) follows from the triangle
equality relation 𝜉𝑡 = id𝑡.

The component 𝜂id𝑡 is induced from the pair of identity 2-cells (𝜉𝑡, id!), so by 2-cell conservativity,
𝜂id𝑡 is invertible. By Lemma 2.2.2, this is enough to witness the terminality of id𝑡. �

Pointed∞-categories permit familiar constructions from homotopy theory. By Definition 4.3.7,
gluing two copies of the family of points 𝜌∶ 𝐴 → 𝐴𝟚 along their codomains defines a family of cospans

�̌� ≔ 𝜌∨𝜌∶ 𝐴 → 𝐴 . Dually, there is a family of spans �̂� ≔ 𝜉∧𝜉∶ 𝐴 → 𝐴 defined by gluing the
family of copoints 𝜉∶ 𝐴 → 𝐴𝟚 to itself along their domains.

4.4.3. Definition (loops and suspension). A pointed∞-category𝐴 admits loops if it admits a limit of
the family of cospans �̌�, in which case the limit functorΩ∶ 𝐴 → 𝐴 is called the loops functor. Dually,

a pointed∞-category 𝐴 admits suspensions if it admits a colimit of the family of spans �̂�, in which
case the colimit functor Σ∶ 𝐴 → 𝐴 is called the suspension functor.

𝐴 𝐴

𝐴 𝐴 𝐴 𝐴
⇓

Δ
⇑

Δ

�̌�

Ω

�̂�

Σ

Importantly, if𝐴 admits loops and suspensions, then the loops and suspension functors are adjoint:

4.4.4. Proposition (the loops-suspension adjunction). If 𝐴 is a pointed∞-category that admits loops and
suspensions, then the loops functor is right adjoint to the suspension functor

𝐴 𝐴
Ω
⊥
Σ

The main idea of the proof is easy to describe. If 𝐴 admits all pullbacks and all pushouts, then
Corollary 4.3.5 supplies adjunctions

𝐴 𝐴⊡ 𝐴
ran
⊥
res

res

⊥
lan

that are fibered over 𝐴 × 𝐴 upon evaluating at the intermediate vertices of the commutative square.
Pulling back along (∗, ∗) ∶ 1 → 𝐴 × 𝐴, pins these vertices at the zero element. Since the zero element
is initial and terminal, the ∞-categories of pullback and pushout diagrams of this form are both
equivalent to 𝐴 and the pulled-back adjoints now coincide with the loops and suspension functors.

The only subtlety in the proof that follows is that we have assumed weaker hypotheses: that 𝐴
admits only loops and suspensions, but perhaps not all pullbacks and pushouts.

121



Proof. The family of cospans �̌� lands in a subobject𝐴∗ of𝐴 defined below-left that is comprised
of those cospans whose source elements are pinned at the zero element ∗ of 𝐴.

𝐴 𝐴

𝐴∗ 𝐴 𝐴∗ Hom𝐴(∗, 𝐴)

1 𝐴 × 𝐴 Hom𝐴(∗, 𝐴) 𝐴

�̌�
�̌�∗

∼𝜌
�̌�∗

∼

𝜌
∼

∼ ∼ 𝑝1

(∗,∗)
∼
𝑝1

From a second construction of 𝐴∗ displayed above-right and the characterization of initiality given
in Proposition 4.3.13, we conclude from the 2-of-3 property of equivalences first that the family of
points 𝜌∶ 𝐴 → 𝐴𝟚 restricts to define an equivalence 𝜌∶ 𝐴 ∼ Hom𝐴(∗, 𝐴) and then that the induced

diagram �̌�∗ ∶ 𝐴 ∼ 𝐴∗ is an equivalence. Dually, the family of spans �̂� ∶ 𝐴 → 𝐴 defines an equivalence

�̂�∗ ∶ 𝐴 ∼ 𝐴∗ when its codomain is restricted to the subobject of spans whose target elements are
pinned at the zero element ∗.

By Proposition 4.3.4, a pointed ∞-category 𝐴 admits loops or admits suspensions if and only if
there exist absolute lifting diagrams as below-left and below-right, respectively

𝐴⊡ 𝐴⊡

𝐴 𝐴 𝐴 𝐴
≅⇓

res
≅⇑

res

�̌�

ran

�̂�

lan

and moreover we may take these natural isomorphisms to be identities. Doing so allows us to define
restricted lifts

𝐴⊡
∗ 𝐴⊡ 𝐴⊡

∗ 𝐴⊡

𝐴 𝐴∗ 𝐴 𝐴 𝐴∗ 𝐴

=

res∗ res

=

res∗ res

�̌�∗

ran∗

�̂�∗

lan∗

which we argue again define absolute right and left lifting diagrams, respectively. The right- and
left-handed arguments are dual, so we focus our attention on the former. By Theorem 3.5.3 the absolute
right lifting diagram defines a fibered equivalence Hom𝐴⊡(𝐴⊡, ran) ≃𝐴×𝐴⊡ Hom𝐴 (res, �̌�), which may
be pulled back along the inclusion of the subobject 𝐴⊡

∗ ↪ 𝐴⊡ of commutative squares in 𝐴 whose
intermediate vertices are pinned at the zero element to yield a fibered equivalence over 𝐴 × 𝐴⊡

∗ . We
claim that these∞-categories pull back to∞-categories that are equivalent to Hom𝐴⊡∗ (𝐴

⊡
∗ , ran∗) and

Hom𝐴∗ (res∗, �̌�∗), respectively.
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To see this, first observe that the universal property of the zero element implies that Hom𝐴(∗, ∗) is
contractible (see Proposition 4.3.13) and therefore the outer square is equivalent to the pullback

1 Hom𝐴(∗, ∗) 𝐴𝟚

1 𝐴 × 𝐴

∼

id∗

∼ (𝑝1,𝑝0)
(∗,∗)

Since the top and bottom faces of the commutative prism are strict pullbacks

(𝐴⊡)𝟚 (𝐴 )𝟚 𝐴𝟚 × 𝐴𝟚

(𝐴⊡
∗ )𝟚 (𝐴∗ )𝟚 1

𝐴⊡ × 𝐴⊡ 𝐴 × 𝐴 𝐴 × 𝐴 × 𝐴 × 𝐴

𝐴⊡
∗ × 𝐴⊡

∗ 𝐴∗ × 𝐴∗ 1

res𝟚

(𝑝1,𝑝0)×(𝑝1,𝑝0)
res𝟚∗

(id∗,id∗)

≃

res× res

res∗ × res∗

(∗,∗,∗,∗)

it follows that the left and middle vertical faces are also pullbacks up to equivalence. We use the latter
of these and the commutative cube

Hom𝐴 (res, �̌�) (𝐴 )𝟚

Hom𝐴∗ (res∗, �̌�∗) (𝐴∗ )𝟚

𝐴 × 𝐴⊡ 𝐴 × 𝐴

𝐴 × 𝐴⊡
∗ 𝐴∗ × 𝐴∗

�̌�×res

�̌�∗×res∗

to conclude that the comma∞-category Hom𝐴 (res, �̌�) pulls back along the inclusion 𝐴⊡
∗ ↪ 𝐴⊡ to

an∞-category that is equivalent to Hom𝐴∗ (res∗, �̌�∗), as claimed. Similarly, from the former pullback
up to equivalence, we conclude that Hom𝐴⊡(𝐴⊡, ran) pulls back to an∞-category that is equivalent to
Hom𝐴⊡∗ (𝐴

⊡
∗ , ran∗).

In this way we obtain fibered equivalences

Hom𝐴⊡∗ (𝐴
⊡
∗ , ran∗) ≃𝐴×𝐴⊡∗ Hom𝐴∗ (res∗, �̌�∗) and Hom𝐴⊡∗ (lan∗, 𝐴⊡

∗ ) ≃𝐴⊡∗ ×𝐴 Hom𝐴∗ (�̂�∗, res∗).

which, by Theorem 3.5.8, encode absolute liftings of �̌�∗ and �̂�∗ through the restriction functors:

𝐴⊡
∗ 𝐴⊡

∗ 𝐴⊡
∗ 𝐴⊡

∗

𝐴 𝐴∗ 𝐴∗ 𝐴∗ 𝐴 𝐴∗ 𝐴∗ 𝐴∗

≅⇓
res∗ ⇝

≅⇓
res∗ ≅⇑

res∗ ⇝
≅⇑

res∗

�̌�∗

ran∗ ran∗

�̂�∗

lan∗ lan∗

Restricting along the inverse equivalences 𝐴∗ ∼ 𝐴 and 𝐴∗ ∼ 𝐴 to �̌�∗ and �̂�∗ and pasting with the
invertible 2-cell we obtain absolute lifting diagrams whose bottom edge is the identity.
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By Lemma 2.3.7, these lifting diagrams define adjunctions:

𝐴 ≃ 𝐴∗ 𝐴⊡
∗ 𝐴∗ ≃ 𝐴

ran∗

⊥
res∗

res∗

⊥
lan∗

which compose to the desired adjunction Σ ⊣ Ω. �

4.4.5. Definition (fiber and cofiber). An arrow 𝑓 ∶ 1 → 𝐴𝟚 from 𝑥 to 𝑦 in a pointed∞-category 𝐴
admits a fiber if𝐴 admits a pullback of the cospan formed by 𝑓 and the component 𝜌𝑦 of the family of
points. The pullback square defined by the absolute right lifting diagram

𝐴⊡

1 𝐴
≅⇓

resfib

𝜌𝑦∨𝑓

is referred to as the fiber sequence for 𝑓. Dually, 𝑓 admits a cofiber if 𝐴 admits a pushout of the span
formed by 𝑓 and the component 𝜉𝑥 of the family of copoints, in which case the pushout square

𝐴⊡

1 𝐴
≅⇑

rescofib

𝜉𝑥∧𝑓

defines the cofiber sequence for 𝑓.

Fiber and cofiber sequences in 𝐴 define commutative squares whose lower-left vertex is the zero
element ∗.

fib(𝑓 ) 𝑥 𝑥 𝑦

∗ 𝑦 ∗ cofib(𝑓 )

𝑓

𝑓

The data of such squares is given by a commutative triangle in 𝐴 – an element of 𝐴𝟛 – involving a
diagonal arrow that we have neglected to draw, together with a nullhomotopy of that diagonal edge –
a witness that this edge factors through the zero element in h𝐴. A commutative square in 𝐴 whose
lower-left vertex is the zero element is referred to as a triangle in 𝐴.

We can now state the first of several equivalent characterizations of stable ∞-categories. This
notion and the results that follow are due to Lurie first appearing in a preprint [77] later incorporated
into the first chapter of Higher Algebra [80].

4.4.6. Definition (stable∞-category). A stable∞-category is a pointed∞-category 𝐴 in which

(i) every morphism admits a fiber and a cofiber: that is, there exist absolute lifting diagrams

𝐴⊡ 𝐴⊡

𝐴𝟚 𝐴 𝐴𝟚 𝐴
≅⇓

res
≅⇑

resfib

𝜌cod∨id

cofib

𝜉dom∧id
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(ii) and a triangle in 𝐴 defines a fiber sequence if and only if it also defines a cofiber sequence.
Such triangles are called exact triangles.

As a means of familiarizing ourselves with this definition, we prove:

4.4.7. Lemma. Let 𝐴 be a stable∞-category and let 𝐽 be either a simplicial set or another∞-category in the
case where the ambient∞-cosmos𝒦 is cartesian closed. Then 𝐴𝐽 is again a stable∞-category.

Proof. By Proposition 2.1.7, the cosmological functor (−)𝐽 ∶ 𝒦 → 𝒦 preserves the adjunctions

𝐴 1 𝐴 1 ⇝ 𝐴𝐽 1𝐽 ≅ 1 𝐴𝐽 1𝐽 ≅ 1
!

⊥
∗ !

⊥
∗ !𝐽

⊥
∗𝐽 !𝐽

⊥
∗𝐽

that exhibit the universal properties of the zero element ∗ ∶ 1 → 𝐴. Thus, we see that 𝐴𝐽 is a pointed
∞-category, whose basepoint is the constant 𝐽-shaped functor valued at ∗.

Similarly, by Corollary 3.5.7, the cosmological functor (−)𝐽 ∶ 𝒦 → 𝒦 preserves the absolute lifting
diagrams of 4.4.6(i) that define fiber and cofiber sequences. Since res𝐽 ∶ (𝐴⊡)𝐽 ↠ (𝐴 )𝐽 is isomorphic
to res ∶ (𝐴𝐽)⊡ ↠ (𝐴𝐽) and similarly for the functor restricting from a square to its underlying span,
these absolute lifting diagrams define fiber and cofiber sequences in 𝐴𝐽.

Finally, condition 4.4.6(ii) can be re-expressed as the assertion that the commutative triangle
below-left is absolute left lifting and the triangle below-right is absolute right lifting:

𝐴⊡ 𝐴⊡

𝐴𝟚 𝐴 𝐴𝟚 𝐴

=

res

=

resfib

res ∘ fib

cofib

res ∘ cofib

which is to say that fiber sequences in 𝐴 are also cofiber sequences and cofiber sequences in 𝐴 are also
fiber sequences. By applying Corollary 3.5.7 once more, we see that the same exactness property holds
in 𝐴𝐽. Thus 𝐴𝐽 is stable. �

Stable∞-categories in fact admit all pushouts and all pullbacks, and such squares coincide. Squares
that are both pushouts and pullbacks are called exact squares.

4.4.8. Proposition (pullbacks and pushouts in stable ∞-categories). A stable∞-category admits all
pushouts and all pullbacks, and moreover, a square is pushout if and only if it is a pullback.

Proof. Given a generic family of cospans 𝑔 ∨ 𝑓∶ 𝑋 → 𝐴 in 𝐴, form the cofiber of 𝑓 followed by
the fiber of the composite map 𝑞𝑔 ∶ 𝑐 → 𝑎 → cofib 𝑓:

fib(𝑞𝑔) 𝑏 ∗

𝑐 𝑎 cofib(𝑓 )

𝑢

𝑣 𝑓

𝑔 𝑞

(4.4.9)

By Definition 4.4.6(ii), the cofiber sequence 𝑏 → 𝑎 → cofib(𝑓 ) is also a fiber sequence. By the pullback
cancelation result of Proposition 4.3.11, we conclude that fib(𝑞𝑔) computes the pullback of the cospan
𝑔 ∨ 𝑓.
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To see that this pullback square is also a pushout, form the fiber of the map 𝑣:

fib(𝑣) fib(𝑞𝑔) 𝑏

∗ 𝑐 𝑎

𝑢

𝑣 𝑓

𝑔

By the pullback composition result of Proposition 4.3.11, fib(𝑣) is also the fiber of the map 𝑓. By
Definition 4.4.6(ii), the fiber sequences fib(𝑣) → fib(𝑞𝑔) → 𝑐 and fib(𝑣) → 𝑏 → 𝑎 are also cofiber
sequences. Now by the pushout cancelation result of Proposition 4.3.11, we see that the right-hand
pullback square is also a pushout square. A dual argument proves that pushouts exist and coincide
with pullbacks. �

4.4.10. Digression (on the use of generalized elements to define functors). The first paragraph of the
proof just given takes a generic family of cospans and constructs a rectangular diagram (4.4.9), to which
Proposition 4.3.11 can be applied (by Remark 4.3.12). By the Yoneda lemma, a construction given as a
mapping on generalized elements defines an arrow internally to the∞-cosmos, in this case taking the
form of a functor 𝐴 → 𝐴𝟛×𝟚, as we now illustrate by unpacking each of the steps.⁷ First, we build,
from the generic cospan, the dashed arrow below-left, which forms a diagram that glues this cospan to
the cofiber sequence associated to one of its legs:

𝐴𝟚

𝐴 𝐴 𝐴⊡

𝐴 𝐴𝟚

cofibres↓

res↓

res↓

𝐴𝟚

𝐴 𝐴 𝐴 𝐴⊡

𝐴 𝐴

fibres→→

res

res

The simplicial set ≅ ∪↓ ⊡ does not include the composite 1-simplex from the lower-left vertex
to the lower-right vertex but this can be attached by filling an inner horn, resulting in an equivalent
∞-category that we also denote by𝐴 . Next we attach the fiber sequence associated to that composite
arrow, gluing the exterior rectangle onto the diagram of shape , defining the dashed arrow above-
right.

The simplicial set is a subset of the rectangle diagram shape 𝟛 × 𝟚. In the notation of (4.4.9)
what is missing is the map 𝑢 and the left-hand square, which we induce by the universal property of
the fiber sequence 𝑏 → 𝑎 → cofib(𝑓 ), encoded by the absolute right lifting diagram below-left. There
is a functor (𝑔, id, id) ∶ × 𝟚 → inducing the natural transformation 𝛾 below-center, which then
factors as below-right:

𝐴⊡ 𝐴 𝐴⊡ 𝐴 𝐴⊡

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴

=

res

res

⇓𝛾 res =

res

⇓𝜐

=

res

res

res⊡

res res

res⊡

⁷Indeed, this functor can be understood as the result of applying the construction to the universal generalized element,
which is always given by the identity. The motivation for the conceit of considering a generic cospan 𝑔 ∨ 𝑓∶ 𝑋 → 𝐴 in
place of the universal cospan id ∶ 𝐴 → 𝐴 is to introduce some human-readable notation.
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The composite functor

𝐴 𝐴 𝐴⊡×𝟚 𝐴𝟛×𝟚𝜐 res

builds the diagram on display in (4.4.9) from a generic cospan.

A stable∞-category admits loops and suspensions, formed by taking fibers of the arrows in the
family of points and cofibers of arrows in the family of copoints, respectively.

4.4.11. Proposition (loops and suspension in stable∞-categories). If 𝐴 is a stable∞-category, the loops
and suspension functors define inverse adjoint equivalences

𝐴 𝐴
∼
Ω

⊥

∼Σ

Proof. In the proof of Proposition 4.4.4, the adjunction Σ ⊣ Ω is constructed as a composite of
adjunctions

𝐴 ≃ 𝐴∗ 𝐴⊡
∗ 𝐴∗ ≃ 𝐴

ran∗

⊥
res∗

res∗

⊥
lan∗

that construct fiber and cofiber sequences. By Proposition 2.1.9, the unit and counit of this composite
adjunction are given by

𝐴 𝐴 𝐴

𝐴⊡
∗ 𝐴⊡

∗ 𝐴⊡
∗ 𝐴⊡

∗

𝐴 𝐴 𝐴

lan∗

Σ

⇓≅ Σ⇓𝜖
lan∗

res∗
⇓𝜂

res∗ res∗

⇓≅ res∗ran∗ Ω

Ω

ran∗

By Definition 4.3.8, the unit of res∗ ⊣ ran∗ restricts to an isomorphism on the subobject of pushout
squares. In a stable ∞-category, the cofiber sequences in the image of lan∗ ∶ 𝐴 → 𝐴⊡

∗ are pullback
squares, so this tells us that 𝜂lan∗ is an isomorphism. Dually, the fiber sequences in the image of
ran∗ ∶ 𝐴 → 𝐴⊡

∗ are pushout squares, which tells us that 𝜖ran∗ is an isomorphism. Hence, the unit and
counit of Σ ⊣ Ω are invertible, so these functors define an adjoint equivalence. �

The results just proven suggest several equivalent characterizations of stable∞-categories. The
equivalence of condition (iii) is due to Groth [49, §3], who works in the closely related setting of
stable derivators and also discusses further equivalent conditions not mentioned here. The remaining
equivalences are established by Lurie in [77]. The proof that (iv)⇒(i) is an adaptation of a clever
argument of Harpaz appearing as [51, 2.4].

4.4.12. Theorem (equivalent characterizations of stable∞-categories). In a pointed∞-category 𝐴 the
following are equivalent, and characterize the stable ∞-categories:

(i) 𝐴 admits fibers and cofibers, and fiber and cofiber sequences coincide.
(ii) 𝐴 admits pullbacks and pushouts, and pullback and pushout squares coincide.
(iii) 𝐴 admits pullbacks and pushouts, and the pullback functor lim ∶ 𝐴 → 𝐴 preserves pushouts while

the pushout functor colim ∶ 𝐴 → 𝐴 preserves pullbacks.
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(iv) 𝐴 admits cofibers and the suspension functor is an equivalence.
(v) 𝐴 admits fibers and the loops functor is an equivalence.

Proof. Proposition 4.4.8 proves the equivalence (i)⇔(ii), while Proposition 4.4.11 proves (i)⇒(iv)
and (i)⇒(v). So it remains to prove (ii)⇔(iii) as well as the converses of these latter implications, which
are dual.

Assuming (ii), we may apply Lemma 4.4.7 to see that the diagram ∞-categories 𝐴 and 𝐴 are
stable. In particular, lim ∶ 𝐴 → 𝐴 and colim ∶ 𝐴 → 𝐴 are functors between stable ∞-categories
that preserve all limits and all colimits, respectively, by virtue of Theorem 2.4.2. Since pushout and
pullback squares coincide, we see that pushouts are preserved by the pullback functor and pullbacks
are preserved by the pushout functor, proving (iii).

Now assume (iii). By Exercise 3.6.iv to say that the pushout functor preserves pullbacks is equally
to say that the functor lan ∶ 𝐴 → 𝐴⊡ preserves pullbacks, meaning that the left-hand composite is
isomorphic to the right-hand absolute right lifting diagram:

(𝐴 )⊡ (𝐴⊡)⊡ (𝐴⊡)⊡

(𝐴 ) (𝐴 ) (𝐴⊡) (𝐴 ) (𝐴⊡) (𝐴⊡)

res

lan⊡

res ≅ res
ran

lan lan

ran

To see that any pullback square in 𝐴 is also a pushout square, consider the diagram 𝜓∶ 𝐴 → 𝐴 ×

depicted below-left, that expands a cospan 𝑎 → 𝑐 ← 𝑏 to a cospan of spans by restricting along an
appropriate functor × → that sends five elements to the terminal vertex of and two elements
apiece to the remaining two vertices.

𝑏 𝑏

𝑏 𝑏
𝑐 𝑐

𝑐

𝑎 𝑐 𝑎 𝑐
𝑐 𝑐 𝑐 𝑐

𝑎 𝑐 𝑎 𝑐
𝑐 𝑐

By Exercise 2.3.iv, when we compose with lan ∶ (𝐴 ) → (𝐴⊡) we obtain the diagram above-right
in which each of the dashed squares are pushouts. By Exercise 4.3.i, the functor ran ∶ (𝐴⊡) → (𝐴⊡)⊡
is naturally isomorphic to the functor ran⊡ ∶ (𝐴 )⊡ → (𝐴⊡)⊡. Thus, composing with this functor
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forms the pullbacks of the dotted cospans, which by Exercise 2.3.iv yields the diagram

𝑝 𝑏

𝑏 𝑏
𝑎 𝑐

𝑐 𝑐

𝑎 𝑐
𝑐 𝑐

𝑎 𝑐
𝑐 𝑐

where 𝑝 is the pullback of the original span 𝑎 → 𝑐 ← 𝑏. On account of the natural isomorphism
lan⊡ ∘ ran ≅ ran ∘ lan this diagram is also produced by first forming the pullbacks of the dotted spans
and then taking the pushouts of each cospan. In this way we see that the solid-arrow pullback square
above-left is also a pushout. The dual construction completes the proof that (iii)⇒(ii).

It remains to prove (iv)⇒(i). Assuming (iv), the first task is to show that any cofiber sequence
𝑑∶ 𝐷 → 𝐴⊡ is also a fiber sequence, which is to say the diagram

𝐴

𝐷 𝐴⊡ 𝐴
⇓

Δ
𝑑

𝑑

𝑑⊤

res

ev⊤

is absolute right lifting, where the natural transformation arises from the functor × 𝟚 → ⊡ that
defines the canonical cone induced by a commutative square over its underlying cospan. By Theorem
3.5.3, to show that this diagram is absolute right lifting, it suffices to show that the induced map defines
a fibered equivalence Hom𝐴(𝐴, 𝑑⊤) ≃𝐷×𝐴 Hom𝐴 (Δ, 𝑑 ). Since Σ∶ 𝐴 ∼ 𝐴 is an equivalence, by
Proposition 3.4.5 the maps of cospans

𝐷 𝐴 𝐴 𝐷 𝐴 𝐴

𝐷 𝐴 𝐴 𝐷 𝐴 𝐴

𝑑⊤

∼ Σ

𝑑

∼ Σ

Δ

Σ𝑑⊤ Σ Σ𝑑 ΔΣ

induce equivalences of comma∞-categories over 𝐷 × 𝐴 displayed vertically below.

Hom𝐴(𝐴, 𝑑⊤) Hom𝐴 (Δ, 𝑑 )

Hom𝐴(Σ, Σ𝑑⊤) Hom𝐴 (ΔΣ,Σ𝑑 )

∼Σ
≃

≃ ∼ Σ

Our task is to define the dashed diagonal morphism in such a way that we may apply Proposition
3.4.11 to argue that the diagram commutes up to fibered isomorphism. By the 2-of-6 property of the
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equivalences in an∞-cosmos (see Remark 1.2.21 and Exercise 1.4.iii) it follows that the top horizontal
map defines a fibered equivalence witnessing the fact that the cofiber sequence is also a fiber sequence.

To explain the construction of this map, it is helpful to give names to the generalized elements in
the cofiber sequence 𝑑∶ 𝐷 → 𝐴⊡ as depicted in the square below-left:

𝑎 𝑏 ∗

∗ 𝑐 Σ𝑎
Here 𝑎 ∶ 𝐷 → 𝐴 represents the generalized element 𝑑⊤. Since the cofiber sequence 𝑎 → 𝑏 → 𝑐 defines
a pushout square, when we restrict to its right-hand edge 𝑏 → 𝑐 and form the cofiber, the resulting
element is isomorphic to the suspension Σ𝑎 by Proposition 4.3.11. In particular, we have an absolute
left lifting diagram of the following form:

𝐴 𝐴

𝐷 𝐴⊡ 𝐴 𝐴𝟚 𝐴
⇑≅

Σ

⇑𝜆
Δ

𝑑

𝑑

𝑎=𝑑⊤

res

ev⊤

res↓

cofib

id∧𝜉dom

the natural transformation component of which is represented by a functor 𝜆 that we restrict to the
∞-category of cones over 𝑑 for later use:

Hom𝐴 (Δ, 𝑑 ) 𝐷 𝐴 ×𝟚𝑝1 𝜆
𝑐 𝑏 ∗

Σ𝑎 Σ𝑎 Σ𝑎
By Proposition 4.2.7, the comma∞-category Hom𝐴 (Δ, 𝑑 ) is equivalent to the pullback

Hom𝐴 (Δ, 𝑑 ) ≃ 𝐴/𝑑 𝐴⊡

𝐷 × 𝐴 𝐴 × 𝐴

𝜙

(𝑝1,𝑝0) (res,ev⊤)

𝑑 ×𝐴

Here 𝜙 defines a square as displayed below-left, where 𝑧 ∶ Hom𝐴 (Δ, 𝑑 ) → 𝐴 represents the general-
ized element 𝑝0 ∶ Hom𝐴 (Δ, 𝑑 ) ↠ 𝐴 that projects to the summit of a cone over 𝑑

∗ 𝑧 ∗ 𝑧 ∗

𝑐 𝑏 𝑐 𝑏 ∗
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This square may be extended to the map of spans above-right by gluing on the square defined by the
functor of co-points:

Hom𝐴 (Δ, 𝑑 ) 𝐴⊡ 𝐴𝟚

𝐴 ×𝟚 𝐴⊡

𝐴⊡ 𝐴𝟚

𝜙

𝜇

𝜙 res↓

𝜉𝟚

res

res

res↓

res↓

The diagrams 𝜇 and 𝜆 glue together to form a diagram Hom𝐴 (Δ, 𝑑 ) → 𝐴 ×𝟛 as below

∗ 𝑧 ∗

𝑐 𝑏 ∗

Σ𝑎 Σ𝑎 Σ𝑎
from which we extract a composite map of cospans defining the natural transformation below-left:

Hom𝐴 (Δ, 𝑑 ) 𝐷 𝐴 𝐴 Hom𝐴 (Δ, 𝑑 ) 𝐷 𝐴 𝐴

𝐴 𝐴 𝐴 𝐴

𝑝0

𝑝1

⇑𝜇∘𝜆

𝑑⊤ Σ

Δ = 𝑝0

𝑝1

∃!⇑𝜁
⇑

𝑑⊤ Σ

Δ

�̂� �̂�

Σ

This factors through the absolute left lifting diagram of Definition 4.4.3 defining a natural transfor-
mation 𝜁. By 1-cell induction, 𝜁 defines the sought-for functor 𝜁∶ Hom𝐴 (Δ, 𝑑 ) → Hom𝐴(Σ, Σ𝑑⊤)
over 𝐷 ×𝐴, which completes the proof that the cofiber sequence 𝑎 → 𝑏 → 𝑐 is also a fiber sequence.

Now to show that every arrow 𝑓 ∶ 𝑎 → 𝑏 admits a fiber, start by forming its cofiber. Since Σ is an
equivalence, there exists some element 𝑘 of 𝐴 so that cofib(𝑓 ) ≅ Σ𝑘. By what we have just proven,
both of the cofiber sequences 𝑎 → 𝑏 → Σ𝑘 and 𝑘 → ∗ → Σ𝑘 are fiber sequences, and in particular
the right-hand square below is both a pushout and a pullback.

𝑘 𝑎 ∗

∗ 𝑏 cofib(𝑓 ) ≅ Σ𝑘

𝑓

Thus, the outer rectangle factors through the right-hand square and this composite rectangle, which is
given as a pushout, is also a pullback. Now by pullback cancelation, the left-hand square is a pullback
defining the fiber 𝑘 ≅ fib(𝑓 ) of 𝑓 ∶ 𝑎 → 𝑏.

To see that the fiber sequence 𝑘 → 𝑎 → 𝑏 is also a cofiber sequence, form the cofiber sequence
𝑘 → 𝑎 → 𝑐. Our task is to show that the dashed map from the front face of the cube below-left to the
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back face is an isomorphism:

𝑘 𝑎

𝑘 𝑎

∗ 𝑐

∗ 𝑏

𝑧 ∗

𝑤 ∗

𝑘 𝑎

𝑘 𝑎

∗ 𝑐

∗ 𝑏

𝑒

Since Σ is an equivalence, there exists an arrow 𝑒 ∶ 𝑧 → 𝑤 in 𝐴 whose image under Σ is isomorphic to
the induced map 𝑐 → 𝑏. The cofiber sequences 𝑧 → ∗ → 𝑐 and 𝑤 → ∗ → 𝑏 are also fiber sequences,
so by pullback cancelation we see that the induced upper front and back squares in the prism above-left
are pullbacks. From this we see that 𝑒 ∶ 𝑧 → 𝑤 is a map between two fibers of 𝑘 → 𝑎. Thus 𝑒 is
an isomorphism and the isomorphism 𝑐 ≅ Σ𝑧 ≅ Σ𝑤 ≅ 𝑏 reveals that the original fiber sequence
𝑘 → 𝑎 → 𝑏 is also a cofiber sequence. �

4.4.13. Remark. In fact, stable∞-categories have all finite limits and finite colimits, meaning limits
and colimits indexed by simplicial sets with finitely many nondegenerate simplices. More generally,
any∞-category with pullbacks and a terminal element admits all finite limits, which can be defined
by induction over the dimension of the simplicial set (see [78, 4.4.2.4], [112, 6.3.9]). It follows from this
construction and condition (iii) of Theorem 4.4.12 that in a stable∞-category the limit and colimit
functors for any finite diagram shape preserve all finite colimits and all finite limits.

4.4.14. Definition. A pointed∞-category 𝐴 admits binary direct sums when there exists a bifunctor
⊕∶ 𝐴 ×𝐴 → 𝐴 that defines both the binary product and coproduct and so that the legs of the colimit
and limit cones

𝐴 𝐴

𝐴 × 𝐴 𝐴 × 𝐴 𝐴 × 𝐴 𝐴 × 𝐴
⇑(𝜄1,𝜄2)

Δ
⇓(𝜌1,𝜌2)

Δ
⊕ ⊕

satisfy the following relations involving the zero map (see Exercise 4.4.ii):

𝜌1 ∘ 𝜄1 = id, 𝜌1 ∘ 𝜄2 = 0, 𝜌2 ∘ 𝜄1 = 0, and 𝜌2 ∘ 𝜄2 = id

4.4.15. Lemma. Stable∞-categories admit finite direct sums.

Proof. We argue that a stable∞-category 𝐴 has binary direct sums and leave it to Exercise 4.4.iii
to extend Exercise 2.3.i to show that 𝐴 has finite direct sums. The direct sum bifunctor can be defined
as a pullback over the zero element:

⊕∶ 𝐴 × 𝐴 𝐴 𝐴
𝜉𝜋1∨𝜉𝜋2 lim

By Exercise 4.3.vii, this construction guarantees that direct sums are products.
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To see that the direct sum is also a coproduct, consider the diagram 𝐴 × 𝐴 → 𝐴⊞ whose image at
a generalized element (𝑎, 𝑏) ∶ 𝑋 → 𝐴 × 𝐴 is depicted below:

∗ 𝑎 ∗

𝑏 𝑎 ⊕ 𝑏 𝑏

∗ 𝑎 ∗

𝜌𝑏

𝜌𝑎

𝜄𝑎

𝜉𝑎

𝜌𝑏

𝜉𝑏

𝜄𝑏

𝜋𝑎

𝜋𝑏

𝜉𝑏

𝜌𝑎 𝜉𝑎

Here the vertical and horizontal composite morphisms are identities, and the right-hand rectangle
and lower rectangle are defined by restricting along a projection functor 𝟚 × 𝟚 → 𝟚 and then using
the universal property of the lower-right-hand pullback to factor through that square. By Exercise
2.3.iv, each of these rectangles are themselves pullbacks so by Proposition 4.3.11, we see that the upper-
right-hand and lower-left-hand squares so constructed are pullbacks as well, and thus so too is the
upper-left-hand square, by the same reasoning. Since 𝐴 is stable, this pullback is a pushout witnessing
the fact that the direct sum is also a coproduct.

Note by construction that the composites of the coproduct inclusions and product projections are
either identities or nullhomotopic. Thus, these biproducts are direct sums. �

4.4.16. Digression (the homotopy category of a stable ∞-category). When an ordinary 1-category
has binary direct sums, its hom-sets can be equipped with a canonically defined commutative monoid
structure in such a way that composition defines a bilinear map. For a parallel pair of morphisms
𝑓 , 𝑔 ∶ 𝑥 → 𝑦, their sum is defined to be the composite

𝑓 + 𝑔 ≔ 𝑥 𝑥 ⊕ 𝑥 𝑦 ⊕ 𝑦 𝑦Δ 𝑓 ⊕𝑔 ∇ (4.4.17)

By Lemma 2.3.3, the zero element and finite direct sums in a stable∞-category descend to define a
zero element and finite direct sums on its homotopy category. In fact, the homotopy category h𝐴 of a
stable∞-category 𝐴 is additive, meaning that the commutative monoids h𝐴(𝑥, 𝑦) defined by (4.4.17)
are in fact abelian groups (i.e., each morphism admits an additive inverse) [80, 1.1.2.9].

In fact, Lurie proves in [80, 1.1.2.14] that if 𝐴 is a stable∞-category, then its homotopy category
h𝐴 is triangulated in the sense of Verdier [127]. A triangulated category is an additive category h𝐴
that admits a self-equivalence Σ∶ h𝐴 ∼ h𝐴 together with specified distinguished triangles

𝑥 𝑦 𝑧 Σ𝑥
𝑓 𝑔 ℎ

satisfying six axioms. From the vantage point of the 1-category, the distinguished triangles are additional
data. In particular, there is no canonical way to define the distinguished triangles for a category of
diagrams valued in a triangulated category. Lurie’s insight is that this structure borne by the homotopy
category may be captured by a property of the ∞-category, namely stability. He declares a triple
(𝑓 , 𝑔, ℎ) of morphisms in h𝐴 to be a distinguished triangle if there exist representing arrows (𝑓 , 𝑔, ℎ)
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in 𝐴 that assemble into a pushout rectangle of the following form:

𝑥 𝑦 ∗

∗ 𝑧 Σ𝑥

𝑓

𝑔

ℎ

Thus, at the level of the∞-category 𝐴, there is an essentially unique way to extend an arrow 𝑓 ∶ 𝑥 → 𝑦
to a distinguished triangle. In particular, the famous “octahedral axiom” is a consequence of the
composition and cancelation property for pushout rectangles of Proposition 4.3.11: given a composable
pair of morphisms 𝑘 ∶ 𝑤 → 𝑥 and 𝑓 ∶ 𝑥 → 𝑦 in a stable∞-category 𝐴, the diagram of pushout squares

𝑤 𝑥 𝑦 ∗

∗ cofib(𝑘) cofib(𝑓 𝑘) Σ𝑤 ∗

∗ cofib(𝑓 ) Σ𝑥 Σ(cofib(𝑘))

𝑘 𝑓

defines a distinguished triangle

cofib(𝑘) cofib(𝑓 𝑘) cofib(𝑓 ) Σ(cofib(𝑘))

compatibly with given distinguished triangles extending 𝑘, 𝑓, and 𝑓 𝑘.

Exercises.

4.4.i. Exercise. Arguing in the homotopy category, show that if an∞-category 𝐴 admits an initial
element 𝑖 and a terminal element 𝑡, and there exists an arrow 𝑡 → 𝑖, then 𝐴 is a pointed∞-category.

4.4.ii. Exercise. If 𝐴 is a pointed∞-category and 𝑓 , 𝑔 ∶ 𝑋 → 𝐴 are functors define a canonical zero
map

𝑋 𝐴
𝑓

𝑔
⇓0

that factors through the constant functor at the zero element.

4.4.iii. Exercise. Show that any pointed ∞-category that admits binary direct sums admits finite
direct sums.

4.4.iv. Exercise. A functor 𝑓 ∶ 𝐴 → 𝐵 between stable∞-categories is exact if it preserves zero elements
as well as fiber and cofiber sequences. Show that exact functors also preserve exact squares.
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CHAPTER 5

Fibrations and Yoneda’s Lemma

The aim in this chapter is to describe an ∞-categorical encoding of the contravariant functor
represented by an element 𝑏 ∶ 1 → 𝐵 of an∞-category 𝐵, informally defined to send an element 𝑥 of 𝐵
to the mapping space Hom𝐵(𝑥, 𝑏) of Definition 3.4.9. By Proposition 3.4.10, such representable functors
take values in discrete∞-categories, which correspond to “spaces” or “∞-groupoids” in∞-cosmoi of
(∞, 1)-categories.

In contrast with the situation in ordinary 1-category theory, in∞-category theory it is challenging to
explicitly describe the representable functors as functors between∞-categories. The complexity arises
in establishing the∞-functoriality of this mapping, which must encode homotopy coherently functorial
actions of the arrows in 𝐵 in each dimension, data that proves too elaborate to easily enumerate even
in this fundamental special case. What turns out to be easier to describe is the∞-categorical analogue
of the “category of elements” associated to the mapping 𝑥 ↦ Hom𝐵(𝑥, 𝑏) together with its associated
projection to 𝐵. In fact, we are quite familiar with this∞-category already: It is the “right represented”
comma∞-category Hom𝐵(𝐵, 𝑏) equipped with its domain projection functor 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵
whose fiber over 𝑥∶ 1 → 𝐵 recovers the mapping space Hom𝐵(𝑥, 𝑏).

It remains to explain the sense in which 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 expresses the contravariantly
functorial of arrows in 𝐵 on its fibers. This functor enjoys a special property that allows one to lift
natural transformations valued in 𝐵 in an essentially unique way to natural transformations valued in
Hom𝐵(𝐵, 𝑏) with specified codomains. A special case of this lifting defines the precomposition functor
𝑓 ∗ associated to an arrow 𝑓 ∶ 𝑥 → 𝑦 in the homotopy category h𝐵:

Hom𝐵(𝑦, 𝑏)

Hom𝐵(𝐵, 𝑏)

Hom𝐵(𝑥, 𝑏)

1
𝐵

1

𝑓 ∗

𝑝0

𝜒𝑓

𝑦

𝑥
𝑓

Roughly speaking, an isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration just when the arrows of
𝐵 act contravariantly functorially on the fibers and a cocartesian fibration when the arrows of 𝐵 act
covariantly functorially on the fibers. The functor 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is an example of a discrete
cartesian fibration, whose fibers are discrete∞-categories. When 𝑏 ∶ 𝑋 → 𝐵 is a generalized element,
the domain projection functor 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 remains a cartesian fibration, but loses this
discreteness property.

One of the properties that characterizes a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 is an axiom that says
that for any 2-cell with codomain 𝐵 and specified lift of its target 1-cell, there is a lifted 2-cell with
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codomain 𝐸 with that 1-cell as its target. In particular, this lifting property can be applied in the case
where the 2-cell in question is a whiskered composite of an arrow in the homotopy category of 𝐵 as
below-left and the lift of the source 1-cell is the canonical inclusion of the fiber over its codomain.

𝐸𝑏 𝐸 𝐸𝑏 𝐸

𝐸𝑎

1 𝐵 1 𝐵

ℓ𝑏

=𝑝
𝛽∗

𝛽∗(ℓ𝑏)
⇑𝜒𝛽

ℓ𝑏

𝑝ℓ𝑎
𝑏

𝑎

⇑𝛽

𝑎

(5.0.1)

In this case the domain 𝛽∗(ℓ𝑎) of the lifted cell 𝜒𝛽 displayed above right lies strictly above the codomain
of the original 2-cell, and thus factors through the pullback defining its fiber. This defines a functor
𝛽∗ ∶ 𝐸𝑏 → 𝐸𝑎, the “action” of the arrow 𝛽 on the fibers of 𝑝. This action is not strict but rather functorial
up to isomorphism in a sense explored in Exercise 5.2.ii.¹ The up-to-isomorphism functoriality of these
action maps arises from a universal property required of the specified lifted 2-cells, namely that they
are cartesian arrows in a sense we define in §5.1.

Cartesian fibrations are introduced in §5.2, where the first examples are also established. The
main theorem in this section characterizes cartesian fibrations in terms of the presence of adjoints to
certain canonically defined functors. The structure-preserving maps between cartesian fibrations are
commutative squares called cartesian functors, preserving the cartesian natural transformations. In §5.3,
we see that these can similarly be characterized relative to the adjunctions constructed in §5.2.

In §5.4 we study the dual cocartesian fibrations, for which there exist lifts of natural transformations
with a specified domain functor. By a dual of the construction displayed in (5.0.1), when 𝑝∶ 𝐸 ↠ 𝐵 is a
cocartesian fibration an arrow 𝛽∶ 𝑎 → 𝑏 in h𝐵 defines a functor 𝛽∗ ∶ 𝐸𝑎 → 𝐸𝑏. An isofibration 𝑝 that
is simultaneously a cartesian fibration and a cocartesian fibration is called a bifibration.² In this case
Proposition 5.4.7 proves that the induced functors 𝛽∗ ⊣ 𝛽∗ are adjoints.

In §5.6, we show that when 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration in an∞-cosmos the induced functor
𝑝∗ ∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) defines a cartesian fibration of quasi-categories. The converse also holds,
under the additional condition that restriction along any 𝑓 ∶ 𝑌 → 𝑋 defines a cartesian functor.

The special classes of discrete cartesian fibrations and discrete cocartesian fibrations are studied in §5.5.
This chapter concludes in §5.7 with a version of the Yoneda lemma for the discrete cartesian fibration
𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 that is represented by the element 𝑏 ∶ 1 → 𝐵. Its formulation was inspired
by a paper of Street “Fibrations and Yoneda’s lemma in a 2-category” [118],³ the debt to which we
acknowledge in the title of this section.

¹Considerably more is true: There is a contravariant homotopy coherent diagram indexed by the underlying quasi-
category of 𝐵 and valued in the Kan complex enriched category of discrete∞-categories [111, 6.1.16].

²In [78, §2.4.7], Lurie uses the term “bifibration” to refer to a different class of functors: the modules of Chapter 7.
³The closest analogue to Street’s Yoneda Lemma [118, 16] appears as Theorem 7.4.8.
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5.1. Cartesian Arrows

Before defining the notion of cartesian fibration we describe the weak universal property enjoyed
by certain “upstairs” natural transformations. Recall from Proposition 3.2.6 that any natural transfor-

mation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 is represented by a functor 𝜓∶ 𝑋 → 𝐸𝟚 so that 𝑝0𝜓 = 𝑒′ and 𝑝1𝜓 = 𝑒 and

such representations are unique up to fibered isomorphism. The representing 𝑋-shaped arrow 𝜓 in 𝐸
defines a 1-arrow (aka a 1-simplex) in the functor space Fun(𝑋, 𝐸) from 𝑒′ to 𝑒.

5.1.1. Definition (𝑝-cartesian arrow). Consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵. An 𝑋-shaped arrow
𝜓∶ 𝑋 → 𝐸𝟚 in 𝐸 is 𝑝-cartesian if the dashed map defined by the pullback of the Leibniz cotensor is a
trivial fibration:

𝐸/𝜓 𝐸𝟛

• 𝐵𝟛 ×
𝐵

𝐸

𝑋 𝐸𝟚

𝛿�⋔𝑝

𝑝12 𝑝12

𝜓

where 𝛿∶ ↪ 𝟛 is the inclusion whose image is the cospan 0 → 2 ← 1 in 𝟛 and 𝑝12 is defined by
restricting along the inclusion 𝑖12 ∶ 𝟚 ↪ 𝟛 with image indicated by the subscript.

A natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 with codomain 𝐸 is 𝑝-cartesian if any representing

functor 𝜓∶ 𝑋 → 𝐸𝟚 is 𝑝-cartesian. By Exercise 3.3.i, this is well-defined. We freely switch between the
perspectives presented by a natural transformation 𝜓∶ 𝑒′ ⇒ 𝑒 and a representing arrow 𝜓∶ 𝑋 → 𝐸𝟚.⁴

There are various equivalent ways to formulate the definition of 𝑝-cartesian arrows.

5.1.2. Lemma. For any isofibration 𝑝∶ 𝐸 ↠ 𝐵, an arrow 𝜓∶ 𝑋 → 𝐸𝟚 with codomain 𝑒 ∶ 𝑋 → 𝐸 is
𝑝-cartesian if and only if the dashed square induced by the hypercube

𝐸/𝜓 Hom𝐸(𝐸, 𝑒)

𝐸𝟛 𝐸𝟚

𝑋 𝑋

𝐸𝟚 𝐸

𝐵/𝑝𝜓 Hom𝐵(𝐵, 𝑝𝑒)

𝐵𝟛 𝐵𝟚

𝑋 𝑋

𝐵𝟚 𝐵

𝑝12

𝑝02

𝑝1
𝜓 𝑒𝑝1

𝑝12

𝑝02

𝑝1
𝑝𝜓 𝑝𝑒

𝑝1

(5.1.3)

⁴We also indulge in some streamlined notation, writing 𝐸/𝜓 for the ∞-category defined in Warning 4.2.10 using the

notation 𝐸/𝜓, and writing 𝑝𝜓 and 𝜓𝑓 for the composite arrows 𝑝𝟚𝜓 and 𝜓𝑓.
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is weakly cartesian, meaning that the induced map is a trivial fibration:

𝐸/𝜓 𝐵/𝑝𝜓 ×
Hom𝐵(𝐵,𝑝𝑒)

Hom𝐸(𝐸, 𝑒)∼

Proof. In fact the inducedmap in the dashed square is isomorphic to the inducedmap of Definition
5.1.1. First note that the solid-arrow squares in the hypercube (5.1.3) are pullbacks, so by the hypercube
pullback lemma⁵ the pullback in the dashed square is equally the limit of the diagram

𝐵𝟛 ×
𝐵𝟚
𝐸𝟚 𝐸𝟚

𝑋 𝑋

𝐸 ×
𝐵
𝐵𝟚 𝐸

𝐵𝟛 𝐵𝟚

𝑋 𝑋

𝐵𝟚 𝐵

𝑝1

𝑝𝟚
𝑒

𝑝
𝑝02

𝑝1
𝑝𝜓

𝑝𝑒

𝑝1

𝑝12

where now the dotted-arrow squares are the pullbacks. Thus, our map is isomorphic to the top dashed
map in the cube in which the front and back faces are the pullbacks defining its domain and codomain:

𝐸/𝜓 𝐸𝟛

• 𝐵𝟛 ×
𝐵𝟚
𝐸𝟚

• 𝐵𝟛 ×
𝐵

𝐸

𝑋 𝐸𝟚

𝑋 𝐵𝟚 ×
𝐵
𝐸

𝑖02�⋔𝑝

𝜓
𝑖1�⋔𝑝

𝑝𝜓

The induced map to the pullback in the right face is 𝛿 �⋔ 𝑝∶ 𝐸𝟛 ↠ 𝐵𝟛 ×𝐵 𝐸 , as can be verified by
constructing another hypercube. By pullback composition and cancellation, this map pulls back to the
dashed map in the left face, but since the bottom edge is an identity, this agrees with the top dashed
map. Note the diagram displayed in Definition 5.1.1 is embedded as the back prism in this cube. �

The next several lemmas develop various stability properties for the class of 𝑝-cartesian transfor-
mations defined relative to a fixed isofibration 𝑝∶ 𝐸 ↠ 𝐵.

5.1.4. Lemma (stability under restriction). If 𝜓∶ 𝑋 → 𝐸𝟚 is 𝑝-cartesian then so is its restriction along any
functor 𝑓 ∶ 𝑌 → 𝑋.

⁵The hypercube pullback lemma observes that the limit of a diagram of shape × can be computed by first forming
the pullbacks in the left factor and then forming the pullback of the resulting cospan, or by first forming the pullbacks in
the right factor and then forming the pullback of the resulting cospan.
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Proof. By Definition 5.1.1, if 𝜓 is 𝑝-cartesian we have a trivial fibration

𝐸/𝜓𝑦 𝐸/𝜓 𝐸𝟛

• • 𝐵𝟛 ×
𝐵

𝐸

𝑌 𝑋 𝐸𝟚

∼ ∼
𝛿�⋔𝑝

𝑝12 𝑝12

𝑓 𝜓

that pulls back to define a trivial fibration which exhibits 𝜓𝑓 as a 𝑝-cartesian arrow. �

We now demonstrate that the class of 𝑝-cartesian transformations is closed under vertical composi-
tion and left cancelation in the homotopy 2-category.

5.1.5. Lemma. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration and consider natural transformations so that 𝜓″ = 𝜓 ⋅ 𝜓′

and so that 𝜓 is 𝑝-cartesian. Then 𝜓′ is 𝑝-cartesian if and only if 𝜓″ is 𝑝-cartesian.

Proof. Recall from Lemma 1.1.12 that for any triple of arrows 𝜓″, 𝜓′, 𝜓 ∶ 𝑋 → 𝐸𝟛 representing
natural transformations so that 𝜓″ = 𝜓 ⋅ 𝜓′, there exists a 2-simplex in Fun(𝑋, 𝐸) represented by a
functor 𝜏∶ 𝑋 → 𝐸𝟛 with boundary given by these specified representative functors:

𝑒′

𝑒″ 𝑒

𝜓𝜓′

𝜓″

𝜏

By cotensoring the lower-left diagram of categories into 𝐸, restricting to the complements of the initial
vertices 0 ∈ 𝕟, and pulling back along 𝜏∶ 𝑋 → 𝐸𝟛 and its face, we obtain the lower-right diagram of
∞-categories, in which the bottom square is weakly cartesian (see Lemma 4.3.9 for more details about
the construction of the outer spans and a proof that the maps 𝑝01 are trivial fibrations).

𝟚 𝟛 𝟚

𝟜
𝟛 𝟛

𝟚

𝑖01

𝑖01

𝑖013

𝑖02

𝑖02𝑖012 𝑖023

𝑖01𝑖02

⇝

Hom𝐸(𝐸, 𝑒″) 𝐸/𝜓″ Hom𝐸(𝐸, 𝑒)

𝐸/𝜏
𝐸/𝜓′ 𝐸/𝜓

Hom𝐸(𝐸, 𝑒′)

∼𝑝01 𝑝02

∼ 𝑝013

∼𝑝012 𝑝023
≃

𝑝02

∼

𝑝01 𝑝02

∼𝑝01

The isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a natural transformation from this diagram onto a similar diagram
built for 𝑝𝜏∶ 𝑋 → 𝐵𝟛.⁶

⁶A better way to build this diagram is to implement this construction in the ∞-cosmos of isofibrations defined in
Proposition 6.1.1, which tells us additionally that the maps to the pullbacks in each naturality square are isofibrations.
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The trivial fibration 𝐸/𝜓 ∼ 𝐵/𝑝𝜓 ×Hom𝐵(𝐵,𝑝𝑒) Hom𝐸(𝐸, 𝑒) of Lemma 5.1.2 pulls back to define the
displayed dashed trivial fibration that commutes with the induced maps from 𝐸/𝜏.

𝐸/𝜏 𝐸/𝜓 Hom𝐸(𝐸, 𝑒)
•

•
•

𝐵/𝑝𝜏 𝐵/𝑝𝜓 Hom𝐵(𝐵, 𝑝𝑒)

𝑝023

∼

𝑝02

∼

𝑝023 𝑝02

By the 2-of-3 property for equivalences, if either dotted map is a trivial fibration, then both are.
These diagrams induce a commutative square displayed in the interior of the cube from the upper

dotted map to the map that detects whether 𝜓′ is 𝑝-cartesian

𝐸/𝜓′ 𝐸/𝜏

Hom𝐸(𝐸, 𝑒′) 𝐸/𝜓
• •

𝐵/𝑝𝜓′ 𝐵/𝑝𝜏

Hom𝐵(𝐵, 𝑝𝑒′) 𝐵/𝑝𝜓

∼𝑝012

∼

∼

∼

∼

By the 2-of-3 property, if either of these maps is a trivial fibration, so is the other. A similar square
defined using 𝑝013 ∶ 𝐸/𝜏 ∼ 𝐸/𝜓″ demonstrates that the lower dotted map is a trivial fibration if and
only if 𝐸/𝜓″ ↠ 𝐵/𝑝𝜓″ ×Hom𝐵(𝐵,𝑝𝑒) Hom𝐸(𝐸, 𝑒) is. Thus, these conditions are equivalent when 𝜓 is
𝑝-cartesian. �

The isomorphism stability of the 𝑝-cartesian arrows is expressed by the following suite of observa-
tions:

5.1.6. Lemma. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration.
(i) Natural isomorphisms with codomain 𝐸 define 𝑝-cartesian arrows.
(ii) Any 𝑝-cartesian lift of a natural isomorphism is a natural isomorphism.
(iii) The class of 𝑝-cartesian arrows is closed under pre- and postcomposition with natural isomorphisms.

Proof. By Lemma 4.3.9, 𝜓∶ 𝑒′ ⇒ 𝑒 is an isomorphism if and only if the map 𝑝02 ∶ 𝐸/𝜓 ↠
Hom𝐸(𝐸, 𝑒) that defines the top horizontal arrow in the weakly cartesian square of Lemma 5.1.2
is a trivial fibration. So if 𝜓 is invertible, then both horizontal arrows of Lemma 5.1.2 are trivial
fibrations, and the square is automatically weakly cartesian, proving (i). For (ii), if 𝑝𝜓 is invertible,
then the bottom horizontal in this square is a trivial fibration, and thus if 𝜓 is weakly cartesian,
𝑝02 ∶ 𝐸/𝜓 ↠ Hom𝐸(𝐸, 𝑒) is a composite of trivial fibrations, proving that 𝜓 is invertible. The final
property (iii) follows from (i) and Lemma 5.1.5. �

We get considerable mileage from two more sophisticated characterizations of 𝑝-cartesian arrows.
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5.1.7. Theorem. For an isofibration 𝑝∶ 𝐸 ↠ 𝐵 and an arrow 𝜓∶ 𝑋 → 𝐸𝟚 representing a natural transfor-

mation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 the following are equivalent:

(i) 𝜓 is 𝑝-cartesian.
(ii) The commutative triangle defines an absolute right lifting diagram:

𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝)

= 𝑖1�⋔𝑝
𝜓

𝑝𝜓

where

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

𝑝1

𝑖1�⋔𝑝

𝑝𝟚

𝑝1

𝜙

𝑝1

𝑝

(iii) There is an absolute right lifting diagram with 𝑝1𝜖 = 𝜓 and 𝑝0𝜖 = id𝑝𝑒′

𝐸

𝑋 Hom𝐵(𝐵, 𝑝)
⇓𝜖

Δ𝑝𝑒′

𝑝𝜓

where

𝐸 𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

Δ𝑝

Δ
𝑝𝟚

𝑝1

𝜙

𝑝1

𝑝

At a high level, the equivalence between the three characterizations of a 𝑝-cartesian arrow is easy to
explain. By Definition 5.1.1 and Theorem 3.5.3, each of three statements asserts that some map between
∞-categories is an equivalence, and these three maps turn out to be equivalent to each other. But the
geometry of this equivalence is quite subtle, as the proof reveals.

Proof. We prove (i)⇒(ii)⇒(iii)⇒(i).
(i)⇒(ii): We use the condition of Definition 5.1.1 to prove that 𝜓∶ 𝑋 → 𝐸𝟚 defines an absolute

right lifting of 𝑝𝜓 through 𝑖1 �⋔ 𝑝. By Theorem 3.5.3, our task is to show that the functor induced by
the identity 2-cell defines an equivalence between comma∞-categories. In this case, the desired map,
displayed below-left is a pullback of the Leibniz cotensor of 𝑝 with the inclusion 𝜄 ∶ ⊔ ↪ ⊡

Hom𝐸𝟚(𝐸𝟚, 𝜓) 𝐸⊡

HomHom𝐵(𝐵,𝑝)(𝑖1
�⋔ 𝑝, 𝑝𝜓) 𝐵⊡ ×

𝐵⊔
𝐸⊔

𝑋 𝐸𝟚

𝜄�⋔𝑝

𝑝∗1
𝑝∗1

𝜓

(5.1.8)
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Since the inclusion 𝜄 factors as below-left, by Proposition C.2.9(vi), the Leibniz cotensor factors as
below-right:

𝟛

⊔ ⊡

𝟛𝛿

⇝

𝐸⊡ 𝐵⊡ ×
𝐵

𝐸 𝐵⊡ ×
𝐵⊔

𝐸⊔

𝐸 𝐵 ×
𝐵⊔

𝐸⊔

( ↪⊡)�⋔𝑝

𝜄�⋔𝑝

∼

∼
(⊔↪ )�⋔𝑝

and since ⊔ ↪ is a pushout of an inner horn inclusion, the second of these maps is a trivial fibration.

Since ↪ ⊡ is a pushout of 𝛿, ( ↪ ⊡) �⋔ 𝑝 is a pullback of 𝛿 �⋔ 𝑝. From hypothesis (i), we know that
the latter map pulls back along 𝜓∶ 𝑋 → 𝐸𝟚 to a trivial fibration. Thus the former map does as well,
and so the dashed map in (5.1.8) is a trivial fibration, proving the claimed absolute lifting diagram in
(ii).

(ii)⇒(iii): The constant diagram functor Δ∶ 𝐸 → 𝐸𝟚 is defined by restricting along the functor
! ∶ 𝟚 → 𝟙, and thus is left adjoint right inverse to the domain projection functor 𝑝0:

𝟙 𝟚 ⇝ 𝐸 𝐸𝟚

0
⊤
! Δ

⊥
𝑝0

In particular, by Lemma 2.3.7 the counit 𝜈∶ Δ𝑝0 ⇒ id defines an absolute right lifting of the identity
through Δ. By Lemma 2.4.1, this absolute lifting diagram composes with the absolute lifting diagram
of (ii) to define an absolute lifting diagram with the properties required by (iii):

𝐸

𝐸𝟚 𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝)

⇓𝜈
Δ𝑝

Δ𝑝0

= 𝑖1�⋔𝑝

𝑒′

𝜓

𝑝𝜓

(iii)⇒(i): By Theorem 3.5.3, an absolute right lifting diagram, such as given in (iii), supplies a
fibered equivalence. For a generic absolute right lifting diagram as below-left, the fibered equivalence
Hom𝐵(𝐵, 𝑟) ∼ 𝐶×𝐵 Hom𝐴(𝑓 , 𝑔) may be constructed by composing the dashed maps in the diagram
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below-right, constructing this map as a restriction of the dotted composition map (see Lemma 2.1.14):

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟 ⇝

Hom𝐴(𝑓 , 𝑔) 𝐶 × 𝐵

𝐴𝟛
⟨𝜌,𝑓 (−)⟩ 𝐴𝟛 𝐴𝟚 𝐴 × 𝐴

Hom𝐵(𝐵, 𝑟) 𝐶 ×
𝐶

Hom𝐵(𝐵, 𝑟) 𝐴𝟚 ×
𝐴
𝐴𝟚

(𝑝1,𝑝0)

𝑔×𝑓∘

∼ ∼ (𝑝12,𝑝01)

𝑝02

≅
𝜌×
𝑓 𝑟
𝑓 𝟚

∼

∘

By the 2-of-3 property, the restriction map ∘ ∶ 𝐴𝟛
⟨𝜌,𝑓 (−)⟩

∼ Hom𝐴(𝑓 , 𝑔) is an equivalence.

Applied to the absolute right lifting diagram of (iii), this constructs a trivial fibration

Hom𝐵(𝐵, 𝑝)𝟛⟨𝜖,Δ𝑝(−)⟩ HomHom𝐵(𝐵,𝑝)(Δ𝑝, 𝑝𝜓)∼𝑝02 (5.1.9)

The domain of (5.1.9) is the limit of the diagram, computed by first pulling back the rows then forming
the pullback of the resulting cospan

𝐵𝟚×𝟛 𝐵𝟛 𝐸𝟛

𝐵𝟚×𝟚 ×
𝐵𝟚
𝐵𝟚×𝟚 𝐵𝟚 ×

𝐵
𝐵𝟚 𝐸𝟚 ×

𝐸
𝐸𝟚

𝑋 ×
𝐵
𝐵𝟚 𝑋 ×

𝐵
𝐵𝟚 𝑋 ×

𝐸
𝐸𝟚

𝑝1∗

∼ ∼

𝑝𝟛

∼

𝑝1∗×𝑝1
𝑝1∗ 𝑝

𝜖×
Δ
Δ 𝑝𝜓×

id
id 𝜓×

id
id

𝑝

but by the hypercube pullback lemma it could equally be formed as the pullback of the induced cospan
between the pullbacks of the columns:

Hom𝐵(𝐵, 𝑝𝑒′) ×
𝐵𝟚×

𝐵𝟚×𝟛 𝐵/𝑝𝜓 𝐸/𝜓
𝑝1∗ 𝑝

and thus we seek a better understanding of the pullback of the left-hand column.
Since 𝜖 ∶ Δ𝑝𝑒′ ⇒ 𝑝𝜓 has 𝑝0𝜖 = id𝑝𝑒′ , we may choose a representing functor 𝜖 that factors through

the pullback

Hom𝐵(𝐵, 𝑝)𝟚

𝑋 𝐵�𝟚×𝟚 𝐵𝟚×𝟚

𝐵 𝐵

𝜖

𝑝𝑒′

𝜖′

res

Δ

𝟚 × 𝟚

𝟚 × 𝟛

𝟙 �𝟚× 𝟚

𝟚 �𝟚× 𝟛

𝟚×𝑖12

𝑠

𝑖1

defined by degenerating the initial cospan in the simplicial set 𝟚 × 𝟚 as indicated by the pushout of
simplicial sets in the back face of the cube. Pulling back along Δ∶ 𝐵𝟚 → 𝐵𝟚×𝟚 implements a similar
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quotienting in the left-hand square of 𝟚×𝟛, as illustrated in the front face of the cube, where 𝑠 ∶ → 𝟚
sends the left two objects to 0 and the right three objects to 1. Thus, we see that the map (5.1.9) is
defined by the pullback of the map 𝑞 in the following diagram along 𝜖′.

𝐵�𝟚×𝟛 ×
𝐵𝟛
𝐸𝟛 𝐸𝟛

𝐵�𝟚×𝟛 ×
𝐵

𝐸 𝐵𝟛 ×
𝐵

𝐸

𝐵�𝟚× ×
𝐵

𝐸

𝑋 𝐵�𝟚×𝟚 ×
𝐵𝟚
𝐸𝟚 𝐸𝟚

∼𝑥

𝑞

𝛿�⋔𝑝

∼𝑦

∼ 𝑧

𝑝12

𝜖′

𝜓

We claim that the maps labeled 𝑥, 𝑦, and 𝑧 are all trivial fibrations. It will then follow from the
2-of-3 property that if the pullback of 𝑞 along 𝜖′ is an equivalence, as given by the absolute right lifting

diagram of (iii), then the pullback of 𝛿 �⋔ 𝑝 along 𝜓 is an equivalence, proving (i).

The trivial fibrations 𝑥 and 𝑦 are both pullbacks of the restriction map 𝐵�𝟚×𝟛 ∼ 𝐵𝟛, which we show
is a trivial fibration. The is a sequence of adjunctions between the categories 𝟛 ↪ ↪ 𝟚 × 𝟛 that
become simplicial homotopy equivalences between the quotient simplicial sets:

� 0 1 2 � ⊥

⎧⎪⎪
⎨⎪⎪⎩

0 1

0 1 2

⎫⎪⎪
⎬⎪⎪
⎭

⊥

⎧⎪⎪
⎨⎪⎪⎩

0 1 1

0 1 2

⎫⎪⎪
⎬⎪⎪
⎭

Thus, restriction along the composite inclusion defines an equivalence 𝐵�𝟚×𝟛 ∼ 𝐵𝟛. The map 𝑧 is a
pullback of 𝐵�𝟚×𝟛 ∼ 𝐵�𝟚× , which is a trivial fibration because the inclusion �𝟚× ↪ �𝟚× 𝟛 can be
filled by “special outer horns” (see Theorem D.5.1 and Corollary D.3.12).

In this way we see that (5.1.9) is equivalent to the map of Definition 5.1.1, and thus we see that 𝜓 is
𝑝-cartesian, proving that (iii)⇒(i). �

Observe that the data of the cospan underlying the weakly cartesian square (5.1.3) is determined
by a functor 𝛽∶ 𝑋 → Hom𝐵(𝐵, 𝑝) representing a natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 whose codomain
factors through 𝑝 along a specified functor 𝑒 ∶ 𝑋 → 𝐸. Thus it is relevant to ask whether a particular
arrow of this form has a 𝑝-cartesian lift with codomain 𝑒.
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5.1.10. Definition (𝑝-cartesian lifts). Consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵. An arrow 𝜓∶ 𝑋 → 𝐸𝟚 is
said to lift an arrow 𝛽∶ 𝑋 → Hom𝐵(𝐵, 𝑝) if the triangle below-left commutes:

𝐸𝟚 𝑋 𝐸 𝑋 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝐵 𝐵
= 𝑖1�⋔𝑝

𝑒

𝑏

⇑𝛽 𝑝 =

𝑒

𝑒′
⇑𝜓

𝑝𝜓

𝛽

⇝

which gives rise to the pasting equality 𝛽 = 𝑝𝜓 in the homotopy 2-category.⁷ When 𝜓 is 𝑝-cartesian,
we say it defines a 𝑝-cartesian lift of 𝛽.

The universal property of 𝑝-cartesian transformations implies that the natural transformations
represented by any two 𝑝-cartesian lifts of a common natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 are fibered
isomorphic:

5.1.11. Lemma (uniqueness of cartesian lifts). If 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 and 𝑋 𝐸

𝑒″

𝑒
⇓𝜓′ are 𝑝-cartesian

lifts of a common natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒, then there exists an invertible natural transformation

𝑋 𝐸
𝑒″

𝑒′
≅⇓𝜁 so that 𝜓′ = 𝜓 ⋅ 𝜁 and 𝑝𝜁 = id𝑏.

Proof. If both 𝜓 and 𝜓′ define 𝑝-cartesian lifts of a common arrow 𝛽, then by Theorem 5.1.7(iii)
we have a pair of absolute right liftings (𝑒′, 𝜖) and (𝑒″, 𝜖′) of 𝛽 throughΔ𝑝 with 𝑝1𝜖 = 𝜓, 𝑝1𝜖′ = 𝜓′, and
𝑝0𝜖 = id𝑏 = 𝑝0𝜖′. By uniqueness of absolute right lifting diagrams, this induces a natural isomorphism

𝐸 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝑋 Hom𝐵(𝐵, 𝑝)
⇓𝜖′

Δ𝑝 = ⇓𝜖
Δ𝑝𝑒″

𝛽

𝑒″
≅⇓𝜁
𝑒′

𝛽

so that 𝜖′ = 𝜖 ⋅ Δ𝑝𝜁. Whiskering this equation with 𝑝1 we see that 𝜓′ = 𝜓 ⋅ 𝜁, and whiskering with 𝑝0
we see that id𝑏 = 𝑝𝜁. �

Combining these results, we obtain a useful conservativity property:

5.1.12. Lemma (cartesian conservativity). Suppose that we have 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 , 𝑋 𝐸

𝑒″

𝑒
⇓𝜓′ , and

𝑋 𝐸
𝑒″

𝑒′
⇓𝜁 which are natural transformations such that 𝜓 and 𝜓′ are 𝑝-cartesian, 𝜓′ = 𝜓 ⋅ 𝜁, and 𝑝𝜁

is invertible. Then 𝜁 is invertible.

Proof. By Lemmas 5.1.5 and 5.1.6, 𝜁 is a 𝑝-cartesian lift of a natural isomorphism and hence must
be invertible. �

⁷It makes no essential difference whether the lifting property is phrased in terms of 2-cells in the homotopy 2-category
or 1-arrows in the functor spaces of the∞-cosmos: see Exercise 5.1.i.
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The universal property that characterizes the 𝑝-cartesian transformations in Theorem 5.1.7 gives
rise to induction and conservativity operations at the level of the homotopy 2-category, analogously to
those operations considered in Chapter 3.

5.1.13. Proposition (the weak universal property of a 𝑝-cartesian arrow). Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibra-

tion. A 𝑝-cartesian arrow 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 has a weak universal property in the homotopy 2-category given by

two operations:

(i) induction: Given any natural transformations 𝑋 𝐸
𝑒″

𝑒
⇓𝜏 and 𝑋 𝐵

𝑝𝑒″

𝑝𝑒′
⇓𝛾 such that

𝑝𝜏 = 𝑝𝜓 ⋅ 𝛾, there exists a lift 𝑋 𝐸
𝑒″

𝑒′
⇓�̄� of 𝛾 so that 𝜏 = 𝜓 ⋅ �̄�.

𝑒″ 𝑒

𝑒′

↧

𝑝𝑒″ 𝑝𝑒

𝑝𝑒′

𝜏

�̄� 𝜓

𝑝𝜏

𝛾 𝑝𝜓

∈ hFun(𝑋, 𝐸)

∈ hFun(𝑋, 𝐵)

𝑝∗

(ii) conservativity: Any fibered endomorphism of 𝜓 is invertible: if 𝑋 𝐸
𝑒′

𝑒′
⇓𝜁 is any natural transfor-

mation so that 𝜓 ⋅ 𝜁 = 𝜓 and 𝑝𝜁 = id𝑝𝑒′ then 𝜁 is invertible.

Proof. The conservativity property (ii) is a special case of the conservativity result observed in
Lemma 5.1.12 so it remains to prove (i).

The pair 𝜏∶ 𝑒″ ⇒ 𝑒 and 𝛾∶ 𝑝𝑒″ ⇒ 𝑝𝑒′ satisfy the compatibility condition required by Proposition
3.4.6 to induce a natural transformation 𝜎 as below-left satisfying 𝑝1𝜎 = 𝜏 and 𝑝0𝜎 = 𝛾. Since 𝜓 is
𝑝-cartesian, this 2-cell factors through the absolute right lifting diagram of Theorem 5.1.7(iii)

𝐸 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝑋 Hom𝐵(𝐵, 𝑝)
⇓𝜎

Δ𝑝 = ⇓𝜖
Δ𝑝𝑒″

𝑝𝜓

𝑒″
⇓�̄�
𝑒′

𝑝𝜓

Since (𝑒′, 𝜖) is absolute right lifting, (𝑒″, 𝜎) induces a natural transformation �̄� ∶ 𝑒″ ⇒ 𝑒′ so that
𝜎 = 𝜖 ⋅ Δ𝑝�̄�. Whiskering these equations with 𝑝1 we see that 𝜏 = 𝜓 ⋅ �̄� and whiskering with 𝑝0 we see
that 𝛾 = 𝑝�̄�. �

The universal properties enumerated by Proposition 5.1.13 are considerably weaker than that
expressed by Definition 5.1.1. Indeed they do not express the full conservativity observed in Lemma
5.1.12 nor do they take advantage of the restriction stability of cartesian transformations and absolute
right lifting diagrams. Nevertheless, conditions (i) and (ii) suffice to characterize the class of 𝑝-cartesian
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transformations under the condition that 𝑝 is a cartesian fibration, a concept that is introduced in the
next section. Even more surprisingly, if (i) and (ii) are enhanced by a restriction stability property,
then Proposition 5.2.11 demonstrates that it is possible to define cartesian fibrations entirely from
the perspective of the homotopy 2-category, without referencing Definition 5.1.1. Since, however,
𝑝-cartesian arrows are of interest in their own right even in cases where 𝑝 is not itself a cartesian
fibration (see Exercise 5.1.ii for instance), we de-emphasize the purely 2-categorical development of the
theory of cartesian fibrations and instead refer the reader to [110].

Exercises.

5.1.i. Exercise. Recall that arrows 𝜓∶ 𝑋 → 𝐸𝟚 in an ∞-cosmos correspond to 1-simplices (aka 1-
arrows) 𝜓∶ 𝑒′ → 𝑒 in the functor space Fun(𝑋, 𝐸), and a parallel pair of 1-arrows represents the same

natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 if and only if they are homotopic, bounding a 2-arrow in

Fun(𝑋, 𝐸) whose 0th or 2nd edge is degenerate (see Exercise 3.2.i).
Show that if 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration so that every natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits

a lift 𝜓∶ 𝑒′ ⇒ 𝑒 in the homotopy 2-category, then every 1-arrow 𝛽∶ 𝑏 → 𝑝𝑒 in Fun(𝑋, 𝐵) admits a
1-arrow lift 𝜓∶ 𝑒′ → 𝑒 in the sense of Definition 5.1.10.

5.1.ii. Exercise (5.2.10).

(i) Characterize the cartesian arrows for the codomain projection functor 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴.
(ii) Use your answer to (i) to give an alternate proof of Proposition 4.3.11.

5.2. Cartesian Fibrations

Cartesian fibrations between∞-categories generalize the Grothendieck fibrations between ordinary
1-categories. This notion was first extended to quasi-categories by Joyal [62] and Lurie [78] and to
complete Segal spaces by Boavida de Brito [34] and Rasekh [98, 97]. Cartesian fibrations between
(∞, 1)-categories have been studied model independently by Mazel–Gee [86] and Ayala–Francis [4].

5.2.1. Definition (cartesian fibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration if any natural
transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 as below-center admits a 𝑝-cartesian lift 𝜒𝛽 ∶ 𝛽∗𝑒 ⇒ 𝑒 as below-right:

𝐸𝟚 𝑋 𝐸 𝑋 𝐸

𝑋 Hom𝐵(𝐵, 𝑝) 𝐵 𝐵

= 𝑖1�⋔𝑝

𝑒

𝑏

⇑𝛽 𝑝 =

𝑒

𝛽∗𝑒

⇑𝜒𝛽

𝑝
𝜒𝛽

𝛽

⇝

By Exercise 5.1.i, it makes no difference whether we express the lifting property in the homotopy
2-category as displayed above-right, or in terms of the representing arrows as above-left.

5.2.2. Remark. A guiding moral principle of ∞-category theory is that all ∞-categorical notions
should be equivalence invariant, but if 𝐸 and 𝐵 are replaced by equivalent ∞-categories 𝐸′ and 𝐵′

the equivalent functor 𝑝′ ∶ 𝐸 → 𝐵 is not necessarily an isofibration. However, by Lemma 1.2.19, 𝑝′ is
equivalent to an isofibration 𝑝″ over 𝐵′, so we could declare 𝑝′ to be a cartesian fibration just when 𝑝″
is an isofibration in the sense of Definition 5.2.1. By Corollary 5.3.1, this definition is now equivalence
invariant. For technical reasons, such as Proposition 6.3.14, we prefer to leave Definition 5.2.1 as it is.
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Certain stability properties of cartesian fibrations can be proven directly from this definition.

5.2.3. Lemma. If 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞 ∶ 𝐵 ↠ 𝐴 are cartesian fibrations, then so is 𝑞𝑝 ∶ 𝐸 ↠ 𝐴. Moreover, a

natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 is 𝑞𝑝-cartesian if and only if 𝜓 is 𝑝-cartesian and 𝑝𝜓 is 𝑞-cartesian.

Proof. The first claim follows immediately from the second, for the required lifts can be con-
structed by first taking a 𝑞-cartesian lift 𝜒𝛼 and then taking a 𝑝-cartesian lift 𝜒𝜒𝛼 of this lifted cell.

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝑋 Hom𝐴(𝐴, 𝑞𝑝) Hom𝐴(𝐴, 𝑞) 𝐴𝟚

𝐸 𝐵 𝐴

𝑝𝟚
𝑖1�⋔𝑝

𝑞𝟚
𝑖1�⋔𝑞

𝛼

𝜒𝛼𝜒𝛼

𝜒𝜒𝛼

𝑒

𝑝1

𝑝 𝑞

𝑋 𝐸 𝑋 𝐸 𝑋 𝐸

𝐵 𝐵 = 𝐵

𝐴 𝐴 𝐴

𝑒

𝑎

⇑𝛼 𝑝

𝑒

𝛼∗(𝑝𝑒)

⇑𝜒𝛼 𝑝

𝑒

𝛼∗𝑒

⇑𝜒𝜒𝛼
𝑝

𝑞 = 𝑞 𝑞

To prove the second claim, first consider a natural transformation 𝜓∶ 𝑒′ ⇒ 𝑒 that is 𝑝-cartesian
and so that 𝑝𝜓 is 𝑞-cartesian. By Lemma 5.1.2, these properties are expressed by the dashed trivial
fibrations, the latter of which pulls back to define the dotted trivial fibration:

𝐸/𝜓 Hom𝐸(𝐸, 𝑒)

•
•

𝐵/𝑝𝜓 Hom𝐵(𝐵, 𝑝𝑒)

•

𝐴/𝑞𝑝𝜓 Hom𝐴(𝐴, 𝑞𝑝𝑒)

∼

∼

∼

Since trivial fibrations compose, this tells us that 𝐸/𝜓 ∼ 𝐴/𝑞𝑝𝜓 ×Hom𝐴(𝐴,𝑞𝑝𝑒) Hom𝐸(𝐸, 𝑒) is a trivial
fibration, and thus 𝜓 is 𝑞𝑝-cartesian.

Conversely, if 𝜓 is 𝑞𝑝-cartesian, then Lemma 5.1.11 implies it is isomorphic to all other 𝑞𝑝-cartesian
lifts of 𝑞𝑝𝜓. The construction given above produces a 𝑞𝑝-cartesian lift of any 2-cell that is 𝑝-cartesian
and whose image under 𝑝 is 𝑞-cartesian. By the isomorphism stability of 𝑝- and 𝑞-cartesian transforma-
tions of Lemma 5.1.6, 𝜓 must also have these properties. �
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5.2.4. Proposition (pullback stability). In any pullback square

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘

if 𝑝 is a cartesian fibration then 𝑞 is a cartesian fibration. Moreover, a natural transformation 𝜓 with codomain
𝐹 is 𝑞-cartesian if and only if ℎ𝜓 is 𝑝-cartesian.

Proof. The pullback square in the statement induces a pullback square between the Leibniz
cotensors of 𝑖1 ∶ 𝟙 ↪ 𝟚 with 𝑞 and 𝑝. Consider an arrow 𝛼∶ 𝑋 → Hom𝐴(𝐴, 𝑞) representing a
natural transformation 𝛼∶ 𝑎 ⇒ 𝑞𝑓. Since 𝑝 is a cartesian fibration, the natural transformation
𝑘𝛼∶ 𝑘𝑎 ⇒ 𝑘𝑞𝑓 = 𝑝ℎ𝑓 has a 𝑝-cartesian lift 𝜏, which induces a lift 𝜎∶ 𝑋 → 𝐹𝟚 of 𝛼 by the universal
property of the pullback with the property that ℎ𝜎 is a 𝑝-cartesian arrow:

𝑋 𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

𝜎

𝜏

𝛼
𝑖1�⋔𝑞

ℎ𝟚

𝑖1�⋔𝑝

Hom𝑘(𝑘,ℎ)

So if we prove the second part of the statement – that a natural transformation 𝜓∶ 𝑓 ′ ⇒ 𝑓 with
codomain 𝐹 is 𝑞-cartesian if and only if ℎ𝜓 is 𝑝-cartesian – then we will have shown that 𝑞 is itself a
cartesian fibration with cartesian cells created by the pullback.

To that end consider the cube:

𝐹/𝜓 Hom𝐹(𝐹, 𝑓 )

𝐸/ℎ𝜓 Hom𝐸(𝐸, ℎ𝑓 )

𝐴/𝑞𝜓 Hom𝐴(𝐴, 𝑞𝑓 )

𝐵/𝑝ℎ𝜓 Hom𝐵(𝐵, 𝑝ℎ𝑓 )

By the hypercube pullback lemma, the left and right faces are strict pullback squares. Hence the map
from 𝐸/ℎ𝜓 to the pullback in the front face pulls back to the map from 𝐹/𝜓 to the pullback in the back
face. Thus, by Proposition 3.3.4 if ℎ𝜓 is 𝑝-cartesian then 𝜓 is 𝑞-cartesian. This completes the proof
that 𝑞 is a cartesian fibration.

Now if 𝜓 is 𝑞-cartesian then by Lemma 5.1.11, 𝜓 is isomorphic to the 𝑞-cartesian lift 𝜎 of 𝑞𝜓
constructed in first part of this proof. Thus ℎ𝜓 is isomorphic to ℎ𝜎 = 𝜏, which is 𝑝-cartesian, so by
Lemma 5.1.6, ℎ𝜓 must be 𝑝-cartesian as well. �

In fact, it suffices in Definition 5.2.1 to assume only that the generic transformation whose codomain
factors through 𝑝 admits a 𝑝-cartesian lift:
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5.2.5. Lemma. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration if and only if the right comma cone over 𝑝
displayed below-left admits a 𝑝-cartesian lift 𝜒 as displayed below-right:

𝐸𝟚 Hom𝐵(𝐵, 𝑝) 𝐸 Hom𝐵(𝐵, 𝑝) 𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝) 𝐵 𝐵
= 𝑖1�⋔𝑝

𝑝1

𝑝0

⇑𝜙 𝑝 =

𝑝1

𝑟

⇑𝜒

𝑝
𝜒

⇝ (5.2.6)

Proof. By Theorem 5.1.7(ii), to say that the right comma cone over 𝑝 admits a 𝑝-cartesian lift 𝜒
means that 𝜒 defines an absolute right lifting of the identity through 𝑖1 �⋔ 𝑝. By Lemma 2.3.6 it follows
that the restriction

𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

= 𝑖1�⋔𝑝
𝛽

𝜒

defines an absolute right lifting for any 𝛽∶ 𝑋 → Hom𝐵(𝐵, 𝑝), and thus by Theorem 5.1.7(ii) any
𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits a 𝑝-cartesian lift. �

When 𝑝 is a cartesian fibration, we refer to the universal cartesian arrow 𝜒∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐸𝟚 of
(5.2.6) as the generic 𝑝-cartesian lift.

5.2.7. Remark (action of arrows on the fibers of a cartesian fibration). The action of an arrow in the
base of a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 on the fibers can be described as follows. Consider a natural
transformation 𝛽 with codomain 𝐵 and form the fibers of 𝑝 over its domain and codomain functors

𝑋 𝐵
𝑎

𝑏
⇓𝛽

𝐸𝑎 𝐸 𝐸𝑏

𝑋 𝐵 𝑋

𝑝𝑎 𝑝 𝑝𝑏

𝑎 𝑏

The pullback square defining the fiber 𝐸𝑏 factors as below-left

𝐸𝑏 Hom𝐵(𝐵, 𝑝) 𝐸 𝐸𝑏 Hom𝐵(𝐵, 𝑝) 𝐸

𝑋 𝐵𝟚 𝐵 𝑋 𝐵𝟚 𝐵

𝑝𝑏 𝑞

𝑝1

𝑝 𝑝𝑏 𝑞

𝑟

𝑝

𝛽 𝑝1 𝛽 𝑝0

and thus the rectangle displayed above-right defines a cone over the pullback defining 𝐸𝑎, inducing a
map 𝛽∗ ∶ 𝐸𝑏 → 𝐸𝑎. The top-horizontal functor in this rectangle recovers the domain component 𝛽∗(ℓ𝑏)
of the 𝑝-cartesian lift of 𝛽 with codomain ℓ𝑏. This coincides with the description of 𝛽∗ ∶ 𝐸𝑏 → 𝐸𝑎 given
in (5.0.1).

Lemma 5.2.5 extends to give an internal characterization of cartesian fibrations inspired by a similar
result of Street [118, 119, 121], which in turn was inspired by previous work of Gray [48] on what he calls
a “Chevalley criterion”⁸ (see also [131]). As we shall see, the universal property of a cartesian fibration

⁸Gray attributes [48, 3.11] – the special case of the equivalence of (i)⇔(ii) of Theorem 5.2.8 in the∞-cosmos 𝒞𝑎𝑡 – to
unpublished notes from a seminar given by Claude Chevalley at Berkeley in 1962.
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𝑝∶ 𝐸 ↠ 𝐵 can be encoded by the data of a suitable right adjoint to the functor Δ𝑝 ∶ 𝐸 → Hom𝐵(𝐵, 𝑝)
induced from the identity 2-cell or to the functor 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 → Hom𝐵(𝐵, 𝑝) defined by applying
𝑝 to the generic arrow with codomain 𝐸. In fact, this result follows quite easily by specializing the
characterizations of 𝑝-cartesian cells of Theorem 5.1.7 to the universal case described in Lemma 5.2.5.

5.2.8. Theorem (an internal characterization of cartesian fibrations). For an isofibration 𝑝∶ 𝐸 ↠ 𝐵 the
following are equivalent:

(i) 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration.
(ii) The functor 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right adjoint right inverse:⁹

𝐸𝟚 Hom𝐵(𝐵, 𝑝)
𝑖1�⋔𝑝

⊥
𝜒

(iii) The functor Δ𝑝 ∶ 𝐸 → Hom𝐵(𝐵, 𝑝) admits a right adjoint over 𝐵:¹⁰

𝐸 ⊥ Hom𝐵(𝐵, 𝑝)

𝐵

Δ𝑝

𝑝 𝑝0
𝑟

As the proof reveals, the right adjoint of (iii) is the domain component of the generic 𝑝-cartesian
lift 𝜒 of (5.2.6), and 𝜒 is recovered as 𝑝1𝜖, where 𝜖 is the counit of the fibered adjunction Δ𝑝 ⊣ 𝑟. By
1-cell induction, the generic cartesian lift 𝜒 can be represented by a functor 𝜒∶ Hom𝐵(𝐵, 𝑝) → 𝐸𝟚 and
this defines the right adjoint of (ii).

Proof. We prove (i)⇔(ii) and (i)⇔(iii).
(i)⇔(ii): By Theorem 5.1.7(ii) and Lemma 5.2.5, 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration if and only if

𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a section that defines an absolute right lifting diagram:

𝐸𝟚

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

= 𝑖1�⋔𝑝
𝜒

By Lemma 2.3.7, such an absolute right lifting defines an adjunction 𝑖1 �⋔ 𝑝 ⊣ 𝜒 with identity counit.

Conversely, if 𝑖1 �⋔ 𝑝 ⊣ 𝜒 with invertible counit, then since the left adjoint is an isofibration, this can
be rectified into a fibered adjunction in which 𝜒 defines a strict section and the counit is the identity.

By Lemma 2.3.7, 𝜒 then defines an absolute right lifting of the identity functor through 𝑖1 �⋔ 𝑝, which
proves that 𝑝 is a cartesian fibration.

⁹By Lemma 3.6.9, such an adjunction may be rectified to an adjunction that is fibered over Hom𝐵(𝐵, 𝑝), which allows
us to interpret 𝜒∶ Hom𝐵(𝐵, 𝑝) → 𝐸𝟚 as a terminal element in 𝐸𝟚 over Hom𝐵(𝐵, 𝑝) (see Definition 3.6.8).

¹⁰By Lemma 3.5.9, Δ𝑝 ≅ id𝑝 is itself right adjoint over 𝐸 and thus over 𝐵 to the codomain projection functor
𝑝1 ∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐸. Since the counit of the adjunction 𝑝1 ⊣ Δ𝑝 is an isomorphism, it follows formally that the
unit of the adjunction Δ𝑝 ⊣ 𝑟must also be an isomorphism, whenever the adjunction postulated in (iii) exists (see Lemma

B.3.9). Thus 𝑟 defines a right adjoint left inverse to Δ𝑝 over 𝐵.
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(i)⇔(iii): If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration in an∞-cosmos𝒦, then by Theorem 5.1.7(iii) there
is an absolute right lifting diagram

𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)
⇓𝜖

Δ𝑝
𝑟

for which 𝑝0𝜖 = id𝑝0 . By Proposition 3.6.2, we may lift 𝜖 to a natural transformation in the sliced
∞-cosmos 𝒦/𝐵. Applying Lemma 2.3.7 in 𝒦/𝐵, we see that 𝑟 defines a fibered right adjoint to Δ𝑝.
Conversely, if we are given a fibered adjunction over 𝐵, we may apply the forgetful 2-functor 𝔥(𝒦/𝐵) →
𝔥𝒦 to obtain an adjunction¹¹

𝐸 ⊥ Hom𝐵(𝐵, 𝑝)
Δ𝑝

𝑟

and then apply Lemma 2.3.7 to conclude that the counit 𝜖 defines an absolute right lifting of the
identity through Δ𝑝. Since the counit is unchanged by the process of forgetting that the adjunction is
fibered over 𝐵, we still have that 𝑝0𝜖 = id𝑝0 , as required. �

Examples of cartesian fibrations are overdue.

5.2.9. Proposition (domain projection fibration). For any∞-category 𝐴, the domain projection functor
𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 defines a cartesian fibration. Moreover, a natural transformation 𝜓 with codomain 𝐴𝟚 is
𝑝0-cartesian if and only if 𝑝1𝜓 is invertible.

Before giving the proof, we explain the idea. A natural transformation

𝑋 𝐴𝟚

𝐴

𝛽

𝑎

𝑝0⇑𝛼

defines a composable pair of 2-cells 𝛼∶ 𝑎 ⇒ 𝑥 and 𝛽∶ 𝑥 ⇒ 𝑦 in hFun(𝑋,𝐴). Composing these we

induce a 2-cell 𝑋 𝐴𝟚
𝛽∘𝛼

𝛽

⇓𝜓 representing the commutative square in hFun(𝑋,𝐴)

𝑎 𝑥

𝑦 𝑦

𝛼

𝛽∘𝛼 𝛽

so that 𝑝0𝜓 = 𝛼, as required, and 𝑝1𝜓 = id.

¹¹Recall fromNon-Example 1.3.6 that the forgetful functor𝒦/𝐵 → 𝒦 is not cosmological. Nevertheless any simplicial

functor between∞-cosmoi descends to a 2-functor between their homotopy 2-categories, which is all that is needed here.
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Proof. We use Theorem 5.2.8(ii) and prove that 𝑝0 is cartesian by constructing an appropriate
adjoint to the functor

(𝐴𝟚)𝟚 𝟚 × 𝟚

Hom𝐴(𝐴, 𝑝0) 𝐴𝟚 𝟛 𝟚

𝐴𝟚 𝐴 𝟚 𝟙

𝑝𝟚0

𝑝1

𝑖1�⋔𝑝0

𝑝1 𝑝1

𝑘

𝑖0×𝟚

𝑝0

𝟚×𝑖1

𝑖0

𝑖1

defined by cotensoring with the 1-categories displayed above right.¹²

To construct a right adjoint right inverse to the map 𝑖1 �⋔ 𝑝0, it suffices to construct a left adjoint
left inverse to the inclusion of 1-categories 𝑘 ∶ 𝟛 ↪ 𝟚× 𝟚 with image (0, 0) → (0, 1) → (1, 1). The left
adjoint ℓ ∶ 𝟚 × 𝟚 → 𝟛 is a left inverse on the image of 𝟛 and sends (1, 0) to the terminal element of 𝟛:

𝟚 × 𝟚 ∋

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

(0, 0) (0, 1)

(1, 0) (1, 1)

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭

ℓ
↦

⎧⎪⎪
⎨⎪⎪⎩

0 1

2 2

⎫⎪⎪
⎬⎪⎪
⎭

∈ 𝟛

Now

(𝐴𝟚)𝟚 𝐴𝟛 ≃ Hom𝐴(𝐴, 𝑝0)
𝑖1�⋔𝑝0≃−∘𝑘

⊥
−∘ℓ

defines the desired right adjoint right inverse.
The characterization of 𝑝0-cartesian transformations follows from Theorem 5.1.7(ii). For any arrow

𝜓∶ 𝑋 → 𝐴𝟚 the commutative triangle below-left factors through the absolute lifting diagram defined
by the adjunction, and𝜓 is 𝑝0-cartesian if and only if the induced natural transformation 𝜁 is invertible.

𝐴𝟚×𝟚 𝐴𝟚×𝟚

𝑋 𝐴𝟛 𝑋 𝐴𝟛 𝐴𝟛

=

−∘𝑘 = ⇓𝜁

=

−∘𝑘
𝜓

𝑝0𝜓 𝑝0𝜓

𝜓

−∘ℓ

If 𝜁 is an isomorphism, then 𝜓 is isomorphic to an arrow in the image of restriction along ℓ, and
thus its codomain component must be invertible. Conversely, if 𝑝1𝜓 is invertible, to show that 𝜓 is
𝑝0-cartesian it suffices by Theorem 5.1.7(ii) to prove that 𝜁 is an isomorphism. By two applications
of 2-cell conservativity, it suffices to show that the four components of 𝜁 indexed by each element of

¹²The cotensor 𝐴(−) carries pushouts of simplicial sets to pullbacks of ∞-categories, and the pushout of 𝟚 ∪𝟙 𝟚 of
simplicial sets is = Λ1[2], not 𝟛 = Δ[2]. However, on account of the equivalence of ∞-categories 𝐴𝟛 ≃ 𝐴 , no harm
comes from making the indicated substitution.
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𝟚 × 𝟚 are invertible. Since 𝜁 restricts along 𝑘 to an identity, three of these components are necessarily

identities, and the fourth component 𝑋 𝐴𝟚×𝟚 𝐴
𝜓

𝑝0𝜓|ℓ

⇓𝜁
𝑝(1,0)

equals 𝑝1𝜓 in hFun(𝑋,𝐴). �

For∞-categories admitting pullbacks (see Definition 4.3.8), the codomain projection functor also
defines a cartesian fibration:

5.2.10. Proposition (codomain projection fibration). Let 𝐴 be an ∞-category that admits pullbacks.
Then the codomain projection functor 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴 is a cartesian fibration and the 𝑝1-cartesian arrows are the
pullback squares.

Proof. Via Theorem5.2.8(ii), we desire a right adjoint right inverse to the functor 𝑖1 �⋔ 𝑝1 defined
below-left applying 𝐴(−) to the diagram of simplicial sets appearing below-right:

(𝐴𝟚)𝟚 𝟚 × 𝟚

Hom𝐴(𝐴, 𝑝1) 𝐴𝟚 𝟚

𝐴𝟚 𝐴 𝟚 𝟙

𝑝𝟚1

𝑝1

𝑖1�⋔𝑝1

𝑝1 𝑝1

1×𝟚

𝑝0

𝟚×1

1

1

This is provided by Corollary 4.3.5:

𝐴⊡ 𝐴(𝐴𝟚)𝟚 ≅
res

⊥
ran

≅ Hom𝐴(𝐴, 𝑝1)

By comparing Definition 4.3.8 with Theorem 5.1.7(ii), we see that 𝑝1-cartesian arrows coincide with
pullback squares. �

There is a fourth equivalent definition of cartesian fibrations that we might have added to Theorem
5.2.8, except that it is an “external characterization” of cartesian fibrations, phrased entirely in the
setting of the homotopy 2-category, rather than an “internal characterization,” that is amenable for
proving that cartesian fibrations are preserved by cosmological functors.

5.2.11. Proposition. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration if and only if any natural transfor-
mation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits a lift 𝜒𝛽 ∶ 𝑒′ ⇒ 𝑒

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

⇑𝛽 𝑝 =

𝑒

𝑒′
⇑𝜒𝛽

𝑝

so that for any functor 𝑓 ∶ 𝑌 → 𝑋 the 2-cell 𝜒𝛽𝑓 satisfies the following properties in the homotopy 2-category:
(i) induction: Given any 2-cells 𝜏∶ 𝑒″ ⇒ 𝑒𝑓 and 𝛾∶ 𝑝𝑒″ ⇒ 𝑝𝑒′𝑓 so that 𝑝𝜏 = 𝛽𝑓 ⋅ 𝛾, there exists a lift

�̄� ∶ 𝑒″ ⇒ 𝑒′𝑓 of 𝛾 so that 𝜏 = 𝜒𝛽𝑓 ⋅ �̄�.
(ii) conservativity: Any fibered endomorphism of 𝜒𝛽𝑓 is invertible: for any 2-cell 𝜁∶ 𝑒′𝑓 ⇒ 𝑒′𝑓 so that

𝜒𝛽𝑓 ⋅ 𝜁 = 𝜒𝛽𝑓 and 𝑝𝜁 = id𝑝𝑒′𝑓 then 𝜁 is invertible.
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Moreover, under these hypothesis, a natural transformation 𝜓∶ 𝑒′ ⇒ 𝑒 with codomain 𝐸 is 𝑝-cartesian if and
only if 𝜓 satisfies the induction and conservativity conditions in the case 𝑓 = id.

To help us stay organized during the proof, we refer to a natural transformation𝜓∶ 𝑒′ ⇒ 𝑒 satisfying
conditions (i) and (ii) as a weak 𝑝-cartesian transformation. We argue that when 𝑝 is a cartesian fibration,
the class of weak 𝑝-cartesian transformations coincides with the class of 𝑝-cartesian transformations.

Proof. If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then any 𝛽∶ 𝑏 ⇒ 𝑝𝑒 admits a 𝑝-cartesian lift
𝜒𝛽 ∶ 𝛽∗𝑒 ⇒ 𝑒. By Lemma 5.1.4, the restriction 𝜒𝛽𝑓 along any functor is again a 𝑝-cartesian transforma-
tion. By Proposition 5.1.13, this 𝜒𝛽𝑓 then satisfies the induction and conservativity properties. In fact
Proposition 5.1.13 shows more generally that any 𝑝-cartesian transformation is weakly 𝑝-cartesian.

Conversely, assume that 𝑝∶ 𝐸 ↠ 𝐵 satisfies the hypotheses of the statement. We will use the
induction and conservativity properties associated to the lift

Hom𝐵(𝐵, 𝑝) 𝐸 Hom𝐵(𝐵, 𝑝) 𝐸

𝐵 𝐵

𝑝1

𝑝0

⇑𝜙 𝑝 =

𝑝1

𝑟
⇑𝜒

𝑝

of the right comma cone 𝜙 over 𝑝 and its restrictions to construct the data of Theorem 5.2.8(iii).
First, we apply the induction property to 𝜒Δ𝑝 ∶ 𝑟Δ𝑝 ⇒ id𝐸 to induce a 2-cell 𝜂∶ id𝐸 ⇒ 𝑟Δ𝑝 so

that 𝑝𝜂 = id𝑝 and 𝜒Δ𝑝 ⋅ 𝜂 = id. By construction, 𝜂 ⋅ 𝜒Δ𝑝 defines a fibered automorphism of 𝜒Δ𝑝, so
must be invertible by the conservativity property. Thus, the fibered 2-cell 𝜂 is the inverse isomorphism
to 𝜒Δ𝑝.

We induce the counit 𝜖 ∶ Δ𝑝𝑟 ⇒ id by 2-cell induction from the pair of 2-cells 𝑝1𝜖 = 𝜒 and
𝑝0𝜖 = id. Since 𝜖Δ𝑝 is induced from a pair of invertible 2-cells, it must be an isomorphism by 2-cell
conservativity. The 2-cell 𝑟𝜖 can also be seen to be invertible, on account of the naturality of whiskering
square associated to the horizontal composite:

𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝) 𝐸

Δ𝑝𝑟
⇓𝜖

𝑟

⇓𝜒

𝑝1

⇝
𝑟Δ𝑝𝑟 𝑝1Δ𝑝𝑟

𝑟 𝑝1

𝑟𝜖

𝜒Δ𝑝𝑟
≅

𝑝1𝜖=𝜒

𝜒

Weak 𝑝-cartesian cells are stable under isomorphism, so the top right composite is weakly 𝑝-cartesian.
Since 𝑝𝑟𝜖 = 𝑝0𝜖 = id, we can apply the induction and conservativity properties once more to induce a
transformation 𝛾∶ 𝑟 ⇒ 𝑟Δ𝑝𝑟 so that 𝛾 ⋅ 𝑟𝜖 and 𝑟𝜖 ⋅ 𝛾 are both isomorphisms. Hence 𝑟𝜖 is invertible.

By Lemma 2.1.11 this data in an∞-cosmos𝒦 suffices to define an adjunction in the sliced homotopy
2-category (𝔥𝒦)/𝐵. By Lemma 3.6.7, this adjunction may then be lifted along the smothering 2-functor
𝔥(𝒦/𝐵) → (𝔥𝒦)/𝐵 of Proposition 3.6.2 to a genuine fibered adjunction. By Theorem 5.2.8(iii), this
proves that 𝑝 is a cartesian fibration.

Finally, observe that when 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, any 𝜓∶ 𝑒′ ⇒ 𝑒 satisfying (i) and (ii)
for 𝑓 = id is fibered isomorphic to a 𝑝-cartesian lift of 𝑝𝜓 with codomain 𝑒. By Lemma 5.1.6, it follows
that 𝜓 is then a 𝑝-cartesian transformation, proving that when 𝑝 is a cartesian fibration these classes
coincide. �
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Exercises.

5.2.i. Exercise. There is a standard notion of cartesian fibration in a 2-category developed by Street
[118] that recovers the Grothendieck fibrations when specialized to the 2-category 𝒞𝑎𝑡. This is not
the correct notion of cartesian fibration between ∞-categories as the universal property the usual
notion demands of lifted 2-cells is too strict. Compare this definition with 2-categorical definition of
Proposition 5.2.11 and consider why the stricter universal property does not hold in the∞-categorical
context, for instance by considering the cartesian fibrations of Proposition 5.2.9.

5.2.ii. Exercise. Show that a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 defines an “incoherent pseudofunctor”
𝐸∶ h𝐵op ⇝ 𝔥𝒦 given by the data:

• a mapping on objects 𝑏 ∈ h𝐵 ↦ 𝐸𝑏 ∈ 𝔥𝒦;
• a mapping on 1-cells 𝛽∶ 𝑎 → 𝑏 ∈ h𝐵 ↦ 𝛽∗ ∶ 𝐸𝑏 → 𝐸𝑎 ∈ 𝔥𝒦 defined by (5.0.1);

• an invertible 2-cell 𝐸𝑏 𝐸𝑏
id∗𝑏

𝜄𝑏⇓≅ ∈ 𝔥𝒦 for each 𝑏 ∈ h𝐵; and

• an invertible 2-cell
𝐸𝑏

𝐸𝑐 𝐸𝑎

𝛽∗𝛾∗

(𝛾∘𝛽)∗

𝛼𝛽,𝛾⇓≅

in 𝔥𝒦 for each composable pair of 𝛽∶ 𝑎 → 𝑏 and 𝛾∶ 𝑏 → 𝑐 of arrows in h𝐵.
The coherence conditions present in the full definition of a pseudo-functor (see Definition 10.4.1)
are not evident here, but do follow from the extension of this construction to a homotopy coherent
diagram indexed by the underlying quasi-category of 𝐵 [111, 6.1.16].

5.2.iii. Exercise (5.5.13). Use either Theorem 5.2.8(iii) or (ii) to prove that for any cospan of functors

𝐶
𝑔
𝐴

𝑓
𝐵 between∞-categories, the domain projection functor 𝑝0 ∶ Hom𝐴(𝑓 , 𝑔) ↠ 𝐵 is a cartesian

fibration, and moreover, a natural transformation 𝜓 with codomain Hom𝐴(𝑓 , 𝑔) is 𝑝0-cartesian if and
only if 𝑝1𝜓 is invertible.¹³

5.3. Cartesian Functors

We now show that cartesianness is an equivalence invariant property of isofibrations by appealing
to Theorem 5.2.8 to study the relationship between the data that witnesses the cartesianness of an
isofibration and that data provided by an equivalence.

¹³On account of Proposition 5.2.4 and the pullback square

Hom𝐴(𝑓 , 𝑔) Hom𝐴(𝐴, 𝑔)

𝐵 𝐴

𝑝0 𝑝0

𝑓

it suffices to prove that the domain projection functor 𝑝0 ∶ Hom𝐴(𝐴, 𝑔) ↠ 𝐴 is a cartesian fibration. There is a sense
in which this functor can be understood as a pullback of 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴, which we explain in the proof of Corollary 5.5.13
where this result appears. The reader opting to reprise the proof of Proposition 5.2.9 might wish to appeal to Proposition
6.3.10 if this construction proves too painful.
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5.3.1. Corollary. Consider an essentially commutative square between isofibrations whose horizontal functors
are equivalences:

𝐹 𝐸

𝐴 𝐵

𝑞 ≅

∼ℎ

𝑝

∼
𝑘

Then 𝑝 is a cartesian fibration if and only if 𝑞 is a cartesian fibration in which case ℎ preserves and reflects
cartesian transformations: 𝜓 is 𝑞-cartesian if and only if ℎ𝜓 is 𝑝-cartesian.

Proof. By Proposition 3.4.6, an essentially commutative square induces an essentially commutative
square

𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

≅

∼ℎ𝟚

𝑖1�⋔𝑞 𝑖1�⋔𝑝

∼
Hom𝑘(𝑘,ℎ)

whose horizontal functors are the equivalences defined in Proposition 3.4.5. By the equivalence
invariance of adjunctions (see Proposition B.3.8) the left-hand vertical functor admits a right adjoint
right inverse if and only if the right-hand vertical functor does. By Theorem 5.2.8(ii), it follows that 𝑝
is cartesian if and only if 𝑞 is cartesian. By the equivalence invariance of absolute lifting diagrams (see
Exercises 2.3.vi and 3.5.ii), it follows similarly from Theorem 5.1.7(ii) that 𝜓 is 𝑝-cartesian if and only if
ℎ𝜓 is 𝑞-cartesian. �

We have now met a few examples of structure-preserving morphisms between cartesian fibrations.

5.3.2. Definition (cartesian functor). Let 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞 ∶ 𝐹 ↠ 𝐴 be cartesian fibrations. A commu-
tative square defines a cartesian functor if its domain component ℎ preserves cartesian transformations:
if 𝜓 is 𝑞-cartesian then ℎ𝜓 is 𝑝-cartesian.

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘

For the purposes of Proposition 6.3.14, we prefer to reserve this terminology for strictly commutative
squares, but it can be extended to essentially commutative squares.

5.3.3. Example (pullbacks and equivalences are cartesian). Immediately from Proposition 5.2.4 and
Corollary 5.3.1, both pullback squares and commutative squares of equivalences define cartesian
functors, which have the special property that the top horizontal functor reflects, as well as preserves,
cartesian transformations. These results extend to weakly cartesian squares, since cartesian functors
compose and any weakly cartesian square factors as:

𝐹 𝑃 𝐸

𝐴 𝐴 𝐵

ℎ

𝑞

∼

𝑝

𝑘
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The internal characterization of cartesian fibrations of Theorem 5.2.8 extends to an internal
characterization of cartesian functors.

5.3.4. Theorem (an internal characterization of cartesian functors). For a commutative square

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘

between cartesian fibrations the following are equivalent:

(i) The square (ℎ, 𝑘) defines a cartesian functor from 𝑞 to 𝑝.
(ii) The mate of the identity in the diagram of functors below-left is an isomorphism:

𝐹𝟚 𝐸𝟚 𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

ℎ𝟚

𝑖1�⋔𝑞 =⇙ 𝑖1�⋔𝑝 ⇝

ℎ𝟚

≅⇘

Hom𝑘(𝑘,ℎ) Hom𝑘(𝑘,ℎ)

𝜒 𝜒

(iii) The mate of the identity in the diagram of functors over 𝑘 ∶ 𝐴 → 𝐵 below-left is an isomorphism:

𝐹 𝐸 𝐹 𝐸

Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

ℎ

Δ𝑞 =⇙ Δ𝑝 ⇝

ℎ

≅⇘

Hom𝑘(𝑘,ℎ) Hom𝑘(𝑘,ℎ)

𝑟 𝑟

The mates referenced here generalize the notion of “adjoint” or “transposed” 2-cells (see Definition
B.3.3 and §B.3). As noted in Warning B.3.7, the mate of an isomorphism is not necessarily invertible.

Proof. We prove (i)⇔(iii) and (i)⇔(ii). To save space, we write ℎ̄ as an abbreviation for the
functor Hom𝑘(𝑘, ℎ).

(i)⇔(ii): The square (ℎ, 𝑘) defines a cartesian functor from 𝑞 to 𝑝 if and only if it carries the
generic 𝑞-cartesian lift 𝜒∶ Hom𝐴(𝐴, 𝑞) → 𝐹𝟚 to a 𝑝-cartesian arrow, in other words, if and only if the
commutative diagram defines an absolute right lifting:

𝐹𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝)

=

ℎ𝟚

𝑖1�⋔𝑞 𝑖1�⋔𝑝
𝜒

ℎ̄

By Definition B.3.3, this square factors through the absolute right lifting diagram below-right via a

whiskered copy �̄�ℎ𝟚𝜒 of the counit �̄� of 𝑖1 �⋔ 𝑝 ⊣ 𝜒.

𝐹𝟚 𝐸𝟚 𝐸𝟚

Hom𝐴(𝐴, 𝑞) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

ℎ𝟚

𝑖1�⋔𝑞 𝑖1�⋔𝑝
⇓�̄�

=

𝑖1�⋔𝑝
𝜒

ℎ̄

𝜒

Thus, by Theorem 5.1.7(ii), �̄�ℎ𝟚𝜒 is invertible if and only if ℎ𝟚𝜒 is 𝑝-cartesian.
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(i)⇔(iii): Since the unit of Δ𝑝 ⊣ 𝑟 is an isomorphism for the reasons discussed in the statement of

Theorem 5.2.8(iii), the mate of the isomorphism on the left-hand side of (iii) is isomorphic to 𝑟ℎ̄𝜖, so our
task is to show that this natural transformation is invertible if and only if ℎ defines a cartesian functor.
This leads us to consider the naturality of whiskering square expressing the horizontal composite of
the two counits:

𝐹 𝐸

Hom𝐴(𝐴, 𝑞) Hom𝐴(𝐴, 𝑞) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

𝐹 𝐸 𝐸

Δ𝑞 Δ𝑝𝑟
⇓𝜖

𝑝1

ℎ̄
𝑟

𝑝1

⇓𝜖

𝑝1

ℎ

𝑟ℎ̄Δ𝑞𝑟 𝑟ℎ̄

𝑝1ℎ̄Δ𝑞𝑟 𝑝1ℎ̄

𝑟ℎ̄𝜖

𝑝1𝜖ℎ̄Δ𝑞𝑟

≅ 𝑝1𝜖ℎ̄

𝑝1ℎ̄𝜖

Since 𝜖 is the counit of an adjunction Δ𝑝 ⊣ 𝑟 with invertible unit, 𝜖Δ𝑝 is an isomorphism, so

𝜖ℎ̄Δ𝑞 = 𝜖Δ𝑝ℎ, is invertible. From the calculation 𝑝𝑟ℎ̄𝜖 = 𝑝0ℎ̄𝜖 = 𝑘𝑝0𝜖 = id, we see that the
top-horizontal 2-cell lies in a fiber over an identity.

Recall from Theorem 5.2.8(iii) that 𝑝1𝜖 defines the generic 𝑝-cartesian lift of Lemma 5.2.5 for the
cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵. Hence the right-hand vertical 2-cell 𝑝1𝜖ℎ̄ is a 𝑝-cartesian lift of 𝜙ℎ̄,
where 𝜙 is the right comma cone over 𝑝. By the definition of ℎ̄, 𝜙ℎ̄ = 𝑘𝜙, the latter 𝜙 being the right
comma cone over 𝑞.

Similarly, the bottom horizontal 2-cell 𝑝1ℎ̄𝜖 is a lift of 𝑘𝜙 = 𝜙ℎ̄. So if ℎ is a cartesian functor,
the right-hand vertical and bottom horizontal 2-cells are both 𝑝-cartesian lifts of a common 2-cell,
and the conservativity property of Lemma 5.1.12 implies that 𝑟ℎ̄𝜖 is invertible. Conversely, if 𝑟ℎ̄𝜖 is
invertible, then 𝑝1ℎ̄𝜖 = ℎ𝑝1𝜖 is isomorphic to the 𝑝-cartesian transformation 𝑝1𝜖ℎ̄ and is consequently
𝑝-cartesian. Since every 𝑞-cartesian transformation is isomorphic to a restriction of 𝑝1𝜖, this is the
case if and only if ℎ is a cartesian functor. �

One of the myriad applications of Theorems 5.2.8 and 5.3.4 is:

5.3.5. Corollary. Cosmological functors preserve cartesian arrows, cartesian fibrations, and cartesian
functors.

Proof. By Theorem 5.2.8(ii), an isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an ∞-cosmos 𝒦 is cartesian if and

only if the isofibration 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right adjoint right inverse. A cosmological
functor 𝐹∶ 𝒦 → ℒ preserves the class of isofibrations and the simplicial limits that define this map

𝑖1 �⋔ 𝑝. Since the 2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ associated to a cosmological functor preserves adjunctions
and the invertibility of 2-cells, 𝐹 preserves cartesian fibrations. The preservation of cartesian functors
follows similarly from Theorem 5.3.4(ii). By Corollary 3.5.7, cosmological functors preserves absolute
lifting diagrams, so the preservation of cartesian arrows follows from Theorem 5.1.7(ii). �

Another family of examples of cartesian functors is given by the following lemma, which can be
proven using Theorem 5.3.4.

5.3.6. Lemma. A fibered right adjoint functor defines a cartesian functor between cartesian fibrations with a
common base:

𝐹 𝐸

𝐵

ℎ
𝑞 𝑝

⊥
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Proof. If ℓ is a fibered left adjoint to ℎ in an∞-cosmos𝒦, then the cosmological functor defined
by pullback 𝑝∗1 ∶ 𝒦/𝐵 → 𝒦/𝐵𝟚 carries this fibered adjunction to a fibered adjunction

Hom𝐵(𝐵, 𝑞) Hom𝐵(𝐵, 𝑝)
Homid𝐵(id𝐵,ℎ)

⊥
Homid𝐵(id𝐵,ℓ)

Similarly, the cosmological functor (−)𝟚 ∶ 𝒦 → 𝒦 carries the adjunction ℓ ⊣ ℎ to an adjunction
ℓ𝟚 ⊣ ℎ𝟚.

Now both horizontal functors in the commutative square

𝐹𝟚 𝐸𝟚

Hom𝐵(𝐵, 𝑞) Hom𝐵(𝐵, 𝑝)

ℎ𝟚

𝑖1�⋔𝑞 ≅⇙ 𝑖1�⋔𝑝

Homid𝐵(id𝐵,ℎ)

admit left adjoints. A standard result from the calculus of mates tells us that the mate with respect
to the vertical adjunctions is an isomorphism if and only if the mate with respect to the horizontal
adjunctions is an isomorphism, the latter natural transformation between left adjoints being the
transpose of the former natural transformation between their right adjoints (see Exercise B.3.iii). In the
present context, the mate with respect to the horizontal adjunctions can be seen to be an isomorphism
by 2-cell conservativity for Hom𝐵(𝐵, 𝑞). �

Exercises.

5.3.i. Exercise. Show that the pullback of a cartesian functor ℎ between cartesian fibrations with a
common base defines a cartesian functor

• 𝐹

• 𝐸

𝐴 𝐵

𝑘∗𝑞

ℎ
𝑞

𝑘∗𝑝 𝑝

𝑘

5.3.ii. Exercise. Show that cartesian functors compose both vertically and horizontally.

5.3.iii. Exercise. Categorify the intuition that cartesian fibrations 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞 ∶ 𝐹 ↠ 𝐵 define
“contravariant 𝐵-indexed functors valued in∞-categories” by proving that a cartesian functor

𝐸 𝐹

𝐵

ℎ

𝑝 𝑞

defines a “natural transformation”: show that there exists a natural isomorphism in the square of fibers

𝐸𝑏 𝐹𝑏

𝐸𝑎 𝐹𝑎

𝛽∗

ℎ

∃⇗≅ 𝛽∗

ℎ
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where the action of an arrow 𝛽 in the homotopy category of 𝐵 on the fibers is defined by factoring the
domain of a 𝑝- or 𝑞-cartesian lift of 𝛽 as displayed in (5.0.1).

5.4. Cocartesian Fibrations and Bifibrations

Cocartesian fibrations are dual to cartesian fibrations in the sense that the arrows in the base
act covariantly, rather than contravariantly, on the fibers. To make this duality precise, recall from
Definition 1.2.25 that for any∞-cosmos𝒦, there is a dual∞-cosmos𝒦co with the same objects but
with functor spaces defined by:

Fun𝒦co(𝐴, 𝐵) ≔ Fun𝒦(𝐴, 𝐵)op.
The isofibrations, equivalences, and trivial fibrations in𝒦co coincide with those of𝒦. Conical limits
in𝒦co coincide with those in𝒦, while the cotensor of 𝐴 ∈ 𝒦 with 𝑈 ∈ 𝑠𝒮𝑒𝑡 is defined to be 𝐴𝑈op

.
In particular, the cotensor of an∞-category with 𝟚 is defined to be 𝐴𝟚op , which exchanges the domain
and codomain projections from arrow and comma∞-categories.

With this structure in hand, we can succinctly define a cocartesian fibration in an∞-cosmos𝒦 to
be an isofibration 𝑝∶ 𝐸 ↠ 𝐵 that defines a cartesian fibration in the dual∞-cosmos𝒦co. Now all of
the results proven in §5.1–§5.3 develop the theory of cocartesian arrows, cocartesian fibrations, and the
cartesian functors between them. In this section, we tour a few of the highlights before turning our
attention to bifibrations, isofibrations that define both cartesian and cocartesian fibrations.

5.4.1. Definition (𝑝-cocartesian arrow). Consider an isofibration 𝑝∶ 𝐸 ↠ 𝐵. An 𝑋-shaped arrow
𝜓∶ 𝑋 → 𝐸𝟚 in 𝐸 is 𝑝-cocartesian if the dashed map defined by the pullback of the Leibniz cotensor is
a trivial fibration:

𝜓/𝐸 𝐸𝟛

• 𝐵𝟛 ×
𝐵

𝐸

𝑋 𝐸𝟚

𝜆�⋔𝑝

𝑝01
𝑝01

𝜓

where 𝜆∶ ↪ 𝟛 is the inclusion whose image is the span 2 ← 0 → 1 in 𝟛.

5.4.2. Definition (cocartesian fibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cocartesian fibration if any
natural transformation 𝛽∶ 𝑝𝑒 ⇒ 𝑏 as below-left admits a 𝑝-cocartesian lift 𝜒𝛽 ∶ 𝑒 ⇒ 𝛽∗𝑒 as below-right:

𝐸𝟚 𝑋 𝐸 𝑋 𝐸

𝑋 Hom𝐵(𝑝, 𝐵) 𝐵 𝐵

= 𝑖0�⋔𝑝

𝑒

𝑏

⇓𝛽 𝑝 =

𝑒

𝛽∗𝑒
⇓𝜒𝛽

𝑝𝜒𝛽

𝛽

⇝

Again it suffices to assume only that the generic arrow whose domain factors through 𝑝 admits a
𝑝-cocartesian lift:
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5.4.3. Lemma. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cocartesian fibration if and only if the left comma cone over 𝑝
displayed below-left admits a 𝑝-cocartesian lift 𝜒 as displayed below-right:

𝐸𝟚 Hom𝐵(𝑝, 𝐵) 𝐸 Hom𝐵(𝑝, 𝐵) 𝐸

Hom𝐵(𝑝, 𝐵) Hom𝐵(𝑝, 𝐵) 𝐵 𝐵
= 𝑖0�⋔𝑝

𝑝0

𝑝1

⇓𝜙 𝑝 =

𝑝0

ℓ

⇓𝜒

𝑝
𝜒

⇝ �

Lemma 5.4.3 extends to an internal characterization of cocartesian fibrations. The dual to Theorem
5.2.8 asks for a fibered left adjoint to Δ𝑝 ∶ 𝐸 → Hom𝐵(𝑝, 𝐵) and a left adjoint right inverse to 𝑖0 �⋔
𝑝∶ 𝐸𝟚 → Hom𝐵(𝑝, 𝐵) in place of right adjoints (see Exercise 5.4.i).

Propositions 5.2.9 and 5.2.10 dualize to provide the following examples.

5.4.4. Proposition (codomain projection fibration). For any∞-category 𝐴:
(i) The codomain projection functor 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴 defines a cocartesian fibration. Moreover, a natural

transformation 𝜓 with codomain 𝐴𝟚 is 𝑝1-cocartesian if and only if 𝑝0𝜓 is invertible.
(ii) If 𝐴 has pushouts, then the domain projection functor 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 defines a cocartesian fibration, for

which the 𝑝0-cocartesian cells are the pushout squares. �

By this result and its dual, when 𝐴 has pushouts, the domain projection functor 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴
is both a cartesian fibration and a cocartesian fibration. Such maps have a special property we now
explore.

5.4.5. Definition (bifibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a bifibration if 𝑝 is both a cartesian
fibration and a cocartesian fibration.

Projections give trivial examples of bifibrations.

5.4.6. Example. For any∞-categories 𝐴 and 𝐵 the projection functor 𝜋∶ 𝐴 × 𝐵 ↠ 𝐵 is a bifibration,
in which a 2-cell with codomain𝐴×𝐵 is 𝜋-cocartesian or 𝜋-cartesian if and only if its composite with
the projection 𝜋∶ 𝐴 × 𝐵 ↠ 𝐴 is an isomorphism.

5.4.7. Proposition. Let 𝑝∶ 𝐸 ↠ 𝐵 be a bifibration. Then any natural transformation 𝑋 𝐵
𝑎

𝑏

⇓𝛽 induces

a fibered adjunction between the fibers of 𝑝 over 𝑎 and 𝑏:

𝐸𝑎 ⊥ 𝐸𝑏 𝐸𝑎 𝐸 𝐸𝑏

𝑋 𝑋 𝐵 𝑋

𝛽∗

𝑝𝑎
𝛽∗

𝑝𝑏

ℓ𝑎

𝑝𝑎 𝑝

ℓ𝑏

𝑝𝑏

𝑎 𝑏
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Proof. Write 𝛽∶ 𝑋 → 𝐵𝟚 for the functor induced by 𝛽. Note that the pullbacks defining the
fibers over its domain edge 𝑎 and codomain edge 𝑏 factor as:

𝐸𝑎 Hom𝐵(𝑝, 𝐵) 𝐸 Hom𝐵(𝐵, 𝑝) 𝐸𝑏

𝑋 𝐵𝟚 𝐵 𝐵𝟚 𝑋

ℓ𝑎

𝑝𝑎 𝑞

𝑝0
𝑝 𝑞

𝑝1

ℓ𝑏

𝑝𝑏

𝑎

𝛽 𝑝0 𝑝1 𝛽

𝑏

Theorem 5.2.8(ii) and its dual provide a right adjoint right inverse to the functor 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠
Hom𝐵(𝐵, 𝑝) and a left adjoint right inverse to the functor 𝑖0 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝑝, 𝐵). Composing
the former fibered adjunction with 𝑞 ∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐵𝟚 and the latter fibered adjunction with
𝑞 ∶ Hom𝐵(𝑝, 𝐵) ↠ 𝐵𝟚 we obtain a composable pair of adjunctions that are fibered over 𝐵𝟚:

Hom𝐵(𝑝, 𝐵) 𝐸𝟚 Hom𝐵(𝐵, 𝑝)

𝐵𝟚

𝜒

⊥

𝑞
𝑖0�⋔𝑝 𝑝𝟚

𝑖1�⋔𝑝

⊥

𝑞

𝜒

Pulling back the composite adjunction along 𝛽∶ 𝑋 → 𝐵𝟚 yields the desired fibered adjunction. �

Note that the construction of the adjoint functors 𝛽∗ ⊣ 𝛽∗ given in this proof coincides with the
description of the the action of the 2-cell 𝛽 on the fibers of 𝑝 given in Remark 5.2.7.

Exercises.

5.4.i. Exercise. Formulate the duals to Theorems 5.1.7 and 5.2.8, providing an internal characterization
of cocartesian arrows and cocartesian fibrations.

5.4.ii. Exercise. Suppose 𝐴 is an ∞-category with pullbacks. By Propositions 5.2.10 and 5.4.4, the
codomain projection functor 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴 is a bifibration. Describe the action of the left and right
adjoints in the adjunction induced from an arrow 𝛼∶ 𝑥 → 𝑦 in h𝐴:

1 𝐴 Hom𝐴(𝐴, 𝑥) Hom𝐴(𝐴, 𝑦)
𝑥

𝑦
⇓𝛼 ⇝

𝛼∗

⊥
𝛼∗

5.5. Discrete Cartesian Fibrations

Cartesian and cocartesian fibrations encode families of∞-categories acted upon contravariantly
or covariantly by the base∞-category. In certain special cases, the∞-categories arising as fibers of
a cartesian or cocartesian fibration are all discrete (see Definition 1.2.26). As the analogous functors
between 1-categories are called discrete fibrations or discrete opfibrations, we refer to these maps of∞-
categories as “discrete cartesian fibrations” or “discrete cocartesian fibrations,” respectively. Our aim in
this section is to study this special class of fibrations.

Before giving the definition, we describe the appropriate sort of “discreteness” required of an
isofibration 𝑝∶ 𝐸 ↠ 𝐵. Recall from Exercise 1.4.iv that an object 𝐸 in an ∞-cosmos 𝒦 is discrete
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if and only if every natural transformation with codomain 𝐸 is invertible. Discrete fibrations are
isofibrations 𝑝∶ 𝐸 ↠ 𝐵 in an∞-cosmos𝒦 that are discrete when considered as an object of the sliced
∞-cosmos𝒦/𝐵; we call such maps discrete isofibrations for short. Using Proposition 3.6.2, there are
several equivalent ways to unpack the notion of discrete object in 𝒦/𝐵 at the level of the homotopy
2-category 𝔥𝒦:

5.5.1. Lemma. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a discrete isofibration if and only if either of the equivalent
conditions hold:

(i) Any 𝑋 𝐸
𝑎

𝑏
⇓𝛾 for which 𝑝𝛾 is an identity is invertible.

(ii) Any 𝑋 𝐸
𝑎

𝑏
⇓𝛾 for which 𝑝𝛾 is an isomorphism is invertible.

Proof. Exercise 5.5.i. �

Thus, the discrete isofibrations are exactly those isofibrations that define conservative functors in
the homotopy 2-category. Neither the domain or codomain of a discrete isofibration need to be discrete
∞-categories (see Exercise 5.5.ii). Instead, the discreteness in the sliced∞-cosmos is “fiberwise.”

5.5.2. Lemma. The fibers of a discrete isofibration are discrete∞-categories.

Proof. Recall fromRemark 1.3.3 that discrete∞-categories are preserved by cosmological functors.
In particular, the pullback functor 𝑏∗ ∶ 𝒦/𝐵 → 𝒦 associated to an element 𝑏 ∶ 1 → 𝐵 preserves discrete
objects. Hence, the fibers of a discrete isofibration 𝑝∶ 𝐸 ↠ 𝐵 are discrete∞-categories. �

The converse to Lemma 5.5.2 holds in an∞-cosmos of (∞, 1)-categories: an isofibration 𝑝∶ 𝐸 ↠ 𝐵
between (∞, 1)-categories is discrete if and only if its fibers are discrete∞-categories (see Proposition
12.2.3). Thus, in such∞-cosmoi, the discrete cartesian fibrations and discrete cocartesian fibrations we
presently introduce can be understood as cartesian fibrations with discrete fibers.

5.5.3. Definition (discrete co/cartesian fibration). An isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an∞-cosmos𝒦 is a
discrete cartesian fibration if it is a cartesian fibration that is discrete as an object of𝒦/𝐵. Dually, 𝑝 is
a discrete cocartesian fibration if it is a cocartesian fibration that is discrete as an object of𝒦/𝐵.

5.5.4. Digression (left and right fibrations of quasi-categories). In the∞-cosmos of quasi-categories,
the discrete cocartesian fibrations coincide with Joyal’s class of left fibrations – those maps that lift
against the left horn inclusions – and dually the discrete cartesian fibrations coincide with Joyal’s
class of right fibrations (see Proposition F.4.9). While the terminology of left/right fibrations is more
familiar in the∞-categorical literature, we use the terms “discrete co/cartesian fibrations” to clarify
the relationship between these classes of maps and their nondiscrete and 1-categorical analogues.

As in §5.4, the theory of discrete cocartesian fibrations can be obtained by interpreting results about
discrete cartesian fibrations in the co-dual∞-cosmos, so we streamline our exposition by focusing on
the class of discrete cartesian fibrations.

5.5.5. Lemma (pullback stability). In any pullback square

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘
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if 𝑝 is a discrete cartesian fibration then 𝑞 is a discrete cartesian fibration.

Proof. In light of Proposition 5.2.4 it remains only to verify that 𝑞 is discrete. Consider a 2-cell

𝑋 𝐹
𝑎

𝑏
⇓𝛾 so that 𝑞𝛾 is invertible. Then 𝑘𝑞𝛾 = 𝑝ℎ𝛾 is invertible and conservativity of 𝑝 implies

that ℎ𝛾 is invertible. By 2-cell conservativity (see Proposition 3.3.1), 𝛾 is also invertible. �

There is a direct 2-categorical characterization of the discrete cartesian fibrations, as those isofi-
brations 𝑝∶ 𝐸 ↠ 𝐵 with the property that every natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 has an essentially
unique lift with codomain 𝑒. This is closely related to the observation that for a discrete cartesian
fibration 𝑝, there is no special class of 𝑝-cartesian arrows, unlike the case for the indiscrete version.

5.5.6. Proposition.

(i) If 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration, every natural transformation with codomain 𝐸 is
𝑝-cartesian.

(ii) An isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration if and only if every natural transformation
𝛽∶ 𝑏 ⇒ 𝑝𝑒 has an essentially unique lift with codomain 𝑒: given 𝜒∶ 𝑒′ ⇒ 𝑒 and 𝜓∶ 𝑒″ ⇒ 𝑒 so that
𝑝𝜒 = 𝑝𝜓 = 𝛽, then there exists an isomorphism 𝛾∶ 𝑒″ ⇒ 𝑒′ with 𝜒 ⋅ 𝛾 = 𝜓 and 𝑝𝛾 = id.

Proof. By Proposition 5.1.13, if 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then any natural transformation
𝜓 with codomain 𝐸 factors through a 𝑝-cartesian lift of 𝑝𝜓 via a natural transformation 𝛾 so that
𝑝𝛾 = id. When 𝑝 is discrete, this 𝛾 is an isomorphism, and thus 𝜓 is isomorphic to a 𝑝-cartesian
transformation, and thus is itself 𝑝-cartesian by Lemma 5.1.6.

From what we have just observed in (i) and the essential uniqueness of 𝑝-cartesian lifts in Lemma
5.1.11, we see that if 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration, then any natural transformation
𝛽∶ 𝑏 ⇒ 𝑝𝑒 has an essentially unique lift. For the converse, note that any 𝑝∶ 𝐸 ↠ 𝐵 satisfying the
hypothesis of (ii) is a discrete isofibration: if 𝜓∶ 𝑒′ ⇒ 𝑒 is so that 𝑝𝜓 = id, then id ∶ 𝑒 ⇒ 𝑒 is another
lift of 𝑝𝜓 and essential uniqueness provides an inverse isomorphism 𝜓−1 ∶ 𝑒 ⇒ 𝑒′.

To complete the proof, it remains to show that any 𝑝∶ 𝐸 ↠ 𝐵 satisfying the hypothesis of (ii) is a
cartesian fibration. We do this by establishing the 2-categorical characterization of Proposition 5.2.11,
showing that any 2-cell 𝜓∶ 𝑒′ ⇒ 𝑒 with codomain 𝐸 is weakly 𝑝-cartesian – and hence, by Proposition
5.2.11 again, 𝑝-cartesian in the usual sense.

To that end consider a pair 𝜏∶ 𝑒″ ⇒ 𝑒 and 𝛾∶ 𝑝𝑒″ ⇒ 𝑝𝑒′ so that 𝑝𝜏 = 𝑝𝜓 ⋅ 𝛾. By the hypothesis
that every 2-cell admits an essentially unique lift, we can construct a lift 𝜇∶ �̄� ⇒ 𝑒′ so that 𝑝𝜇 = 𝛾.
Now 𝜏 and 𝜓 ⋅ 𝜇 are two lifts of 𝑝𝜏 with the same codomain, so there exists an isomorphism 𝜁∶ 𝑒″ ⇒ �̄�
with 𝑝𝜁 = id. The composite 𝜇 ⋅ 𝜁 then defines the desired lift of 𝛾 to a cell so that 𝜏 = 𝜓 ⋅ 𝜇 ⋅ 𝜁. �

As an immediate consequence of (i):

5.5.7. Corollary. Any commutative square from a cartesian fibration to a discrete cartesian fibration defines
a cartesian functor. �

In analogy with Theorem 5.2.8, there is an internal characterization of discrete cartesian fibrations,
which in the discrete case takes a much simpler form.

5.5.8. Proposition (internal characterization of discrete cartesian fibrations). An isofibration 𝑝∶ 𝐸 ↠ 𝐵
is a discrete cartesian fibration if and only if the functor 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ∼ Hom𝐵(𝐵, 𝑝) is a trivial fibration.
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Recall from Theorem 5.2.8(ii) that an isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration if and

only if 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right adjoint right inverse 𝜒. Proposition 5.5.8 asserts that
𝑝 defines a discrete cartesian fibration if and only if this adjunction defines an adjoint equivalence.

Proof. Assume first that 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration. By Theorem 5.2.8(ii),

𝑖1 �⋔ 𝑝∶ 𝐸𝟚 → Hom𝐵(𝐵, 𝑝) then admits a right adjoint 𝜒 with invertible counit ̄𝜖 ∶ (𝑖1 �⋔ 𝑝)𝜒 ≅ id. We

argue that in this case the unit �̄� ∶ id ⇒ 𝜒(𝑖1 �⋔ 𝑝) is also invertible, proving that 𝑖1 �⋔ 𝑝 ⊣ 𝜒 defines an
adjoint equivalence.

Since the counit of 𝑖1 �⋔ 𝑝 ⊣ 𝜒 is invertible, (𝑖1 �⋔ 𝑝)�̄� is an isomorphism. Thus 𝑝1(𝑖1 �⋔ 𝑝)�̄� = 𝑝1�̄�
and 𝑝0(𝑖1 �⋔ 𝑝)�̄� = 𝑝𝑝0�̄� are both isomorphisms. By conservativity of the discrete fibration 𝑝∶ 𝐸 ↠ 𝐵
proven in Lemma 5.5.1, this implies that 𝑝0�̄� is invertible and now 2-cell conservativity for 𝐸𝟚 reveals
that �̄� is an isomorphism.

Conversely, if 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ∼ Hom𝐵(𝐵, 𝑝) is a trivial fibration, by Proposition 2.1.12 and Lemma
3.6.9, we may choose a right adjoint right inverse equivalence 𝜒∶ Hom𝐵(𝐵, 𝑝) ∼ 𝐸𝟚. By composing
with 𝜒, we see that any arrow 𝛽∶ 𝑋 → Hom𝐵(𝐵, 𝑝) has a lift. The unit of this adjoint equivalence is
necessarily a fibered isomorphism, so for any arrow 𝜓∶ 𝑋 → 𝐸𝟚 we have a pasting equality

𝐸𝟚 𝐸𝟚 𝐸𝟚

𝑋 Hom𝐵(𝐵, 𝑝) 𝑋 Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

=

∼ 𝑖1�⋔𝑝 = =

∼ 𝑖1�⋔𝑝
≅⇓�̄�

=

∼ 𝑖1�⋔𝑝
𝜓

𝑝𝜓

𝜓

𝑝𝜓

𝜒

Since the right-hand side is an absolute right lifting diagram, the left-hand side must be as well, and by
Theorem 5.1.7(ii) we conclude that every arrow with codomain 𝐸 is 𝑝-cartesian. Now the conservativity
property for cartesian arrows of Lemma 5.1.6 applies to all arrows and tells us that 𝑝∶ 𝐸 ↠ 𝐵 defines a
conservative functor, and in particular is discrete. �

As a consequence of Proposition 5.5.8 it is clear that cosmological functors preserve discrete
cartesian fibrations. Using the internal characterization, it is also straightforward to verify that discrete
cartesian fibrations compose and cancel on the left:

5.5.9. Lemma. Suppose 𝑝∶ 𝐸 ↠ 𝐵 and 𝑞 ∶ 𝐵 ↠ 𝐴 are isofibrations and 𝑞 is a discrete cartesian fibration.
Then 𝑝 is a discrete cartesian fibration if and only if 𝑞𝑝 is a discrete cartesian fibration.

Proof. The map 𝐸𝟚 ↠ Hom𝐴(𝐴, 𝑞𝑝) that tests whether 𝑞𝑝 ∶ 𝐸 ↠ 𝐴 is a discrete cartesian
fibration factors as the map 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) that tests whether 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian
fibration followed by a pullback of the map 𝐵𝟚 ↠ Hom𝐴(𝐴, 𝑞) that tests whether 𝑞 ∶ 𝐵 ↠ 𝐴 is a
discrete cartesian fibration:

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚 𝐴𝟚

Hom𝐴(𝐴, 𝑞𝑝) Hom𝐴(𝐴, 𝑞)

𝐸 𝐵 𝐴

𝑝1
𝑝1

∼

𝑝1

∼

𝑝1

∼

𝑝 𝑞
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The result now follows from Lemma 1.2.14 and the 2-of-3 property for equivalences. �

We now turn to examples of discrete cartesian fibrations.

5.5.10. Lemma. A trivial fibration 𝑝∶ 𝐸 ∼ 𝐵 is a discrete bifibration.

Proof. By Lemma 1.2.14, both 𝑖1 �⋔𝑝∶ 𝐸𝟚 ∼ Hom𝐵(𝐵, 𝑝) and 𝑖0 �⋔𝑝∶ 𝐸𝟚 ∼ Hom𝐵(𝑝, 𝐵) are trivial
fibrations. Now Proposition 5.5.8 and its dual prove that 𝑝 is a discrete cartesian fibration and also a
discrete cocartesian fibration. �

The discussion at the start of this chapter suggests that for any element 𝑏 ∶ 1 → 𝐵 of an∞-category
𝐵, the right representable 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 defines a discrete cartesian fibration. We deduce this
in Corollary 5.5.14 as a consequence of a more sophisticated observation concerning the central object
of study in Part II. Proposition 5.2.9 proves that for any∞-category 𝐴, the domain projection functor
𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 defines a cartesian fibration. Unless 𝐴 is discrete, this functor does not define a discrete
cartesian fibration (see Exercise 5.5.ii). However, recall that 𝑝0-cartesian lifts can be constructed to
project to identity arrows along 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴. This suggests that we might productively consider the
domain projection functor as a map over 𝐴, in which case we have the following result.

5.5.11. Proposition. For any∞-category 𝐴 in an∞-cosmos𝒦

𝐴𝟚 𝐴 × 𝐴

𝐴

(𝑝1,𝑝0)

𝑝1 𝜋
(5.5.12)

defines a discrete cartesian fibration in the sliced∞-cosmos𝒦/𝐴.

Proof. By 2-cell conservativity, (5.5.12) is a discrete object in the sliced∞-cosmos (𝒦/𝐴)/𝜋 ∶ 𝐴×𝐴↠𝐴 ≅
𝒦/𝐴×𝐴. So it remains only to prove that this functor defines a cartesian fibration. We prove this using
Theorem 5.2.8(iii). The first step is to compute the right representable comma object for the functor
(5.5.12) by interpreting the formula (3.4.2) in the sliced ∞-cosmos 𝒦/𝐴. By Proposition 1.2.22, the

𝟚-cotensor of the object 𝜋∶ 𝐴 × 𝐴 ↠ 𝐴 is 𝜋∶ 𝐴 × 𝐴𝟚 ↠ 𝐴, and this right representable comma is
computed by the left-hand pullback in𝒦/𝐴 below:

Hom𝐴(𝐴, 𝑝0) 𝐴 × 𝐴𝟚 𝐴𝟚

𝐴𝟚 𝐴 × 𝐴 𝐴

𝐴

𝑝2 id𝐴 ×𝑝1

𝜋

𝑝1

𝑝1

(𝑝1,𝑝0)

𝜋

𝜋

Pasting with the right-hand pullback in𝒦, we recognize that the∞-category so-constructed coincides
with the right representable comma object for the functor 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 considered as a map in 𝒦.
Similarly, the canonical functor Δ𝑝0 ∶ 𝐴

𝟚 → Hom𝐴(𝐴, 𝑝0) induced by id𝑝0 in 𝒦 coincides with the

canonical functor Δ(𝑝1,𝑝0) ∶ 𝐴
𝟚 → Hom𝐴(𝐴, 𝑝0) over 𝐴 induced by id(𝑝1,𝑝0) in𝒦/𝐴.

Under the equivalence Hom𝐴(𝐴, 𝑝0) ≃ 𝐴𝟛 established in the proof of Proposition 5.2.9, the
isofibration 𝑝2 ∶ Hom𝐴(𝐴, 𝑝0) ↠ 𝐴 is evaluation at the final element 2 ∈ 𝟛 in the composable pair of
arrows. Since 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 is a cartesian fibration in 𝒦, Theorem 5.2.8(iii) tells us that the functor
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Δ𝑝0 ∶ 𝐴
𝟚 → Hom𝐴(𝐴, 𝑝0) ≃ 𝐴𝟛 admits a right adjoint 𝑟 over 𝐴. The proofs of Proposition 5.2.9 and

Theorem 5.2.8(ii)⇒(iii) (which can be extracted from the proof of Theorem 5.1.7(ii)⇒(iii)) combine to
provide a construction: this adjunction can be defined by cotensoring the composite adjunction of
categories below-left into 𝐴:

𝟚 𝟚 × 𝟚 𝟛 𝐴𝟚 ⊥ 𝐴𝟛

𝟙 + 𝟙 𝐴 × 𝐴

𝟚×0
⊤

𝛿1

𝟚×!
⊤
ℓ

𝑘

𝜎0

⇝

Δ𝑝0=Δ(𝑝1,𝑝0)

(𝑝1,𝑝0) (𝑝2,𝑝0)

𝑟

(2,0)(1,0)

where ℓ ⊣ 𝑘 is described in the proof of Proposition 5.2.9. The composite right adjoint is the functor
𝜎0 ∶ 𝟛 ↠ 𝟚 that sends 0 and 1 to 0 and 2 to 1, while the composite left adjoint is the functor 𝛿1 ∶ 𝟚 ↣ 𝟛
that sends 0 to 0 and 1 to 2. In particular, this adjunction lies in the strict slice 2-category under the
inclusion of the “endpoints” of 𝟚 and 𝟛.

It follows that upon cotensoring into 𝐴, we obtain a fibered adjunction over 𝐴 × 𝐴, which by
Theorem 5.2.8(iii) implies that (5.5.12) is a cartesian fibration in𝒦/𝐴, completing the proof. �

Combining Propositions 5.2.9 and Proposition 5.5.11, we can now generalize both results to arbitrary
comma∞-categories.

5.5.13. Corollary. For any functors 𝐶
𝑔
𝐴

𝑓
𝐵 between∞-categories in an∞-cosmos𝒦:

(i) The domain projection functor 𝑝0 ∶ Hom𝐴(𝑓 , 𝑔) ↠ 𝐵 is a cartesian fibration.¹⁴
(ii) The functor

Hom𝐴(𝑓 , 𝑔) 𝐶 × 𝐵

𝐶

(𝑝1,𝑝0)

𝑝1 𝜋

defines a discrete cartesian fibration in𝒦/𝐶.

Proof. We start with (ii). Since 𝑝1 ∶ Hom𝐴(𝐴, 𝑔) ↠ 𝐶 is the pullback of 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴 along 𝑔,
we may use the cosmological functor 𝑔∗ ∶ 𝒦/𝐴 → 𝒦/𝐶 to pull back the discrete cartesian fibration of
Proposition 5.5.11 to a discrete cartesian fibration in𝒦/𝐶:

Hom𝐴(𝐴, 𝑔) 𝐶 × 𝐴

𝐶

(𝑝1,𝑝0)

𝑝1 𝜋

¹⁴Moreover, a natural transformation𝜓with codomain Hom𝐴(𝑓 , 𝑔) is 𝑝0-cartesian if and only if 𝑝1𝜓 is invertible. We
defer the proof only because the same argument proves a more general statement (see Lemma 7.4.3).
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There is a pullback square in𝒦/𝐶:

Hom𝐴(𝑓 , 𝑔) Hom𝐴(𝐴, 𝑔)

𝐶 × 𝐵 𝐶 × 𝐴

𝐶

(𝑝1,𝑝0) 𝑝1 𝑝1 (𝑝1,𝑝0)

𝜋

𝐶×𝑓

𝜋

so Lemma 5.5.5 implies that the pullback is also a discrete cartesian fibration.
Using (ii) we can now prove (i). In fact, we show more generally that if

𝐸 𝐶 × 𝐵

𝐶
𝑞

(𝑞,𝑝)

𝜋

defines a cartesian fibration in𝒦/𝐶 then 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration in𝒦 (see Lemma 7.1.1).
By Theorem 5.2.8(iii) applied in𝒦/𝐶, the functor Δ(𝑞,𝑝) = Δ𝑝 admits a right adjoint 𝑟 over 𝐶 × 𝐵:

𝐸 Hom𝐵(𝐵, 𝑝)

𝐶 × 𝐵

Δ(𝑞,𝑝)=Δ𝑝

(𝑞,𝑝)

⊥

(𝑞𝑝1,𝑝0)
𝑟

Composing with 𝜋∶ 𝐶 × 𝐵 ↠ 𝐵, this fibered adjunction defines an adjunction over 𝐵. Applying
Theorem 5.2.8(iii) in𝒦 this time allows us to conclude that 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration. �

Note that the domain projection functor 𝑝0 ∶ Hom𝐴(𝑓 , 𝐴) ↠ 𝐵 is the pullback of 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴
along 𝑓 ∶ 𝐵 → 𝐴, so Propositions 5.2.4 and 5.2.9 imply that this functor is a cartesian fibration, but
𝑝0 ∶ Hom𝐴(𝐴, 𝑔) ↠ 𝐴 is not similarly a pullback of 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴. This is why a more circuitous
argument to the result of (i) is needed.

As a corollary, we can finally introduce one of the key examples of discrete cartesian fibrations:

5.5.14. Corollary (domain projection from an element). For an element 𝑏 ∶ 1 → 𝐵, the domain projection
functor 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is a discrete cartesian fibration.

Proof. By Corollary 5.5.13, 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is a cartesian fibration. Discreteness follows

from 2-cell conservativity: if 𝑋 Hom𝐵(𝐵, 𝑏)
𝑓

𝑔
⇓𝛾 is a natural transformation for which 𝑝0𝛾 is

an identity, then since 𝑝1𝛾 is also an identity – this being a 2-cell whose codomain is the terminal
∞-category – 𝛾 must be invertible. �

Exercises.

5.5.i. Exercise. Prove Lemma 5.5.1.

5.5.ii. Exercise. To explore the discreteness of discrete cartesian fibrations:

(i) Prove that 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 is a discrete isofibration if and only if 𝐴 is a discrete∞-category.
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(ii) By Corollary 5.5.14, for any element 𝑎 ∶ 1 → 𝐴, 𝑝0 ∶ Hom𝐴(𝐴, 𝑎) ↠ 𝐴 is a discrete cartesian
fibration. Is Hom𝐴(𝐴, 𝑎) necessarily a discrete∞-category?

5.5.iii. Exercise. Use Theorem 5.3.4 to give an alternate proof of Corollary 5.5.7.

5.6. The Representability of Cartesian Fibrations

In this section we consider the global family of isofibrations 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) of
quasi-categories associated to an isofibration of∞-categories 𝑝∶ 𝐸 ↠ 𝐵 in an∞-cosmos. Our aim is
to show that the notions of cartesian fibration, cartesian functor, and discrete cartesian fibration are
each representably defined in various senses:

5.6.1. Proposition. An isofibration 𝑝∶ 𝐸 ↠ 𝐵 in an∞-cosmos𝒦 defines a discrete cartesian fibration if and
only if for all 𝑋 ∈ 𝒦, 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) defines a discrete cartesian fibration of quasi-categories.

Proof. Since equivalences and simplicial limits in an∞-cosmos are representably defined notions,
this follows immediately from the characterization of discrete cartesian fibrations given in Proposition
5.5.8. �

The representable nature of cartesian fibrations is more subtle:

5.6.2. Proposition. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration between∞-categories in an∞-cosmos𝒦. Then 𝑝 is a
cartesian fibration if and only if:

(i) For all 𝑋 ∈ 𝒦, the isofibration 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵) is a cartesian fibration between
quasi-categories.

(ii) For all 𝑓 ∶ 𝑌 → 𝑋 ∈ 𝒦, the square defined by the restriction maps is a cartesian functor:

Fun(𝑋, 𝐸) Fun(𝑌, 𝐸)

Fun(𝑋, 𝐵) Fun(𝑌, 𝐵)

𝑝∗

𝑓 ∗

𝑝∗

𝑓 ∗

Proof. If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then Theorem 5.2.8(ii) constructs a right adjoint

right inverse to 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝). The simplicial bifunctor Fun ∶ 𝒦op × 𝒦 → 𝒬𝒞𝑎𝑡
defines a 2-functor Fun ∶ 𝔥𝒦op × 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡, which transposes to a Yoneda-type embedding

Fun ∶ 𝔥𝒦 → 𝔥𝒬𝒞𝑎𝑡𝔥𝒦
op

from the homotopy 2-category of𝒦 to the 2-category of 2-functors, 2-natural

transformations, and modifications (see §B.2). This 2-functor carries the adjunction 𝑖1 �⋔ 𝑝 ⊣ 𝜒 to

an adjunction in the 2-category 𝔥𝒬𝒞𝑎𝑡𝔥𝒦
op

. This latter adjunction defines, for each 𝑋 ∈ 𝒦, a right
adjoint right inverse adjunction

Fun(𝑋, 𝐸)𝟚 Fun(𝑋, 𝐸𝟚) ⊥ Fun(𝑋,Hom𝐵(𝐵, 𝑝)) HomFun(𝑋,𝐵)(Fun(𝑋, 𝐵), 𝑝∗)≅
(𝑖1�⋔𝑝)∗

≅
𝜒∗
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and for each 𝑓 ∶ 𝑌 → 𝑋 in𝒦, a strict adjunction morphism, commuting strictly with the left and right
adjoints and with the units and counits:¹⁵

Fun(𝑋, 𝐸)𝟚 ≅ Fun(𝑋, 𝐸𝟚) Fun(𝑌, 𝐸𝟚) ≅ Fun(𝑌, 𝐸)𝟚

Hom(Fun(𝑋, 𝐵), 𝑝∗) ≅ Fun(𝑋,Hom𝐵(𝐵, 𝑝)) Fun(𝑌,Hom𝐵(𝐵, 𝑝)) ≅ Hom(Fun(𝑌, 𝐵), 𝑝∗)

𝑓 ∗

(𝑖1�⋔𝑝)∗⊢ (𝑖1�⋔𝑝)∗ ⊣

𝑓 ∗

𝜒∗ 𝜒∗

(5.6.3)
By Theorems 5.2.8(ii) and 5.3.4(ii), this demonstrates the two conditions of the statement.

Conversely, if 𝑝∶ 𝐸 ↠ 𝐵 satisfies conditions (i) and (ii) then by Theorems 5.2.8(ii) and 5.3.4(ii)

there is a commutative square (𝑖1 �⋔ 𝑝)∗𝑓 ∗ = 𝑓 ∗(𝑖1 �⋔ 𝑝)∗ where both verticals (𝑖1 �⋔ 𝑝)∗ admit right

adjoint right inverses (𝑖1 �⋔ 𝑝)∗ ⊣ �̄� and the mate of the identity (𝑖1 �⋔ 𝑝)∗𝑓 ∗ = 𝑓 ∗(𝑖1 �⋔ 𝑝)∗ defines an
isomorphism 𝑓 ∗�̄� ≅ �̄�𝑓 ∗. Using the right adjoints �̄�, we extract the functor 𝜒∶ Hom𝐵(𝐵, 𝑝) → 𝐸𝟚 as
the image of the identity element

Fun(Hom𝐵(𝐵, 𝑝),Hom𝐵(𝐵, 𝑝)) Fun(Hom𝐵(𝐵, 𝑝), 𝐸𝟚)

id 𝜒

�̄�

The counit is internalized similarly. The condition on the mates is used to define the unit and verify the

triangle equalities equalities that demonstrate that 𝑖1 �⋔ 𝑝 ⊣ 𝜒 (see Proposition B.6.2). Now Theorem
5.2.8(ii) proves that 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration. �

An easier argument along the same lines demonstrates:

5.6.4. Corollary. A commutative square between cartesian fibrations as displayed below-left

𝐹 𝐸 Fun(𝑋, 𝐹) Fun(𝑋, 𝐸)

𝐴 𝐵 Fun(𝑋,𝐴) Fun(𝑋, 𝐵)

𝑞

ℎ

𝑝 ⇝ 𝑞∗

ℎ∗

𝑝∗

𝑘 𝑘∗

defines a cartesian functor in an∞-cosmos𝒦 if and only if for all 𝑋 ∈ 𝒦, the square displayed above right
defines a cartesian functor between cartesian fibrations of quasi-categories.

Proof. Exercise 5.6.i. �

In particular, if 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, so is 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠ Fun(𝑋, 𝐵). We now
consider the relationship between 𝑝-cartesian arrows and 𝑝∗-cartesian arrows.

5.6.5. Lemma. Consider a cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 between ∞-categories. A 2-cell as below-left is
cartesian for 𝑝∶ 𝐸 ↠ 𝐵 if and only if the corresponding 2-cell below-right is cartesian for 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠
Fun(𝑋, 𝐵).

𝑋 𝐸 ↭ 𝟙 Fun(𝑋, 𝐸)
𝑒′

𝑒
⇓𝜓

𝑒′

𝑒
⇓𝜓

¹⁵In particular, the mate of the identity (𝑖1 �⋔ 𝑝)∗𝑓 ∗ = 𝑓 ∗(𝑖1 �⋔ 𝑝)∗ is the identity 𝑓 ∗𝜒∗=𝜒∗𝑓 ∗.
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The natural transformation on the left defines an arrow in the hom-category hFun(𝑋, 𝐸), while
the natural transformation on the right defines an arrow in the hom-category hFun(𝟙,Fun(𝑋, 𝐸)).
These hom-categories are isomorphic, justifying our conflating notation for their objects and arrows.
There is a similar bijective correspondence between 𝑋-shaped arrows 𝜓∶ 𝑋 → 𝐸𝟚 in 𝐸 and 1-arrows
𝜓∶ 1 → Fun(𝑋, 𝐸)𝟚 in Fun(𝑋, 𝐸).

Proof. Since 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, a natural transformation as above-left is 𝑝-cart-
esian if and only if it satisfies the weak universal properties of Proposition 5.1.13, which are started
entirely in reference to the functor 𝑝∗ ∶ hFun(𝑋, 𝐸) ↠ hFun(𝑋, 𝐵). Similarly, since 𝑝∗ ∶ Fun(𝑋, 𝐸) ↠
Fun(𝑋, 𝐵) is a cartesian fibration, a natural transformation as above right is 𝑝∗-cartesian if and only if it
satisfies the weak universal properties of Proposition 5.1.13, started entirely in reference to the functor
𝑝∗ ∶ hFun(𝟙,Fun(𝑋, 𝐸)) ↠ hFun(𝟙,Fun(𝑋, 𝐵)). As these functors are isomorphic, the 𝑝-cartesian
transformations and 𝑝∗-cartesian transformations 𝜓∶ 𝑒′ ⇒ 𝑒 coincide. �

Lemma 5.6.5 characterizes the 𝑝∗-cartesian transformations with domain 𝟙. More generally:

5.6.6. Lemma. A natural transformation as below left

𝑄 Fun(𝑋, 𝐸) 𝟙 𝑄 Fun(𝑋, 𝐸) ↭ 𝑋 𝐸
𝑒′

𝑒

⇓𝜓
𝑞

𝑒′

𝑒

⇓𝜓

𝑒′𝑞

𝑒𝑞
⇓𝜓𝑞

is 𝑝∗-cartesian if and only if each of its components 𝜓𝑞 is 𝑝-cartesian.

Proof. If 𝜓 is 𝑝∗-cartesian, then by Lemma 5.1.4 so is its restriction along any element 𝑞 ∶ 𝟙 → 𝑄.
By Lemma 5.6.5 this tells us that 𝜓𝑞 defines a 𝑝-cartesian transformation.

Conversely, if𝜓𝑞 is a 𝑝-cartesian transformation, then Lemma 5.6.5 tells us that𝜓𝑞 is a 𝑝∗-cartesian
transformation. Now consider the factorization 𝜓 = 𝜒 ⋅ 𝜁 through 𝑝∗-cartesian lift 𝜒 of 𝑝∗𝜓. Because
the components 𝜓𝑞 of 𝜓 are 𝑝∗-cartesian, the components 𝜁𝑞 of 𝜁 are isomorphisms. By Corollary
1.1.22, an arrow in an exponential quasi-category Fun(𝑋, 𝐸)𝑄 is an isomorphism if and only if it is a
pointwise isomorphism, so this implies that 𝜁 is an isomorphism. By isomorphism stability of cartesian
transformations (see Lemma 5.1.6), we thus conclude that 𝜓 is 𝑝∗-cartesian. �

Exercises.

5.6.i. Exercise. Prove Corollary 5.6.4.

5.7. The Yoneda Lemma

Let 𝑏 ∶ 1 → 𝐵 be an element of an∞-category 𝐵 and consider its right representation Hom𝐵(𝐵, 𝑏)
as a comma∞-category. The codomain projection functor provides no additional information in this
case, but the domain projection functor 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 has a special property expressed by
Corollary 5.5.14: it defines a discrete cartesian fibration. As the fibers of this map over an element
𝑥∶ 1 → 𝐵 are the mapping spaces Hom𝐵(𝑥, 𝑏) of Definition 3.4.9, we regard 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 as
encoding the contravariant functor represented by 𝑏.

Our aim in this section is to state and prove the Yoneda lemma in this setting, where contravariant
representable functors are encoded as discrete cartesian fibrations. Informally, the Yoneda lemma
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asserts that “evaluation at the identity defines an equivalence,” where the identity element in question
is the functor

1 Hom𝐵(𝐵, 𝑏)

𝐵
𝑏

id𝑏

𝑝0

Technically, id𝑏 does not live in the sliced∞-cosmos over 𝐵 because the domain object 𝑏 ∶ 1 → 𝐵 is not
an isofibration but nevertheless for any isofibration 𝑝∶ 𝐸 ↠ 𝐵, restriction along id𝑏 induces a functor
between sliced quasi-categorical functor spaces

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸

𝑝
𝐵)

evid𝑏 Fun𝐵(1
𝑏

𝐵, 𝐸
𝑝

𝐵)
Here the codomain is the quasi-category defined by the pullback

Fun𝐵(𝑏, 𝑝) ≅ Fun(1, 𝐸𝑏) Fun(1, 𝐸)

𝟙 Fun(1, 𝐵)

𝑝∗
𝑏

which is isomorphic to the underlying quasi-category of the fiber 𝐸𝑏 of 𝑝∶ 𝐸 ↠ 𝐵 over 𝑏. When
𝑝∶ 𝐸 ↠ 𝐵 is a discrete isofibration, Fun(1, 𝐸𝑏) is a Kan complex and might be referred to more
evocatively as the “underlying space” of the fiber 𝐸𝑏.

If a discrete cartesian fibration over 𝐵 is thought of as a contravariant 𝐵-indexed discrete∞-cate-
gory-valued functor, then maps of discrete cartesian fibrations over 𝐵 are “natural transformations,”
the “naturality in 𝐵” arising because the functors are fibered over 𝐵. This leads to our first statement
of the fibrational Yoneda lemma:

5.7.1. Theorem (discrete Yoneda lemma). If 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration, then

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸 𝑝 𝐵) Fun(1, 𝐸𝑏)∼

evid𝑏

is an equivalence of Kan complexes.

Wededuce this result from a “dependent” generalization where the target discrete cartesian fibration
has codomain Hom𝐵(𝐵, 𝑏). In this case, the result provides an equivalence between sections of a discrete
cartesian fibration 𝑞 ∶ 𝐹 ↠ Hom𝐵(𝐵, 𝑏) and elements of the fiber over id𝑏. This result is analogous to
the “path induction” principle for identity types in homotopy type theory: the inverse equivalence of
Theorem 5.7.2 provides a “directed” version of the “transport” operation [106, §9].

5.7.2. Theorem (dependent Yoneda lemma). If 𝑏 ∶ 1 → 𝐵 is an element of an∞-category 𝐵 and 𝑞 ∶ 𝐹 ↠
Hom𝐵(𝐵, 𝑏) is a discrete cartesian fibration, then

FunHom𝐵(𝐵,𝑏)(Hom𝐵(𝐵, 𝑏), 𝐹) Fun(1, 𝐹 id𝑏)∼

evid𝑏

is an equivalence of Kan complexes.

Theorem 5.7.1 is subsumed by a generalization that allows 𝑝∶ 𝐸 ↠ 𝐵 to be any cartesian fibration,
not necessarily discrete. In this case, 𝑝 encodes a contravariant 𝐵-indexed∞-category-valued functor, as
does 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵. The correct notion of “natural transformation” between two such functors
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is now given by a cartesian functor over 𝐵 (see Exercise 5.3.iii). Given a pair of cartesian fibration
𝑞 ∶ 𝐹 ↠ 𝐵 and 𝑝∶ 𝐸 ↠ 𝐵, we write

Funcart
𝐵 (𝐹

𝑞
𝐵, 𝐸

𝑝
𝐵) ⊂ Fun𝐵(𝐹

𝑞
𝐵, 𝐸

𝑝
𝐵)

for the sub-quasi-category containing all those simplices whose vertices define cartesian functors from
𝑞 to 𝑝.¹⁶
5.7.3. Theorem (Yoneda lemma). If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, then

Funcart
𝐵 (Hom𝐵(𝐵, 𝑏)

𝑝0 𝐵, 𝐸 𝑝 𝐵) Fun(1, 𝐸𝑏)∼

evid𝑏

is an equivalence of quasi-categories.

The proofs of these theorems overlap significantly and we develop them in parallel. The basic idea
is to use the universal property of id𝑏 as a terminal element of Hom𝐵(𝐵, 𝑏) in the ∞-cosmos 𝒦 (see
Corollary 3.5.10) to define a right adjoint to evid𝑏 and prove that when 𝑝∶ 𝐸 ↠ 𝐵 is discrete or when
the domain is restricted to the sub-quasi-category of cartesian functors, this adjunction defines an
adjoint equivalence. Note that the functor evid𝑏 is the image of the functor id𝑏 under the 2-functor
Fun𝐵(−, 𝑝) ∶ 𝔥(𝒦/𝐵)op → 𝔥𝒬𝒞𝑎𝑡. If the adjunction ! ⊣ id𝑏 lived in the sliced ∞-cosmos 𝒦/𝐵, this
would directly construct a right adjoint to evid𝑏 . The main technical difficulty in following this outline
is that the adjunction that witnesses the terminality of id𝑏 does not live in the slice of the homotopy
2-category 𝔥𝒦/𝐵 but rather in a lax slice 𝔥𝒦⫽𝐵 of the homotopy 2-category that we now introduce.

5.7.4. Definition. Consider a 2-category 𝔥𝒦 and an object 𝐴 ∈ 𝔥𝒦. The lax slice 2-category 𝔥𝒦⫽𝐴 is
the strict 2-category whose

• objects are maps 𝑓 ∶ 𝑋 → 𝐴 in 𝔥𝒦 with codomain 𝐴;
• 1-cells are diagrams

𝑋 𝑌

𝐴
𝑓

𝑠

𝜎
⇒ 𝑔

(5.7.5)

in 𝔥𝒦; and
• 2-cells from (𝑠, 𝜎) to (𝑠′, 𝜎′) are 2-cells 𝜃∶ 𝑠 ⇒ 𝑠′ so that

𝑋 𝑌 𝑋 𝑌

𝐴 𝐴
𝑓

𝑠
⇑𝜃
𝑠′

𝜎
⇒ 𝑔 = 𝑓

𝑠′

𝜎′
⇒ 𝑔

(5.7.6)

For instance, the adjunctions that define terminal elements lift to the lax slice 2-category:

5.7.7. Lemma. Suppose 𝑡 ∶ 1 → 𝐴 defines a terminal element in an∞-category 𝐴 in an∞-cosmos𝒦. Then

1 𝐴

𝐴
𝑡

𝑡

is right adjoint to the unit map
𝐴 1

𝐴

!
𝜂⇒ 𝑡

¹⁶For any quasi-category 𝑄 and any subset of its vertices, there is a “full” sub-quasi-category containing exactly those
vertices and all the simplices of 𝑄 that they span.
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in the lax slice 2-category 𝔥𝒦⫽𝐴.

Proof. We check that the unit and counit of the adjunction ! ⊣ 𝑡 that witnesses the terminality of
𝑡 lift along the forgetful 2-functor 𝔥𝒦⫽𝐴 → 𝔥𝒦, which amounts to verifying the condition (5.7.6). The
forgetful 2-functor 𝔥𝒦⫽𝐴 → 𝔥𝒦 is faithful on 1- and 2-cells, so the triangle equalities automatically
hold for the lifted cells. These lax compatibility conditions reduce to the pasting equalities

1

𝐴 𝐴 𝐴 1 𝐴 1 𝐴 1 1 1

𝐴 𝐴 𝐴 𝐴

𝑡

⇑𝜂

!

=

! 𝑡

𝑡
𝜂⇒

𝑡

𝑡

𝜂⇒

!

𝑡
= 𝑡 𝑡

The first of these is trivial, while the second holds by the triangle equality 𝜂𝑡 = id𝑡. �

Using somewhat nonstandard 2-categorical techniques, we transfer the adjunction of Lemma 5.7.7
to an adjoint equivalence

Fun𝐴(𝐴, 𝐹) Fun(1, 𝐹𝑡)

∼ev𝑡

⊥
∼
𝑦

between the Kan complex of sections of a discrete cartesian fibration 𝑞 ∶ 𝐹 ↠ 𝐴 and the underlying
space of the fiber 𝐹𝑡 over a terminal element 𝑡 ∶ 1 → 𝐴. Because our initial adjunction lives in the lax
rather than the strict slice, the construction is somewhat delicate, passing through a pair of auxiliary
2-categories that we now introduce.

5.7.8. Definition. Let 𝔥𝒦 be the homotopy 2-category of an∞-cosmos and write 𝔥𝒦 for the strict
2-category whose

• objects are cospans

𝐴 𝐵 𝐸𝑘 𝑝

in which 𝑝 is a cartesian fibration;
• 1-cells are diagrams of the form

𝐴′ 𝐵′ 𝐸′

𝐴 𝐵 𝐸

𝑎

𝑘′

⇑𝜙 𝑏

𝑝′

𝑒

𝑘 𝑝

(5.7.9)

• and whose 2-cells consist of triples 𝛼∶ 𝑎 ⇒ �̄�, 𝛽∶ 𝑏 ⇒ �̄�, and 𝜖 ∶ 𝑒 ⇒ �̄� between the verticals of
parallel 1-cell diagrams so that 𝑝𝜖 = 𝛽𝑝′ and �̄� ⋅ 𝑘𝛼 = 𝛽𝑘′ ⋅ 𝜙.

5.7.10. Definition. Let 𝔥𝒦 be the homotopy 2-category of an∞-cosmos and write 𝔥𝒦⊡ for the strict
2-category whose

• objects are pullback squares

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘
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whose verticals are cartesian fibrations;
• 1-cells are cubes

𝐹′ 𝐸′

𝐹 𝐸

𝐴′ 𝐵′

𝐴 𝐵

ℎ′

𝑞′ ℓ
⇑𝜒 𝑒

𝑝′

ℎ

𝑝

𝑎

𝑘′

⇑𝜙 𝑏

𝑘

𝑞
(5.7.11)

whose vertical faces commute and in which 𝜒∶ ℎℓ ⇒ 𝑒ℎ′ is a 𝑝-cartesian lift of 𝜙𝑞′; and
• whose 2-cells are given by quadruples 𝛼∶ 𝑎 ⇒ �̄�, 𝛽∶ 𝑏 ⇒ �̄�, 𝜖 ∶ 𝑒 ⇒ �̄�, and 𝜆∶ ℓ ⇒ ℓ̄ in which 𝜖

and 𝜆 are, respectively, lifts of 𝛽𝑝′ and 𝛼𝑞′ and so that 𝜙 ⋅ 𝑘𝛼 = 𝛽𝑘′ ⋅ 𝜙 and �̄� ⋅ ℎ𝜆 = 𝜖ℎ′ ⋅ 𝜒.

These definitions are arranged so that there is an evident forgetful 2-functor𝑈∶ 𝔥𝒦⊡ → 𝔥𝒦 that
has the strong surjectivity property introduced in Definition 3.6.1.

5.7.12. Lemma. The forgetful 2-functor 𝑈∶ 𝔥𝒦⊡ → 𝔥𝒦 is a smothering 2-functor.

Proof. Proposition 5.2.4 tells us that 𝔥𝒦⊡ → 𝔥𝒦 is surjective on objects. To see that it is full on
1-cells, first form the pullbacks of the cospans in (5.7.9), then define 𝜒 to be any 𝑝-cartesian lift of 𝜙𝑞′
with codomain 𝑒ℎ′. By construction, the domain of 𝜒 lies strictly over 𝑘𝑎𝑞′ and so this functor factors
uniquely through the pullback leg ℎ defining the map ℓ of (5.7.11).

To prove that 𝔥𝒦⊡ → 𝔥𝒦 is full on 2-cells, consider a parallel pair of 1-cells in 𝔥𝒦⊡. For one
of these we use the notation of (5.7.11) and for the other we denote the diagonal functors by �̄�, �̄�, �̄�,
and ℓ̄ and denote the 2-cells by �̄� and �̄�; the requirement that these 1-cells be parallel implies that
the pullback faces are necessarily the same. Now consider a triple 𝛼∶ 𝑎 ⇒ �̄�, 𝛽∶ 𝑏 ⇒ �̄�, and 𝜖 ∶ 𝑒 ⇒ �̄�
satisfying the conditions of Definition 5.7.8. Our task is to define a fourth 2-cell 𝜆∶ ℓ ⇒ ℓ̄ so that
𝑞𝜆 = 𝛼𝑞′ and �̄� ⋅ ℎ𝜆 = 𝜖ℎ′ ⋅ 𝜒.

To achieve this, we first define a 2-cell 𝛾∶ ℎℓ ⇒ ℎℓ̄ using the induction property of the 𝑝-
cartesian cell �̄� ∶ ℎℓ̄ ⇒ �̄�ℎ′ applied to the composite 2-cell 𝜖ℎ′ ⋅ 𝜒 ∶ ℎℓ ⇒ �̄�ℎ′ and the factorization
𝑝𝜖ℎ′ ⋅ 𝑝𝜒 = �̄�𝑞′ ⋅ 𝑘𝛼𝑞′. By construction 𝑝𝛾 = 𝑘𝛼𝑞′ so the pair 𝛼𝑞′ and 𝛾 induces a 2-cell 𝜆∶ ℓ ⇒ ℓ̄ so
that 𝑞𝜆 = 𝛼𝑞′ and ℎ𝜆 = 𝛾. The quadruple (𝛼, 𝛽, 𝜖, 𝜆) now defines the required 2-cell in 𝔥𝒦⊡.

Finally, for 2-cell conservativity, suppose𝛼, 𝛽, and 𝜖 as above are isomorphisms. By the conservativity
property for pullbacks described in Proposition 3.3.1, to show that 𝜆 is an isomorphism, it suffices to
prove that 𝑞𝜆 = 𝛼𝑞′ is, which we know already, and that ℎ𝜆 = 𝛾 is invertible. But 𝛾 was constructed
as a factorization 𝜖ℎ′ ⋅ 𝜒 = �̄� ⋅ 𝛾 with 𝑝𝛾 = 𝑘𝛼𝑞′. Since 𝜖 is an isomorphism, 𝜖ℎ′ ⋅ 𝜒 is 𝑝-cartesian, so
Lemma 5.1.12 proves that 𝛾 is an isomorphism. �

We cannot directly define a pullback 2-functor 𝔥𝒦 → 𝔥𝒦 in the homotopy 2-category because
the 2-categorical universal property of pullbacks in 𝔥𝒦 is weak and not strict (see Proposition 3.3.1).
Instead, the zigzag of 2-functors

𝔥𝒦
𝑈

𝔥𝒦⊡ ev⊤ 𝔥𝒦,
in which the backwards map is a smothering 2-functor and the forwards map evaluates at the pullback
vertex, defines a reasonable replacement.
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5.7.13. Proposition. Let 𝑡 ∶ 1 → 𝐴 define a terminal element of 𝐴 and let 𝑞 ∶ 𝐹 ↠ 𝐴 be a cartesian
fibration. Then evaluation at 𝑡 admits a right adjoint

Fun𝐴(𝐴, 𝐹) Fun(1, 𝐹𝑡)
ev𝑡

⊥
𝑦

that defines an adjoint equivalence of Kan complexes in the case where 𝑞 is a discrete cartesian fibration.

Proof. The desired adjunction is obtained by transferring the adjunction of Lemma 5.7.7 through
the sequence of 2-functors

𝔥𝒬𝒞𝑎𝑡⊡ 𝔥𝒬𝒞𝑎𝑡

𝔥𝒦op
⫽𝐴 𝔥𝒬𝒞𝑎𝑡

ev⊤

𝑈
−∨𝑞∗

using Lemma 3.6.7 to lift along the middle smothering 2-functor.
For a fixed cartesian fibration 𝑞 ∶ 𝐹 ↠ 𝐴 in an∞-cosmos𝒦, there is a 2-functor −∨ 𝑞∗ ∶ 𝔥𝒦

op
⫽𝐴 →

𝔥𝒬𝒞𝑎𝑡 that carries a 1-cell (5.7.5) to

𝟙 Fun(𝑌,𝐴) Fun(𝑌, 𝐹)

𝟙 Fun(𝑋,𝐴) Fun(𝑋, 𝐹)

𝑔

⇑𝜎 𝑠∗

𝑞∗

𝑠∗

𝑓 𝑞∗

and a 2-cell 𝜃∶ 𝑠 ⇒ 𝑠′ to the 2-cell that acts via pre-whiskering with 𝜃 in its two nonidentity
components. By Corollary 5.3.5, the functors 𝑞∗ are cartesian fibration of quasi-categories.

We now apply the 2-functor −∨ 𝑞∗ ∶ 𝔥𝒦
op
⫽𝐴 → 𝔥𝒬𝒞𝑎𝑡 to the adjunction of Lemma 5.7.7 to obtain

an adjunction in 𝔥𝒬𝒞𝑎𝑡 and then use the smothering 2-functor of Lemma 5.7.12 and Lemma 3.6.7 to

lift this to an adjunction in 𝔥𝒬𝒞𝑎𝑡⊡. As elaborated in Exercise 3.6.iii, the lifted adjunction in 𝔥𝒬𝒞𝑎𝑡⊡
can be constructed using any lifts of the objects, 1-cells, and either the unit or counit of the adjunction

in 𝔥𝒬𝒞𝑎𝑡 .
In particular, we may take the left and right adjoints of the lifted adjunction in 𝔥𝒬𝒞𝑎𝑡⊡ to be any

lifts of the images in 𝔥𝒬𝒞𝑎𝑡 of the right and left adjoints of the adjunction ! ⊣ 𝑡 in 𝔥𝒦⫽𝐴:

Fun𝐴(𝐴, 𝐹) Fun(𝐴, 𝐹)

Fun(1, 𝐹𝑡) Fun(1, 𝐹)

𝟙 Fun(𝐴,𝐴)

𝟙 Fun(1, 𝐴)

=ev𝑡 𝑞∗
𝑡∗

𝑞∗
=

id𝐴
𝑡∗

𝑡
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Fun(1, 𝐹𝑡) Fun(1, 𝐹)

Fun𝐴(𝐴, 𝐹) Fun(𝐴, 𝐹)

𝟙 Fun(1, 𝐴)

𝟙 Fun(𝐴,𝐴)

⇑𝜒𝑦 𝑞∗
!∗

𝑞∗
⇑𝜂

𝑡
!∗

id𝐴

(5.7.14)

which shows that the left adjoint is the desired functor. Since the counit of ! ⊣ 𝑡 is an identity, the
counit of the lifted adjunction may also be taken to be an identity. Finally, we compose with the

forgetful 2-functor 𝔥𝒬𝒞𝑎𝑡⊡ → 𝔥𝒬𝒞𝑎𝑡 that evaluates at the pullback vertex to project our adjunction

in 𝔥𝒬𝒞𝑎𝑡⊡ to the desired adjunction in 𝔥𝒬𝒞𝑎𝑡.
When 𝑞 ∶ 𝐹 ↠ 𝐴 is a discrete isofibration, both Fun(1, 𝐹𝑡) and Fun𝐴(𝐴, 𝐹) are Kan complexes.

Any adjunction between Kan complexes is automatically an adjoint equivalence, since it follows
from Corollary 1.1.22 that any natural transformation whose codomain is a Kan complex is a natural
isomorphism. �

A special case of Proposition 5.7.13 proves the dependent Yoneda lemma.

Proof of Theorem 5.7.2. Recall from Corollary 3.5.10 that for any element 𝑏 ∶ 1 → 𝐵, its identity
arrow id𝑏 ∶ 1 → Hom𝐵(𝐵, 𝑏) defines a terminal element. So the dependent Yoneda lemma follows
immediately as a special case of Proposition 5.7.13. �

Using Theorem 5.7.2, we now prove the discrete Yoneda lemma.

Proof of Theorem 5.7.1. Let 𝑝∶ 𝐸 ↠ 𝐵 be a discrete cartesian fibration and consider an element
𝑏 ∶ 1 → 𝐵. By Lemma 5.5.5, the pullback

𝐹 𝐸

Hom𝐵(𝐵, 𝑏) 𝐵

𝑞 𝑝

𝑝0

(5.7.15)

defines a discrete cartesian fibration over Hom𝐵(𝐵, 𝑏). By pullback composition, the fibers 𝐹id𝑏 ≅ 𝐸𝑏
are isomorphic and similarly the space of sections of 𝑞 is isomorphic to the functor space Fun𝐵(𝑝0, 𝑝).
So in this context, the equivalence of Theorem 5.7.2 specializes to the desired equivalence of Kan
complexes:

FunHom𝐵(𝐵,𝑏)(Hom𝐵(𝐵, 𝑏), 𝐹) Fun(1, 𝐹 id𝑏)

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸 𝑝 𝐵) Fun(1, 𝐸𝑏)

≅
∼

evid𝑏

≅

∼
evid𝑏

�

Specializing to the case of two right representable discrete cartesian fibrations, we conclude that
the Kan complex of natural transformations is equivalent to the underlying space of the corresponding
mapping space.

5.7.16. Corollary. For any elements 𝑥, 𝑦 ∶ 1 → 𝐴 in an∞-category 𝐴, evaluation at the identity of 𝑥
induces an equivalence of Kan complexes

Fun𝐴(Hom𝐴(𝐴, 𝑥),Hom𝐴(𝐴, 𝑦)) Fun(1,Hom𝐴(𝑥, 𝑦))∼evid𝑥 �
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It remains to prove the general case of Theorem 5.7.3. When 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration the
pullback (5.7.15) defines a cartesian fibration 𝑞 ∶ 𝐹 ↠ Hom𝐵(𝐵, 𝑏) and Proposition 5.7.13 provides an
adjunction

FunHom𝐵(𝐵,𝑏)(Hom𝐵(𝐵, 𝑏), 𝐹) Fun(1, 𝐹 id𝑏)

Fun𝐵(Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸 𝑝 𝐵) Fun(1, 𝐸𝑏)

≅

evid𝑏

⊥

≅𝑦

evid𝑏

⊥
𝑦

(5.7.17)

The next step is to observe that the right adjoint lands in the sub-quasi-category of cartesian functors
from 𝑝0 to 𝑝.

5.7.18. Lemma. For any cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 and element 𝑏 ∶ 1 → 𝐵, for each vertex 𝑒 in
Fun(1, 𝐸𝑏) ≅ Fun𝐵(𝑏, 𝑝) below-left

Fun𝐵(𝑏, 𝑝) Fun𝐵(𝑝0, 𝑝)
𝑦

1 𝐸 Hom𝐵(𝐵, 𝑏) 𝐸

𝐵 𝐵
𝑏

𝑒

𝑝 ↦ 𝑝0

𝑦𝑒

𝑝

the functor 𝑦𝑒 in Fun𝐵(𝑝0, 𝑝) above-right defines a cartesian functor from 𝑝0 to 𝑝.

Proof. In the proof of Proposition 5.7.13, the right adjoint is defined by the diagram (5.7.14) as a
factorization of the domain component of the 𝑞∗-cartesian lift of the unit 𝜂 of the adjunction witnessing
the terminal element. Here 𝑞 is a pullback (5.7.15) of the cartesian fibration 𝑝, and so by Proposition
5.2.4, 𝑦 can equally be described as a factorization of the domain component of the 𝑝∗-cartesian lift of
𝑝0𝜂, which equals the right comma cone 𝜙∶ 𝑝0 ⇒ 𝑏!. In summary, the functor 𝑦 is defined by:

Fun𝐵(𝑏, 𝑝) Fun(1, 𝐸)

Fun𝐵(𝑝0, 𝑝) Fun(Hom𝐵(𝐵, 𝑏), 𝐸)

𝟙 Fun(1, 𝐵)

𝟙 Fun(Hom𝐵(𝐵, 𝑏), 𝐵)

⇑𝜒
𝑦 𝑝∗

!∗

𝑝∗
⇑𝜙

𝑏
!∗

𝑝0

Thus, by Lemma 5.6.5, we see that 𝑦𝑒 is the domain component of a 𝑝-cartesian lift 𝜒𝑒 of the natural
transformation 𝜙∶ 𝑝0 ⇒ 𝑝𝑒!

Hom𝐵(𝐵, 𝑏) 1 𝐸 Hom𝐵(𝐵, 𝑏) 𝐸

𝐵 𝐵

!

⇑𝜙

𝑝0

𝑏

𝑒

𝑝 =

𝑒!

𝑦𝑒

⇑𝜒𝑒

𝑝0 𝑝

Since 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is discrete, every natural transformation 𝜓 with codomain Hom𝐵(𝐵, 𝑏) is
𝑝0-cartesian, so to prove that 𝑦𝑒 defines a cartesian functor, we must show that 𝑦𝑒𝜓 is 𝑝-cartesian. To
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that end, consider the horizontal composite:

𝑋 Hom𝐵(𝐵, 𝑏) 𝐸
𝑔

𝑓

⇑𝜓
𝑒!

𝑦𝑒
⇑𝜒

By naturality of whiskering,𝜒𝑔⋅𝑦𝑒𝜓 = 𝑒!𝜓⋅𝜒𝑓, and since 1 is the terminal∞-category, 𝑒!𝜓 is an identity.
Thus, by left cancelation of 𝑝-cartesian transformations (see Lemma 5.1.5), 𝑦𝑒𝜓 is 𝑝-cartesian. �

To complete the proof of Theorem 5.7.3, it remains to argue that this restricted adjunction defines
an adjoint equivalence.

Proof of Theorem 5.7.3. By Lemma 5.7.18, the adjunction (5.7.17) restricts to define an adjunc-
tion

Funcart
𝐵 (𝑝0, 𝑝) Fun(1, 𝐸𝑏)

evid𝑏

⊥
𝑦

Since the counit of the original adjunction ! ⊣ id𝑏 is an isomorphism and smothering 2-functors
are conservative on 2-cells, the counit of the adjunction of Proposition 5.7.13 and hence also of the
restricted adjunction is an isomorphism. As in the proof of Theorem 5.7.1, we prove that evid𝑏 is an
equivalence by demonstrating that the unit of the restricted adjunction is also invertible. By Corollary
1.1.22, it suffices to verify this elementwise, proving that the component of the unit indexed by a
cartesian functor

Hom𝐵(𝐵, 𝑏) 𝐸

𝐵
𝑝0

ℎ

𝑝

is an isomorphism.
Unpacking the proof of Proposition 5.7.13, the unit �̂� of evid𝑏 ⊣ 𝑦 is defined to be a factorization

Fun𝐵(𝑝0, 𝑝) Fun(Hom𝐵(𝐵, 𝑏), 𝐸) Fun(1, 𝐸)

Fun𝐵(𝑝0, 𝑝) Fun𝐵(𝑏, 𝑝) Fun(1, 𝐸) Fun(Hom𝐵(𝐵, 𝑏), 𝐸)

Fun𝐵(𝑝0, 𝑝) Fun(Hom𝐵(𝐵, 𝑏), 𝐸)

id𝑏
∗

!∗
evid𝑏

𝑦 ⇑𝜒

=

!∗

⇑Fun(𝜂,𝐸)

⇑�̂�

of the restriction of Fun(𝜂, 𝐸) through the 𝑝∗-cartesian lift 𝜒, where 𝜂 is the unit of the adjunction
! ⊣ id𝑏. The component of the restricted 2-cell Fun(𝜂, 𝐸) at the cartesian functor ℎ is ℎ𝜂. Since
𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵 is a discrete cartesian fibration, any 2-cell, such as 𝜂, which has codomain
Hom𝐵(𝐵, 𝑏) is 𝑝0-cartesian, and since ℎ is a cartesian functor, we then see that ℎ𝜂 is 𝑝-cartesian.

By Lemma 5.6.6, the components of the 𝑝∗-cartesian cell 𝜒 define 𝑝-cartesian natural transfor-
mations in the ambient ∞-cosmos. As �̂� is a natural transformation with codomain Fun𝐵(𝑝0, 𝑝) its
components project along 𝑝 to the identity. In this way, we see that �̂�ℎ is a factorization of the 𝑝-
cartesian transformation ℎ𝜂 through a 𝑝-cartesian lift of 𝜙 over an identity, and Lemma 5.1.12 proves
that �̂�ℎ is an isomorphism, as desired. �
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In ∞-cosmology we have access to the following trick: any result, such as Theorem 5.7.3, that
is proven in a generic ∞-cosmos can then be applied to a sliced ∞-cosmos. This can often be used
to extend a result about elements of an∞-category to generalized elements of that∞-category (see
Remark 4.3.12 for instance). By this technique, Theorem 5.7.3 implies the following generalization,
replacing the element 𝑏 ∶ 1 → 𝐵 by a generalized element 𝑏 ∶ 𝑋 → 𝐵.

5.7.19. Corollary (generalized Yoneda lemma). For any cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 and functor
𝑏 ∶ 𝑋 → 𝐵, restricting along the canonical induced functor id𝑏 defines an equivalence of quasi-categories:

𝑋 Hom𝐵(𝐵, 𝑏)

𝐵
𝑏

id𝑏

𝑝0
⇝ Funcart

𝐵 (Hom𝐵(𝐵, 𝑏)
𝑝0 𝐵, 𝐸 𝑝 𝐵) Fun𝐵(𝑋

𝑏 𝐵, 𝐸 𝑝 𝐵).∼

evid𝑏

Corollary 5.7.19 can be interpreted as defining a “left biadjoint” to the inclusion of the subcategory
of cartesian fibrations and cartesian functors, reflecting an arbitrary functor 𝑏 ∶ 𝑋 → 𝐵 into a cartesian
fibration 𝑝0 ∶ Hom𝐵(𝐵, 𝑏) ↠ 𝐵.

Proof. Given the stated data in an∞-cosmos𝒦, Theorem 5.7.3 applies in𝒦/𝑋 to the cartesian
fibration 𝑝 × 𝑋∶ 𝐸 × 𝑋 ↠ 𝐵 × 𝑋 and the element (𝑏, 𝑋) ∶ 𝑋 → 𝐵 × 𝑋 to define an equivalence

Funcart
𝐵×𝑋(Hom𝐵(𝐵, 𝑝)

(𝑝1,𝑝0) 𝐵 × 𝑋, 𝑝 × 𝑋) Fun𝐵×𝑋(𝑋
(𝑏,𝑋) 𝐵 × 𝑋, 𝑝 × 𝑋)

Funcart
𝐵 (Hom𝐵(𝐵, 𝑏)

𝑝0 𝐵, 𝐸 𝑝 𝐵) Fun𝐵(𝑋
𝑏 𝐵, 𝐸 𝑝 𝐵)

∼

evid(𝑏,𝑋)

≅ ≅
∼

evid𝑏

which transposes under the simplicial adjunction

𝒦/𝑋 𝒦
𝑈

⊥
−×𝑋

to the equivalence of the statement. �

Despite its name, the generalized Yoneda lemma is not the most general form of the Yoneda lemma
we require. A “two-sided” version of this result appears in Theorem 7.3.2 and is proven with the same
trick, by applying Corollary 5.7.19 in a more exotic∞-cosmos: namely, of cocartesian fibrations with
a fixed base. For this reason, we invite the reader to accompany us at an interlude where we derive
further examples of∞-cosmoi.

Exercises.

5.7.i. Exercise. Given an element 𝑓 ∶ 1 → Hom𝐴(𝑥, 𝑦) in the mapping space between a pair of elements
in an ∞-category 𝐴, use the explicit description of the inverse equivalence to the map of Corollary
5.7.16 to construct a map

Hom𝐴(𝐴, 𝑥) Hom𝐴(𝐴, 𝑦)

𝐴
𝑝0

𝑓∗

𝑝0

which represents the “natural transformation” defined by postcomposing with 𝑓.¹⁷

¹⁷Hint: this construction is a special case of the construction given in the first half of the proof of Lemma 5.7.18.
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An Interlude on∞-Cosmology





CHAPTER 6

Exotic∞-Cosmoi

Morally an∞-cosmos can be described as “an (∞, 2)-category with (∞, 2)-categorical limits,” but
the precise axiomatization given in Definition 1.2.1 employs a particularly strict interpretation of this
phrase, taking advantage of the strictness that is available in so many examples to simplify proofs.
We define∞-cosmoi to be quasi-categorically enriched categories – selecting the strictest model of
(∞, 2)-categories in common use (see [79, 0.0.3-4]) – and we construct (∞, 2)-categorical limits by
certain homotopically well-behaved simplicially enriched limits.

Our aim in this chapter is to develop further examples of∞-cosmoi, which immediately allows us
to apply all of the theorems proven in Part I in more exotic contexts, where the ∞-categories of an
∞-cosmos should not be thought of as “(∞, 1)-categories in some model.” Some of these examples,
such as the∞-cosmos of isofibrations introduced in §6.1, can be established easily by directly verifying
the axioms of Definition 1.2.1.

A larger family of examples, appearing in §6.3, arise as subcategories of previously defined ∞-
cosmoi. For instance, in Proposition 6.3.14 we prove that the ∞-cosmos of isofibrations 𝒦 in any
∞-cosmos 𝒦 has a sub ∞-cosmos 𝒞𝑎𝑟𝑡(𝒦) of cartesian fibrations and cartesian functors between
them. This result, and many others of a similar flavor, follows from a common paradigm appearing as
Proposition 6.3.3, which states that a replete subcategory (see Definition 6.3.1) of an∞-cosmos inherits
an∞-cosmos structure, provided that it is closed under flexible weighted limits.

This leads us to the second main theme of this chapter: an elaboration of the (∞, 2)-categorical
limits present in any∞-cosmos. In §6.2, we discover that the cosmological limit notions enumerated in
axiom 1.2.1(i) generate a much larger class of simplicially enriched limits that exist in any∞-cosmos,
which are precisely those simplicially enriched limits that deserve to be called “(∞, 2)-categorical
limits.” We dub these simplicially enriched limits as flexible weighted limits, borrowing a term from
2-category theory (see Digression 6.2.7).

To explain the intuition, we make use of the formalism of weighted limits from enriched category
theory (see §A.6). An ordinary limit defines a universal cone over a given diagram, each cone leg
being an arrow whose source is the limit object. A weighted limit similarly defines a universal cone
over a given diagram, but now that cone might take a more exotic shape. In the simplicially enriched
context, each cone leg may take the shape of an arbitrary simplicial set, with the cone-commutativity
conditions specified by a simplicial-set-valued simplicial functor, referred to as the weight. For example,
an ordinary cone over a cospan defines a commutative square, but the cones for a different choice of
weight are squares inhabited by a 1-simplex. In this way, the comma∞-categories of Definition 3.4.1
arise as weighted limits of cospans (see Example A.6.14).

Intuitively, the flexible weighted limits are those whose weights define cone shapes that do not
impose any strict commutativity conditions: Pullbacks are not flexible weighted limits, while comma
objects are. Flexible weighted limits are invariant under pointwise equivalence between diagrams, while
general weighted limits need not be. These are the senses in which flexible weighted limits correspond
to (∞, 2)-categorical limit notions.
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After establishing the homotopical properties of flexible weighted limits, we also see that the
cosmological limits notions, such as pullbacks of isofibrations, are really flexible weighted limits in
disguise. The requirement that certain arrows in the diagram are isofibrations means that strictly
commuting cones correspond to pseudo-commutative cones, providing the required flexibility.

This chapter closes by illustrating a few sample applications of the general∞-cosmology developed
here. More applications follow in Part II, where we use the∞-cosmoi constructed here to develop the
theory of two-sided fibrations and modules.

6.1. The∞-Cosmos of Isofibrations

Our first example of an “exotic ∞-cosmos” is a special case of a more general result that is left
as Exercise 6.1.iii. The walking arrow category 𝟚 is an inverse Reedy category, where the domain of
the nonidentity arrow is assigned degree one and the codomain is assigned degree zero. This Reedy
structure motivates the definitions in the∞-cosmos of isofibrations that we now introduce:

6.1.1. Proposition (∞-cosmoi of isofibrations). For any∞-cosmos𝒦 there is an∞-cosmos𝒦 whose

(i) objects are isofibrations 𝑝∶ 𝐸 ↠ 𝐵 in𝒦,
(ii) functor spaces, say from 𝑞 ∶ 𝐹 ↠ 𝐴 to 𝑝∶ 𝐸 ↠ 𝐵, are defined by pullback

Fun(𝐹 𝑞 𝐴,𝐸 𝑝 𝐵) Fun(𝐹, 𝐸)

Fun(𝐴, 𝐵) Fun(𝐹, 𝐵) ,

𝑝∗

𝑞∗

(iii) isofibrations from 𝑞 to 𝑝 are commutative squares

𝐹 𝐸
•

𝐴 𝐵

𝑞

𝑔

𝑝

𝑓

in which the horizontals and the induced map from the initial vertex to the pullback of the cospan are
isofibrations in𝒦,

(iv) limits are defined pointwise in𝒦,
(v) and in which a map

𝐹 𝐸

𝐴 𝐵

𝑞

∼𝑔

𝑝

∼
𝑓

is an equivalence in the∞-cosmos𝒦 if and only if 𝑔 and 𝑓 are equivalences in𝒦.
Relative to these definitions, the domain, codomain, and identity functors

𝒦 𝒦
dom

cod

id

are all cosmological.
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Proof. The diagram category𝒦 inherits its simplicially enriched limits, defined pointwise, from
𝒦. The functor spaces described in (ii) are the usual ones for an enriched category of diagrams. This
verifies 1.2.1(i). Note that the definitions of functor spaces, limits, and isofibrations make each of the
domain, codomain, and identity functors cosmological.

For axiom 1.2.1(ii) note that the product and simplicial cotensor functors carry pointwise isofibra-
tions to isofibrations. The pullback of an isofibration as in (iii) along a commutative square from an
isofibration 𝑟 to 𝑝 may be formed in𝒦. Our task is to show that the induced map 𝑡 is an isofibration
and also that the square from 𝑡 to 𝑟 is an isofibration in the sense of (iii):

𝐺 ×
𝐸
𝐹 𝐹

𝐺 𝐸
• •

𝐶 ×
𝐵
𝐴 𝐴

𝐶 𝐵

𝑡 𝑞

𝑧

𝑝𝑟
(6.1.2)

The map 𝑡 factors as a pullback of 𝑧 followed by a pullback of 𝑟 as displayed above, and is thus an
isofibration, as claimed. This observation also verifies that the square from 𝑡 to 𝑟 defines an isofibration.
A similar argument verifies the Leibniz stability of the isofibrations and that the limit of a tower of
isofibrations is an isofibration. This proves that 𝒦 defines an ∞-cosmos in such a way so that the
domain, codomain, and identity functors are cosmological.

Finally, by Proposition 3.3.4, a pair of equivalences as in (v) induces an equivalence between the
functor spaces defined in (ii). The converse, that an equivalence in𝒦 defines a pair of equivalences
in 𝒦, follows from Lemma 1.3.2 and the fact that domain and codomain projection functors are
cosmological. �

In close analogy with Proposition 3.6.2, we have a smothering 2-functor that relates the homo-
topy 2-category of 𝒦 to the 2-category of isofibrations, commutative squares, and parallel natural
transformations in the homotopy 2-category of𝒦.

6.1.3. Lemma. There is an identity on objects and 1-cells smothering 2-functor 𝔥(𝒦 ) → (𝔥𝒦) whose
codomain is the 2-category whose

• objects are isofibrations in𝒦,
• 1-cells are commutative squares between such, and
• 2-cells are pairs of 2-cells in 𝔥𝒦

𝐹 𝐸

𝐴 𝐵

𝑔

𝑔′
𝑞

⇓𝛼

𝑝
𝑓

𝑓 ′
⇓𝛽

so that 𝑝𝛼 = 𝛽𝑞.

Proof. Exercise 6.1.i. �
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Similarly, any∞-cosmos admits an∞-cosmos of trivial fibrations, which can be defined as a full
subcategory of the∞-cosmos of isofibrations. The following general result from abstract∞-cosmology
explains how it inherits its∞-cosmos structure.

6.1.4. Lemma. Let𝒦 be an∞-cosmos and letℒ ⊂ 𝒦 be a full subcategory. Thenℒ inherits an∞-cosmos
structure from𝒦 created from the inclusion ℒ ↪ 𝒦 if and only if ℒ is closed in𝒦 under the cosmological
limit notions.

In practice, the full subcategories we consider have the property that any object of 𝒦 that is
equivalent to an object in ℒ in fact lies in ℒ – in other words, these subcategories are replete in
the sense of Definition 6.3.1. In the proof below, we tacitly assume that ℒ is at least closed under
isomorphism so that if a limit of a diagram lies inℒ then all of the limits of that diagram do, but this
assumption is only used for linguistic convenience and is inessential.

Proof. As a full subcategory,ℒ inherits its quasi-categorical enrichment from𝒦, and we define
a map to be an isofibration in ℒ if and only if it is an isofibration in𝒦. Note this definition makes
axiom 1.2.1(ii) follow immediately once that we have shown that the limits required by 1.2.1(i) coincide
with the corresponding limits in 𝒦. But this is exactly what is asserted by the hypothesis that ℒ is
closed in𝒦 under the cosmological limit notions.

We have shown that a closed full subcategory inherits an ∞-cosmos structure defined in such a
way that the inclusionℒ ↪ 𝒦 is a cosmological functor that reflects isofibrations and cosmological
limits. Clearly, this inclusion reflects representably defined equivalences, sinceℒ is a full subcategory
of𝒦. But by Lemma 1.3.2 the cosmological functorℒ ↪ 𝒦 preserves them as well, which tells us that
equivalences inℒ are created from𝒦 along with the isofibrations and cosmological limits. �

With this result in hand, further∞-cosmoi are easy to establish.

6.1.5. Proposition (∞-cosmoi of trivial fibrations). Let𝒦 be an∞-cosmos.

(i) For any∞-category 𝐵 in𝒦, the full subcategory𝒦≃
/𝐵 ↪ 𝒦/𝐵 spanned by the trivial fibrations with

codomain 𝐵 defines an∞-cosmos, with limits, isofibrations, equivalences, and trivial fibrations created
by the inclusion.

(ii) The full subcategory 𝒦

∼

↪ 𝒦 spanned by the trivial fibrations defines an∞-cosmos, with limits,
isofibrations, equivalences, and trivial fibrations created by the inclusion.

Proof. The details, which are similar to Propositions 1.2.22 and 6.1.1, are left to Exercise 6.1.ii. �

Note that the sliced∞-cosmoi𝒦≃
/𝐵 of trivial fibrations are weakly contractible in the sense that the

unique functor𝒦≃
/𝐵

∼ 𝟙 to the terminal∞-cosmos is a cosmological biequivalence. In particular, each
functor in𝒦≃

/𝐵 is an equivalence, so this∞-cosmos is more a curiosity than a structure of substantial
interest.

As promised in §1.2, Lemma 6.1.4 allows us to generalize Proposition 1.2.12 to show that the discrete
∞-categories in any∞-cosmos form an∞-cosmos:

6.1.6. Proposition (∞-cosmoi of discrete∞-categories). The full subcategory𝒦≃ ↪ 𝒦 spanned by the
discrete∞-categories in any∞-cosmos inherits an∞-cosmos structure created from the inclusion.

Proof. Recall from Lemma 1.2.27 that an∞-category 𝐸 in an∞-cosmos𝒦 is discrete if and only
if the map 𝐸𝕀 ↠ 𝐸𝟚 is a trivial fibration. This says that the full subcategory 𝒦𝕀 ↪ 𝒦 of discrete
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∞-categories is defined by the pullback

𝒦≃ 𝒦

∼

𝒦 𝒦𝐼

along the cosmological functor 𝐼 that sends an∞-category 𝐸 to the isofibration 𝐸𝕀 ↠ 𝐸𝟚. By Lemma
6.1.4, to show that 𝒦≃ admits an ∞-cosmos structure inherited from 𝒦, we need only show that
the discrete∞-categories are closed in𝒦 under the limit constructions of 1.2.1(i). For the simplicial
cotensors, for instance, this follows easily from the defining universal property and the fact that the
Kan complexes form an exponential ideal in the category of simplicial sets. A common argument can
be given for each of the conical limits; for the sake of concreteness, consider a tower of isofibrations
between discrete∞-categories 𝐸𝑛 and form the limit in𝒦

𝐸 ≔ lim � ⋯ 𝐸𝑛 𝐸𝑛−1 ⋯ 𝐸1 𝐸0 � .

The cosmological functor 𝐼 carries this to a limit diagram in the∞-cosmos𝒦

𝐸𝕀

𝐸𝟚

≔ lim

⎛
⎜
⎜
⎜
⎜
⎝

⋯ 𝐸𝕀
𝑛 𝐸𝕀

𝑛−1 ⋯ 𝐸𝕀
1 𝐸𝕀

0

⋯ 𝐸𝟚
𝑛 𝐸𝟚

𝑛−1 ⋯ 𝐸𝟚
1 𝐸𝟚

0

∼ ∼ ∼ ∼

⎞
⎟
⎟
⎟
⎟
⎠

.

Since each 𝐸𝑛 is a discrete∞-category, each of the objects in this diagram is a trivial fibration. Hence,
by Proposition 6.1.5, the limit 𝐸𝕀 ↠ 𝐸𝟚 is a trivial fibration as well. This proves that 𝐸 is discrete. �

The proof of Proposition 6.1.1 reveals that it is tedious to manually verify the limit axiom in
the construction of new ∞-cosmoi; indeed, even in that relatively basic example, we omitted some
details. In the following sections, we develop machinery that allows us to attack this problem more
systematically.

Exercises.

6.1.i. Exercise. Prove Lemma 6.1.3.

6.1.ii. Exercise. Prove Proposition 6.1.5 using Lemma 6.1.4.

6.1.iii. Exercise. Let 𝒦 be an ∞-cosmos and let ℐ be an inverse category (see Definition C.1.16).

Guided by Proposition C.1.23, prove that there is an∞-cosmos𝒦ℐ whose:

• objects are the fibrant diagrams of Definition C.1.19,
• isofibrations are the fibrant natural transformations of Definition C.1.19,
• functor spaces are the simplicial hom-spaces of Definition A.3.8,
• and in which the simplicial limits and equivalences are defined pointwise in𝒦.

Use Proposition C.1.21 to demonstrate that limits of fibrant ℐ-indexed diagrams exist in 𝒦 and

moreover that the functor lim ∶ 𝒦ℐ → 𝒦 is cosmological.
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6.2. Flexible Weighted Limits

Our aim in this section is to introduce a special class of simplicial-set-valued weights whose
associated weighted limit notions are homotopically well-behaved. Borrowing a term from 2-category
theory, we refer to these weights as flexible. All of the cosmological limit notions can be understood as
flexible weighted limits. In fact, we prove that∞-cosmoi admit all flexible weighted limits because
these can be built out of the axiomatized cosmological limits. In §6.3, we make use of this observation
to more efficiently verify the limit axiom for newly constructed∞-cosmoi.

Roughly speaking, the flexible weighted limits are the simplicially enriched limits for which the
simplices appearing in a cone are freely attached, relative to the diagram shape. Ordinary “conical”
cones involve commutative triangles formed by two of the cone legs and one arrow in the diagrams.
This commutativity is not permitted in the cone shapes proscribed by a flexible weight; instead a
diagram of 0-arrows might commute up to a higher cell. If the notion of weighted limits in enriched
category theory is unfamiliar, we suggest reading §A.4–§A.6 before proceeding.

6.2.1. Definition (flexible weights as projective cell complexes). For a simplicial category𝒜, consider

the category 𝑠𝒮𝑒𝑡𝒜 of simplicial functors, called weights, and simplicial natural transformations.

• For any 𝑛 ≥ 0 and object 𝑎 of𝒜, a simplicial natural transformation of the form

𝜕Δ[𝑛] × 𝒜(𝑎, −) ↪ Δ[𝑛] × 𝒜(𝑎, −)
is called a projective 𝑛-cell at 𝑎.

• A simplicial natural transformation 𝛼∶ 𝑉 ↪ 𝑊 that can be expressed as a countable composite of
pushouts of coproducts of projective cells is called a projective cell complex.

• A weight𝑊 is flexible just when ∅ ↪ 𝑊 is a projective cell complex.

A flexible weighted limit of a diagram 𝐹∶ 𝒜 → 𝒦 valued in an∞-cosmos is a weighted limit, in
the sense of §A.6, whose weight𝑊∶ 𝒜 → 𝑠𝒮𝑒𝑡 is flexible.

6.2.2. Remark. Since any monomorphism of simplicial sets𝑈 ↪ 𝑉 can be decomposed as a countable
composite of pushouts of coproducts of boundary inclusions 𝜕Δ[𝑛] ↪ Δ[𝑛], the class of projective cell
complexes may also be described as the class of maps in 𝑠𝒮𝑒𝑡𝒜 that can be expressed as a countable
composite of pushouts of coproducts of monomorphisms of the form 𝑈 ×𝒜(𝑎, −) ↪ 𝑉 ×𝒜(𝑎, −)
for some 𝑈 ↪ 𝑉 ∈ 𝑠𝒮𝑒𝑡 and 𝑎 ∈ 𝒜.

6.2.3. Example (cotensors are flexible). Recall from §A.4 that the cotensor of an ∞-category 𝐴 in
an∞-cosmos𝒦 with a simplicial set 𝑈 is the object 𝐴𝑈 ∈ 𝒦 characterized by the simplicial natural
isomorphism

Fun(𝑋,𝐴𝑈) ≅ Fun(𝑋,𝐴)𝑈.
This object can be regarded as the limit of the diagram 𝐴∶ 𝟙 → 𝒦 weighted by 𝑈∶ 𝟙 → 𝑠𝒮𝑒𝑡. This
weight is defined by a single generalized projective cell of shape ∅ ↪ 𝑈 at the unique object of 𝟙.

Recall from §A.5 that the conical limit of a diagram 𝐹∶ 𝒜 → 𝒦 is the limit weighted by the
terminal weight ∗ ∶ 𝒜 → 𝑠𝒮𝑒𝑡.

6.2.4. Example (products are flexible). Conical products also define flexible weighted limits, built by
attaching one projective 0-cell at each object in the indexing set.

6.2.5. Non-Example. Conical limits indexed by any 1-category that contains nonidentity arrows are
not flexible because the legs of a conical cone are required to define a strictly commutative triangle
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over each 0-arrow in the diagram. The specifications for a flexible weight allow us to freely attach
𝑛-arrows of any dimension but do not provide a mechanism for demanding strict commutativity of
any diagram of 𝑛-arrows – only commutativity up to the presence of a higher cell.

6.2.6. Example (commas are flexible). In an∞-cosmos𝒦, the limit of the diagram → 𝒦 given by
the cospan

𝐶 𝐴 𝐵
𝑔 𝑓

weighted by the diagram → 𝑠𝒮𝑒𝑡 given by the cospan

𝟙 𝟚 𝟙1 0

is the comma∞-category Hom𝐴(𝑓 , 𝑔) (see Example A.6.14). Since this weight can be built by attaching
two projective 0-cells at the corners of the cospan followed by a projective 1-cell at the terminal object
of the cospan, comma objects are flexible weighted limits.

6.2.7. Digression (on flexible limits in 2-category theory). Simplicial limits weighted by flexible
weights should be thought of as analogous to flexible 2-limits, i.e., category enriched limits built out of
products, inserters, equifiers, and retracts (splittings of idempotents) [17]. Because we define flexible
weights as countable composites of pushouts of coproducts – and not retracts thereof – the flexible
weighted limits of Definition 6.2.1 are more exactly analogous to the PIE limits, built from just products,
inserters, and equifiers. The PIE limits also include iso-inserters, descent objects, comma objects, and
Eilenberg–Moore objects, as well as all pseudo, lax, and oplax limits. Many important 2-categories,
such as the 2-category of accessible categories and accessible functors, fail to admit all 2-categorical
limits, but do admit all PIE limits [83].

The weights for flexible 2-limits indexed by a 2-category𝒜 are the cofibrant objects in a model

structure on the diagram 2-category 𝒞𝑎𝑡𝒜 that is enriched over the folk model structure on 𝒞𝑎𝑡; the
PIE weights are exactly the cellular cofibrant objects (see Definition C.2.4). Correspondingly, the
projective cell complexes of Definition 6.2.1 are exactly the cellular cofibrations in the projective model

structure on 𝑠𝒮𝑒𝑡𝒜.
This suggests that “PIE limits” would be a more precise name for the flexible weighted limits of

Definition 6.2.1, and we do not disagree. With apologies to the Australian 2-category theory diaspora,
we cannot resist adopting the more evocative term.

Our interest in flexible weights stems from their homotopical properties, which we now explore.
In a 𝒱-model category ℳ, the fibrant objects are closed under weighted limits whose weights are
projective cofibrant (see Corollary C.3.15). For instance, the fibrant objects in a 𝒞𝑎𝑡-enriched model
structure are closed under flexible weighted limits [72, 5.4] in the sense of [17]. As explained in §E.1,
∞-cosmoi are very closely related to categories of fibrant objects associated to a model category that is
enriched over the Joyal model structure on simplicial sets. Thus, we may adapt the proofs of results
from enriched model category theory to obtain the following:

6.2.8. Proposition (flexible weights are homotopical). Let𝑊∶ 𝒜 → 𝑠𝒮𝑒𝑡 be a flexible weight and let𝒦
be an∞-cosmos.

(i) The weighted limit lim𝑊 𝐹 of any diagram 𝐹∶ 𝒜 → 𝒦 may be expressed as a countable inverse limit
of pullbacks of products of isofibrations

𝐹𝑎Δ[𝑛] 𝐹𝑎𝜕Δ[𝑛] (6.2.9)
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one for each projective 𝑛-cell at 𝑎 in the given projective cell complex presentation of𝑊. Hence,∞-cosmoi
admit all flexible weighted limits and cosmological functors preserve them.

(ii) If 𝑉 ↪ 𝑊 ∈ 𝑠𝒮𝑒𝑡𝒜 is a projective cell complex between flexible weights, then for any diagram
𝐹∶ 𝒜 → 𝒦, the induced map between weighted limits is an isofibration:

lim𝑊 𝐹 lim𝑉 𝐹

(iii) If 𝛼∶ 𝐹 ⇒ 𝐺 is a simplicial natural transformation between a pair of diagrams 𝐹,𝐺∶ 𝒜 → 𝒦 whose
components 𝛼𝑎 ∶ 𝐹𝑎 ∼ 𝐺𝑎 are isofibration, trivial fibrations, equivalences, then the induced map

lim𝑊 𝐹 lim𝑊𝐺𝛼

is an isofibration, trivial fibration, or equivalence, respectively.

Proof. To begin, observe that the axioms of Definition A.6.1 imply that the limit of a diagram 𝐹
weighted by the weight 𝑈 ×𝒜(𝑎, −), for 𝑈 ∈ 𝑠𝒮𝑒𝑡 and 𝑎 ∈ 𝒜, is the cotensor 𝐹𝑎𝑈. Thus, the map
of weighted limits induced by the projective 𝑛-cell at 𝑎 is the isofibration (6.2.9). By definition, any
flexible weight is built as a countable composite of pushouts of coproducts of these projective cells
and the weighted limit functor lim− 𝐹 carries each of these conical colimits to the corresponding limit
notion. So it follows that lim𝑊 𝐹may be expressed as a countable inverse limit of pullbacks of products
of the maps (6.2.9). This proves (i).

The same argument proves (ii). By definition, a relative cell complex𝑉 ↪ 𝑊 is built as a countable
composite of pushouts of coproducts of these projective cells and the weighted limit functor lim− 𝐹
carries each of these conical colimits to the corresponding limit notion. So it follows that lim𝑊 𝐹 is
the limit of a countable tower of isofibrations whose base is lim𝑉 𝐹, where each of these isofibrations is
the pullback of products of the maps (6.2.9) appearing in the projective cell complex decomposition of
𝑉 ↪ 𝑊. As products, pullbacks, and limits of towers of isofibrations are isofibrations, (ii) follows.

For (iii), suppose first that 𝛼 is a componentwise isofibration. Then the simplicial natural transfor-
mation 𝛼∶ 𝐹 ⇒ 𝐺 defines a simplicial functor𝐴∶ 𝒜 → 𝒦 valued in the∞-cosmos of isofibrations of
Proposition 6.1.1. By (i), this diagram admits a𝑊-weighted limit lim𝑊𝐴, which is then necessarily an
isofibration. Since the domain and codomain functors dom, cod ∶ 𝒦 → 𝒦 are cosmological, it is clear
that the isofibration lim𝑊𝐴 coincides with the induced map on weighted limits 𝛼∶ lim𝑊 𝐹 ↠ lim𝑊𝐺.

If 𝛼 is a componentwise trivial fibration, then the above diagram and thus its𝑊-weighted limit lies

in the sub∞-cosmos𝒦

∼

↪ 𝒦 of trivial fibrations established in Proposition 6.1.5. By the analogous
argument, the induced map 𝛼∶ lim𝑊 𝐹 ∼ lim𝑊𝐺 is a trivial fibration in this case. The final statement
for equivalences now follows from the first two statements by Ken Brown’s Lemma C.1.10. �

Proposition 6.2.8(i) proves that the flexible weighted limit of any diagram in an∞-cosmos can be
constructed out of the cosmological limits, i.e., the limits of diagrams of isofibrations axiomatized in
1.2.1(i). Over a series of lemmas, we describe a converse of sorts, constructing each of the cosmological
limits as a flexible weighted limit. It follows that any quasi-categorically enriched category equipped
with a class of representably defined isofibrations that possesses flexible weighted limits admits all of
the simplicial limits of 1.2.1(i).

To start, simplicial cotensors are flexible weighted limits, as discussed in Example 6.2.3. This leaves
only the conical limits: products, pullbacks of isofibrations, and inverse limits of towers of isofibrations.
Example 6.2.4 notes that the weights for products are flexible. However, for the reasons discussed in
6.2.5, the weights for conical pullbacks or limits of towers of isofibrations are not flexible because the
definition of a cone over either diagram shape imposes composition relations on 0-arrows.
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Our strategy is to modify the weights for pullbacks and for limits of countable towers so that each
composition equation involved in defining cones over such diagrams is replaced by the insertion of an
invertible arrow one dimension up, where we must also take care to define this invertibility without
specifying any equations between arrows in the next dimension. We have a device for specifying just
this sort of isomorphism: recall the homotopy coherent isomorphism 𝕀 from Exercise 1.1.v(i). A diagram
𝕀 → Fun(𝐴, 𝐵) specifies a homotopy coherent isomorphism between a pair of 0-arrows 𝑓 and 𝑔 from
𝐴 to 𝐵, given by:

• a pair of 1-arrows 𝛼∶ 𝑓 → 𝑔 and 𝛽∶ 𝑔 → 𝑓,
• a pair of 2-arrows

𝑔 𝑓

𝑓 𝑓 𝑔 𝑔 ,

𝛽
Φ

𝛼
Ψ

𝛼 𝛽

• a pair of 3-arrows whose outer faces are Φ andΨ and whose inner faces are degenerate,
• a pair of 4-simplices whose outer faces are these 3-simplices and whose inner faces are degenerate,

and so on.

We now introduce the weight for pullback diagrams whose cone shapes are given by squares
inhabited by a homotopy coherent isomorphism.

6.2.10. Definition (iso-commas). The iso-comma object 𝐶 ⨰
𝐴
𝐵 of a cospan

𝐶 𝐴 𝐵
𝑔 𝑓

in a simplicially enriched and cotensored category is the limit weighted by a weight𝑊⨰ ∶ → 𝑠𝒮𝑒𝑡
defined by the cospan

𝟙 𝕀 𝟙1 0

Under the simplification of Remark A.6.11, the formula for the weighted limit reduces to the equalizer
of the pair of maps

𝐴𝕀

𝐶 × 𝐴𝕀 × 𝐵 𝐴 × 𝐴
𝐶 × 𝐵

(𝑞1,𝑞0)𝜋

𝜋 𝑔×𝑓

where the maps (𝑞1, 𝑞0) ∶ 𝐴𝕀 → 𝐴 × 𝐴 are defined by restricting along the endpoint inclusion
𝟙+𝟙 = 𝜕𝕀 ↪ 𝕀. In an∞-cosmos, this map is an isofibration and the equalizer defining the iso-comma
object is computed by the pullback

𝐶 ⨰
𝐴
𝐵 𝐴𝕀

𝐶 × 𝐵 𝐴 × 𝐴

(𝑞1,𝑞0) (𝑞1,𝑞0)

𝑔×𝑓

(6.2.11)

6.2.12. Lemma. Iso-comma objects are flexible weighted limits and in particular exist in any∞-cosmos.
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Proof. Writing 𝑏 → 𝑎 ← 𝑐 for the objects in the cospan category , the weight𝑊⨰ is constructed
by the pushout

𝜕𝕀 × (𝑎, −) (𝑏, −) ⊔ (𝑐, −)

𝕀 × (𝑎, −) 𝑊⨰

where the attaching map picks out the two arrows in the cospan. As a projective cell complex, 𝑊⨰
is built from a projective 0-cell at 𝑏, a projective 0-cell at 𝑐, and two projective 𝑘-cells at 𝑎 for each
𝑘 > 0, corresponding to the nondegenerate simplices of 𝕀. As described by Remark 6.2.2, these may be
attached all at once. In this way, we see that𝑊⨰ is a flexible weight, so Proposition 6.2.8(i) tells us that
iso-comma objects exist in any∞-cosmos, a fact that is also evident from the pullback (6.2.11). �

6.2.13. Remark. In the homotopy 2-category of an ∞-cosmos, there is a canonical invertible 2-cell
defining the iso-comma cone:

𝐶 ⨰
𝐴
𝐵

𝐶 𝐵

𝐴

𝑞1 𝑞0
𝜙
≅

𝑔 𝑓

that has a weak universal property analogous to that of the comma cone presented in Proposition
3.4.6 (see [110, §3]). The proof makes use of the fact that 𝐴𝕀 is the weak 𝕀-cotensor in the homotopy
2-category [108, 3.3.13].

Our notation for iso-commas is deliberately similar to the usual notation for pullbacks. In an
∞-cosmos, iso-commas can be used to compute “homotopy pullbacks” of diagrams in which neither
map is an isofibration. When at least one map of the cospan is an isofibration, the iso-comma is
equivalent to the conical pullback.

6.2.14. Lemma (iso-commas and pullbacks). For any cospan in an∞-cosmos involving at least one isofibration,
the pullback and the iso-comma are equivalent. More precisely, given a pullback square as below-left and an
iso-comma square as below-right

𝑃 𝐵 𝐶 ⨰
𝐴
𝐵 𝐵

𝐶 𝐴 𝐶 𝐴

𝑐

𝑏

𝑓 𝑞1 𝜙≅

𝑞0

𝑓

𝑔 𝑔

𝑃 ≃ 𝐶 ⨰
𝐴
𝐵 over 𝐶 and up to isomorphism over 𝐵.

Proof. Applying Lemma 1.2.19 to the functor 𝑏 ∶ 𝑃 → 𝐵, we can replace the span (𝑐, 𝑏) ∶ 𝑃 → 𝐶×𝐵
by a span (𝑐𝑞, 𝑝) ∶ 𝑃𝑏 ↠ 𝐶 × 𝐵 whose legs are both isofibrations that is related via an equivalence
𝑠 ∶ 𝑃 ∼ 𝑃𝑏 that lies over 𝐶 on the nose and over 𝐵 up to isomorphism. We claim that under the
hypothesis that 𝑓 is an isofibration, this new span is equivalent to the iso-comma span.

To see this, note that the factorization constructed in (1.2.20) is in fact defined using an iso-comma,
constructed via the pullback in the top square of the diagram below-left. Since the map 𝑏 is itself
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defined by a pullback, the bottom square of the diagram below-left is also a pullback, defining the
left-hand pullback rectangle:

𝑃𝑏 𝐵𝕀

𝑃 × 𝐵 𝐵 × 𝐵

𝐶 × 𝐵 𝐴 × 𝐵

(𝑞,𝑝) (𝑞1,𝑞0)
𝑏×𝐵

𝑐×𝐵 𝑓 ×𝐵

𝑔×𝐵

𝐶 ⨰
𝐴
𝐵 𝐴 ⨰

𝐴
𝐵 𝐴𝕀

𝐶 × 𝐵 𝐴 × 𝐵 𝐴 × 𝐴

(𝑞1,𝑞0) (𝑞1,𝑞0) (𝑞1,𝑞0)

𝑔×𝐵 𝐴×𝑓

Now the iso-comma is constructed by a similar pullback rectangle, displayed above-right. And because

𝑓 is an isofibration, Lemma 1.2.14 tells us that the Leibniz tensor 𝑖0 �⋔𝑓∶ 𝐵𝕀 ∼ 𝐴⨰
𝐴
𝐵 of 𝑖0 ∶ 𝟙 ↪ 𝕀 with

𝑓 ∶ 𝐵 ↠ 𝐴 is a trivial fibration. This equivalence commutes with the projections to 𝐴 × 𝐵 and hence
the maps (𝑐𝑞, 𝑝) ∶ 𝑃𝑏 ↠ 𝐶 × 𝐵 and (𝑞1, 𝑞0) ∶ 𝐶 ⨰

𝐴
𝐵 ↠ 𝐶 × 𝐵, defined as pullbacks of an equivalent

pair of isofibrations along 𝑔 × 𝐵, are equivalent as claimed. �

We now introduce a flexible weight for diagrams given by a countable tower of 0-arrows whose
cone shapes have a homotopy coherent isomorphism in the triangle over each generating arrow.

6.2.15. Definition (iso-towers). Recall the category𝝎 whose objects are natural numbers and whose
morphisms are freely generated by maps 𝜄𝑛,𝑛+1 ∶ 𝑛 → 𝑛 + 1 for each 𝑛. The iso-tower of a𝝎op-shaped
diagram

𝐹 ≔ ⋯ 𝐹𝑛+1 𝐹𝑛 ⋯ 𝐹1 𝐹0
𝑓𝑛+2,𝑛+1 𝑓𝑛+1,𝑛 𝑓𝑛,𝑛−1 𝑓2,1 𝑓1,0

in a simplicially enriched and cotensored category is the limit weighted by the diagram𝑊← ∶ 𝝎op →
𝑠𝒮𝑒𝑡 defined by the pushout in 𝑠𝒮𝑒𝑡𝝎

op

.

∐
𝑛∈𝝎

𝜕𝕀 × 𝝎(−, 𝑛) ∐
𝑚∈𝝎

𝝎(−,𝑚)

∐
𝑛∈𝝎

𝕀 × 𝝎(−, 𝑛) 𝑊←

(id𝑛,𝜄𝑛,𝑛+1)

(6.2.16)

By Definition A.6.1(ii), in an∞-cosmos the iso-tower of 𝐹 is constructed by the pullback

lim𝑊← 𝐹 ∏
𝑛∈𝝎

𝐹𝕀
𝑛

∏
𝑚∈𝝎

𝐹𝑚 ∏
𝑛∈𝝎

𝐹𝑛 × 𝐹𝑛

𝜌

𝜙

∏(𝑞1,𝑞0)

(𝑓𝑛+1,𝑛,id𝐹𝑛)

(6.2.17)

The limit cone is generated by a 0-arrow 𝜌𝑛 ∶ lim𝑊← 𝐹 → 𝐹𝑛 for each 𝑛 ∈ 𝝎 together with a homotopy
coherent isomorphism 𝜙𝑛 in each triangle over a generating arrow 𝐹𝑛+1 → 𝐹𝑛 in the 𝝎op-indexed
diagram.

6.2.18. Lemma. Iso-towers are flexible weighted limits and in particular exist in any∞-cosmos.
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Proof. The weight 𝑊← is a projective cell complex built by attaching one projective 0-cell at
each 𝑛 ∈ 𝝎 – forming the coproduct appearing in the upper right-hand corner of (6.2.16) – and then
by attaching a projective 𝑘-cell at each 𝑛 ∈ 𝝎 for each nondegenerate 𝑘-simplex of 𝕀 with 𝑘 > 0.
Rather than attach each projective 𝑘-cell for fixed 𝑛 ∈ 𝝎 in sequence, by Remark 6.2.2 these can all be
attached at once by taking a single pushout of the “generalized projective cell at 𝑛” defined by the map
𝜕𝕀 × 𝝎(−, 𝑛) ↪ 𝕀 × 𝝎(−, 𝑛). These are the maps appearing as the left-hand vertical of (6.2.16). Now
Proposition 6.2.8(i) or the formula (6.2.17) make it clear that such objects exist in any∞-cosmos. �

As is the case for iso-commas and pullbacks, iso-towers give a way to compute inverse limits of
diagrams of arbitrary maps. When those maps are isofibrations, the iso-tower is equivalent to the
conical limit.

6.2.19. Lemma (iso-towers and inverse limits). The inverse limit of a countable tower of isofibrations in an
∞-cosmos is equivalent to the iso-pullback of that tower.

Proof. We will rearrange the limit (6.2.17) to construct the iso-tower lim𝑊← 𝐹 in an∞-cosmos
𝒦 as an inverse limit of a countable tower of isofibrations 𝑃∶ 𝝎op → 𝒦 that is pointwise equivalent
to the tower of isofibrations 𝐹∶ 𝝎op → 𝒦.

lim𝑃 ≅ ⋯ 𝑃𝑛+1 𝑃𝑛 ⋯ 𝑃1 𝑃0

lim 𝐹 ≅ ⋯ 𝐹𝑛+1 𝐹𝑛 ⋯ 𝐹1 𝐹0

∼

𝑝𝑛+2,𝑛+1 𝑝𝑛+1,𝑛

∼ 𝑒𝑛

𝑝𝑛,𝑛−1
∼ 𝑒𝑛

𝑝2,1 𝑝1,0

∼ 𝑒1 ∼ 𝑒0

𝑓𝑛+2,𝑛+1 𝑓𝑛+1,𝑛 𝑓𝑛,𝑛−1 𝑓2,1 𝑓1,0

(6.2.20)

The equivalence invariance of the inverse limit of a diagram of isofibrations implies that the limits
lim𝑊← 𝐹 ≅ lim𝑃 and lim 𝐹 are equivalent as claimed.

The∞-categories 𝑃𝑛 are defined as conical limits of truncated versions of the diagram (6.2.17). To
start define 𝑃0 ≔ 𝐹0 and 𝑒0 to be the identity, then define 𝑃1, 𝑝1,0, and 𝑒1 via the pullback

𝑃1 𝐹𝕀
0 𝐹0

𝐹1 𝐹0

𝑝1,0

∼𝑒1 ∼ 𝑞1

∼
𝑞0

𝑓1,0

Note that 𝑃1 ≅ 𝐹1 ⨰𝐹0
𝐹0 computes the iso-comma objects of the cospan given by id𝐹0 and 𝑓1,0.

Now define 𝑃2, 𝑝2,1, and 𝑒2 using the composite pullback

𝑃2 • 𝑃1 𝐹𝕀
0 𝐹0

• 𝐹𝕀
1 𝐹1 𝐹0

𝐹2 𝐹1

𝑝2,1

∼

𝑒2

∼ ∼

∼

∼𝑒1 ∼ 𝑞1

∼
𝑞0

∼

∼ 𝑞1

∼
𝑞0 𝑓1,0

𝑓2,1
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Continuing inductively, 𝑃𝑛, 𝑝𝑛,𝑛−1, and 𝑒𝑛 are defined by appending the diagram

𝐹𝕀
𝑛−1 𝐹𝑛−1

𝐹𝑛 𝐹𝑛−1

∼
𝑞0

∼ 𝑞1

𝑓𝑛,𝑛−1

to the limit cone defining 𝑃𝑛−1 and taking the limit of this composite diagram. In the limit, the
composite diagram is an unraveling of (6.2.17). Hence lim𝑊← 𝐹 ≅ lim𝑃.

It remains to use the maps 𝑒𝑛 ∶ 𝑃𝑛 ∼ 𝐹𝑛 to compare lim𝑃 with lim 𝐹. There is one small problem
with the construction just given: it defines a diagram (6.2.20) in which each square commutes up to
isomorphism – the isomorphism encoded by the map 𝑃𝑛 → 𝐹𝕀

𝑛−1 – not on the nose. But because
the maps 𝑓𝑛+1,𝑛 are isofibrations this is not a problem. The isomorphism inhabiting the square
𝑒0𝑝1,0 ≅ 𝑓1,0𝑒1 can be lifted along 𝑓1,0 to define a new map 𝑒′1 ∶ 𝑃1 ∼ 𝐹1 isomorphic to 𝑒1. By Exercise
1.4.iii this 𝑒′1 is then also an equivalence (though no longer necessarily a trivial fibration), so we replace
𝑒1 with 𝑒′1, and then continue inductively to lift away the isomorphisms in the square 𝑒′1𝑝2,1 ≅ 𝑓2,1𝑒2.

Since inverse limits of towers of isofibrations are equivalence invariant by Proposition C.1.15, it
follows that lim𝑃 ≃ lim 𝐹. By construction lim𝑃 ≅ lim𝑊← 𝐹, so it follows that lim𝑊← 𝐹 ≃ lim 𝐹,
which is what we wanted to show. �

Exercises.

6.2.i. Exercise ([112, 2.2.2]). Show that∞-cosmoi admit wide pullbacks: limits of finite or countable
diagrams of the following form

⋯ 𝐴𝑛 𝐴𝑛−1 ⋯ 𝐴1 𝐴0

⋯ 𝐵𝑛−1 𝐵𝑛−2 ⋯ 𝐵1 𝐵0
𝑝𝑛−1 𝑓𝑛−1 𝑝𝑛−2 𝑓𝑛−2 𝑝1 𝑓1 𝑝0 𝑓0

and that their construction is invariant under pointwise equivalence between diagrams.

6.3. Cosmologically Embedded∞-Cosmoi

In this section, we generalize Lemma 6.1.4 – which was used to show that the subcategory of discrete
∞-categories inherits an∞-cosmos structure – to subcategories of∞-cosmoi that are not full. As we
shall discover, there are many interesting examples.

For any∞-cosmos𝒦 and any subcategory of its underlying 1-category – that is for any subset of
its objects and subcategory of its 0-arrows – one can form a quasi-categorically enriched subcategory
ℒ ⊂ 𝒦 that contains exactly those objects and 0-arrows and all higher dimensional arrows that they
span. We call such subcategories full on positive-dimensional arrows; note the functor spaces ofℒ are
quasi-categories because all inner horn inclusions are bijective on vertices. We take particular interest
in subcategories that satisfy a further “repleteness” condition.

6.3.1. Definition. Let 𝒦 be an ∞-cosmos. A subcategory ℒ ⊂ 𝒦 is replete in 𝒦 if it is full on
positive-dimensional arrows and moreover:

(i) Every∞-category in𝒦 that is equivalent to an object inℒ lies inℒ.
(ii) Any equivalence in𝒦 between objects inℒ lies inℒ.
(iii) Any 0-arrow in𝒦 that is isomorphic in𝒦 to an 0-arrow inℒ lies inℒ.
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The inclusion of a replete subcategory of an ∞-cosmos is both a monomorphism and also an
isofibration of (∞, 2)-categories, in a sense explored in Exercise 6.3.i.

6.3.2. Lemma. Suppose ℒ ⊂ 𝒦 is a replete subcategory of an ∞-cosmos. Then any map 𝑝∶ 𝐸 → 𝐵 in
ℒ that defines an isofibration in 𝒦 is a representably defined isofibration in ℒ: that is for all 𝑋 ∈ ℒ,
𝑝∗ ∶ Funℒ(𝑋, 𝐸) ↠ Funℒ(𝑋, 𝐵) is an isofibration of quasi-categories.

Proof. Since𝒦 is an∞-cosmos, the isofibration axiom 1.2.1(ii) requires that 𝑝∗ ∶ Fun𝒦(𝑋, 𝐸) ↠
Fun𝒦(𝑋, 𝐵) is an isofibration of quasi-categories. Because the inner horn inclusions are bijective on
vertices and Funℒ(𝑋, 𝐸) ↪ Fun𝒦(𝑋, 𝐸) is full on positive-dimensional arrows, it follows immediately
that the restricted map 𝑝∗ ∶ Funℒ(𝑋, 𝐸) ↠ Funℒ(𝑋, 𝐵) lifts against the inner horn inclusions. Thus it
remains only to solve lifting problems of the form displayed below-left

𝟙 Funℒ(𝑋, 𝐸) Fun𝒦(𝑋, 𝐸)

𝕀 Funℒ(𝑋, 𝐵) Fun𝒦(𝑋, 𝐵)

𝑒

𝑝∗ 𝑝∗

𝛽

The lifting problem defines a 0-arrow 𝑒 ∶ 𝑋 → 𝐸 inℒ and a homotopy coherent isomorphism 𝛽∶ 𝑏 ≅ 𝑝𝑒
inℒ. Its solution in𝒦 defines a 0-arrow 𝑒′ ∶ 𝑋 → 𝐸 in𝒦 so that 𝑝𝑒′ = 𝑏 together with a homotopy
coherent isomorphism 𝑒 ≅ 𝑒′ in𝒦. By fullness on positive-dimensional arrows, to show that this lift
factors through the inclusion Funℒ(𝑋, 𝐸) ↪ Fun𝒦(𝑋, 𝐸), we need only argue that the map 𝑒′ lies in
ℒ, but this is the case by condition (iii) of Definition 6.3.1. �

The following result describes a condition under which a replete subcategoryℒ ⊂ 𝒦 inherits an
∞-cosmos structure created from𝒦.

6.3.3. Proposition. Supposeℒ ⊂ 𝒦 is a replete subcategory of an∞-cosmos. Ifℒ is closed under flexible
weighted limits in 𝒦, then ℒ defines an ∞-cosmos with isofibrations, equivalences, trivial fibrations and
simplicial limits created by the inclusionℒ ↪ 𝒦, which then defines a cosmological functor.

When these conditions hold, we refer to ℒ as a cosmologically embedded ∞-cosmos of 𝒦 and
ℒ 𝒦 as a cosmological embedding. The notation reflects both the embedding and isofibration-like
properties of replete subcategory inclusions.

Proof. To say that a replete subcategoryℒ ↪ 𝒦 is closed under flexible weighted limits means
that for any diagram inℒ and any limit cone in𝒦 over that diagram, then the limit cone lies inℒ and
satisfies the appropriate simplicially enriched universal property of Definition A.6.5 in the subcategory
ℒ. We must verify that each of the limits of axiom 1.2.1(i) exist inℒ. Immediately,ℒ has a terminal
object, products, and simplicial cotensors, since all of these are flexible weighted limits, with each
of these limits inherited from 𝒦. By Lemmas 6.2.12 and 6.2.18, ℒ also admits the construction of
iso-comma objects and of iso-towers, again formed in𝒦.

Define the class of isofibrations in ℒ to be those maps in ℒ that define isofibrations in 𝒦. By
Lemmas 6.2.14 and 6.2.19, pullbacks and limits of towers of isofibrations are equivalent in𝒦 to the
iso-commas and iso-towers formed over the same diagrams. Since these latter limit cones lie inℒ by
hypothesis, so do the equivalent former cones by repleteness ofℒ in𝒦.

There is a little more still to verify: namely that pullbacks and limits of towers of isofibrations
satisfy the simplicially enriched universal property as conical limits in ℒ. In the case of a pullback
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diagram

𝑃 𝐵

𝐶 𝐴
𝑘

ℎ

𝑓

𝑔

inℒ we must show that for each 𝑋 ∈ ℒ, the functor space Funℒ(𝑋, 𝑃) is isomorphic to the pullback
Funℒ(𝑋, 𝐶)×Funℒ(𝑋,𝐴) Funℒ(𝑋, 𝐵) of functor spaces. We have such an isomorphism for functor spaces
in𝒦 and on account of the commutative diagram

Funℒ(𝑋, 𝑃) Funℒ(𝑋, 𝐶) ×
Funℒ(𝑋,𝐴)

Funℒ(𝑋, 𝐵)

Fun𝒦(𝑋, 𝑃) Fun𝒦(𝑋, 𝐶) ×
Fun𝒦(𝑋,𝐴)

Fun𝒦(𝑋, 𝐵)≃

and fullness on positive-dimensional arrows, we need only verify surjectivity of the dotted map on
0-arrows. So consider a cone (𝑏 ∶ 𝑋 → 𝐵, 𝑐 ∶ 𝑋 → 𝐶) over the pullback diagram inℒ. By the universal
property of the iso-comma 𝐶 ⨰

𝐴
𝐵, there exists a factorization 𝑦∶ 𝑋 → 𝐶 ⨰

𝐴
𝐵 inℒ. Composing with

the equivalence 𝐶 ⨰
𝐴
𝐵 ≃ 𝑃, this map is equivalent to the factorization 𝑧 ∶ 𝑋 → 𝑃 of the cone (𝑏, 𝑐)

through the limit cone (ℎ, 𝑘) in𝒦 that exists on account of the strict universal property of the pullback
in there. By repleteness, the isomorphism between 𝑧 and the composite of 𝑦 with the equivalence
suffices to show that 𝑧 lies inℒ. Hence, the functor spaces inℒ are isomorphic. A similar argument
invoking Lemma 6.2.19 proves that inverse limits of towers of isofibrations define conical limits inℒ.
This completes the proof of the limit axiom 1.2.1(i).

Since the isofibrations in ℒ are a subset of the isofibrations in 𝒦 and the limit constructions
in both contexts coincide, most of the closure properties of 1.2.1(ii) are inherited from the closure
properties in𝒦. The one exception is the requirement that the isofibrations inℒ define isofibrations
of quasi-categories representably, which was proven for any replete subcategory in Lemma 6.3.2. This
proves thatℒ defines an∞-cosmos.

Finally, we argue that the equivalences in ℒ are created from the equivalences of 𝒦, which will
imply that the trivial fibrations in ℒ coincide with those of 𝒦 as well. Condition (ii) of Definition
6.3.1 implies that for any arrow in ℒ that defines an equivalence in 𝒦, its equivalence inverse and
witnessing homotopy coherent isomorphisms of Lemma 1.2.15 lie inℒ. Because we have already shown
that ℒ admits cotensors with 𝕀 preserved by the inclusion ℒ ↪ 𝒦, Lemma 1.2.15 implies that this
data defines an equivalence inℒ. Conversely, any equivalence inℒ extends to the data of (1.2.16) and
sinceℒ ↪ 𝒦 preserves 𝕀-cotensors, this data defines an equivalence in𝒦. Thus, by construction, the
∞-cosmos structure ofℒ is preserved and reflected by the inclusionℒ ↪ 𝒦 as claimed. �

In practice, the repleteness condition of Definition 6.3.1 is satisfied by any subcategory of objects
and 0-arrows that is characterized by some∞-categorical property, so the main task in verifying that a
subcategory defines an∞-cosmos is verifying the closure under flexible weighted limits. In our first
example, which acts as a sort of base case, we must do this by hand. In subsequent examples, we deploy
various techniques to bootstrap the flexible weighted limit closure from previously-established facts.

6.3.4. Proposition. For any∞-cosmos𝒦, let𝒦⊤ denote the quasi-categorically enriched category whose

(i) objects are∞-categories in𝒦 that possess a terminal element and
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(ii) functor spaces Fun⊤(𝐴, 𝐵) ⊂ Fun(𝐴, 𝐵) are the sub-quasi-categories whose 0-arrows preserve terminal
elements and containing all 𝑛-arrows these functors span.

Then the inclusion𝒦⊤ 𝒦 creates an∞-cosmos structure on𝒦⊤ from𝒦, and moreover for each object of
𝒦⊤ defined as a flexible weighted limit of some diagram in𝒦⊤, its terminal element is created by the 0-arrow
legs of the limit cone.

Proof. We apply Proposition 6.3.3. Lemma 2.2.7 and Proposition 2.1.10 verify the repleteness
conditions of Definition 6.3.1, so it remains only to prove closure under flexible weighted limits. We
do so by induction over the tower of isofibrations constructed in Proposition 6.2.8(i), which expresses
a flexible weighted limit lim𝑊 𝐹 as the inverse limit of a tower of isofibrations

lim𝑊 𝐹 ⋯ lim𝑊𝑘+1 𝐹 lim𝑊𝑘 𝐹 ⋯ lim𝑊0 𝐹 1

each of which is a pullback of products of maps of the form (6.2.9) indexed by the projective cells of
the flexible weight𝑊. We argue inductively that each∞-category in this tower possesses a terminal
element that is preserved and jointly created by the legs of the limit cone.

For the base case, if (𝐴𝑖)𝑖∈𝐼 is a family of∞-categories possessing terminal elements 𝑡𝑖 ∶ 1 → 𝐴𝑖,
then the product of the adjunctions ! ⊣ 𝑡𝑖 defines an adjunction

1 ≅ ∏
𝑖∈𝐼 1 ∏

𝑖∈𝐼𝐴𝑖⊥
(𝑡𝑖)𝑖∈𝐼≅∏𝑖 𝑡𝑖

!

exhibiting (𝑡𝑖)𝑖∈𝐼 as a terminal element of ∏𝑖∈𝐼𝐴𝑖. By construction, this terminal element is jointly
created by the legs of the product cone. In particular, the product projection functors preserve this
terminal element and the map into the product∞-category∏𝑖∈𝐼𝐴𝑖 induced by any family of terminal
element preserving functors (𝑓 ∶ 𝑋 → 𝐴𝑖)𝑖∈𝐼 preserves terminal elements. This verifies that the
subcategory𝒦⊤ is closed under products.

Similarly, if 𝐴 is an∞-category with a terminal element 𝑡 ∶ 1 → 𝐴, then by Proposition 2.1.7(iii),
the constant diagram at 𝑡, which we also denote by 𝑡, defines a terminal element in the cotensor 𝐴𝑈 by
any simplicial set 𝑈:

1 ≅ 1𝑈 ∏
𝑖∈𝐼𝐴

𝑈⊥
𝑡≔𝑡𝑈

!

It remains to argue that terminal elements in 𝐴𝑈 are jointly created by the 0-arrow components of the
limit cone, namely by evaluation on each of the vertices of the cotensoring simplicial set. To that end,
suppose 𝑠 ∶ 1 → 𝐴𝑈 has the property that

𝑠𝑢 ≔ 1 𝐴𝑈 𝐴𝑠 ev𝑢

is terminal in 𝐴 for each vertex 𝑢 of𝑈. By terminality of 𝑡 ∶ 1 → 𝐴𝑈 there is a natural transformation
𝛼∶ 𝑠 ⇒ 𝑡, and since both 𝑠𝑢 and 𝑡 define terminal elements of𝐴, the component of 𝛼 at each 𝑢 defines
an isomorphism 𝛼𝑢 ∶ 𝑠𝑢 ≅ 𝑡 in 𝐴. By Corollary 1.1.22, it follows that 𝛼 is an isomorphism, which tells
us that 𝑠 is also a terminal element of 𝐴𝑈.
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For the inductive step consider a pullback diagram

lim𝑊𝑘+1 𝐹 𝐴Δ[𝑛]

lim𝑊𝑘 𝐹 𝐴𝜕Δ[𝑛]
ℓ

that arises from the attaching map for a projective 𝑛-cell. The inductive hypothesis tells us that
lim𝑊𝑘 𝐹 admits a terminal element 𝑡𝑘 and for each vertex of 𝑖 ∈ 𝜕Δ[𝑛], the corresponding component
ℓ𝑖 ∶ lim𝑊𝑘 𝐹 → 𝐴 of the limit cone preserves it. Since 𝐹 is a diagram valued in 𝒦⊤ and 𝐴 is an ∞-
category in its image, we know that 𝐴 must possess a terminal element 𝑡 ∶ 1 → 𝐴. Thus the constant

diagram 𝑡 ∶ 1 → 𝐴𝜕Δ[𝑛] defines a terminal element. By terminality, there is a natural transformation
𝛼∶ ℓ(𝑡𝑘) ⇒ 𝑡 whose components at each 𝑖 ∈ 𝜕Δ[𝑛] are isomorphisms in 𝐴. By Corollary 1.1.22, it

follows that 𝛼 is also an isomorphism, which tells us that ℓ(𝑡𝑘) is also a terminal element of 𝐴𝜕Δ[𝑛].
Thus, we see that ℓ preserves terminal elements. The proof is now completed by the following pair of
lemmas. �

6.3.5. Lemma. Consider a pullback diagram

𝑃 𝐵

𝐶 𝐴
𝑘

ℎ

𝑓

𝑔

in which the∞-categories𝐴, 𝐵, and 𝐶 possess a terminal element and the functors 𝑓 and 𝑔 preserve them. Then
𝑃 possesses a terminal element that is created by the legs of the pullback cone ℎ and 𝑘.

Proof. If 𝑏 ∶ 1 → 𝐵 and 𝑐 ∶ 1 → 𝐶 are terminal, then uniqueness of terminal elements implies
that 𝑓 (𝑏) ≅ 𝑔(𝑐) ∈ 𝐴. Using the fact that 𝑓 is an isofibration, there is a lift 𝑏′ ≅ 𝑏 of this isomorphism
along 𝑓 that then defines another terminal element of 𝐵. The pair (𝑐, 𝑏′) now induces an element 𝑡 of
𝑃 that we claim is terminal.

To see this, we apply Proposition 4.3.13, which proves that 𝑡 is a terminal element of 𝑃 if and only
if the domain projection functor 𝑝0 ∶ Hom𝑃(𝑃, 𝑡) ↠ 𝑃 is a trivial fibration. By construction of 𝑡, we
know that the domain projection functors for the elements ℎ𝑡 = 𝑏′, 𝑘𝑡 = 𝑐, and 𝑓 ℎ𝑡 = 𝑔𝑘𝑡 are all
trivial fibrations and moreover, by the hypercube pullback lemma, the top and bottom faces of the
cube

Hom𝑃(𝑃, 𝑡) Hom𝐵(𝐵, ℎ𝑡)

Hom𝐶(𝐶, 𝑘𝑡) Hom𝐴(𝐴, 𝑔𝑘𝑡)

𝑃 𝐵

𝐶 𝐴

𝑝0

∼ 𝑝0

∼𝑝0
𝑘

ℎ

𝑓
𝑔

∼ 𝑝0

are pullbacks. By Proposition 3.3.4, the fact that the three maps between the cospans are equivalences
implies that the map between their pullbacks is also an equivalence, as required. �
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6.3.6. Lemma. Consider a tower of isofibrations

𝐴 ≔ lim � ⋯ 𝐴𝑛 𝐴𝑛−1 ⋯ 𝐴1 𝐴0
𝑞𝑛 𝑞1 �

in which each∞-category has a terminal element each fibration preserves terminal elements. Then the limit of
the tower has a terminal element created by the legs of the limit cone.

Proof. The hypothesis provides terminal elements 𝑠𝑛 ∶ 1 → 𝐴𝑛 so that 𝑞𝑛𝑠𝑛 ≅ 𝑠𝑛−1. By lifting
away these isomorphisms inductively starting from the bottom, we can choose a different family of
terminal elements 𝑡𝑛 ∶ 1 → 𝐴𝑛 so that 𝑞𝑛𝑡𝑛 = 𝑡𝑛−1. This cone then induces an element 𝑡 ∶ 1 → 𝐴
in the limit 𝐴 that we claim is terminal. This follows from Proposition 4.3.13 and the observation
that 𝑝0 ∶ Hom𝐴(𝐴, 𝑡) ↠ 𝐴 is the limit in the∞-cosmos of isofibrations of a tower whose objects are
the trivial fibrations 𝑝0 ∶ Hom𝐴𝑛(𝐴𝑛, 𝑡𝑛) ∼ 𝐴𝑛. By Proposition 6.1.5, 𝑝0 ∶ Hom𝐴(𝐴, 𝑡) ∼ 𝐴 is then a
trivial fibration as well. �

Applying the result of Proposition 6.3.4 to 𝒦co constructs an ∞-cosmos 𝒦⊥ whose objects are
∞-categories in 𝒦 that possess an initial object and whose 0-arrows are initial-element-preserving
functors. It is straightforward to verify that the inclusion 𝒦⊥ 𝒦 is a cosmological embedding.¹
Combining these results, we get an∞-cosmos for the pointed∞-categories of Definition 4.4.1, those
that possess a zero element.

6.3.7. Proposition. For any∞-cosmos𝒦, let𝒦∗ denote the quasi-categorically enriched category of pointed
∞-categories –∞-categories that possess a zero element – and functors that preserve them. Then the inclusion
𝒦∗ 𝒦 is a cosmological embedding, creating an∞-cosmos structure on𝒦∗ from𝒦, and moreover for each
object of𝒦∗ defined as a flexible weighted limit of some diagram in𝒦∗, its zero element is created by the 0-arrow
legs of the limit cone.

Proof. This result follows directly from Proposition 6.3.4 and its dual, since the∞-cosmos𝒦∗ of
∞-categories in𝒦 possessing a zero object is isomorphic to (𝒦⊤)⊥ ≅ (𝒦⊥)⊤, the insight being that
an initial element 𝑎 ∶ 1 → 𝐴 in𝒦⊤ is encoded by a terminal-element preserving functor, which says
exactly that 𝑎 is a zero element in 𝐴. �

Applying the result of Proposition 6.3.4 or its dual to the ∞-cosmos 𝒦/𝐵 of isofibrations over
𝐵 ∈ 𝒦, we obtain two new∞-cosmoi of interest.

6.3.8. Corollary. For any∞-category 𝐵 in an∞-cosmos𝒦, the sliced∞-cosmos𝒦/𝐵 admits cosmologically
embedded∞-cosmoi

ℛ𝑎𝑟𝑖(𝒦)/𝐵 𝒦/𝐵 ℒ𝑎𝑟𝑖(𝒦)/𝐵
whose

• objects are isofibrations over𝐵 admitting a right adjoint right inverse or left adjoint right inverse, respectively,
and

• 0-arrows are functors over𝐵 that commute with the respective right or left adjoints up to fibered isomorphism
over 𝐵.

Proof. By Lemma 3.6.9, these∞-cosmoi are defined by

ℛ𝑎𝑟𝑖(𝒦)/𝐵 ≔ (𝒦/𝐵)⊤ and ℒ𝑎𝑟𝑖(𝒦)/𝐵 ≔ (𝒦/𝐵)⊥. �

¹Other duals of the∞-cosmoi constructed here are established similarly (see Exercise 6.3.iii).
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Leveraging Corollary 6.3.8, we can establish similar cosmological embeddings

ℛ𝑎𝑟𝑖(𝒦) 𝒦 ℒ𝑎𝑟𝑖(𝒦)

defining∞-cosmoi of right adjoint right inverse or left adjoint right inverse adjunctions with varying
bases. To apply Proposition 6.3.3, we must check closure under flexible weighted limits. We argue
separately for cotensors, which are easy, and for the conical limits, which are harder – as the reader
who attempted to solve Exercise 5.2.iii using Theorem 5.2.8(ii) may have already discovered. To treat
all of the conical limits at once, we make use of a general 1-categorical result that constructs limits in
the total space ℰ of a Grothendieck fibration 𝑃∶ ℰ → ℬ out of limits in the base ℬ and limits in the
fibers ℰ𝐵.

6.3.9. Lemma. Let 𝑃∶ ℰ → ℬ be a Grothendieck fibration between 1-categories. Suppose that𝒥 is a small
category, that 𝐷∶ 𝒥 → ℰ is a diagram, and that

(i) the diagram 𝑃𝐷∶ 𝒥 → ℬ has a limit 𝐿 in ℬ with limit cone 𝜆∶ Δ𝐿 ⇒ 𝑃𝐷,
(ii) the diagram 𝜆∗𝐷∶ 𝒥 → ℰ𝐿 constructed by lifting the cone 𝜆 to a cartesian natural transformation

𝜒∶ 𝜆∗𝐷 ⇒ 𝐷

𝒥 ℰ 𝒥 ℰ

ℬ ℬ

𝐷

Δ𝐿

⇑𝜆 𝑃 =

𝐷

𝜆∗𝐷
⇑𝜒

𝑃

has a limit𝑀 in the fibre ℰ𝐿 with limit cone 𝜇∶ Δ𝑀 ⇒ 𝜆∗𝐷, and
(iii) the limit cone 𝜇∶ Δ𝑀 ⇒ 𝜆∗𝐷 is preserved by the reindexing functor 𝑢∗ ∶ ℰ𝐿 → ℰ𝐵 associated with

any arrow 𝑢∶ 𝐵 → 𝐿 in ℬ.

Then the composite cone Δ𝑀 𝜆∗𝐷 𝐷
𝜇 𝜒

displays𝑀 as a limit of the diagram 𝐷 in ℰ.

Proof. Any arrow 𝑓 ∶ 𝐸 → 𝐸′ in the domain of a Grothendieck fibration 𝑃∶ ℰ → ℬ factors
uniquely up to isomorphism through a “vertical” arrow in the fiber ℰ𝑃𝐸 followed by a “horizontal”
cartesian lift of 𝑃𝑓 with codomain 𝐸′.

Given a cone 𝛼∶ Δ𝐸 ⇒ 𝐷 with summit 𝐸 ∈ ℰ over 𝐷, by (i) its image 𝑃𝛼∶ Δ𝑃𝐸 ⇒ 𝑃𝐷 factors
uniquely through the limit cone 𝜆∶ Δ𝐿 ⇒ 𝐷 via a map 𝑏 ∶ 𝑃𝐸 → 𝐿 ∈ ℬ. By the universal property of
the cartesian lift 𝜒 of 𝜆 constructed in (ii), it follows that 𝛼 factors uniquely through 𝜒 via a natural
transformation 𝛽∶ Δ𝐸 ⇒ 𝜆∗𝐷 so that 𝑃𝛽 = Δ𝑏. This cone factors uniquely up to isomorphism via
“vertical” natural transformation 𝛾∶ Δ𝐸 ⇒ 𝑏∗𝜆∗𝐷 followed by a “horizontal” cartesian lift of 𝑏. By
(iii), the limit cone 𝜇∶ Δ𝑀 ⇒ 𝜆∗𝐷 in ℰ𝐿 pulls back along 𝑏 to a limit cone in ℰ𝑃𝐸 through which
the pullback of 𝛽 factors via a map 𝑘 ∶ 𝐸 → 𝑏∗𝑀. Thus, 𝛽 itself factors uniquely through 𝜇 via the
composite of this map 𝑘 ∶ 𝐸 → 𝑏∗𝑀 with the cartesian arrow 𝑏∗𝑀 → 𝑀 lifting 𝑏 ∶ 𝑃𝐸 → 𝐿. �

For example, the codomain projection functor cod ∶ 𝒦 → 𝒦 is a Grothendieck fibration of
underlying 1-categories, with cod-cartesian lifts defined by pullback squares. Since right adjoint
right inverses to isofibrations can be constructed as fibered adjunctions by Lemma 3.6.9, and fibered
adjunctions are stable under pullback by Lemma 3.6.6, this Grothendieck fibration restricts to define a
Grothendieck fibration cod ∶ ℛ 𝑎𝑟𝑖(𝒦) → 𝒦, which allows us to appeal to Lemma 6.3.9 in the proof
of the following result.
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6.3.10. Proposition. For any∞-cosmos𝒦, the∞-cosmos of isofibrations admits cosmologically embedded
∞-cosmoi

ℛ𝑎𝑟𝑖(𝒦) 𝒦 ℒ𝑎𝑟𝑖(𝒦)
whose

• objects are isofibrations admitting a right adjoint right inverse or left adjoint right inverse, respectively, and
• 0-arrows are commutative squares between the right or left adjoints, respectively, whose mates are isomor-
phisms.

We refer to a commutative square between right adjoints whose mate is an isomorphism as an
exact square.

Proof. By Proposition B.3.8 and Exercise B.4.i, the quasi-categorically enriched subcategory
ℛ𝑎𝑟𝑖(𝒦) is replete in𝒦 , so by Proposition 6.3.3 we need only check thatℛ𝑎𝑟𝑖(𝒦) ↪ 𝒦 is closed
under flexible weighted limits. We argue separately for cotensors and for the conical limits.

If 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration admitting a right adjoint right inverse in𝒦 and 𝑈 is a simplicial
set, then the cosmological functor (−)𝑈 ∶ 𝒦 → 𝒦 carries this data to a right adjoint right inverse
to 𝑝𝑈 ∶ 𝐸𝑈 ↠ 𝐵𝑈, which proves that the simplicial cotensor in 𝒦 of an object in ℛ𝑎𝑟𝑖(𝒦) lies in
ℛ𝑎𝑟𝑖(𝒦). To conclude thatℛ𝑎𝑟𝑖(𝒦) is closed in𝒦 under simplicial cotensors, we must also verify
that 𝑝𝑈 has the enriched universal property of the simplicial cotensor inℛ𝑎𝑟𝑖(𝒦): that is, we must
show that the natural isomorphism Fun(𝑞, 𝑝𝑈) ≅ Fun(𝑞, 𝑝)𝑈 of functor spaces in𝒦 restricts to define
a natural isomorphism of functor spaces inℛ𝑎𝑟𝑖(𝒦). Since the inclusionℛ𝑎𝑟𝑖(𝒦) ↪ 𝒦 is full on
0-arrows, this amounts to verifying that certain 0-arrows in𝒦 are exact squares.

The weighted limit cone for the cotensor 𝑝𝑈 in𝒦 is given by the canonical map of simplicial sets
𝑈 → Fun(𝑝𝑈, 𝑝) defined on each vertex 𝑢∶ 𝟙 → 𝑈 by the commutative square

𝐸𝑈 𝐸

𝐵𝑈 𝐵

𝑝𝑈

𝑢∗

𝑝

𝑢∗

(6.3.11)

The maps 𝑢∗ define the components of a simplicial natural transformation from (−)𝑈 to the identity
functor and thus the mate of this commutative square is an identity, so the limit cone for the𝑈-cotensor
lies inℛ𝑎𝑟𝑖(𝒦). Finally, to verify the universal property of the cotensor inℛ𝑎𝑟𝑖(𝒦), we must show
that any commutative square whose domain 𝑞 is an isofibration admitting a right adjoint right inverse

𝐹 𝐸𝑈

𝐴 𝐵𝑈

𝑞 𝑝𝑈

and which composes with each of the squares (6.3.11) to an exact square is itself exact. To see this,
observe that the mate of the identity defines a natural transformation that is represented by a 1-arrow in
Fun(𝐴, 𝐸𝑈) ≅ Fun(𝐴, 𝐸)𝑈 and the hypothesis says that the components of this 1-arrow are invertible
for each vertex of 𝑈. Corollary 1.1.22 then tells us that this 1-arrow is invertible as required.

A similar and slightly easier argument proves that ℛ𝑎𝑟𝑖(𝒦) is closed in 𝒦 under products. It
remains only to show that this subcategory is closed under the remaining conical limits. As argued
above cod ∶ ℛ 𝑎𝑟𝑖(𝒦) → 𝒦 is a Grothendieck fibration on underlying 1-categories whose fibers are the
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∞-cosmoiℛ𝑎𝑟𝑖(𝒦)/𝐵. By Lemma 6.3.9, 1-categorical limit cones inℛ𝑎𝑟𝑖(𝒦) ⊂ 𝒦 can be calculated
as composites of cartesian lifts of limit cones in the base with limit cones of fiberwise diagrams: in
this case, the recipe is to pull back along the limit cone formed by the codomains and then form the
limit in the sliced ∞-cosmos over the limit object for the base diagram. By Corollary 6.3.8, these
fiberwise limits in the sliced∞-cosmos𝒦/𝐵 of diagrams inℛ𝑎𝑟𝑖(𝒦)/𝐵 lie inℛ𝑎𝑟𝑖(𝒦)/𝐵 ↪ ℛ𝑎𝑟𝑖(𝒦).
Moreover, these 1-categorical limits are preserved by the simplicial cotensor, which by Proposition
A.5.5 implies that their universal property enriches to define conical limits. In this way we see that
ℛ𝑎𝑟𝑖(𝒦) 𝒦 is closed under flexible weighted limits and thus defines a cosmological embedding, as
claimed. �

Now that we have established many examples of∞-cosmoi and cosmologically embedded replete
subcategories, we can make use of the following result:

6.3.12. Proposition. Suppose 𝐹∶ 𝒦′ → 𝒦 is a cosmological functor andℒ ⊂ 𝒦 is a replete subcategory that
defines a cosmologically embedded∞-cosmos. Then the simplicially enriched category defined by the pullback

ℒ′ ℒ

𝒦′ 𝒦𝐹

is replete and defines a cosmologically embedded sub∞-cosmos of𝒦′, and the restricted functor 𝐹∶ ℒ′ → ℒ is
cosmological.

Proof. The objects and 𝑛-arrows of the pullbackℒ′ are defined to be the objects and 𝑛-arrows
of 𝒦′ whose image under 𝐹 lies in the simplicial subcategory ℒ. In particular, since the inclusion
ℒ 𝒦 is full on positive-dimensional arrows, the inclusionℒ′ ↪ 𝒦′ is as well, and in particularℒ′

is quasi-categorically enriched. Since the cosmological functor 𝐹 preserves equivalences andℒ 𝒦 is
replete, the quasi-categorically enriched subcategoryℒ′ is replete in𝒦′, satisfying the three conditions
of Definition 6.3.1.

To prove that the replete subcategory ℒ′ ↪ 𝒦′ admits an ∞-cosmos structure created by the
inclusion, it remains to argue thatℒ′ is closed under flexible weighted limits in𝒦′. Consider a diagram
𝐷∶ 𝒜 → ℒ′ and a flexible weight and form its flexible weighted limit inℒ and in𝒦′. The functors
to𝒦 carry these to a pair of equivalent cones over the same diagram and since the inclusionℒ 𝒦
is replete, there exists a limit cone over 𝐷 in ℒ whose image in 𝒦 is equal to the image of the limit
cone in𝒦′ under the functor 𝐹. Now the universal property of the pullback allows us to lift this cone
toℒ, and a similar argument demonstrates that the lifted cone is a flexible weighted limit cone over
the original diagram. Note by construction that the flexible weighted limit inℒ′ is preserved by the
functors to both𝒦′ and toℒ.

Proposition 6.3.3 applies to conclude thatℒ′ 𝒦′ is a cosmological embedding. Since the isofibra-
tions inℒ′ are created in𝒦′ and preserved by 𝐹, andℒ 𝒦 is a cosmological embedding, it follows
that the restricted functor 𝐹∶ ℒ′ → ℒ preserves isofibrations. Since 𝐹∶ ℒ′ → ℒ preserves flexible
weighted limits, we see that this functor is cosmological. �

This result allows us to construct further∞-cosmoi of interest.

6.3.13. Proposition. For any∞-cosmos𝒦 and simplicial set 𝐽, there cosmologically embedded∞-cosmoi

𝒦⊤,𝐽 𝒦 𝒦⊥,𝐽
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whose

• objects are∞-categories in𝒦 that admit all limits of shape 𝐽 or all colimits of shape 𝐽, respectively,
• 0-arrows are the functors that preserve them

Moreover for each object of𝒦⊤,𝐽 or𝒦⊥,𝐽 defined as a flexible weighted limit of some diagram in that∞-cosmos,
its 𝐽-shaped limits or colimits are created by the 0-arrow legs of the limit or colimit cones, respectively.

Proof. We prove this in the case of∞-categories admitting 𝐽-shaped colimits, the other case being
dual. For any fixed simplicial set 𝐽, there is a cosmological functor 𝐹𝐽 ∶ 𝒦 → 𝒦 defined on objects

by mapping an ∞-category 𝐴 to the isofibration 𝐴𝐽 ↠ 𝐴𝐽 in the notation of 4.2.6 and a functor
𝑓 ∶ 𝐴 → 𝐵 to the commutative square

𝐴𝐽 𝐵𝐽

𝐴𝐽 𝐵𝐽

𝑓 𝐽

𝑓 𝐽

By Corollary 4.3.5, 𝐴 admits colimits of shape 𝐽 if and only if this isofibration admits a left adjoint
right inverse, and 𝑓 ∶ 𝐴 → 𝐵 preserves these colimits if and only if the square displayed above is exact.
In summary, the quasi-categorically enriched subcategory𝒦⊥,𝐽 is defined by the pullback

𝒦⊥,𝐽 ℒ𝑎𝑟𝑖(𝒦)

𝒦 𝒦
𝐹𝐽

By Proposition 6.3.10,ℒ𝑎𝑟𝑖(𝒦) 𝒦 is a cosmological embedding, so Proposition 6.3.12 proves that
the inclusion𝒦⊥,𝐽 𝒦 creates an∞-cosmos structure, as claimed.

In particular, the closure of the subcategory𝒦⊥,𝐽 under flexible weighted limits in𝒦 implies that
𝐽-shaped colimits in an∞-category defined as a flexible weighted limit are created by the 0-arrow legs
of the limit cone, as we explain. Certainly the colimits in an∞-category in𝒦⊥,𝐽, formed as a weighted
limit of a diagram of ∞-categories in 𝒦⊥,𝐽, are preserved by the 0-arrow legs of the weighted limit
cone, since the 0-arrows in 𝒦⊥,𝐽 are 𝐽-shaped-colimit-preserving functors. And since the 𝐽-colimit
completeness of an ∞-category that is defined as the flexible weighted limit in 𝒦 can be deduced
whenever that diagram lies in the sub∞-cosmos𝒦⊥,𝐽, these 𝐽-colimits are also created. �

6.3.14. Proposition. For any∞-cosmos𝒦, the∞-cosmos of isofibrations admits cosmologically embedded
∞-cosmoi

𝒞𝑎𝑟𝑡(𝒦) 𝒦 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)
whose objects are cartesian or cocartesian fibrations, respectively, and whose 0-arrows are cartesian functors.
Similarly, for any∞-category 𝐵 in an∞-cosmos𝒦, the sliced∞-cosmos𝒦/𝐵 admits cosmologically embedded
∞-cosmoi

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒦/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵
whose objects are cartesian or cocartesian fibrations over 𝐵, respectively, and whose 0-arrows are cartesian
functors, with the∞-cosmos structures created by the inclusions.
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Proof. By Theorems 5.2.8 and 5.3.4, the quasi-categorically enriched category 𝒞𝑎𝑟𝑡(𝒦) is defined
by the pullback

𝒞𝑎𝑟𝑡(𝒦) ℛ 𝑎𝑟𝑖(𝒦)

𝒦 𝒦𝐾

along the simplicial functor 𝐾 that sends an isofibration 𝑝∶ 𝐸 ↠ 𝐵 to the isofibration 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠
Hom𝐵(𝐵, 𝑝). To see this, recall from Proposition 6.3.10 that the 0-arrows in the functor spaces of
ℛ𝑎𝑟𝑖(𝒦) are commutative squares between isofibrations admitting a right adjoint right inverse so
that the mate of the identity 2-cell induces an isomorphism in the corresponding square involving the
right adjoints. By Theorem 5.3.4, this condition pulls back along the functor 𝐾 to tell us that 0-arrows
in 𝒞𝑎𝑟𝑡(𝒦) are commutative squares between cocartesian fibrations that define cartesian functors in
the sense of Definition 5.3.2.

The simplicial functor 𝐾 is constructed out of weighted limits and thus preserves all weighted
limits. In addition, it preserves the isofibrations of Proposition 6.1.1: if 𝑟 ∶ 𝐹 ↠ 𝑃 is the isofibration
from the initial vertex to the pullback of the cospan displayed in 6.1.1(iii), then the corresponding

map under the image of the functor 𝐾 is the Leibniz cotensor 𝑖1 �⋔ 𝑟∶ 𝐹𝟚 ↠ Hom𝑃(𝑃, 𝑟). Thus, 𝐾
is a cosmological functor. By Proposition 6.3.12, the inclusion 𝒞𝑎𝑟𝑡(𝒦) 𝒦 creates an ∞-cosmos
structure.

We have a similar pullback defining the quasi-categorically enriched category of cartesian fibrations
with a fixed base

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒞𝑎𝑟𝑡(𝒦)

𝒦/𝐵 𝒦

𝟙 𝒦

cod

𝐵

but we cannot appeal to Proposition 6.3.12 because the inclusion𝒦/𝐵 ↪ 𝒦 is neither cosmological
nor replete. Instead we must appeal to Proposition 6.3.3. By Corollary 5.3.1 and Theorem 5.3.4,
𝒞𝑎𝑟𝑡(𝒦)/𝐵 ↪ 𝒦/𝐵 is a replete subcategory. The connected conical limits in 𝒞𝑎𝑟𝑡(𝒦)/𝐵 and 𝒦/𝐵 are
created by the inclusions into 𝒞𝑎𝑟𝑡(𝒦) and into𝒦 , so these are created by the inclusion 𝒞𝑎𝑟𝑡(𝒦)/𝐵 ↪
𝒦/𝐵. It remains only to argue directly that product and simplicial cotensors are created by this inclusion.

By Proposition 1.2.22, the product of isofibrations 𝑝𝑖 ∶ 𝐸𝑖 ↠ 𝐵 is formed by the pullback

×𝐵
𝑖 𝐸𝑖 ∏

𝑖 𝐸𝑖

𝐵 ∏
𝑖 𝐵

×𝐵
𝑖 𝑝𝑖 ∏𝑖 𝑝𝑖

Δ

If each 𝑝𝑖 is a cartesian fibration, then since 𝒞𝑎𝑟𝑡(𝒦) is an∞-cosmos, so is∏𝑖 𝑝𝑖, and the legs of the
limit cone are cartesian functors. By Proposition 5.2.4 it follows that their product in𝒦/𝐵 is a cartesian
fibration and the legs of the limit cone, defined by composing the pullback square with the product
projections, are cartesian functors. Since cartesian transformations are created by pullbacks, it follows
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easily that a square with codomain ×𝐵
𝑖 𝑝𝑖 is a cartesian functor if and only if each of the composite

squares with codomain 𝑝𝑖 are cartesian functors. This proves that products are created by the inclusion
𝒞𝑎𝑟𝑡(𝒦)/𝐵 ↪ 𝒦/𝐵

Similarly, by Proposition 1.2.22, the cotensor of an isofibration 𝑝∶ 𝐸 ↠ 𝐵 with a simplicial set𝑈 is
formed by the pullback

𝑈 ⋔𝐵 𝑝 𝐸𝑈

𝐵 𝐵𝑈

𝑝𝑈

Δ

and hence is a cartesian fibration if 𝑝 is. A similar argument shows that this object has the universal
property required of the simplicial cotensor in 𝒞𝑎𝑟𝑡(𝒦)/𝐵, completing the proof. �

The∞-cosmoi of cartesian fibrations provide a fertile setting to explore the parametrized∞-cate-
gory theory developed by Shah [115].

6.3.15. Proposition. For any∞-cosmos𝒦, there exist cosmologically embedded∞-cosmoi

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦) 𝒦 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

𝒞𝑎𝑟𝑡(𝒦) 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

whose objects are discrete cartesian or discrete cocartesian fibrations. Similarly, for any∞-category 𝐵 in an
∞-cosmos𝒦, there exist cosmologically embedded∞-cosmoi

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒦/𝐵 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵
whose objects are discrete cartesian or discrete cocartesian fibrations over 𝐵, respectively.

Proof. By Exercise 6.3.iv, the∞-cosmoi of discrete fibrations with a fixed base arise as∞-cosmoi
of discrete objects:

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≅ (𝒞𝑎𝑟𝑡(𝒦)/𝐵)≃ and 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≃ (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵)≃

and hence their existence is guaranteed by Proposition 6.1.6.
The∞-cosmoi of discrete fibrations with varying bases arise as pullbacks

𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦) 𝒦

∼

𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)

𝒞𝑎𝑟𝑡(𝒦) 𝒦 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)𝐾 𝐾

along restrictions of the cosmological functor 𝐾 defined in the proof of Proposition 6.3.14, and hence
exist by Proposition 6.3.12. �

6.3.16. Proposition. For any∞-cosmos 𝒦, the replete subcategory 𝒮𝑡𝑎𝑏(𝒦) of stable∞-categories and
exact functors in𝒦 is an∞-cosmos and the inclusion 𝒮𝑡𝑎𝑏(𝒦) 𝒦 is a cosmological embedding.
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Recall from Exercise 4.4.iv that in this context that a functor between stable∞-categories is called
exact just when it preserves zero elements and the so-called exact squares, that define both pushouts
and pullbacks.

Proof. Simplifying the notation of Proposition 6.3.13, write 𝒦 and 𝒦 for the ∞-cosmoi of
∞-categories in 𝒦 that admit pullbacks and pushouts, respectively. We argue that the ∞-cosmoi
(𝒦 ) ≅ (𝒦 ) are isomorphic as replete subcategories of𝒦. An object of (𝒦 ) is an∞-category𝐴
in𝒦 that admits an adjunction

𝐴⊡ 𝐴
res
⊥
lan

in the∞-cosmos𝒦 , meaning that the functor lan ∶ 𝐴 → 𝐴⊡ preserves the pullbacks that both of
these∞-categories admit. Since𝐴 itself admits pullbacks, the pullbacks in𝐴 and𝐴⊡ may be defined
pointwise, via the adjunctions

(𝐴 )⊡ (𝐴 )
res

⊥
ran

and (𝐴⊡)⊡ (𝐴⊡)
res

⊥
ran⊡

and so are automatically preserved by the restriction functor. Thus the condition that this adjunction
lies in𝒦 amounts to the condition that the canonical natural transformation

(𝐴 )⊡ (𝐴⊡)⊡

(𝐴 ) (𝐴⊡)

lan⊡

⇘

lan

ran ran⊡

is an isomorphism.
Dually, an object of (𝒦 ) is an∞-category𝐴 that admits pushouts and also admits an adjunction

𝐴⊡ 𝐴
res

⊥
ran

in the ∞-cosmos 𝒦 , meaning that the pullback functor ran ∶ 𝐴 → 𝐴⊡ preserves the pointwise
defined pushouts: i.e., that the canonical natural transformation

(𝐴 )⊡ (𝐴⊡)⊡

(𝐴 ) (𝐴⊡)

ran⊡

⇖

ran

lan lan⊡

is an isomorphism. Thus, we see that the objects of (𝒦 ) and (𝒦 ) coincide. Similarly, the 0-arrows
in each of (𝒦 ) and (𝒦 ) are functors that preserve both pullbacks and pushouts. This proves that
(𝒦 ) and (𝒦 ) define isomorphic subcategories of 𝒦, as claimed. A similar simpler observation
justifies the assertion (𝒦⊤)⊥ ≅ (𝒦⊥)⊤ made in the proof of Proposition 6.3.7.

By Theorem 4.4.12(iii), an ∞-category is stable just when it is pointed, admits pullbacks and
pushouts, and the pullback functor preserves pushouts, and the pushout functor preserves pullbacks.
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By the proof of Theorem 4.4.12(iii)⇒ (ii) these conditions imply that pullback and pushout squares
coincide. In this way we see that 𝒮𝑡𝑎𝑏(𝒦) is the intersection

𝒮𝑡𝑎𝑏(𝒦) (𝒦 ) ≅ (𝒦 )

(𝒦⊤)⊥ ≅ (𝒦⊥)⊤ 𝒦

of cosmologically embedded ∞-cosmoi and thus is itself a cosmologically embedded ∞-cosmos by
Proposition 6.3.12. �

The results in this section can be used to prove technical results in the∞-categorical literature (see
Exercise 6.3.v). We close with a few illustrations of results along these lines.

6.3.17. Lemma. Consider a pullback diagram of∞-categories, whose vertical functors are isofibrations.

𝐹 𝐸

𝐴 𝐵

𝑞

ℎ

𝑝

𝑘

Then 𝑞 creates and ℎ preserves any class of limits or colimits that 𝑘 preserves and 𝑝 creates.
Proof. The hypotheses ensure that the underlying cospan of the pullback lies in the∞-cosmos of

Proposition 6.3.13. Since this is a cosmologically embedded ∞-cosmos, it follows that the pullback
of∞-categories lies in there as well, which tells us that 𝐹 admits and 𝑞 and ℎ preserve any limits or
colimits that are present in 𝐸, 𝐴, and 𝐵 and preserved by 𝑝 and 𝑘.

It remains only to argue that such (co)limits are created by 𝑞 ∶ 𝐹 ↠ 𝐴. Suppose 𝑑∶ 𝐷 → 𝐹𝐽 is a
family of diagrams and 𝜂∶ 𝑑 ⇒ Δ𝑐 is a cone under this diagram so that 𝑞𝜂 is a colimit cone for 𝑞𝑑 in𝐴.
Then 𝑘𝑞𝜂 = 𝑝ℎ𝜂 is a colimit cone for 𝑘𝑞𝑑 = 𝑝ℎ𝑑 in 𝐵. Since 𝑝∶ 𝐸 ↠ 𝐵 is assumed to create colimits,
this tells us that ℎ𝜂 is a colimit cone for ℎ𝑑 in 𝐸. Now the second statement of Proposition 6.3.13,
which tells us that (co)limits in 𝐹 are jointly created by the functors 𝑞 and ℎ, allows us to conclude that
𝜂 is a colimit cone in 𝐹 as claimed. �

Our final application reproves a result [80, 1.4.2.24] relevant to the theory of stable∞-categories.

6.3.18. Lemma. Suppose 𝐴 is a pointed∞-category admitting pullbacks. Then the homotopy limit of the tower
of loops functors defines a stable∞-category.

Sp𝐴 ≔ lim � ⋯ 𝐴 𝐴 𝐴 𝐴Ω Ω Ω �

Proof. Since the loops functors are not isofibrations, the homotopy limit of the tower of loops
functors is calculated by first replacing each map by an isofibration in the ambient∞-cosmos𝒦 and
then forming the inverse limit. Alternatively, by Lemmas 6.2.18 and 6.2.19, Sp𝐴 is defined by the
iso-tower:

Sp𝐴 ∏
𝑛∈𝝎

𝐴𝕀

∏
𝑚∈𝝎

𝐴 ∏
𝑛∈𝝎

𝐴 × 𝐴

𝜌

𝜙

∏(𝑞1,𝑞0)

(Ω,id)

(6.3.19)
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which defines Sp𝐴 to be the universal∞-category equipped with a cone

Sp𝐴

⋯ 𝐴 𝐴 𝐴 𝐴
≅⋯

𝜌2𝜌3 𝜌1 𝜌0
≅ ≅

Ω Ω Ω

in which each triangle is inhabited by a homotopy coherent isomorphism.
Since 𝐴 is pointed and admits pullbacks, it lies in the ∞-cosmos (𝒦∗) 𝒦. Pullback functors

automatically preserve zero elements, so (𝒦∗) ≅ 𝒦∗ ∩𝒦 . For the same reason, the loops functor
preserves zero elements and pullbacks, so the loops functorΩ∶ 𝐴 → 𝐴 also lies in (𝒦∗) . Since this
∞-cosmos is cosmologically embedded in 𝒦, it follows that the iso-tower Sp𝐴 is again a pointed
∞-category that admits pullbacks, and each of the functors 𝜌𝑛 ∶ Sp𝐴 ↠ 𝐴 preserve them.

Indeed, by Propositions 6.3.7 and 6.3.13 the zero element and products are created by the legs 𝜌𝑛 of
the limit cone, which tells us that its loops functor can be chosen to commute with these projections:

Sp𝐴 Sp𝐴

∏
𝑛∈𝝎

𝐴 ∏
𝑛∈𝝎

𝐴

Ω

𝜌 𝜌

∏Ω

By the universal property of Sp𝐴 as a flexible weighted limit we can induce another endofunctor
Σ ∗ ∶ Sp𝐴 → Sp𝐴 from the data of the weighted cone

Sp𝐴

⋯ 𝐴 𝐴 𝐴 𝐴
≅⋯

𝜌3𝜌4 𝜌2 𝜌1
≅ ≅

Ω Ω Ω

obtained by restricting along the inclusion Σ∶ 𝑛 ↦ 𝑛 + 1∶ 𝝎op → 𝝎op to shift the data in the
weighted limit cone. To analyze this functor more formally, consider the factorization of the natural
isomorphism 𝜎∶ 𝑊← ≅ 𝑊←Σ through the left Kan extension:

𝝎op 𝑠𝒮𝑒𝑡 𝝎op 𝑠𝒮𝑒𝑡

𝝎op 𝝎op

𝑊←

Σ
≅⇓𝜎 =

𝑊←

Σ
≅⇓𝜂

𝑊←
lanΣ𝑊←

∃!⇓𝛼
𝑊←

In this way, the map Σ ∗ fits into a commutative diagram of induced maps on weighted limits

lim𝑊← 𝐹 lim𝑊←Σ 𝐹Σ lim𝑊← 𝐹Σ

limlanΣ𝑊← 𝐹 limlanΣ𝑊←Σ 𝐹Σ lim𝑊← 𝐹Σ

Σ∗

𝛼∗

≃𝜎∗

≃ 𝛼Σ∗

≃Σ∗

≃𝜂∗

Note the bottom horizontal composite exhibits the isomorphism of Lemma A.6.19, a general result of
enriched category theory that says that the weighted limit of a restricted diagram agrees with the limit
weighted by the left Kan extension of the weight (see [68, 4.63]). From this result and the isomorphisms
𝜎∶ 𝑊← ≅ 𝑊←Σ and 𝐹 ≅ 𝐹Σ we see that all of the objects in this diagram are isomorphic to Sp𝐴.
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Since Σ is fully faithful, 𝜂 is an isomorphism, and hence so is 𝛼Σ, so the map Σ ∗ ∶ Sp𝐴 → Sp𝐴 of
interest is isomorphic to the map induced on weighted limits from the inclusion 𝛼∶ lanΣ𝑊← ↪ 𝑊←.
This map is a projective cell complex between flexible weights, defined by attaching a single generalized
projective cell 𝟙 × 𝝎(−, 0) ↪ 𝕀 × 𝝎(−, 0) at 0. Put another way, it is an isomorphism on all but one
component; via the isomorphism𝑊← ≅ lanΣ𝑊←Σ, its zeroth component is 𝛼0 ∶ 𝑊←

1 ↪ 𝑊←
0 . Thus,

we see that 𝛼 defines a pointwise Joyal weak equivalence between projective cell complexes. It follows
from the pullback diagram

lim𝑊← 𝐹 lim𝕀×𝝎(−,0) 𝐹 ≅ 𝐴𝕀

limlanΣ𝑊← 𝐹 lim𝟙×𝝎(−,0) 𝐹 ≅ 𝐴

∼

𝛼∗

∼
that the induced map on weighted limits Σ ∗ ∶ Sp𝐴 → Sp𝐴 is an equivalence.

By construction the compositeΩΣ ∗ ∶ Sp𝐴 → Sp𝐴 is naturally isomorphic to the identity functor,
where this isomorphism can be induced by the weak universal property of the pullback (6.3.19) from
the isomorphismsΩ𝜌𝑛+1 ≅ 𝜌𝑛 of the weighted limit cone. Thus, by 2-of-3 and stability of equivalences
under natural isomorphism,Ω is an equivalence.

We have shown that Sp𝐴 is a pointed∞-category with pullbacks for which the loops functor is an
equivalence. By Theorem 4.4.12(v), Sp𝐴 is a stable∞-category as claimed. �

Exercises.

6.3.i. Exercise. Let ℒ ↪ 𝒦 be a replete subcategory of an ∞-cosmos. Show that for all 𝐴,𝐵 ∈ ℒ,
the map

Funℒ(𝐴, 𝐵) Fun𝒦(𝐴, 𝐵)
is both a monomorphism and an isofibration between quasi-categories. This latter property may be
summarized by saying that the simplicial functorℒ ↪ 𝒦 is a local isofibration.²

6.3.ii. Exercise. For any∞-cosmos𝒦, compare the cosmologically embedded∞-cosmoi𝒦⊥ ∩𝒦⊤
and𝒦∗ ≔ (𝒦⊤)⊥ ≅ (𝒦⊥)⊤ appearing in the discussion surrounding Proposition 6.3.7.

6.3.iii. Exercise. Prove thatℒ𝑎𝑟𝑖(𝒦) ≅ ℛ 𝑎𝑟𝑖(𝒦co)co.
6.3.iv. Exercise. For a cosmologically embedded ∞-cosmos ℒ 𝒦, show that 𝐴 ∈ ℒ is discrete if
and only if 𝐴 is discrete as an object of𝒦.

6.3.v. Exercise ([46, 4.1.5]). Given a diagram where the vertical maps are cocartesian fibrations and
the squares define cartesian functors

𝐸′ 𝐸 𝐸″ 𝐸′ ×𝐸 𝐸″

𝐵′ 𝐵 𝐵″ 𝐵′ ×𝐵 𝐵″

verify that the induced functor between the pullbacks is a cocartesian fibration and the projections
define cartesian functors. Show also that if the vertical maps are discrete cocartesian fibrations so is
this induced functor.

²The inclusions of replete subcategories are also global isofibrations in a sense appropriate for (∞, 2)-category theory,
namely the full data of an equivalence in𝒦 involving one object in the subcategoryℒ can be lifted toℒ.
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Part II

The Calculus of Modules



By convention we refer to an object𝐴 in an∞-cosmos as an “∞-category.” The∞-cosmos provides
access to its elements 𝑧 ∶ 1 → 𝐴 and to its mapping spaces Hom𝐴(𝑥, 𝑦), defined as bifibers

Hom𝐴(𝑥, 𝑦) 𝐴𝟚

1 𝐴 × 𝐴

(𝑝1,𝑝0)

(𝑦,𝑥)

over a pair of elements. Proposition 3.4.10 proves that mapping spaces are discrete∞-categories, which,
in an∞-cosmos of (∞, 1)-categories, are the∞-groupoids in the∞-cosmos. These structures justify
part of the intuition that (∞, 1)-categories are categories weakly enriched over∞-groupoids.

These observations suggest that the arrow∞-category is of particular importance. Propositions
3.2.5 and 3.2.6 describe its weak 2-categorical universal property: natural transformations

𝑋 𝐴
𝑥

𝑦

⇓𝛽

correspond to functors 𝛽∶ 𝑋 → 𝐴𝟚 with 𝑝0𝛽 = 𝑥 and 𝑝1𝛽 = 𝑦 up to fibered isomorphism over 𝐴×𝐴.
By Proposition 3.2.10 this weak universal property characterizes the arrow∞-category up to fibered
equivalence over 𝐴 ×𝐴. However, it does not capture the additional fact that natural transformations
from 𝑋 to 𝐴 can be composed vertically defining commuting contravariant and covariant actions on
the domains and codomains of the natural transformation 𝛽∶ 𝑥 ⇒ 𝑦.

𝑋 𝐴

𝑤
⇓𝛼

𝑧
⇓𝛾

𝑥

𝑦
⇓𝛽

In Chapter 5, we discovered one way to express the actions, proving in Propositions 5.2.9 and
Proposition 5.4.4 that the domain projection functor 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 and the codomain projection
functor 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴, respectively, define a cartesian fibration and a cocartesian fibration. Particular
𝑝0-cartesian lifts and 𝑝1-cocartesian lifts can be used to define pre- and postcomposition functors:

Hom𝐴(𝑥, 𝑦) Hom𝐴(𝑥, 𝑦)

Hom𝐴(𝐴, 𝑦) Hom𝐴(𝑥, 𝐴)

Hom𝐴(𝑤, 𝑦) Hom𝐴(𝑥, 𝑧)

𝑋 𝑋
𝐴 𝐴

𝑋 𝑋

𝛼∗ 𝛾∗

𝑝0 𝑝1

𝜒𝛼 𝜒𝛾

𝑥 𝑦

𝑤

𝛼

𝑧

𝛾

with universal properties that imply that 𝛼∗𝛽∗ ≅ (𝛽𝛼)∗ and 𝛾∗𝛽∗ ≅ (𝛾𝛽)∗.



To see that the post- and precomposition actions commute with each other, defining an essentially
commutative square

Hom𝐴(𝑥, 𝑦)

Hom𝐴(𝑤, 𝑦) ≅ Hom𝐴(𝑥, 𝑧)

Hom𝐴(𝑤, 𝑧)

𝛼∗ 𝛾∗

𝛾∗ 𝛼∗

of functors over 𝑋, necessitates considering the codomain and domain projection functors as a span

𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴, rather than individually. This is the aim of Chapter 7, which introduces two-sided

fibrations, given by a span whose left leg is a cocartesian fibration and right leg is a cartesian fibration,
with commuting “fiberwise” actions.

The span𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴 is two-sided fibration that is discrete as an object in the sliced∞-cosmos

over 𝐴 ×𝐴. In particular, this implies that the fibers over a pair of elements are discrete∞-categories.
In terminology introduced in §7.4, this discreteness means that 𝐸 defines a module from 𝐴 to 𝐵.

In Chapter 8, we develop the calculus of modules, which closely resembles the calculus of (bi)mod-
ules between unital rings. In Chapter 9, we deploy this calculus to further develop the formal category
theory of∞-categories, specifically by defining and developing pointwise right and left Kan extensions,
which are notably missing from Part I. We note also that several results in previous chapters – Theorem
3.5.3, Corollary 3.5.6, Proposition 4.1.1, Proposition 4.3.1 – encode∞-categorical notions as equivalences
of modules. Accordingly, modules form the cornerstone of our proof of the model independence of
(∞, 1)-category theory in Part III.
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CHAPTER 7

Two-Sided Fibrations and Modules

In Chapter 5 we studied those isofibrations for which the arrows in the base act covariantly or
contravariantly on the fibers. A prototypical example of a so-called cocartesian fibration is the codomain
projection functor 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴 associated to the arrow ∞-category, where the fiberwise action
is by postcomposition. Dually, the domain projection functor 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 is a cartesian fibration,
with fiberwise action by precomposition. In this section, we refine and sharpen our understanding
of these fibration structures by considering the codomain and domain projection functors as a span

𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴 rather than separately. A few observations come quickly to mind. First, 𝑝1-cocartesian

lifts can be chosen to define natural transformations with codomain 𝐴𝟚 whose domain components
are identities; that is, 𝑝1-cocartesian lifts can be chosen to lie “over 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴.” Dually, 𝑝0-cartesian
lifts can be chosen to lie over 𝑝1 (see Proposition 5.5.11).

Second, the action on fibers 𝛼∗ ∶ Hom𝐴(𝑥, 𝐴) → Hom𝐴(𝑤,𝐴) by precomposition with a nat-
ural transformation 𝛼∶ 𝑤 ⇒ 𝑥 with codomain 𝐴, commutes with the action 𝛾∗ ∶ Hom𝐴(𝐴, 𝑦) →
Hom𝐴(𝐴, 𝑧) by postcomposition with 𝛾∶ 𝑦 ⇒ 𝑧 in a suitable sense. These first two properties are
summarized by saying that the span associated to the arrow∞-category defines a two-sided fibration
from 𝐴 to 𝐴.

Finally, the bifibers of the isofibration (𝑝1, 𝑝0) ∶ 𝐴𝟚 ↠ 𝐴×𝐴 define discrete∞-categories, namely
the mapping spaces of 𝐴. Indeed, 𝐴𝟚 is itself discrete when considered as an object in the sliced

∞-cosmos over𝐴×𝐴. This additional property means that𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴 defines a discrete two-sided

fibration from 𝐴 to 𝐴, which we abbreviate by saying that 𝐴𝟚 defines a module from 𝐴 to 𝐴.
Recall from Proposition 6.3.14 that for any∞-category 𝐵 in an∞-cosmos𝒦, the quasi-categorically

enriched categories 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 and 𝒞𝑎𝑟𝑡(𝒦)/𝐵 define∞-cosmoi, inheriting their limits, isofibrations,
and equivalences from their cosmological embedding into𝒦/𝐵. In this chapter, we introduce another
cosmologically embedded∞-cosmos 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵 whose objects are two-sided fibrations from
𝐴 to 𝐵. Several equivalent definitions of this notion are given in §7.1. Iterating Proposition 6.3.14
reveals that 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 is again an∞-cosmos, which we study in §7.2.

A two-sided fibration from 𝐵 to 1 is simply a cocartesian fibration over 𝐵, while a two-sided
fibration from 1 to 𝐵 is a cartesian fibration over 𝐵, so results about two-sided fibrations simultaneously
generalize these one-sided notions. Certain closure properties of two-sided fibrations developed in
§7.2, such as closure under pullback, are familiar from Chapter 5, while others, such as closure under
span composition, are specific to the two-sided context.

In §7.3, we introduce two-sided representables and prove a two-sided version of the Yoneda lemma,
generalizing Theorem 5.7.3 and Corollary 5.7.19. This is the formulation of the Yoneda lemma that
proves the most useful going forward.
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The main reason for our interest in two-sided fibrations is the fact that the discrete objects in

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 are precisely the modules¹ from 𝐴 to 𝐵, which we define and study in §7.4. The calculus of
modules, developed in Chapter 8, is the main site of the formal category theory of∞-categories, which
is the subject of Chapter 9.

7.1. Two-Sided Fibrations

By factoring, any span in an ∞-cosmos 𝒦 from 𝐴 to 𝐵 may be replaced up to equivalence by a

two-sided isofibration, a span𝐴
𝑞
𝐸

𝑝
𝐵 for which the functor (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴×𝐵 is an isofibration.

Two-sided isofibrations from 𝐴 to 𝐵 are the objects of the ∞-cosmos 𝒦/𝐴×𝐵. In this section, we
describe what it means for a two-sided isofibration to be cocartesian on the left or cartesian on the right,
and then introduce two-sided fibrations, which integrate these notions.

To motivate these concepts, consider the span𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴 associated to the arrow∞-category

of 𝐴 in an∞-cosmos𝒦. In Proposition 5.5.11, we observed that

𝐴𝟚 𝐴 × 𝐴

𝐴

(𝑝1,𝑝0)

𝑝1 𝜋

defines a cartesian fibration in the sliced ∞-cosmos 𝒦/𝐴 – in fact a discrete cartesian fibration,
though we postpone consideration of discreteness until we introduce modules in §7.4. The proof
invokes Theorem 5.2.8(iii), which characterizes cartesian fibrations via a fibered adjunction over the
codomain. In this instance, the fibered adjunction lies in the ∞-cosmos (𝒦/𝐴)/𝜋 ∶ 𝐴×𝐴↠𝐴 ≅ 𝒦/𝐴×𝐴
and is equivalent to the canonical adjunction

𝟚 𝟚 × 𝟚 𝟛 𝐴𝟚 ⊥ 𝐴𝟛

𝟙 + 𝟙 𝐴 × 𝐴

𝟚×0
⊤

𝛿1

𝟚×!
⊤
ℓ

𝑘

𝜎0

⇝

Δ𝑝0=Δ(𝑝1,𝑝0)

(𝑝1,𝑝0) (𝑝2,𝑝0)

𝑟

(2,0)(1,0)

arising from an adjunction between the indexing categories. In terminology we presently introduce

this is what it means to say that the two-sided isofibration 𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴 is cartesian on the right.

When we postcompose with the projection 𝜋∶ 𝐴 × 𝐴 ↠ 𝐴 onto the right factor, we are left with
an adjunction

𝐴𝟚 ⊥ 𝐴𝟛

𝐴

Δ𝑝0

𝑝0 𝑝0
𝑟

that witnesses the fact established in Proposition 5.2.9 that 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 is a cartesian fibration. So
part of what it means for a two-sided isofibration to be cartesian on the right is that its right leg is
a cartesian fibration. To say that this adjunction lies over 𝐴 × 𝐴 not merely over 𝐴 amounts to the

¹In the 1- and ∞-categorical literature, the names “distributor” [9], “profunctor” [132], and “correspondence” [4, 78]
are all used as synonyms for “module.”
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assertion that 𝑝0-cartesian lifts can be chosen to lie in fibers of 𝑝1 ∶ 𝐴𝟚 ↠ 𝐴, whiskering along the
left leg to identity arrows. It follows that every 𝑝0-cartesian transformation whiskers with 𝑝1 to an
isomorphism.

These two properties can be expressed in another way: by demanding that the functor

𝐴𝟚 𝐴 × 𝐴

𝐴
𝑝0

(𝑝1,𝑝0)

𝜋

lies in the∞-cosmos 𝒞𝑎𝑟𝑡(𝒦)/𝐴 ⊂ 𝒦/𝐴. This asserts first that 𝑝0 ∶ 𝐴𝟚 ↠ 𝐴 is a cartesian fibration and
second that (𝑝1, 𝑝0) defines a cartesian functor from this cartesian fibration to the cartesian fibration
𝜋∶ 𝐴×𝐴 ↠ 𝐴 of Example 5.4.6. As observed there, 𝜋-cartesian cells are those natural transformations
that whisker with the other projection to isomorphisms. Thus to say that (𝑝1, 𝑝0) is a cartesian functor
is exactly to say that 𝑝1 carries 𝑝0-cartesian transformations to isomorphisms.

We now formalize these intuitions:

7.1.1. Lemma (cartesian on the right). For a two-sided isofibration 𝐴
𝑞
𝐸

𝑝
𝐵 in an∞-cosmos𝒦, the

following are equivalent:

(i) The functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

is a cartesian fibration in the slice∞-cosmos𝒦/𝐴.
(ii) The functor

𝐸 𝐴 × 𝐵

𝐵
𝑝

(𝑞,𝑝)

𝜋

in𝒦/𝐵 lies in the sub∞-cosmos 𝒞𝑎𝑟𝑡(𝒦)/𝐵.
(iii) The functor induced by id𝑝 admits a right adjoint in𝒦/𝐴×𝐵.

𝐸 ⊥ Hom𝐵(𝐵, 𝑝)

𝐴 × 𝐵

Δ𝑝

(𝑞,𝑝) (𝑞𝑝1,𝑝0)
𝑟

(iv) The isofibration 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration in 𝒦 and for every 𝑝-cartesian transformation

𝑋 𝐸
𝑒′

𝑒
⇓𝜓 , the composite 𝑋 𝐸 𝐴

𝑒′

𝑒
⇓𝜓

𝑞
is an isomorphism.

A two-sided isofibration 𝐴
𝑞
𝐸

𝑝
𝐵 is cartesian on the right when these equivalent conditions are satisfied

Proof. The equivalence (i)⇔(iii) is exactly the interpretation of the equivalence of Theorem
5.2.8(i)⇔(iii) applied to the isofibration (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 in the∞-cosmos𝒦/𝐴. This latter result
asserts that the isofibration (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴×𝐵 is a cartesian fibration in𝒦/𝐴 if and only if the functor
induced by id(𝑞,𝑝) from 𝐸 to the right representation of the functor (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 admits a right
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adjoint over the codomain𝜋∶ 𝐴×𝐵 ↠ 𝐴; since (𝒦/𝐴)/𝜋 ∶ 𝐴×𝐵↠𝐴 ≅ 𝒦/𝐴×𝐵 this is the same as asserting
this adjunction over 𝐴 × 𝐵.

The only subtlety in interpreting Theorem 5.2.8 in𝒦/𝐴 has to do with the correct interpretation
of the left representable comma∞-category in𝒦/𝐴 for the functor (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵. This comma
∞-category is constructed as a subobject of the 𝟚-cotensor of the object 𝜋∶ 𝐴× 𝐵 → 𝐴 in𝒦/𝐴, which
Proposition 1.2.22 tells us is formed as the left-hand vertical of the pullback diagram

𝐴 × 𝐵𝟚 (𝐴 × 𝐵)𝟚

𝐴 𝐴𝟚

𝜋 𝜋𝟚

Δ

By (3.4.2) the comma∞-category is constructed by the pullback in𝒦/𝐴

Hom𝐵(𝐵, 𝑝) 𝐴 × 𝐵𝟚 𝐴 × 𝐵

𝐸 𝐴 × 𝐵

𝐴

𝑝1 𝑞𝑝1
𝜋

id×𝑝0

𝜋

(𝑞,𝑝)

𝑞 𝜋

id×𝑝1
(7.1.2)

which is created by the forgetful functor𝒦/𝐴 → 𝒦, and its domain projection functor is the top com-
posite (𝑞𝑝1, 𝑝0) ∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐴 × 𝐵. Now we see that the interpretation of Theorem 5.2.8(i)⇔(iii)
in𝒦/𝐴 is exactly the equivalence (i)⇔(iii).

It remains to demonstrate the equivalence with (ii) and (iv). Assuming (iii) and composing with
𝜋∶ 𝐴×𝐵 ↠ 𝐵 yields a fibered adjunction that demonstrates that 𝑝 is a cartesian fibration. The counit
of both fibered adjunctions is the same, and by Theorem 5.2.8(iii) the composite

𝐸
Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝) 𝐸

Δ𝑝𝑟

⇓𝜖 𝑝1

is the generic 𝑝-cartesian cell. Since 𝜖 is fibered over 𝐴 × 𝐵, when we postcompose with 𝑞 we get an
identity, which tells us that 𝑞 ∶ 𝐸 ↠ 𝐴 carries 𝑝-cartesian cells to isomorphisms. This proves that (iii)
implies (iv).

By Example 5.4.6, the cartesian cells for the cartesian fibration 𝜋∶ 𝐴×𝐵 ↠ 𝐵 are precisely those 2-
cells whose component with codomain𝐴 is an isomorphism, so (iv) says exactly that (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴×𝐵
defines a cartesian functor from 𝑝 to 𝜋. Thus (iv) implies (ii).

To complete the argument, we show that (ii) implies (i). Assume (ii) and consider a 2-cell in𝒦/𝐴

𝑋 𝐸

𝐴 × 𝐵

𝑒

(𝑎,𝑏)

⇑(id,𝛽) (𝑞,𝑝)

Because 𝑝 is a cartesian fibration, 𝛽∶ 𝑏 ⇒ 𝑝𝑒 has a 𝑝-cartesian lift 𝜒∶ 𝑒′ ⇒ 𝑒, and since (𝑞, 𝑝) is a
cartesian functor, the whiskered 2-cell 𝑞𝜒∶ 𝑞𝑒′ ⇒ 𝑎 is an isomorphism. Because (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵
is an isofibration, we may lift the 2-cell (𝑞𝜒−1, id) ∶ (𝑎, 𝑏) ⇒ 𝑒′ to an invertible 2-cell 𝛾∶ 𝑒″ ⇒ 𝑒′
with 𝑝𝛾 = id𝑏. The composite 𝜒 ⋅ 𝛾∶ 𝑒″ ⇒ 𝑒 is a lift of (id, 𝛽) along (𝑞, 𝑝) over 𝐴, which is easily
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verified to satisfy the weak universal properties that characterize a (𝑞, 𝑝)-cartesian lift of (id, 𝛽) in𝒦/𝐴
as established by Proposition 5.2.11. This proves (i). �

Combining Lemma 7.1.1 and its dual, which defines the class of two-sided isofibrations that are
cocartesian on the left:

7.1.3. Corollary. A two-sided isofibration 𝐴
𝑞
𝐸

𝑝
𝐵 in an∞-cosmos𝒦 is cocartesian on the left and

cartesian on the right if the following equivalent conditions are satisfied:

(i) The functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

lies in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 and defines a cartesian fibration in𝒦/𝐴.
(ii) The functor

𝐸 𝐴 × 𝐵

𝐵
𝑝

(𝑞,𝑝)

𝜋

lies in 𝒞𝑎𝑟𝑡(𝒦)/𝐵 and defines a cocartesian fibration in𝒦/𝐵. �

A two-sided fibration is a span that is cocartesian on the left, cartesian on the right, and satisfies a
further compatibility condition that can be stated in a number of equivalent ways, which boil down to
the assertion that the processes of taking 𝑞-cocartesian and 𝑝-cartesian lifts commute:

7.1.4. Theorem. For a two-sided isofibration 𝐴
𝑞
𝐸

𝑝
𝐵 in an∞-cosmos𝒦, the following are equivalent:

(i) The functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

defines a cartesian fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴.
(ii) The functor

𝐸 𝐴 × 𝐵

𝐵
𝑝

(𝑞,𝑝)

𝜋

defines a cocartesian fibration in 𝒞𝑎𝑟𝑡(𝒦)/𝐵.
(iii) The canonical functors admit the displayed adjoints in𝒦/𝐴×𝐵

𝐸 Hom𝐵(𝐵, 𝑝)

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝)

Δ𝑝

⊤

Δ𝑞⊣ (Δ𝑞𝑝1,id) ⊢

𝑟

ℓ

(id,Δ𝑝𝑝0)

⊥

ℓ

𝑟

and the mate of the identity 2-cell in this displayed commutative square defines an isomorphism ℓ𝑟 ≅ 𝑟ℓ.
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(iv) The two-sided isofibration 𝐴
𝑞
𝐸

𝑝
𝐵 is cocartesian on the left, cartesian on the right, and satisfies a

further condition: Given any pair of natural transformations as below-left together with a 𝑞-cocartesian
lift 𝜓∶ 𝑒 ⇒ 𝛼∗𝑒 of 𝛼 over 𝐵 and a 𝑝-cartesian lift 𝜒∶ 𝛽∗𝑒 ⇒ 𝑒 of 𝛽 over 𝐴 as below-right:

𝑋 𝑋

𝐴 𝐸 𝐵 𝐴 𝐸 𝐵

𝛼
⇐

𝑒
𝑎 𝑏

𝛽
⇐

⇝ 𝑒𝜓𝛼∗𝑒 ⇐
𝜒

𝛽∗𝑒
⇐

𝑞 𝑝 𝑞 𝑝

then there is an isomorphism 𝛼∗𝛽∗𝑒 ≅ 𝛽∗𝛼∗𝑒 over 𝐴 × 𝐵 commuting with the 𝑞-cocartesian lift of
𝛼 ⋅ 𝑞𝜒 over 𝐵 and the 𝑝-cartesian lift of 𝑝𝜓 ⋅ 𝛽 over 𝐴.

𝑒

𝛼∗𝑒 𝛽∗𝑒

𝛽∗𝛼∗𝑒 ≅ 𝛼∗𝛽∗𝑒

𝜓

𝜓𝛼⋅𝑞𝜒

𝜒

𝜒𝑝𝜓⋅𝛽

A two-sided isofibration 𝐴
𝑞

𝐸
𝑝

𝐵 defines a two-sided fibration from 𝐴 to 𝐵 when these equivalent
conditions are satisfied.

Proof. Our strategy is to show that condition (i) is equivalent to (iii), an equationally witnessed
condition in the slice∞-cosmos𝒦/𝐴×𝐵. A dual argument shows that condition (ii) is equivalent to
(iii). We then unpack this condition to prove its equivalence with (iv).

If (i) holds, then 𝐴
𝑞

𝐸
𝑝

𝐵 also satisfies condition (i) of Corollary 7.1.3, since the property
of being a cartesian fibration is preserved by the cosmological functor 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 ↪ 𝒦/𝐴. So

𝐴
𝑞
𝐸

𝑝
𝐵 is in particular cocartesian on the left and cartesian on the right and is thus equipped

with adjunctions

Hom𝐴(𝑞, 𝐴) 𝐸 Hom𝐵(𝐵, 𝑝)

𝐴 × 𝐵

ℓ
⊥

(𝑝1,𝑝𝑝0)

Δ𝑞 (𝑞,𝑝)

Δ𝑝

⊥

(𝑞𝑝1,𝑝0)

𝑟

By Lemma 3.6.6, we may pull back the left-hand adjunction along 𝐴 × 𝑝1 ∶ 𝐴 × 𝐵𝟚 ↠ 𝐴 × 𝐵 and
then compose with 𝐴 × 𝑝0 ∶ 𝐴 × 𝐵𝟚 ↠ 𝐴× 𝐵 to obtain the right-hand fibered adjunction below, and
also pull back the right-hand adjunction along 𝑝0 × 𝐵∶ 𝐴𝟚 × 𝐵 ↠ 𝐴 × 𝐵 and then compose with
𝑝1 × 𝐵∶ 𝐴𝟚 × 𝐵 ↠ 𝐴 × 𝐵 to obtain the left-hand fibered adjunction below:

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑝)

𝐴 × 𝐵

(id,Δ𝑝𝑝0)

⊥

(𝑝1,𝑝𝑝0)

𝑟

(𝑝1,𝑝0)

ℓ
⊥

(𝑞𝑝1,𝑝0)

(Δ𝑞𝑝1,id)

It remains to account for the assumption in (i) that (𝑞, 𝑝) defines a cartesian fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴
rather than merely in𝒦/𝐴. By Theorem 5.2.8(iii) this additional condition is equivalent to the assertion
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that the right adjoint

Hom𝐵(𝐵, 𝑝) 𝐸

𝐴

𝑟

𝑞𝑝1 𝑞

defines a cartesian functor from the cocartesian fibration 𝑝1 to the cocartesian fibration 𝑞. By Theorem
5.3.4(iii) this is equivalent to the assertion that the mate of the isomorphism in the solid-arrow square

Hom𝐵(𝐵, 𝑝) 𝐸

Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝) Hom𝐴(𝑞, 𝐴)

(Δ𝑞𝑝1,id)⊣

𝑟

Δ𝑞 ⊢ℓ

𝑟

ℓ

defines an isomorphism.² This proves that (i) implies (iii).
Conversely assuming (iii), by Lemma 7.1.1 and Corollary 7.1.3 we conclude from two of the adjunc-

tions that the functor

𝐸 𝐴 × 𝐵

𝐴
𝑞

(𝑞,𝑝)

𝜋

lies in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 and defines a cartesian fibration in 𝒦/𝐴. By Theorem 5.2.8(iii) it defines a cart-
esian fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 if and only if the right adjoint 𝑟 defines a cartesian functor from
𝑞𝑝1 ∶ Hom𝐵(𝐵, 𝑝) ↠ 𝐴 to 𝑞 ∶ 𝐸 ↠ 𝐴; recall that the inclusion 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 ↪ 𝒦/𝐴 is full on positive
dimensional arrows so there is no comparable condition on the unit and counit. By Theorem 5.3.4(iii)
this follows from the invertibility of the mate ℓ𝑟 ≅ 𝑟ℓ. In this way we see that (iii) implies (i).

Thus, we have shown that condition (i) is equivalent to (iii) positing the existence of adjunctions in
𝒦/𝐴×𝐵 so that all of the mates of the solid-arrow diagram are isomorphisms. Dualizing this argument,
we see that (iii) is equivalent to condition (ii).

Finally, (iii) and (iv) are equivalent since the existence of the left adjoints in (iii) is equivalent to the
span being cocartesian on the left, the existence of the right adjoints is equivalent to being cartesian on
the right, and the compatibility condition for the cartesian and cocartesian lifts is the meaning of the
isomorphism ℓ𝑟 ≅ 𝑟ℓ. �

The internal characterization of two-sided fibrations has a familiar consequence:

7.1.5. Corollary. Any two-sided isofibration (𝑎, 𝑏) ∶ 𝑋 ↠ 𝐴 × 𝐵 that is equivalent over 𝐴 × 𝐵 to a
two-sided fibration (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 is a two-sided fibration.

Proof. The assertion of Theorem 7.1.4(iii) is invariant under fibered equivalence. �

Theorem 7.1.4 may be used to establish an important family of examples involving the ordinal
categories from Definition 1.1.4.

7.1.6. Proposition. For any∞-category 𝐴 and any 𝑛 ≥ 2, the two-sided isofibration 𝐴
𝑝𝑛−1 𝐴𝕟 𝑝0 𝐴

defines a two-sided fibration.

²The isomorphism in the solid-arrow square is the inverse of themate that witnesses the fact thatΔ𝑞 defines a cartesian

functor from 𝑝 to 𝑝0, which is part of what it means for (𝑞, 𝑝) to be cartesian on the right.
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This result is a generalization of Proposition 5.5.11 and its dual and the proof uses similar ideas.

Proof. We use Theorem 7.1.4(iii). The right representable comma∞-category associated to the
evaluation at the initial object 𝑝0 ∶ 𝐴𝕟 ↠ 𝐴 is constructed by the pullback

𝐴𝟚∨𝕟 𝐴𝟚

𝐴𝕟 𝐴

𝑝1

𝑝0

which is equivalent to (𝑝𝑛, 𝑝0) ∶ 𝐴𝕟+𝟙 ↠ 𝐴 × 𝐴 over the endpoint evaluation maps. The canonical
functor that tests whether (𝑝𝑛−1, 𝑝0) ∶ 𝐴𝕟 ↠ 𝐴 × 𝐴 is cartesian on the right is given by restriction
along the epimorphism 𝜎0 ∶ 𝕟+𝟙 → 𝕟 that sends the objects 0, 1 ∈ 𝕟+𝟙 to 0 ∈ 𝕟. This functor
admits a left adjoint under the endpoint inclusions

𝕟 ⊥ 𝕟+𝟙 ⇝ 𝐴𝕟 ⊤ 𝐴𝕟+𝟙

𝟙 + 𝟙 𝐴 × 𝐴

𝛿1

𝜎0
(𝑝𝑛−1,𝑝0) 𝐴𝜎0

(𝑝𝑛,𝑝0)

𝐴𝛿1

(𝑛,0)(𝑛−1,0)

which provides the desired fibered right adjoint displayed above left.
A dual argument shows that (𝑝𝑛−1, 𝑝0) ∶ 𝐴𝕟 ↠ 𝐴×𝐴 is cocartesian on the left. The final condition

asks that the mate of the commutative square defined by the degeneracy maps

𝕟 𝕟+𝟙

𝕟+𝟙 𝕟+𝟚

𝛿1

𝛿𝑛
𝜎0
⊥

𝛿𝑛+1𝜎𝑛⊢

𝛿1

𝜎𝑛+1 ⊣
𝜎0

⊤

is an isomorphism, encoding one of the familiar simplicial identities. The square in Theorem 7.1.4(iii)
is obtained by applying 𝐴(−). �

We defer further discussion of the closure properties of the class of two-sided fibrations to the next
section, where we deploy cosmological arguments to streamline their proofs. These observations allow
us to further enlarge our family of examples.

To prepare for that work, we consider the structure-preserving morphisms between two-sided
fibrations, proving a relative analogue of Theorem 7.1.4:

7.1.7. Proposition. For map of spans between a pair of two-sided fibrations from 𝐴 to 𝐵 in an∞-cosmos𝒦

𝐸

𝐴 𝐵

𝐹

𝑞 𝑝

ℎ

𝑠 𝑟

the following are equivalent:
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(i) ℎ defines a cartesian functor between cartesian fibrations in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴.
(ii) ℎ defines a cartesian functor between cocartesian fibrations in 𝒞𝑎𝑟𝑡(𝒦)/𝐵.
(iii) The mates of the canonical isomorphisms

𝐸 𝐹 𝐸 𝐹

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑠, 𝐴) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑟)

ℎ

≅⇖

ℎ

≅⇘

Homid(ℎ,id)

ℓ ℓ

Homid(id,ℎ)

𝑟 𝑟

define isomorphisms in𝒦/𝐴×𝐵.
(iv) ℎ defines a cartesian functor between the cocartesian fibrations 𝑞 and 𝑠 and a cartesian functor between

the cartesian fibrations 𝑝 and 𝑟 in𝒦.
The map of spans defines a cartesian functor between two-sided fibrations from 𝐴 to 𝐵 when these equivalent
conditions are satisfied.

Proof. By Theorem 5.3.4(iii), condition (iv) is equivalent to demanding that the two mates on
display in (iii) are isomorphisms in 𝒦/𝐴 and 𝒦/𝐵, respectively. But since the spans are two-sided
fibrations from 𝐴 to 𝐵 and ℎ is a map over 𝐴 × 𝐵, both natural transformations lie in 𝒦/𝐴×𝐵. By
Proposition 3.6.2, if these natural transformations admit inverses in𝒦/𝐴 and𝒦/𝐵, then these inverse
transformations lift to an inverse isomorphism in𝒦/𝐴×𝐵. This proves that (iv) is equivalent to (iii).

We next prove that (i) is equivalent to (iii). The proof of the equivalence of (ii) and (iii) is dual. To
assert, as in (i) that the map

𝐸 𝐹

𝐴 × 𝐵

𝐴

ℎ

(𝑞,𝑝)

𝑞

(𝑠,𝑟)

𝑠
𝜋

defines a cartesian functor between cartesian fibrations in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 means first that the mate

𝐸 𝐹 𝐸 𝐹

Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑠, 𝐴) Hom𝐴(𝑞, 𝐴) Hom𝐴(𝑠, 𝐴)

ℎ

Δ𝑞 ≅⇗ Δ𝑠 ⇝

ℎ

≅⇖

Homid(ℎ,id) Homid(ℎ,id)

ℓ ℓ

defines an isomorphism in𝒦/𝐴, because ℎ defines a cartesian functor between the cocartesian fibrations
𝑞 and 𝑠, over 𝐴 and second that the mate

𝐸 𝐹 𝐸 𝐹

Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑟) Hom𝐵(𝐵, 𝑝) Hom𝐵(𝐵, 𝑟)

ℎ

Δ𝑝 ≅⇙ Δ𝑟 ⇝

ℎ

≅⇘

Homid(id,ℎ) Homid(id,ℎ)

𝑟 𝑟

is an isomorphism in (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋. Since the spans are two-sided fibrations and ℎ is a map over
𝐴×𝐵, the first pair of mates lies in𝒦/𝐴×𝐵. And since the inclusion (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ↪ 𝒦/𝐴×𝐵 is full on
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positive-dimensional arrows, to ask that the second pair of mates are isomorphisms in (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋
is equivalent to asking the same condition in𝒦/𝐴×𝐵. This proves the equivalence with (iii). �

It follows from the internal characterizations of Theorem 7.1.4 and Proposition 7.1.7.

7.1.8. Corollary. Any cosmological functor preserves two-sided fibrations and cartesian functors between
them.

Proof. By Proposition 1.3.4(vi) any cosmological functor 𝐹∶ 𝒦 → ℒ induces a cosmological
functor 𝐹∶ 𝒦/𝐴×𝐵 → ℒ/𝐹𝐴×𝐹𝐵 for any pair of ∞-categories 𝐴 and 𝐵 in 𝒦. This functor preserves
the fibered adjunctions and invertible mates of Theorem 7.1.4(iii). Thus 𝐹∶ 𝒦 → ℒ preserves two-
sided fibrations. Similarly, any cosmological functor preserves the invertible mates of Proposition
7.1.7(iii). �

Exercises.

7.1.i. Exercise. Prove that the product projection span𝐴
𝜋

𝐴×𝐵
𝜋

𝐵 defines a two-sided fibration
for any∞-categories 𝐴 and 𝐵.

7.1.ii. Exercise. Prove that

(i) A two-sided isofibration 1
!
𝐸

𝑝
𝐵 defines a two-sided fibration from 1 to 𝐵 if and only if

𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration.
(ii) A map of spans as below defines a cartesian functor of two-sided fibrations if and only if

ℎ∶ 𝐸 → 𝐹 defines a cartesian functor from 𝑝 to 𝑞.

𝐸

1 𝐵

𝐹

! 𝑝

ℎ

! 𝑞

7.1.iii. Exercise. Suppose 𝐴
𝑞
𝐸

𝑝
𝐵 and 𝐴

𝑠
𝐹

𝑟
𝐵 are two-sided fibrations and 𝛼∶ ℎ ≅ ℎ′ is a

fibered natural isomorphism

𝐸

𝐴 𝐵

𝐹

ℎℎ′
𝛼
≅

𝑝𝑞

𝑟𝑠

so that 𝑟𝛼 = id𝑝 and 𝑠𝛼 = id𝑞; in particular, ℎ and ℎ′ each define maps of spans. Show that ℎ is a
cartesian functor if and only if ℎ′ is a cartesian functor.

7.2. The∞-Cosmos of Two-Sided Fibrations

The first pair of equivalent conditions of Theorem 7.1.4 and Proposition 7.1.7 provide two equivalent
ways to define the∞-cosmos of two-sided fibrations, using the∞-cosmoi of Proposition 6.3.14.

7.2.1. Definition (the∞-cosmos of two-sided fibrations). By Theorem 7.1.4 and Proposition 7.1.7, for
any∞-categories 𝐴 and 𝐵 in an∞-cosmos𝒦 the pair of quasi-categorically enriched subcategories

𝒞𝑎𝑟𝑡(𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ∶ 𝐴×𝐵↠𝐴 and 𝑐𝑜𝒞𝑎𝑟𝑡(𝒞𝑎𝑟𝑡(𝒦)/𝐵)/𝜋 ∶ 𝐴×𝐵↠𝐵
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of𝒦/𝐴×𝐵 coincide. We write

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ⊂ 𝒦/𝐴×𝐵
for this common subcategory and refer to it as the ∞-cosmos of two-sided fibrations from 𝐴 to 𝐵,
employing terminology that will be justified momentarily.

By definition its functor space from 𝐴
𝑞
𝐸

𝑝
𝐵 to 𝐴

𝑠
𝐹

𝑟
𝐵

Fun𝐴\ℱ𝑖𝑏(𝒦)/𝐵(𝐸, 𝐹) ≔ Funcart
𝐴×𝐵(𝐸, 𝐹) ⊂ Fun𝐴×𝐵(𝐸, 𝐹)

is the quasi-category of maps of spans that define cartesian functors from 𝐸 to 𝐹 (see Proposition 7.1.7).

Since a two-sided isofibration from 𝐴 to 𝐵 is simply an isofibration over 𝐴 × 𝐵, we may refer to
𝒦/𝐴×𝐵 as the∞-cosmos of two-sided isofibrations from 𝐴 to 𝐵.

7.2.2. Proposition. For any∞-categories 𝐴 and 𝐵 in an∞-cosmos𝒦, the∞-cosmos of two-sided fibrations
is cosmologically embedded in the∞-cosmos of isofibrations 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵, with the inclusion creating
an∞-cosmos structure.

Proof. This inclusion factors as

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ≅ 𝑐𝑜𝒞𝑎𝑟𝑡(𝒞𝑎𝑟𝑡(𝒦)/𝐵)/𝐴×𝐵↠𝐵 (𝒞𝑎𝑟𝑡(𝒦)/𝐵)/𝐴×𝐵↠𝐵 (𝒦/𝐵)/𝐴×𝐵↠𝐵 ≅ 𝒦/𝐴×𝐵

and by Proposition 6.3.14, both inclusions are cosmological embeddings. �

7.2.3. Observation (two-sided fibrations generalize co/cartesian fibrations). By Exercise 7.1.ii, a two-
sided fibration from 𝐵 to 1 is a cocartesian fibration over 𝐵, while a two-sided fibration from 1 to 𝐵 is
a cartesian fibration over 𝐵. Indeed, as∞-cosmoi

𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≅ 𝐵\𝐹𝑖𝑏(𝒦)/1 and 𝒞𝑎𝑟𝑡(𝒦)/𝐵 ≅ 1\𝐹𝑖𝑏(𝒦)/𝐵.
In this sense, statements about two-sided fibrations simultaneously generalize statements about carte-
sian and cocartesian fibrations.

We now turn our attention to the promised closure properties:

7.2.4. Proposition. For any pair of functors 𝑎 ∶ 𝐴′ → 𝐴 and 𝑏 ∶ 𝐵′ → 𝐵, the cosmological pullback functor
restricts to define a cosmological functor

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵

𝐴′\ℱ𝑖𝑏(𝒦)/𝐵′ 𝒦/𝐴′×𝐵′

(𝑎,𝑏)∗ (𝑎,𝑏)∗

In particular, the pullback of a two-sided fibration is again a two-sided fibration.

Proof. By factoring the functor (𝑎, 𝑏) as 𝐴′ × 𝐵′ id×𝑏
𝐴′ × 𝐵

𝑎×id
𝐴× 𝐵 we see that it suffices

to consider pullback along one side at a time. Proposition 5.2.4 and Exercise 5.3.i prove that pullback
along 𝑏 ∶ 𝐵′ → 𝐵 preserves cartesian fibrations and cartesian functors, defining a restricted functor

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒦/𝐵

𝒞𝑎𝑟𝑡(𝒦)/𝐵′ 𝒦/𝐵′

𝑏∗ 𝑏∗
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Since limits and isofibrations in 𝒞𝑎𝑟𝑡(𝒦)/𝐵 are created in𝒦/𝐵, this restricted functor is cosmological
(see Lemma 10.1.1). Applying this result to the map

𝐴 × 𝐵′ 𝐴 × 𝐵

𝐴

id×𝑏

𝜋 𝜋

in the∞-cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴, we conclude that pullback restricts to define a cosmological functor

𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ≅ 𝒞𝑎𝑟𝑡(𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ∶ 𝐴×𝐵↠𝐴 (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ∶ 𝐴×𝐵↠𝐴 𝒦/𝐴×𝐵

𝐴\ℱ𝑖𝑏(𝒦)/𝐵′ ≅ 𝒞𝑎𝑟𝑡(𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ∶ 𝐴×𝐵′↠𝐴 (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ∶ 𝐴×𝐵′↠𝐴 𝒦/𝐴×𝐵′

(id×𝑏)∗ (id×𝑏)∗ (id×𝑏)∗ �

7.2.5. Lemma. If 𝐴
𝑞
𝐸

𝑝
𝐵 is a two-sided fibration from 𝐴 to 𝐵, 𝑣∶ 𝐴 ↠ 𝐶 is a cocartesian fibration

and 𝑢∶ 𝐵 ↠ 𝐷 is a cartesian fibration, then the composite span

𝐶 𝐴 𝐸 𝐵 𝐷𝑣 𝑞 𝑝 𝑢

defines a two-sided fibration from 𝐶 to𝐷. Moreover, a cartesian functor ℎ between two-sided fibrations from 𝐴
to 𝐵 induces a cartesian functor between two-sided fibrations from 𝐶 to 𝐷:

𝐸

𝐶 𝐴 𝐵 𝐷

𝐹

ℎ

𝑝𝑞

𝑣 𝑢

𝑠 𝑟

This whiskering composition does not define a cosmological functor from𝐴\ℱ𝑖𝑏(𝒦)/𝐵 to 𝐶\ℱ𝑖𝑏(𝒦)/𝐷
since the functor defined by composition with an isofibration (𝑣 × 𝑢)∗ ∶ 𝒦/𝐴×𝐵 → 𝒦/𝐶×𝐷 does not
preserve flexible weighted limits (see Non-Example 1.3.6).

Proof. By Theorem 7.1.4, it suffices to consider composition on one side at a time, say with a
cocartesian fibration 𝑣∶ 𝐴 ↠ 𝐶. Working in the ∞-cosmos 𝒞𝑎𝑟𝑡(𝒦)/𝐵, we are given cocartesian
fibrations

𝐸 𝐴 × 𝐵 𝐴 × 𝐵 𝐶 × 𝐵

𝐵 𝐵
𝑝

(𝑞,𝑝)

𝜋 𝜋

𝑣×id

𝜋

These compose to define a cocartesian fibration

𝐸 𝐶 × 𝐵

𝐵
𝑝

(𝑣𝑞,𝑝)

𝜋

and hence a two-sided fibration from 𝐶 to 𝐵, as desired.
By Lemma 5.2.3, the 𝑣𝑞-cocartesian cells are the 𝑞-cocartesian lifts of the 𝑣-cocartesian cells. If ℎ is

a cartesian functor from 𝑞 to 𝑠, then these are clearly preserved, proving that ℎ also defines a cartesian
functor from 𝑣𝑞 to 𝑣𝑠. By Proposition 7.1.7(iv) this proves that ℎ defines a cartesian functor between
the whiskered two-sided fibrations. �
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Proposition 7.2.4 and Lemma 7.2.5 combine to prove that two-sided fibrations can be composed
“horizontally.”

7.2.6. Proposition. The pullback of a two-sided fibration from 𝐴 to 𝐵 along a two-sided fibration from 𝐵 to
𝐶 defines a two-sided fibration from 𝐴 to 𝐶 as displayed.

𝐸 ×
𝐵
𝐹

𝐸 𝐹

𝐴 𝐵 𝐶

𝜋1 𝜋0

𝑞 𝑝 𝑠 𝑟

Proof. The composite two-sided fibration is constructed in two stages, first by pulling back

𝐸 ×
𝐵
𝐹 𝐹

𝐸 × 𝐶 𝐵 × 𝐶

(𝜋1,𝑟𝜋0) (𝑠,𝑟)

𝑝×𝐶

and then by composing the left leg with the cocartesian fibration 𝑞 ∶ 𝐸 ↠ 𝐴. By Proposition 7.2.4
and Lemma 7.2.5, the result is a two-sided fibration from 𝐴 to 𝐶. Alternatively, the composite can
be constructed by pulling back along 𝐴 × 𝑠 and composing with the cartesian fibration 𝑟 ∶ 𝐹 ↠ 𝐶,
resulting in another two-sided fibration from 𝐴 to 𝐶 that is canonically isomorphic to the first. �

With these results in hand, we may add to our library of examples:

7.2.7. Example. If 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration and 𝑞 ∶ 𝐹 ↠ 𝐴 is a cocartesian fibration, then the
span formed by composing with the product-projections

𝐴
𝑞
𝐹

𝜋
𝐹 × 𝐸

𝜋
𝐸

𝑝
𝐵

defines a two-sided fibration from 𝐴 to 𝐵 by Exercise 7.1.i.

7.2.8. Example. By Proposition 7.1.6 and Proposition 7.2.4, a general comma span

𝐶 Hom𝐴(𝑓 , 𝑔) 𝐵
𝑝1 𝑝0

is a two-sided fibration, as a pullback of 𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴.

7.2.9. Example. By Proposition 7.2.6 and Example 7.2.8, horizontal composites of comma spans are also

two-sided fibrations. For instance, the two-sided fibrations 𝐴
𝑝𝑛 𝐴𝕟+𝟙 𝑝0 𝐴 are 𝑛-ary horizontal

composites of the arrow span 𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴.

Other notable two-sided fibrations include horizontal composites of comma spans, one instance of
which features prominently in the next section.

229



Exercises.

7.2.i. Exercise. Consider a diagram in which ℎ and 𝑘 define cartesian functors between two-sided
fibrations from 𝐴 to 𝐵 and from 𝐵 to 𝐶, respectively:

𝐸 𝐹

𝐴 𝐵 𝐶

𝐸′ 𝐵′

𝑞 𝑝

ℎ 𝑘

𝑠 𝑟

𝑞′ 𝑝′ 𝑠′ 𝑟′

Prove that ℎ and 𝑘 pull back to define a cartesian functor (ℎ, 𝑘) ∶ 𝐸 ×
𝐵
𝐹 → 𝐸′ ×

𝐵
𝐹′ between two-sided

fibrations from 𝐴 to 𝐶.

7.3. The Two-Sided Yoneda Lemma

In this section, we prove a two-sided version of the Yoneda lemma using the following notion of
representable two-sided fibration:

7.3.1. Definition. For any span of generalized elements 𝐴
𝑎
𝑋

𝑏
𝐵, the span

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏)

Hom𝐴(𝑎, 𝐴) Hom𝐵(𝐵, 𝑏)

𝐴 𝑋 𝐵

𝜋1 𝜋0

𝑝1 𝑝0 𝑝1 𝑝0

defines a two-sided fibration from 𝐴 to 𝐵 that we refer to as the two-sided fibration represented
by 𝑎 and 𝑏. As is the case for one-sided representables, there is a canonical generalized element
(id𝑎, id𝑏) ∶ 𝑋 → Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏) in the fiber over (𝑎, 𝑏) ∶ 𝑋 → 𝐴 × 𝐵.

The terminology of Definition 7.3.1 is justified by the Yoneda lemma for two-sided fibrations,
which we prove using the Yoneda lemma for generalized elements of Corollary 5.7.19.

7.3.2. Theorem (Yoneda lemma). For any span of generalized elements 𝐴
𝑎
𝑋

𝑏
𝐵 and any two-sided

fibration 𝐴
𝑞
𝐸

𝑝
𝐵, restriction along the element (id𝑎, id𝑏) ∶ 𝑋 → Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏) defines

an equivalence of quasi-categories

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏)

𝐴 × 𝐵

(𝑝1𝜋1,𝑝0𝜋0)
,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎟
⎠

∼

ev(id𝑎,id𝑏) Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝑋

𝐴 × 𝐵

(𝑎,𝑏) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

.

Proof. We prove this result using the perspective of Theorem 7.1.4(i), considering the target

two-sided fibration𝐴
𝑞
𝐸

𝑝
𝐵 in an∞-cosmos𝒦 as a cartesian fibration over 𝜋∶ 𝐴×𝐵 ↠ 𝐴 in the

∞-cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴×𝐵. We deduce this result by applying Corollary 5.7.19 twice: first for cartesian
fibrations over 𝜋∶ 𝐴 × 𝐵 ↠ 𝐴 in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 and then for cocartesian fibrations over 𝐴 in𝒦.
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To prepare for the first application of Yoneda, we need to produce a generalized element with
codomain 𝜋∶ 𝐴 × 𝐵 ↠ 𝐴 in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 from the map

𝑋 𝐴 × 𝐵

𝐴
𝑎

(𝑎,𝑏)

𝜋
(7.3.3)

over 𝐴. Corollary 5.7.19 supplies an equivalence

Funcart
𝐴 (Hom𝐴(𝑎, 𝐴) 𝑝1 𝐴,𝐴 × 𝐵 𝜋 𝐴) Fun𝐴(𝑋

𝑎 𝐴,𝐴 × 𝐵 𝜋 𝐴)∼evid𝑎

which tells us that the reflection of 𝑎 ∶ 𝑋 → 𝐴 into 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴 is given by 𝑝1 ∶ Hom𝐴(𝑎, 𝐴) ↠ 𝐴.
So we take our generalized element to be the cartesian functor between cocartesian fibrations over 𝐴

Hom𝐴(𝑎, 𝐴) 𝐴 × 𝐵

𝐴
𝑝1

(𝑝1,𝑏𝑝0)

𝜋
(7.3.4)

which restricts along id𝑎 ∶ 𝑋 → Hom𝐴(𝑎, 𝐴) to (7.3.3).
By Corollary 5.7.19 once more, the reflection of the object (7.3.4) from (𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴)/𝜋 ∶ 𝐴×𝐵↠𝐴

into 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 is given by the codomain projection from its right comma representation, formed in
𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴. This recovers the two-sided fibration

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏) 𝐴 × 𝐵

𝐴

(𝑝1𝜋1,𝑝0𝜋0)

𝑝1𝜋1
𝜋

Thus, that result supplies an equivalence

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏)

𝐴 × 𝐵

,
𝐸

𝐴 × 𝐵

⎞
⎟
⎟
⎟
⎟
⎠

∼

ev(id,id𝑏𝑝0) Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴)

𝐴 × 𝐵

(𝑝1,𝑏𝑝0) ,
𝐸

𝐴 × 𝐵

⎞
⎟
⎟
⎟
⎠

where the right-hand functor space is defined by the pullback

Funcart
𝐴×𝐵(Hom𝐴(𝑎, 𝐴), 𝐸) Funcart

𝐴 (Hom𝐴(𝑎, 𝐴) 𝑝1 𝐴,𝐸 𝑞 𝐴)

𝟙 Funcart
𝐴 (Hom𝐴(𝑎, 𝐴) 𝑝1 𝐴,𝐴 × 𝐵 𝜋 𝐴)

(𝑞,𝑝)∗
(𝑝1,𝑏𝑝0)

of functor spaces in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴. Corollary 5.7.19 again supplies natural equivalences

Funcart
𝐴 (Hom𝐴(𝑎, 𝐴) 𝑝1 𝐴,𝐸 𝑞 𝐴) Fun𝐴(𝑋, 𝐸)

Funcart
𝐴 (Hom𝐴(𝑎, 𝐴) 𝑝1 𝐴,𝐴 × 𝐵 𝜋 𝐴) Fun𝐴(𝑋,𝐴 × 𝐵)

(𝑞,𝑝)∗

∼evid𝑎

(𝑞,𝑝)∗

∼evid𝑎
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which induce an equivalence between the fiber of the left-hand isofibration over (𝑝1, 𝑏𝑝0) and the
fiber of the right-hand isofibration over (𝑝1, 𝑏𝑝0) ⋅ id𝑎 = (𝑎, 𝑏). To compute this fiber, observe that the
right-hand isofibration is itself a pullback

Fun𝐴×𝐵(𝑋, 𝐸) Fun𝐴(𝑋, 𝐸) Fun(𝑋, 𝐸)

𝟙 Fun𝐴(𝑋,𝐴 × 𝐵) Fun(𝑋,𝐴 × 𝐵)

𝟙 Fun(𝑋,𝐴)

(𝑞,𝑝)∗ 𝑞∗
(𝑞,𝑝)

(𝑎,𝑏)

𝜋∗
𝑎

The composite equivalence is the map defined by precomposition with the canonical generalized
element completing the proof.

Funcart
𝐴×𝐵(Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏), 𝐸) Funcart

𝐴×𝐵(Hom𝐴(𝑎, 𝐴), 𝐸) Fun𝐴×𝐵(𝑋, 𝐸)
∼

ev(id𝑎,id𝑏)

∼

ev(id,id𝑏𝑝0) ∼evid𝑎

�

As with Corollary 5.7.19, we interpret Theorem 7.3.2 as defining a left biadjoint to the inclusion of

the subcategory of two-sided fibrations, sending a span 𝐴
𝑎
𝑋

𝑏
𝐵 to the two-sided isofibration

constructed in Definition 7.3.1. In the case of spans represented by a single nonidentity functor a
“one-sided” version of Theorem 7.3.2, which is much more simply established, may be preferred:

7.3.5. Proposition (one-sided Yoneda for two-sided fibrations). For any functor 𝑓 ∶ 𝐴 → 𝐵 and two-sided
isofibration𝐴

𝑞
𝐸

𝑝
𝐵, restriction along id𝑓 ∶ 𝐴 → Hom𝐵(𝐵, 𝑓 ) induces an equivalence of quasi-categories

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐵(𝐵, 𝑓 )

𝐴 × 𝐵

(𝑝1,𝑝0) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼

evid𝑓
Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝐴

𝐴 × 𝐵

(id𝐴,𝑓 ) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

.

Proof. This follows by applying the Yoneda lemma of Theorem 5.7.3 to the element (id, 𝑓 ) ∶ 𝐴 →
𝐴 × 𝐵 and the cartesian fibration (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 in the∞-cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴. �

Exercises.

7.3.i. Exercise. State and prove the other one-sidedYoneda lemma for two-sided fibrations, establishing
an equivalence of functor spaces induced by restricting along the functor id𝑓 ∶ 𝐵 → Hom𝐴(𝑓 , 𝐴).

Funcart
𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑓 , 𝐴)

𝐴 × 𝐵

(𝑝1,𝑝0) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼ Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝐵

𝐴 × 𝐵

(𝑓 ,id) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠
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7.4. Modules as Discrete Two-Sided Fibrations

We now turn our attention to the special properties of certain two-sided fibrations, such as comma
spans, which are discrete as objects in a sliced∞-cosmos.

7.4.1. Definition. A module from 𝐴 to 𝐵 in an ∞-cosmos 𝒦 is a two-sided fibration 𝐴
𝑞
𝐸

𝑝
𝐵

that is a discrete object in 𝐴\ℱ𝑖𝑏(𝒦)/𝐵.

An object in the cosmologically embedded∞-cosmos 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 𝒦/𝐴×𝐵 is discrete in there if
and only if it is discrete as an object of𝒦/𝐴×𝐵 (see Exercise 6.3.iv). Our work in this chapter enables us
to give a direct characterization of modules:

7.4.2. Proposition. A two-sided isofibration 𝐴
𝑞
𝐸

𝑝
𝐵 defines a module from 𝐴 to 𝐵 if and only if it is

(i) cocartesian on the left,
(ii) cartesian on the right,
(iii) and discrete as an object of𝒦/𝐴×𝐵.

Proof. Comparing Definition 7.4.1 with the statement, we see that we need only argue that these
three properties suffice to prove that 𝐸 is a two-sided fibration from 𝐴 to 𝐵. Theorem 7.1.4(iv) tells us
that a two-sided fibration 𝐸 from𝐴 to 𝐵 in𝒦 is a two-sided isofibration that is cocartesian on the left,
cartesian on the right, and for which a certain natural transformation with codomain 𝐸 in𝒦/𝐴×𝐵 is an
isomorphism. When 𝐸 is a discrete object in𝒦/𝐴×𝐵 all natural transformations with codomain 𝐸 are
invertible, so properties (i), (ii), and (iii) suffice. �

The following properties of modules are easily deduced from our results about two-sided fibrations.

7.4.3. Lemma. If 𝐴
𝑞
𝐸

𝑝
𝐵 defines a module from 𝐴 to 𝐵 in an∞-cosmos𝒦, then

(i) The functors displayed below define a discrete cocartesian fibration and a discrete cartesian fibration,
respectively, in the∞-cosmoi 𝒞𝑎𝑟𝑡(𝒦)/𝐵 and 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴.

𝐸 𝐴 × 𝐵 𝐸 𝐴 × 𝐵

𝐵 𝐴
𝑝

(𝑞,𝑝)

𝜋 𝑞

(𝑞,𝑝)

𝜋

(ii) The functors 𝑞 ∶ 𝐸 ↠ 𝐴 and 𝑝∶ 𝐸 ↠ 𝐵 respectively define a cocartesian fibration and a cartesian
fibration in𝒦.

(iii) For any natural transformation 𝜓 with codomain 𝐸, 𝜓 is 𝑝-cartesian if and only if 𝑞𝜓 is invertible,
and 𝜓 is 𝑞-cocartesian if and only if 𝑝𝜓 is invertible.

(iv) In particular, any natural transformation that is fibered over 𝐴 × 𝐵 is both 𝑝- and 𝑞-cocartesian and
any map of spans from a two-sided fibration

𝐹

𝐴 𝐵

𝐸

𝑠 𝑟

ℎ

𝑞 𝑝

to a module defines a cartesian functor of two-sided fibrations, and also a cartesian functor from 𝑠 to 𝑞
and from 𝑟 to 𝑝.
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Proof. By Lemma 7.1.1, conditions (ii) and (iii) of Proposition 7.4.2 combine to tell us that the two-
sided isofibration (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 defines a discrete cartesian fibration in𝒦/𝐴. Since modules are
two-sided fibrations and discreteness is reflected by cosmological embeddings, in fact (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴×𝐵
defines a discrete cartesian fibration in 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐴, proving (i).

Statement (ii) holds for any two-sided fibration (see Lemma 7.1.1(iv)). The point of reasserting it
here is that it is to emphasize that the legs of a module are not necessarily discrete fibrations themselves
(see Exercise 7.4.i).

One direction of statement (iii) is proven as Lemma 7.1.1(iv). For the converse, consider a natural
transformation 𝜓 with codomain 𝐸 and suppose 𝑞𝜓 is invertible. Composing with a lift of 𝑞𝜓−1 along
the isofibration 𝑞 ∶ 𝐸 ↠ 𝐴, we see that 𝜓 is isomorphic to a natural transformation 𝜓′ with 𝑞𝜓′ an
identity. By isomorphism stability of 𝑝-cartesian transformations, it suffices to prove that 𝜓′ is 𝑝-
cartesian. By Proposition 3.6.2, 𝜓′ can be lifted along the smothering 2-functor 𝔥(𝒦/𝐴) → (𝔥𝒦)/𝐴 to a
natural transformation in the sliced∞-cosmos𝒦/𝐴 with codomain 𝑞 ∶ 𝐸 ↠ 𝐴; as we typically perform
such liftings without comment, we retain the notation𝜓′ for the fibered natural transformation in𝒦/𝐴.
Since (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 is a discrete cartesian fibration in𝒦/𝐴, every such natural transformation
is (𝑞, 𝑝)-cartesian. By Theorem 5.2.8(iii), it follows that 𝜓′ is isomorphic to a whiskered copy of the
counit of the fibered adjunction Δ𝑝 ⊣ 𝑟 over 𝐴 × 𝐵. As the same data, regarded this time as a fibered
adjunction over 𝐵, witnesses the fact that 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration, Theorem 5.2.8(iii) also
tells us that 𝜓′ and thus 𝜓 is 𝑝-cartesian, as claimed.

Statement (iv) follows from (iii) and Proposition 7.1.7(iv). �

As the modules are exactly the discrete objects in the∞-cosmos of two-sided fibrations:

7.4.4. Corollary. For any∞-categories 𝐴 and 𝐵 in an∞-cosmos𝒦, there is a cosmologically embedded
∞-cosmos

𝐴\ℳ𝑜𝑑(𝒦)/𝐵 𝐴\ℱ𝑖𝑏(𝒦)/𝐵

𝒦/𝐴×𝐵

defined as a full subcategory of either the∞-cosmos of two-sided fibrations from 𝐴 to 𝐵 or of the∞-cosmos of
isofibrations from 𝐴 to 𝐵.

Proof. Proposition 6.1.6 proves that 𝐴\ℳ𝑜𝑑(𝒦)/𝐵 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 is a cosmologically embedded
sub∞-cosmos in the∞-cosmos of Proposition 7.2.2, while Lemma 7.4.3(iv) proves that the inclusion

𝐴\ℳ𝑜𝑑(𝒦)/𝐵 ↪ 𝒦/𝐴×𝐵 is also full. �

An important property of modules is that they are stable under pullback:

7.4.5. Proposition. If 𝐴 ↞ 𝐸 ↠ 𝐵 is a module from 𝐴 to 𝐵 and 𝑎 ∶ 𝐴′ → 𝐴 and 𝑏 ∶ 𝐵′ → 𝐵 are any
pair of functors, then the pullback defines a module 𝐴′ ↞ 𝐸(𝑏, 𝑎) ↠ 𝐵′ from 𝐴′ to 𝐵′.

𝐸(𝑏, 𝑎) 𝐸

𝐴′ × 𝐵′ 𝐴 × 𝐵𝑎×𝑏

Proof. The cosmological functor (𝑎, 𝑏)∗ ∶ 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ⟶ 𝐴′\ℱ𝑖𝑏(𝒦)/𝐵′ of Proposition 7.2.4, like
all cosmological functors, preserves discrete objects. �
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Applying Proposition 7.4.5 to a pair of elements 𝑎 ∶ 1 → 𝐴 and 𝑏 ∶ 1 → 𝐵, we see that a module
from 𝐴 to 𝐵 is a two-sided fibration whose fibers 𝐸(𝑏, 𝑎) are discrete∞-categories. The converse does
not generally hold, as being discrete as an object of the sliced∞-cosmos𝒦/𝐴×𝐵 is a stronger condition
than merely having discrete fibers. However, when𝒦 is an∞-cosmos of (∞, 1)-categories, Proposition
12.2.3 proves that discreteness in a slice is implied by fiberwise discreteness.

The prototypical examples of modules are given by the arrow and comma∞-category constructions.

7.4.6. Proposition (comma∞-categories are modules).

(i) For any∞-category 𝐴, the arrow∞-category 𝐴𝟚 defines a module from 𝐴 to 𝐴.
(ii) For any cospan 𝐶

𝑔
𝐴

𝑓
𝐵, the comma∞-category Hom𝐴(𝑓 , 𝑔) defines a module from 𝐶 to 𝐵.

As just remarked, the fact that 𝐴𝟚 ↠ 𝐴 × 𝐴 is discrete is related to but stronger than the fact,
proven in Proposition 3.4.10, that the mapping space between any pair of elements of 𝐴 is a discrete
∞-category.

Proof. By Proposition 7.4.5, the second statement follows from the first, but it is no harder to
prove both statements at once from our suite of established results. Proposition 7.1.6 and Example
7.2.8 prove that arrow and comma spans define two-sided fibrations, so it remains only to verify the
discreteness conditions. By Lemma 5.5.1, discreteness of 𝐴𝟚 ↠ 𝐴× 𝐴 in the sliced ∞-cosmos over
𝐴 × 𝐴 and Hom𝐴(𝑓 , 𝑔) ↠ 𝐶 × 𝐵 in the sliced∞-cosmos over 𝐶 × 𝐵 are immediate consequences of
2-cell conservativity of Proposition 3.2.5 and Proposition 3.4.6: for the latter, if 𝜏 is any 2-cell with
codomain Hom𝐴(𝑓 , 𝑔) so that 𝑝1𝜏 and 𝑝0𝜏 are invertible, then 𝜏 is itself invertible. �

Two special cases of these comma modules, those studied in §3.5, deserve a special name:

7.4.7. Definition. To any functor 𝑓 ∶ 𝐴 → 𝐵 between∞-categories

(i) the module Hom𝐵(𝐵, 𝑓 ) from 𝐴 to 𝐵 is right or covariantly represented by 𝑓, while
(ii) the module Hom𝐵(𝑓 , 𝐵) from 𝐵 to 𝐴 is left or contravariantly represented by 𝑓.

More generally, a module is covariantly or contravariantly represented by 𝑓 if it is fibered equivalent
to the left or right represented modules.

As in §5.7, the Yoneda lemma for two-sided fibrations simplifies when mapping into a module on
account of the observation in Lemma 7.4.3(iv) that any map of spans from a two-sided fibration to a
module defines a cartesian functor.

7.4.8. Theorem (Yoneda for modules). For any span of generalized elements 𝐴
𝑎
𝑋

𝑏
𝐵 and any module

𝐴
𝑞
𝐸

𝑝
𝐵, restriction along (id𝑎, id𝑏) ∶ 𝑋 → Hom𝐴(𝑎, 𝐴) ×

𝑋
Hom𝐵(𝐵, 𝑏) defines an equivalence of Kan

complexes

Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎜
⎝

Hom𝐴(𝑎, 𝐴) ×
𝑋

Hom𝐵(𝐵, 𝑏)

𝐴 × 𝐵

(𝑝1𝜋1,𝑝0𝜋0)
,

𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎟
⎠

∼

ev(id𝑎,id𝑏) Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝑋

𝐴 × 𝐵

(𝑎,𝑏) ,
𝐸

𝐴 × 𝐵

(𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

.
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and for any functors 𝑓 ∶ 𝐴 → 𝐵 or 𝑔∶ 𝐵 → 𝐴, restriction along id𝑓 ∶ 𝐴 → Hom𝐵(𝐵, 𝑓 ) or id𝑔 ∶ 𝐵 →
Hom𝐴(𝑔, 𝐴) define equivalences of Kan complexes

Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐵(𝐵, 𝑓 ) 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(𝑝1,𝑝0) , (𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼

evid𝑓
Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝐴 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(id,𝑓 ) , (𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

Hom𝐴(𝑔, 𝐴) 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(𝑝1,𝑝0) , (𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

∼

evid𝑔
Fun𝐴×𝐵

⎛
⎜
⎜
⎜
⎝

𝐵 𝐸

𝐴 × 𝐵 𝐴 × 𝐵

(𝑔,id) , (𝑞,𝑝)

⎞
⎟
⎟
⎟
⎠

. �

We have not yet explained the curious terminology – why we refer to discrete two-sided fibrations
as “modules.” This moniker is intended to suggest a deep structural analogy between the calculus of
modules and the calculus of the more familiar algebraic structure, a subject to which we now turn.

Exercises.

7.4.i. Exercise. Demonstrate by means of an example that if 𝐴
𝑞
𝐸

𝑝
𝐵 defines a module from 𝐴 to

𝐵 then it is not necessarily the case that 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration or 𝑞 ∶ 𝐸 ↠ 𝐴 is a
discrete cocartesian fibration.

7.4.ii. Exercise.

(i) Explain why the two-sided fibration (𝑝𝑛−1, 𝑝0) ∶ 𝐴𝕟 ↠ 𝐴× 𝐴 of Proposition 7.1.6 does not
define a module for 𝑛 > 2.

(ii) Conclude that the horizontal composite of modules, as defined in Proposition 7.2.6, is not
necessarily a module.

7.4.iii. Exercise. State and prove an analogue of Exercise 7.1.ii characterizing modules from 1 to 𝐵 and
modules from 𝐵 to 1, and resolve any apparent conflicts between this statement and Exercise 7.4.i.
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CHAPTER 8

The Calculus of Modules

The calculus of modules between ∞-categories bears a strong resemblance to the calculus of
(bi)modules between unital rings. Here∞-categories take the place of rings, with functors between
∞-categories playing the role of ring homomorphisms, which we display vertically in the following
table. A module 𝐸 from𝐴 to 𝐵, like the two-sided fibrations considered in Chapter 7, is an∞-category
on which 𝐴 “acts on the left” and 𝐵 “acts on the right” and these actions commute; this is analogous
to the notation of 𝐴–𝐵 bimodule in ring theory and explains our choice of terminology. A module

𝐴
𝑞
𝐸

𝑝
𝐵 will now be depicted as 𝐴

𝐸
𝐵 whenever explicit names for the legs of the constituent

span are not needed.

unital rings 𝐴 ∞-categories

ring homomorphisms
𝐴′

𝐴

𝑓 ∞-functors

bimodules between rings 𝐴 𝐵𝐸 modules between∞-categories

module maps
𝐴′ 𝐵′

𝐴 𝐵

𝑓 ⇓𝛼

𝐸′

𝑔

𝐸

module maps

Finally, there is a notion of module map whose boundary is a square comprised of two modules
and two functors as displayed. In ring theory, a module map with this boundary is given by an 𝐴′–𝐵′

module homomorphism 𝐸′ → 𝐸(𝑔, 𝑓 ), whose codomain is the 𝐴′–𝐵′ bimodule defined by restricting
the scalar multiplication in the 𝐴–𝐵 module 𝐸 along the ring homomorphisms 𝑓 and 𝑔. A similar idea
is encoded by Definition 8.1.4.

The analogy extends deeper than this: unital rings, ring homomorphisms, bimodules, and module
maps define a proarrow equipment, in the sense of Wood [132].¹ Our main result in this chapter is
Theorem 8.2.6, which asserts that∞-categories, functors, modules, and module maps in any∞-cosmos
define a virtual equipment, in the sense of Cruttwell and Shulman [32].

As a first step, in §8.1 we introduce the double category of two-sided isofibrations, which restricts
to define a virtual double category of modules. A double category is a sort of 2-dimensional category
with objects; two varieties of 1-morphisms, the “horizontal” and the “vertical”; and 2-dimensional cells
fitting into “squares” whose boundaries consist of horizontal and vertical 1-morphisms with compatible
domains and codomains (see Definition B.1.9). A motivating example from abstract algebra is the

¹This can be seen as a special case of the prototypical equipment comprised of𝒱-categories,𝒱-functors,𝒱-modules,
and 𝒱-natural transformations between them, for any closed symmetric monoidal category 𝒱. The equipment for rings
is obtained from the case where 𝒱 is the category of abelian groups by restricting to abelian group enriched categories
with a single object.
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double category of modules: objects are rings, vertical morphisms are ring homomorphisms, horizontal
morphisms are bimodules, and whose squares are bimodule homomorphisms. Vertical composition is by
composing homomorphisms, a strictly associative and unital operation, while horizontal composition
is by tensor product of modules, which is associative and unital up to coherent natural isomorphism.
In the literature, this sort of structure is sometimes called a pseudo double category – morphisms and
squares compose strictly in the “vertical” direction but only up to isomorphism in the “horizontal”
direction – but we refer to this simply as a “double category” as it is the only variety considered in the
main text.²

Our aim in §8.1 is to describe a similar structure whose objects and vertical morphisms are the
∞-categories and functors in any fixed∞-cosmos, whose horizontal morphisms are modules, and whose
squares are module maps. If the horizontal morphisms are replaced by the larger class of two-sided
fibrations or the still larger class of two-sided isofibrations, then thesemorphisms assemble into a double
category with the horizontal composition operation defined by Proposition 7.2.6 (see Proposition 8.1.6).
However, this horizontal composition operation does not preserve modules: the arrow∞-category 𝐴𝟚

defines a module from 𝐴 to 𝐴 whose horizontal composite with itself is equivalent to the two-sided
fibration (𝑝2, 𝑝0) ∶ 𝐴𝟛 ↠ 𝐴×𝐴 of Proposition 7.1.6, which is not discrete in the sliced∞-cosmos over
𝐴 × 𝐴. To define a genuine “tensor product for modules” operation requires a two-stage construction:
first forming the pullback that defines a composite two-sided fibration as in Proposition 7.2.6, and
then reflecting this into a two-sided discrete fibration by means of some sort of “homotopy coinverter”
construction. As colimits that are not within the purview of the axioms of an∞-cosmos, this presents
somewhat of an obstacle.³

Rather than leave the comfort of our axiomatic framework in pursuit of a double category of
modules, we instead describe the structure that naturally arises within the axiomatization, which
turns out to be familiar to category theorists and robust enough for our desired applications. We
first demonstrate that ∞-categories, functors, modules, and module maps assemble into a virtual
double category, a weaker structure than a double category in which cells are permitted to have a multi
horizontal source, as a “virtual” replacement for horizontal composition of modules. Virtual double
categories relate to double categories as multicategories relate to monoidal categories; indeed virtual
double categories are the “generalized multicategories” defined relative to the free category monad on
directed graphs [32, 76].

A virtual equipment is a virtual double category satisfying two additional axioms. One of these

provides a “restriction of scalars” operation, allowing a horizontal morphism 𝐴
𝐸

𝐵 to be pulled back
along a pair of vertical morphisms 𝑓 ∶ 𝐴′ → 𝐴 and 𝑔∶ 𝐵′ → 𝐵. The other condition requires each
object to have a horizontal “unit” morphism, satisfying a suitable universal property that serves as
a substitute, in the absence of a composition operation, for the unital composition rules. Once the
definition of a virtual equipment is given in §8.2, these axioms follow easily from the results of Chapter
7. The final two sections are devoted to exploring the consequences of this structure, which are put to
full use in the development of the formal category theory of∞-categories in Chapter 9. In §8.3, we
explain how certain horizontal composites of modules can be recognized in the virtual equipment,
even if the general construction of the tensor product of an arbitrary composable pair of modules is

²Strict double categories make a brief appearance in Theorem B.3.6 to express the functoriality of the mates corre-
spondence.

³The ∞-cosmoi that one encounters in practice in fact admit all flexible weighted homotopy colimits – including
homotopy coinverters in particular – as they tend to be accessible in a sense defined by Bourke, Lack, and Vokřínek [21]
(see Digression E.1.8).
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not known. The final §8.4 collects together many special properties of the modules𝐴
Hom𝐵(𝐵,𝑘) 𝐵 and

𝐵
Hom𝐵(𝑘,𝐵) 𝐴 represented by a functor 𝑘 ∶ 𝐴 → 𝐵 of∞-categories, revisiting some of the properties

first established in §3.5.

8.1. The Double Category of Two-Sided Isofibrations

Recall from Corollary 7.4.4 that the∞-cosmos of modules may be defined as a full subcategory of
either the∞-cosmos of two-sided fibrations or the∞-cosmos of two-sided isofibrations. This presents
us with two options for constructing the virtual double category of modules, which may be realized as
a full subcategory of the double category of two-sided fibrations or of the double category of two-sided
isofibrations. We adopt the latter tactic as it is marginally simpler, but the reader is invited to opt for
the former route instead (see Exercise 8.1.iv).

Our first task is to define the 2-dimensional morphisms in the double categories that we will
introduce.

8.1.1. Definition. A fibered map of two-sided isofibrations from 𝐴
𝑞
𝐸

𝑝
𝐵 to 𝐴

𝑠
𝐹

𝑟
𝐵 is a

fibered isomorphism class of strictly commuting functors

𝐸

𝐴 𝐵

𝐹

𝑎

𝑝𝑞

𝑟𝑠

where two such functors 𝑎 and 𝑎′ are considered equivalent if there exists a natural isomorphism
𝛾∶ 𝑎 ≅ 𝑎′ so that 𝑠𝛾 = id𝑞 and 𝑟𝛾 = id𝑝.

When 𝐴
𝑞

𝐸
𝑝

𝐵 and 𝐴
𝑠

𝐹
𝑟

𝐵 are modules, we refer to a fibered map of two-sided
isofibrations between them as fibered map of modules from 𝐸 to 𝐹.
8.1.2. Observation (the 1-categories of modules and fibered maps). The 1-category of two-sided
isofibrations from 𝐴 to 𝐵 in an∞-cosmos𝒦 and fibered maps may be obtained as a quotient of the
quasi-categorically enriched category𝒦/𝐴×𝐵, or of its homotopy 2-category 𝔥(𝒦/𝐴×𝐵), or of the slice
homotopy 2-category 𝔥𝒦/𝐴×𝐵. The quotient 1-category has the same collection of objects and has
isomorphism classes of functors as its morphisms.

By Lemma 7.4.3, the 1-category of modules from 𝐴 to 𝐵 and fibered maps is a full subcategory, or
alternatively may be regarded as a quotient of the Kan complex enriched category 𝐴\ℳ𝑜𝑑(𝒦)/𝐵, or of
its homotopy 2-category 𝔥(𝐴\ℳ𝑜𝑑(𝒦)/𝐵) in the same manner.

The 1-categories of Observation 8.1.2 are of interest because they precisely capture the correct
notion of equivalence between two-sided isofibrations or modules first introduced in Definition 3.2.7.

8.1.3. Lemma. In an∞-cosmos𝒦:
(i) A pair of two-sided isofibrations are equivalent in 𝒦/𝐴×𝐵 if and only if they are isomorphic in the

1-category of two-sided isofibrations from 𝐴 to 𝐵.
(ii) A pair of modules are equivalent over 𝐴 times 𝐵 if and only if they are isomorphic in the 1-category of

modules from 𝐴 to 𝐵. �

Each of the definitions just presented admits a common generalization, which defines the 2-dimen-
sional maps inhabiting squares.
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8.1.4. Definition (maps in squares). A map of modules or a map of two-sided isofibrations from

𝐴′ 𝑞′
𝐸′ 𝑝′

𝐵′ to 𝐴
𝑞
𝐸

𝑝
𝐵 over 𝑓 ∶ 𝐴′ → 𝐴 and 𝑔∶ 𝐵′ → 𝐵, depicted as

𝐴′ 𝐵′

𝐴 𝐵

𝑓 ⇓𝛼

𝐸′

𝑔

𝐸

is a fibered isomorphism class of strictly commuting functors 𝑎

𝐴′ 𝐸′ 𝐵′

𝐴 𝐸 𝐵

𝑓

𝑞′ 𝑝′

𝑎 𝑔

𝑞 𝑝

where two such functors 𝑎 and 𝑎′ are considered equivalent if there exists a natural isomorphism
𝛾∶ 𝑎 ≅ 𝑎′ so that 𝑞𝛾 = id𝑎𝑞′ and 𝑝𝛾 = id𝑏𝑝′ .

8.1.5. Observation. In the case of modules or two-sided isofibrations, the functor space Fun𝑓 ×𝑔(𝐸′, 𝐸)
of maps from 𝐸′ to 𝐸 over 𝑓 × 𝑔 is defined by the pullback

Fun𝑓 ×𝑔(𝐸′, 𝐸) Fun(𝐸′, 𝐸)

𝟙 Fun(𝐸′, 𝐴 × 𝐵)

(𝑞,𝑝)

(𝑓 𝑞′,𝑔𝑝′)

As in Observation 8.1.2, module maps are defined to be isomorphism classes of objects in this functor
space.

We now introduce the double category of two-sided isofibrations. This structure can be viewed
either as a collection of data present in the homotopy 2-category 𝔥𝒦 of an∞-cosmos or as a quotient
of quasi-categorically enriched structures described in Exercise 8.1.i. In some sense the latter point of
view is more natural, since its horizontal composition is characterized by a strict universal property
and no isomorphism classes of maps are required, but the 2-categorical approach is more familiar and
provides a convenient setting within which to develop the formal category theory of∞-categories.

8.1.6. Proposition (the double category of two-sided isofibrations). The homotopy 2-category of an
∞-cosmos𝒦 supports a (non-unital) double category of two-sided isofibrations whose:

• objects are∞-categories,
• vertical arrows are functors,

• horizontal arrows 𝐴
𝐸

𝐵 are two-sided isofibrations 𝐴
𝑞
𝐸

𝑝
𝐵, and

• cells with boundary

𝐴′ 𝐵′

𝐴 𝐵

𝑓 ⇓𝛼

𝐸′

𝑔

𝐸
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are maps of two-sided isofibrations over 𝑓 × 𝑔, or equivalently, are isomorphism classes of objects in the
quasi-category Fun𝑓 ×𝑔(𝐸′, 𝐸).

Proof. Vertical composition of arrows and cells is by composition in 𝒦. The composition of
horizontal arrows is defined in Proposition 7.2.6, while the horizontal composition of cells is defined
in Exercise 7.2.i. By simplicial functoriality of pullback and composition in𝒦, both constructions are
associative up to canonical natural isomorphism. �

The double category just introduced does not contain horizontal unit arrows. For technical reasons,
we find it most convenient to leave them out.

8.1.7. Remark (why the horizontal unit is missing). The unit for the span composition operation
defined in Proposition 7.2.6 is the identity span, which is not typically a two-sided isofibration. Rather
than formally adjoin horizontal units to the “double category” of Proposition 8.1.6, we find it less
confusing to leave them out because when we restrict to the structure of greatest interest – the virtual
equipment of modules – we will see that the arrow∞-category plays the role of the horizontal unit for
composition in a sense to be described in Proposition 8.2.4, even though it does not define a horizontal
composition unit for the span composition operation.

By Exercise 7.4.ii, modules do not form double category under span composition, which leads us to
search for another categorical structure to axiomatize their behavior. A virtual double category is a
multicategorical analogue of a double category appropriate for settings when horizontal composition
and units may or may not be defined. This notion has been studied by Burroni [23] and Leinster [76]
under various names, though we adopt the terminology and notation of Cruttwell and Shulman [32].

8.1.8. Definition (virtual double category). A virtual double category consists of

• a category of objects and vertical arrows
• for any pair of objects 𝐴,𝐵, a collection of horizontal arrows 𝐴 ⇸ 𝐵
• cells, with boundary depicted as follows

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵𝑛

𝑓

𝐸1

⇓𝛼

𝐸2 𝐸𝑛

𝑔

𝐹

(8.1.9)

including, in the case 𝐴0 = 𝐴𝑛, those whose horizontal source has length zero
• a composite cell as below-right, for any configuration as below-left

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶0 𝐶𝑛

𝑓0

𝐸11,…,𝐸1𝑘1

⇓

𝐸21,…,𝐸2𝑘2

𝑓1 ⇓

𝐸𝑛1,…,𝐸𝑛𝑘𝑛

⋯ ⇓ 𝑓𝑛

𝑔

𝐹1 𝐹2

⇓

𝐹𝑛

ℎ

𝐺

≕
𝐴0 ⋅ ⋅ 𝐴𝑛

𝐶0 𝐶𝑛

𝑔𝑓0

𝐸11 𝐸12,…,𝐸𝑛𝑘𝑛−1

⇓

𝐸𝑛𝑘𝑛

ℎ𝑓𝑛

𝐺

(8.1.10)

241



• an identity cell for every horizontal arrow

𝐴 𝐵

𝐴 𝐵

𝐸

⇓id𝐸

𝐸

so that composition of cells is associative and unital in the usual multicategorical sense.

8.1.11. Lemma. There exists a virtual double category of two-sided isofibrations whose:

• objects are∞-categories,
• vertical arrows are functors,
• horizontal arrows are two-sided isofibrations, and
• 𝑛-ary cells (8.1.9) are maps of two-sided isofibrations over 𝑓 × 𝑔

𝐴0 𝐴𝑛

𝐵0 𝐵𝑛

𝑓

𝐸1 ×𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛

⇓𝛼 𝑔

𝐹

↭

𝐸1 ×
𝐴1

⋯ ×
𝐴𝑛−1

𝐸𝑛

𝐴0 𝐴𝑛

𝐵0 𝐵𝑛

𝐹

𝑎𝑓 𝑔 (8.1.12)

whose single vertical source is the (𝑛 − 1)-fold span composite of the sequence of spans comprising the
vertical source in (8.1.9).

Proof. The required composition laws can be defined by embedding the virtual double categories
into the double categories of Proposition 8.1.6. For instance, the composition of a configuration as on
the left of (8.1.10) can be defined by horizontally composing the 𝑘 top cells in the double category of
isofibrations, and then vertically composing the result with the bottom cell. The result is a 𝑘1+⋯+𝑘𝑛-
ary cell in the virtual double category of the correct form.

It remains only to define the nullary cells⁴ which have an empty sequence as their vertical domain

𝐴 𝐴

𝐵 𝐶

𝑓 ⇓𝛼 𝑔

𝐹

↭

𝐴

𝐵 𝐶

𝐹

𝑓 𝑔

𝑎

𝑠 𝑟

which we interpret as a 0-fold pullback, this being the identity span from 𝐴 to 𝐴. So the nullary cells
displayed above-left are fibered isomorphism classes of maps above-right where 𝑎 and 𝑎′ lie in the same
equivalence class if there exists a natural isomorphism 𝛾∶ 𝑎 ≅ 𝑎′ so that 𝑠𝛾 = id𝑓 and 𝑟𝛾 = id𝑔. �

⁴Note the use of the symbol 𝐴 𝐴 to denote the nullary source of a nullary cell, adopted so such cells fit

naturally into pasting diagrams of cells in a virtual double category.
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8.1.13. Remark. For instance, the map

𝐴

𝐴 𝐴

𝐴𝕀

Δ

𝑞1 𝑞0

↭
𝐴 𝐴

𝐴 𝐴
⇓𝛿

𝐴𝕀

defines a nullary morphism with codomain 𝐴
𝐴𝕀

𝐴 in the virtual double category of two-sided
isofibrations. Note, however, that despite the fact that Δ∶ 𝐴 ∼ 𝐴𝕀 defines an equivalence in the
ambient ∞-cosmos, this cell does not define an isomorphism in the virtual double category of any

kind. This nullary morphism endows𝐴
𝐴𝕀

𝐴 with the structure of a unit in a sense suitable to virtual
double categories (see Exercise 8.2.iii). It is for this sort of reason that we left out the identity horizontal
arrows in Proposition 8.1.6.

Our main example of interest is a full sub virtual double category defined by restricting the class of
horizontal arrows and taking all cells between them. Since the only operations given in the structure of
a virtual double category are vertical sources and targets, vertical identities, and vertical composition,
it is clear that this substructure is closed under all of these operations, and thus inherits the structure
of a virtual double category.

8.1.14. Corollary. For any∞-cosmos𝒦, there is a virtual double category of modules𝕄od(𝒦) defined as
a full subcategory of the virtual double categories of isofibrations whose

• objects are∞-categories,
• vertical arrows are functors,

• horizontal arrows 𝐴
𝐸

𝐵 are modules 𝐸 from 𝐴 to 𝐵,
• 𝑛-ary cells are fibered isomorphism classes of maps of two-sided isofibrations over 𝑓 × 𝑔:

𝐸1 ×
𝐴1

⋯ ×
𝐴𝑛−1

𝐸𝑛

𝐴0 𝐴1 ⋯ 𝐴𝑛 𝐴0 𝐴𝑛

𝐵0 𝐵𝑛 𝐵0 𝐵𝑛
𝐹

𝑎𝑓

𝐸1

⇓𝛼

𝐸2 𝐸𝑛

𝑔 ↭ 𝑓 𝑔

𝐹

(8.1.15)
�

The 𝑛-ary module maps of (8.1.15) can be thought of as special cases of the 𝑛-ary cells of Lemma
8.1.11 where 𝐸1, … , 𝐸𝑛, 𝐹 are all required to be modules: the single horizontal source in the diagram
(8.1.12) is the two-sided fibration defined by the (𝑛 − 1)-fold pullback of the sequence of modules
comprising the horizontal source in the left-hand diagram. We refer to the finite sequence of modules
occurring as the horizontal domain of an 𝑛-ary module map as a compatible sequence of modules,
which just means that their horizontal sources and targets are compatible in the evident way.

A hint at the relevance of this notion of 𝑛-ary module map is given by the following special case.

8.1.16. Lemma. There is a bijection between 𝑛-ary module maps whose codomain module is a comma module
as displayed below-left and natural transformations in the homotopy 2-category whose boundary is displayed
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above-right.

𝐸1 ×
𝐴1

⋯ ×
𝐴𝑛−1

𝐸𝑛

𝐴0 𝐴1 ⋯ 𝐴𝑛 𝐴0 𝐴𝑛

𝐵 𝐶 𝐵 𝐶
𝐷

⇐𝑓

𝐸1

⇓

𝐸2 𝐸𝑛

𝑔 ↭ 𝑓 𝑔

Hom𝐷(ℎ,𝑘) 𝑘 ℎ

Proof. Combine Definition 8.1.4 with Proposition 3.4.7. �

For any pair of objects 𝐴 and 𝐵 in the virtual double category of modules, there is a vertical
1-category of modules from 𝐴 to 𝐵 and module maps over a pair of identity functors, which coincides
with the 1-category of modules from 𝐴 to 𝐵 introduced in Observation 8.1.2. In this context, Lemma
8.1.3 may be restated as follows:

8.1.17. Lemma. A parallel pair of modules𝐴
𝐸

𝐵 and𝐴
𝐹
𝐵 are isomorphic as objects of vertical 1-category

of modules in the virtual double category of modules if and only if 𝐸 ≃𝐴×𝐵 𝐹. �

For consistency with the rest of the text, we write 𝐸 ≃ 𝐹 or 𝐸 ≃𝐴×𝐵 𝐹 whenever the modules

𝐴
𝐸

𝐵 and 𝐴
𝐹
𝐵 are isomorphic as objects of the vertical 1-category of modules from 𝐴 to 𝐵. For

instance, Proposition 4.1.1 proves that a functor 𝑓 ∶ 𝐵 → 𝐴 is left adjoint to a functor 𝑢∶ 𝐴 → 𝐵 if

and only if Hom𝐴(𝑓 , 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢), that is, if and only if the modules 𝐵
Hom𝐴(𝑓 ,𝐴)

𝐴 and

𝐴
Hom𝐵(𝐵,𝑢) 𝐵 are isomorphic as objects of the vertical 1-category of modules from 𝐴 to 𝐵.

Exercises.

8.1.i. Exercise. By Exercise 6.1.iii, for any∞-cosmos𝒦, there is an∞-cosmos𝒦⤩ whose objects are
two-sided isofibrations between an arbitrary pair of ∞-categories, these being exactly the “fibrant
diagrams” indexed by the span, considered as an inverse category. Use this∞-cosmos together with
the endpoint evaluation functors 𝒦⤩ → 𝒦 to give a second description of the double category of
two-sided isofibrations as as quotient of a nonunital internal category defined at the level of∞-cosmoi,
cosmological functors, and simplicial natural isomorphisms.⁵

8.1.ii. Exercise. Prove that any double category defines a virtual double category.⁶

8.1.iii. Exercise. Use the three statements of Theorem 7.4.8 to describe three bijections between cells
with various boundary shapes in the virtual double category of modules.

8.1.iv. Exercise. Let 𝐴
𝑞

𝐸
𝑝

𝐵 and 𝐴
𝑠
𝐹

𝑟
𝐵 be two-sided fibrations. A map of two-sided

fibrations from 𝐴
𝑞
𝐸

𝑝
𝐵 to 𝐴

𝑠
𝐹

𝑟
𝐵 is a fibered isomorphism class of strictly commuting

⁵We consider it to be an open problemwhether it is useful to take a “double quasi-categorical” on the nonunital double
category of two-sided isofibrations or the virtual double category of modules.

⁶If the double category lacks horizontal identity morphisms, the corresponding virtual double category may lack
nullary morphisms – unless these can be defined in some other way as we did in the proof of Lemma 8.1.11.
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functors 𝑎 so that the left square defines a cartesian functor between the cocartesian fibrations and the
right square defines a cartesian functor between the cartesian fibrations (see Proposition 7.1.7).

𝐴′ 𝐸′ 𝐵′

𝐴 𝐸 𝐵

𝑓

𝑞′ 𝑝′

𝑎 𝑔

𝑞 𝑝

Define a double category of two-sided fibrations as a nonfull subcategory of the double category of
two-sided isofibrations of Proposition 8.1.6.

8.2. The Virtual Equipment of Modules

The virtual double category of modules 𝕄od(𝒦) in an ∞-cosmos 𝒦 has two special properties
that characterize a virtual equipment. Before stating the definition, we explore each of these in turn.

8.2.1. Proposition (restriction). Any diagram in𝕄od(𝒦) as below-left can be completed to a cartesian
cell as below-right

𝐴′ 𝐵′ 𝐴′ 𝐵′

𝐴 𝐵 𝐴 𝐵

𝑎 𝑏 ⇝ 𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸 𝐸
characterized by the universal property that any cell as displayed below-left factors uniquely through 𝜌 as
below-right:

𝑋0 𝑋1 ⋯ 𝑋𝑛

𝐴 𝐵

𝑎𝑓

𝐸1

⇓

𝐸2 𝐸𝑛

𝑏𝑔

𝐸

≕

𝑋0 𝑋1 ⋯ 𝑋𝑛

𝐴′ 𝐵′

𝐴 𝐵

𝑓

𝐸1

∃!⇓

𝐸2 𝐸𝑛

𝑔

𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸

Proof. The horizontal source of the cartesian cell is defined by restricting the module 𝐴
𝐸

𝐵
along the functors 𝑎 and 𝑏:

𝐸(𝑏, 𝑎) 𝐸

𝐴′ × 𝐵′ 𝐴 × 𝐵

𝜌

𝑎×𝑏

(8.2.2)

By Proposition 7.4.5, this left-hand isofibration defines a module from 𝐴′ to 𝐵′, while by Definition
8.1.4 the top horizontal functor represents a module map inhabiting the desired square. By Observation
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8.1.5, the simplicial pullback in𝒦 induces an equivalence⁷ of functor spaces:

Fun𝑓 ×𝑔(𝐸1 ×
𝐴1

⋯ ×
𝐴𝑛−1

𝐸𝑛, 𝐸(𝑏, 𝑎)) Fun𝑎𝑓 ×𝑏𝑔(𝐸1 ×
𝐴1

⋯ ×
𝐴𝑛−1

𝐸𝑛, 𝐸)∼𝜌∘−

which descends to a bijection on isomorphism classes of objects. This defines the unique factorization
of cells as displayed above-left through the cartesian restriction cell 𝜌. �

We refer to the module 𝐴′ 𝐸(𝑏,𝑎)
𝐵′ as the restriction of 𝐴

𝐸
𝐵 along the functors 𝑎 and 𝑏,

because the pullback (8.2.2) is analogous to the restriction of scalars of a bimodule along a pair of ring
homomorphisms.

8.2.3. Example. The module 𝐶
Hom𝐴(𝑓 ,𝑔) 𝐵 is the restriction of the module encoded by the arrow

∞-category 𝐴
𝑝1 𝐴𝟚 𝑝0 𝐴 along 𝑔∶ 𝐶 → 𝐴 and 𝑓 ∶ 𝐵 → 𝐴. To make this restriction relationship

more transparent, we typically write 𝐴
Hom𝐴 𝐴 when regarding the arrow∞-category as a module.

𝐶 𝐵

𝐴 𝐴

𝑔

Hom𝐴(𝑓 ,𝑔)

⇓𝜌 𝑓

Hom𝐴

Since the common notation for hom bifunctors places the contravariant variable on the left and the
covariant variable on the right, we have adopted a similar notation convention for restrictions in
Proposition 8.2.1.

8.2.4. Proposition (units). Any object 𝐴 in𝕄od(𝒦) is equipped with a nullary cocartesian cell

𝐴 𝐴

𝐴 𝐴
⇓𝜄

Hom𝐴

characterized by the universal property that any cell in𝕄od(𝒦) whose horizontal source includes the object 𝐴
factors uniquely through 𝜄 as below-right:

𝑋 ⋯ 𝐴 ⋯ 𝑌

𝐵 𝐶

𝑓

𝐸1 𝐸𝑛 𝐹1

⇓

𝐹𝑚

𝑔

𝐺

≕

𝑋 ⋯ 𝐴 𝐴 ⋯ 𝑌

𝑋 ⋯ 𝐴 𝐴 ⋯ 𝑌

𝐵 𝐶

𝐸1

⇓id𝐸1
⇓id𝐸𝑛⋯

𝐸𝑛

⇓𝜄

𝐹1

⇓id𝐹1

𝐹𝑚

⋯ ⇓id𝐹𝑚

𝑓

𝐸1 𝐸𝑛 Hom𝐴

⇓∃!

𝐹1 𝐹𝑚

𝑔

𝐺

⁷If the pullbacks are defined strictly, then in fact pullback induces an isomorphism of functor spaces, but even if 𝐸(𝑏, 𝑎)
is replaced by an equivalent module, the functor spaces are still equivalent, which is enough to induce a bijection on
isomorphism classes of objects.
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Proof. The nullary cell is represented by the map of spans induced by the identity 2-cell at the
identity 1-cell at 𝐴.

𝐴 𝐴

𝐴 𝐴 ↭ 𝐴 𝐴

Hom𝐴 𝐴

𝜄 ⇐
id𝐴

𝑝1 𝑝0

Elsewhere this functor is denoted by idid𝐴 ∶ 𝐴 → 𝐴𝟚; recall from Example 8.2.3 that we write

𝐴
Hom𝐴 𝐴 for the module encoded by the arrow ∞-category construction to help us recognize

its restrictions.
In the case where both of the sequences 𝐸𝑖 and 𝐹𝑗 are empty, the one-sided version of the Yoneda

lemma formodules given by Theorem 7.4.8 tells us that restriction along this map induces an equivalence
of functor spaces

Fun𝐴×𝐴(Hom𝐴, 𝐺(𝑔, 𝑓 )) ∼ Fun𝐴×𝐴(𝐴,𝐺(𝑔, 𝑓 )).
Taking isomorphism classes of objects gives the bijection of the statement.

In the case where one or both of the sequences are nonempty, we may form their horizontal

composite two-sided fibrations 𝑋
𝑞
𝐸

𝑝
𝐴 and 𝐴

𝑠
𝐹

𝑟
𝑌 and then form either the horizontal

composite 𝐸 ×
𝐴

Hom𝐴 or the horizontal composite Hom𝐴 ×
𝐴
𝐹 of the composable triple below:

𝐸 ×
𝐴

Hom𝐴 ×
𝐴
𝐹

Hom𝐴(𝐴, 𝑝) Hom𝐴(𝑠, 𝐴)

𝐸 Hom𝐴 𝐹

𝑋 𝐴 𝐴 𝑌

𝑞 𝑝 𝑝1 𝑝0 𝑠 𝑟

The horizontal composite of the left pair ofmodules is the two-sided fibration (𝑞𝑝1, 𝑝0) ∶ Hom𝐴(𝐴, 𝑝) ↠
𝑋×𝐴, while the composite of the right pair is the two-sided fibration (𝑝1, 𝑟𝑝0) ∶ Hom𝐴(𝑠, 𝐴) ↠ 𝐴×𝑌.
By Theorem 7.1.4, these two-sided fibrations give rise to fibered adjunctions:

𝐸 ⊥ Hom𝐴(𝐴, 𝑝) 𝐹 ⊥ Hom𝐴(𝑠, 𝐴)

𝑋 × 𝐴 𝐴 × 𝑌

𝐸×
𝐴
𝜄=id𝑝

(𝑞,𝑝) (𝑞𝑝1,𝑝0)
𝑟 𝜄×

𝐴
𝐹=id𝑠

(𝑠,𝑟) (𝑝1,𝑟𝑝0)

ℓ

By inspection, the solid-arrow adjoints id𝑝 and id𝑠 can be constructed by pulling back the map
𝜄 ∶ 𝐴 → Hom𝐴.
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We only require one of these adjunctions, so without loss of generality we use the former. This
fibered adjunction pulls back along 𝑠 and pushes forward along 𝑟 to define a fibered adjunction

𝐸 ×
𝐴
𝐹 ⊥ 𝐸 ×

𝐴
Hom𝐴 ×

𝐴
𝐹

𝑋 × 𝑌

𝐸×
𝐴
𝜄×
𝐴
𝐹

𝑟

between two-sided fibrations. Uponmapping into the discrete object𝐺(𝑔, 𝑓 ) ∈ 𝒦/𝑋×𝑌, this adjunction
becomes an adjoint equivalence. In particular, restriction along 𝜄 induces an equivalence of Kan
complexes

Fun𝑋×𝑌(𝐸 ×
𝐴

Hom𝐴 ×
𝐴
𝐹,𝐺(𝑔, 𝑓 )) Fun𝑋×𝑌(𝐸 ×

𝐴
𝐹,𝐺(𝑔, 𝑓 )),∼

−∘(𝐸×
𝐴
𝜄×
𝐴
𝐹)

and once again taking isomorphism classes of objects gives the bijection of the statement. �

Propositions 8.2.1 and 8.2.4 imply that the virtual double category of modules is a virtual equipment
in the sense introduced by Cruttwell and Shulman [32, §7].

8.2.5. Definition. A virtual equipment is a virtual double category so that

(i) For any horizontal arrow 𝐴
𝐸

𝐵 and pair of vertical arrows 𝑎 ∶ 𝐴′ → 𝐴 and 𝑏 ∶ 𝐵′ → 𝐵,
there exists a horizontal arrow 𝐵′ 𝐸(𝑏,𝑎)

𝐴′ and unary cartesian cell 𝜌 satisfying the universal
property of Proposition 8.2.1.

(ii) Every object𝐴 admits a unit horizontal arrow𝐴
Hom𝐴 𝐴 equipped with a nullary cocartesian

cell 𝜄 satisfying the universal property of Proposition 8.2.4.

Thus, Propositions 8.2.1 and 8.2.4 combine to prove:

8.2.6. Theorem. The virtual double category𝕄od(𝒦) of modules in an∞-cosmos𝒦 is a virtual equipment.
�

By abstract nonsense, the relatively simple axioms (i) and (ii) established in Theorem 8.2.6 establish
a robust “calculus of modules.” In an effort to familiarize the reader with this little-known categorical
structure and expedite the proofs of the formal category theory of∞-categories in Chapter 9, we devote
the remainder of this chapter to proving a plethora of results that actually follow formally from this
axiomatization: namely, Lemmas 8.3.10 and 8.3.15, Proposition 8.4.1, Theorem 8.4.4, Corollary 8.4.6,
Proposition 8.4.7, Corollary 8.4.8, Corollary 8.4.9, and the bijection of Proposition 8.4.11 between
unary cells in the virtual equipment of modules.⁸ One additional formal result is left as Exercise 8.4.v
for the reader.

8.2.7. Notation. The following notational conventions streamline certain virtual equipment diagrams.

⁸A point of minor distinction is that we observe here that the composites referenced in many of these statements are
“strong,” a notion that has no meaning in a generic virtual equipment.
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• We adopt the convention that an unlabeled unary cell whose vertical boundaries are identities and
whose horizontal sources and targets agree is an identity cell.

𝐴 𝐵 𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

𝐸

≔ ⇓id𝐸

𝐸

𝐸 𝐸

• Cells whose vertical boundary functors are identities and therefore whose source and target spans
lie between the same pair of∞-categories

𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 ≔

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐴0 𝐴𝑛

𝐸1

⇓𝜇

𝐸2 𝐸𝑛

𝐸

may be displayed in line using the notation 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸, an expression which implicitly

asserts that the modules appearing in the domain define a compatible sequence, with the symbol
“
⨰
” meant to suggest the pullback appearing as the horizontal domain of (8.1.9) rather than a

product. In the virtual equipment of modules, cells of the form 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 correspond

to fibered maps, in the sense introduced in Definition 8.1.1.

• Given a compatible sequence of modules 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from 𝐴0 to 𝐴𝑛 we write 𝐴0 ↞ �⃗� ↠ 𝐴𝑛

for the composite two-sided fibration and similarly abbreviate an 𝑛-ary module map (8.1.9) with
this sequence as its source as below-left:

𝐴0 𝐴𝑛 𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵𝑛 𝐵0 𝐵𝑛

�⃗�

⇓𝛼𝑓 𝑔 ≔ 𝑓

𝐸1

⇓𝛼

𝐸2 𝐸𝑛

𝑔

𝐹 𝐹

Exercises.

8.2.i. Exercise. Given a diagram of functors 𝐸
𝑘
𝐶

𝑔
𝐴

𝑓
𝐵

ℎ
𝐷, compute the restriction of the

module 𝐶
Hom𝐴(𝑓 ,𝑔) 𝐵 along the functors 𝑘 and ℎ.

8.2.ii. Exercise. Prove that unital rings, ring homomorphisms, bimodules, and bimodule maps also
define a virtual equipment.

8.2.iii. Exercise. Prove that the virtual double category of two-sided isofibrations forms a virtual
equipment with the units cells of Remark 8.1.13.

8.3. Composition of Modules

In a virtual equipment, there is no assumption that a generic pair𝐴
𝐸

𝐵 and 𝐵
𝐹
𝐶 of horizontal

arrows admits a composite but there is a mechanism that recognizes a particular horizontal composite

𝐴
𝐺

𝐶 when it happens to exist. When𝐺 is the horizontal composite of 𝐸 and 𝐹, we write 𝐸⊗𝐹 ≃ 𝐺
or 𝜇∶ 𝐸 ⊗ 𝐹 ≃ 𝐺 to reinforce the intuition provided by the analogy with bimodules.
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In the virtual equipment of modules, there are two possible meanings we can ascribe to a “horizontal
composite” of modules. In the first of these, a composition relation 𝜇∶ 𝐸 ⊗ 𝐹 ≃ 𝐺 is witnessed by
a fibered module map 𝜇∶ 𝐸 ⨰ 𝐹 ⇒ 𝐺 that defines a cocartesian cell in a sense analogous to the
universal property stated in Proposition 8.2.4 (see Definition 8.3.1). This definition of composition can
be given in any virtual double category and is well-behaved in any virtual equipment, such as the virtual
equipment of modules. Composites of 𝑛-ary sequences of composable modules are defined analogously.

In the virtual equipment of modules, all of our formally defined composites satisfy a stronger
universal property expressed at the level of the∞-cosmos. Recall that a fibered map 𝜇∶ 𝐸 ⨰ 𝐹 ⇒ 𝐺
between modules 𝐴

𝐸
𝐵, 𝐵

𝐹
𝐶, and 𝐴

𝐺
𝐶 corresponds to a fibered isomorphism class of maps

𝜇∶ 𝐸 ×𝐵 𝐹 → 𝐺 of spans over 𝐴 × 𝐶. Part of what it means to say that 𝜇 witnesses a strong composite
in Definition 8.3.5 is the requirement that its representing functor induces an equivalence of Kan

complexes − ∘ 𝜇∶ Fun𝐴×𝐶(𝐺,𝐻) ∼ Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐻) for all modules 𝐴
𝐻

𝐶. When this is the
case, the module 𝐺 may be understood as the “reflection” of the two-sided isofibration 𝐸 ×𝐵 𝐹 into the
subcategory of modules; note however that 𝐺 and 𝐸 ×𝐵 𝐹 are not necessarily equivalent over 𝐴×𝐶. A
special case of Theorem 7.3.2, reappearing as Proposition 8.3.11, is one instance of a strong composite.

As this terminology suggests, strong composites are necessarily composites. Since the weaker
universal property of being a composite characterizes the composite module up to fibered equivalence,
if we areworking in an∞-cosmoswhere strong composites are guaranteed to exist, then the 2-categorical
universal property we introduce now suffices to detect them.⁹

8.3.1. Definition. A compatible sequence of modules

𝐴
𝐸1 𝐴1, 𝐴1

𝐸2 𝐴2, … ,𝐴𝑛−1
𝐸𝑛 𝐵

admits a composite if there exists a module 𝐴
𝐸

𝐵 and a cocartesian cell

𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸

characterized by the universal property that any cell of the form

𝑋 ⋯ 𝐴 ⋯ 𝐵 ⋯ 𝑌

𝐶 𝐷

𝑓

𝐹1 𝐹𝑚 𝐸1

⇓

𝐸𝑛 𝐺1 𝐺𝑘

𝑔

𝐻

factors uniquely through 𝜇 as follows:

𝑋 ⋯ 𝐴 ⋯ 𝐵 ⋯ 𝑌

𝑋 ⋯ 𝐴 𝐵 ⋯ 𝑌

𝐶 𝐷

𝐹1 𝐹𝑚

⋯

𝐸1

⇓𝜇

𝐸𝑛 𝐺1 𝐺𝑘

⋯

𝑓

𝐹1 𝐹𝑚 𝐸

⇓∃!

𝐺1 𝐺𝑘

𝑔

𝐻

⁹This is analogous to the relationship between the universal properties that define weak 𝑝-cartesian transformations
and 𝑝-cartesian transformations considered in Proposition 5.2.11.
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We have already seen one instance of this definition. Proposition 8.2.4 proves that units define
nullary composites 𝜄 ∶ ∅ ⇒ Hom𝐴 in the virtual equipment of modules.

8.3.2. Observation (uniqueness of composites). Immediately from this universal property, composites
are unique up to vertical isomorphism in the virtual equipment of modules. Recall from Lemma
8.1.17 that parallel modules are vertically isomorphic in the virtual equipment if and only if they are
equivalent in the usual fibered sense.

A composite 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 can be used to reduce the domain of a cell by replacing any

occurrence of the compatible sequence 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from 𝐴 to 𝐵 by a single module 𝐸. Particularly

in the case of binary composites, we write 𝐸1 ⊗ 𝐸2 to denote the composite of the modules 𝐸1 and
𝐸2, appearing as the codomain of the cocartesian cell 𝐸1 × 𝐸2 ⇒ 𝐸1 ⊗ 𝐸2. Note that the universal
property of Definition 8.3.1 demands more than simply the condition that 𝜇∶ 𝐸1

⨰ 𝐸2 ⇒ 𝐸1 ⊗ 𝐸2 is
universal among binary cells whose source is 𝐸1

⨰ 𝐸2. As observed by Hermida, that weaker universal
property is not enough to prove that the tensor product of modules is associative (see [53, §8.1] and
Exercise 8.3.ii). By contrast, the universal property of Definition 8.3.1 allows us to use an expression like
𝐸1⊗𝐸2⊗𝐸3, without parentheses, for ternary and higher composites, since composition is “associative”
in the following sense:

8.3.3. Lemma. Suppose the cells 𝜇𝑖 ∶ 𝐸𝑖1
⨰ ⋯ ⨰ 𝐸𝑖𝑘𝑖 ⇒ 𝐸𝑖 exhibit composites for 𝑖 = 1,… , 𝑛.

(i) If 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits a composite then the composite cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1

⨰⋯⨰𝜇𝑛 𝜇

exhibits 𝐸 as a composite of the sequence 𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 .

(ii) If the composite cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1

⨰⋯⨰𝜇𝑛 𝜇

exhibits 𝐸 as a composite of the sequence 𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 , then 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits 𝐸
as a composite of the sequence 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛.

Proof. For (i), the required bijection factors as a composite of 𝑛 + 1 bijections induced by the
maps 𝜇1, … , 𝜇𝑛 and 𝜇. For (ii), the required bijection induced by 𝜇 composes with the bijections
supplied by the maps 𝜇1, … , 𝜇𝑛 to a bijection and is thus itself a bijection. �

8.3.4. Remark. On account of the universal property of restrictions established in Proposition 8.2.1,
to prove that a cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits a composite in a virtual equipment, it suffices to
prove the factorization property of Definition 8.3.1 in the case where the vertical functors are identities,
i.e., when all of the cells are “fibered.”

8.3.5. Definition. A compatible sequence of modules

𝐴
𝐸1 𝐴1, 𝐴1

𝐸2 𝐴2, … ,𝐴𝑛−1
𝐸𝑛 𝐵

admits a strong composite if there exists a module 𝐴
𝐸

𝐵 and a fibered cell

𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸
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represented by a functor 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 → 𝐸 over 𝐴 × 𝐵 that induces an equivalence of Kan

complexes

Fun𝑋×𝑌(�⃗�
⨰ 𝐸 ⨰ �⃗�,𝐻) Fun𝑋×𝑌(�⃗�

⨰ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛

⨰ �⃗�,𝐻)∼−∘(�⃗�⨰𝜇⨰�⃗�)

for all compatible sequences of modules 𝐹1, … , 𝐹𝑚 from 𝑋 to 𝐴 and 𝐺1, … , 𝐺𝑘 from 𝐵 to 𝑌 and all

modules 𝑋
𝐻

𝑌.

8.3.6. Lemma (strong composites are composites). If 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 is a strong composite then 𝜇

exhibits 𝐸 as the composite 𝐸1 ⊗⋯⊗ 𝐸𝑛.

Proof. Given a compatible sequence of modules 𝐹1, … , 𝐹𝑚 from𝑋 to𝐴 and a compatible sequence

of modules 𝐺1, … , 𝐺𝑘 from 𝐵 to 𝑌, form the composite two-sided fibrations 𝑋
𝑞

�⃗�
𝑝

𝐴 and

𝐵
𝑠
�⃗�

𝑟
𝑌. By Remark 8.3.4, it suffices to check the universal property of the composite cell for

fibered maps whose codomain is a module 𝑋
𝐻

𝑌. The hypothesis that 𝜇 is a strong composite
provides an equivalence of Kan complexes

Fun𝑋×𝑌(�⃗� ×
𝐴
𝐸 ×

𝐵
�⃗�, 𝐻) Fun𝐴×𝐵(�⃗� ×

𝐴
𝐸1 ×

𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛 ×𝐵 �⃗�, 𝐻)∼

−∘(�⃗�×
𝐴
𝜇×
𝐵
�⃗�)

An equivalence of Kan complexes defines a bijection on path components, with each path component
corresponding to an isomorphism class of functors by Observation 8.1.2. �

At first blush, the definition of “strong composite” appears unreasonably strong. Examples will
arise from the same structure used in the proof of Proposition 8.2.4 to demonstrate that units define
nullary composites in the virtual equipment of modules.

8.3.7. Lemma. Consider an 𝑛-ary module morphism 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 in the virtual equipment of

modules whose codomain is a module from 𝐴 to 𝐵. If any representing map of spans

𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 𝐸

𝐴 × 𝐵

𝜇

admits a fibered adjoint over 𝐴 × 𝐵, then 𝜇 exhibits 𝐸 as the strong composite 𝐸1 ⊗⋯⊗ 𝐸𝑛.

Proof. To verify the universal property of Definition 8.3.5, consider a compatible sequence of
modules 𝐹1, … , 𝐹𝑚 from 𝑋 to 𝐴 and a compatible sequence of modules 𝐺1, … , 𝐺𝑘 from 𝐵 to 𝑌, and
form the horizontal composite two-sided fibrations 𝑋

𝑞
𝐹

𝑝
𝐴 and 𝐵

𝑠
𝐺

𝑟
𝑌. The fibered

adjunction of the statement pulls back along 𝑝 × 𝑠 ∶ 𝐹 × 𝐺 ↠ 𝐴 × 𝐵 and pushes forward along
𝑞 × 𝑟 ∶ 𝐹 × 𝐺 → 𝑋 × 𝑌 to a fibered adjoint to

𝐹 ×
𝐴
𝐸1 ×

𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛 ×𝐵 𝐺 𝐹 ×

𝐴
𝐸 ×

𝐵
𝐺

𝑋 × 𝑌

𝐹×
𝐴
𝜇×
𝐵
𝐺
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Via Remark 8.3.4, it suffices to verify the universal property of the composite for modules 𝑋
𝐻

𝑌.
Since modules are discrete, applying Fun𝑋×𝑌(−,𝐻) transforms this fibered adjunction into an adjoint
equivalence

Fun𝑋×𝑌(𝐹 ×
𝐴
𝐸 ×

𝐵
𝐺,𝐻) Fun𝑋×𝑌(𝐹 ×

𝐴
𝐸1 ×

𝐴1
⋯ ×

𝐴𝑛−1
𝐸𝑛 ×𝐵 𝐺,𝐻).∼

−∘(𝐹×
𝐴
𝜇×
𝐵
𝐺)

establishing the universal property that characterizes strong composites. �

Strong composites satisfy an associativity property analogous to Lemma 8.3.3 with a similar proof:

8.3.8. Lemma. Suppose the cells 𝜇𝑖 ∶ 𝐸𝑖1
⨰ ⋯ ⨰ 𝐸𝑖𝑘𝑖 ⇒ 𝐸𝑖 exhibit strong composites for 𝑖 = 1,… , 𝑛.

(i) If 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 exhibits a strong composite then the composite cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1

⨰⋯⨰𝜇𝑛 𝜇

exhibits 𝐸 as a strong composite of the sequence 𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 .

(ii) If the composite cell

𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 𝐸
𝜇1

⨰⋯⨰𝜇𝑛 𝜇

exhibits 𝐸 as a strong composite of the sequence 𝐸11
⨰ ⋯ ⨰ 𝐸𝑛𝑘𝑛 , then 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸
exhibits 𝐸 as a strong composite of the sequence 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛.

Proof. Exercise 8.3.iii. �

We now turn to examples. The trivial instances of composites are easily verified:

8.3.9. Lemma. In the virtual equipment of modules:

(i) The units 𝜄 ∶ ∅ ⇒ Hom𝐴 of Proposition 8.2.4 define nullary strong composites.
(ii) A unary cell 𝜇∶ 𝐸 ⇒ 𝐹 is a composite if and only if it is an isomorphism in the vertical category of

modules from 𝐴 to 𝐵 and fibered module maps. When this is the case, 𝜇∶ 𝐸 ⇒ 𝐹 is a strong composite.

Proof. Exercise 8.3.iv. �

As one might hope, the unit modules 𝐴
Hom𝐴 𝐴 are units for the composition notion introduced

in Definition 8.3.1 in the following sense: for any module 𝐴
𝐸

𝐵, there is a strong composite relation
Hom𝐴 ⊗ 𝐸 ⊗ Hom𝐵 ≃ 𝐸.

8.3.10. Lemma (composites with units). For any module𝐴
𝐸

𝐵 the unique cell ∘ ∶ Hom𝐴×𝐸×Hom𝐵 ⇒ 𝐸
defined using the universal property of the unit cell

𝐴 𝐴 𝐵 𝐵

𝐴 𝐴 𝐵 𝐵

𝐴 𝐵

⇓𝜄

𝐸

⇓𝜄
Hom𝐴 𝐸

⇓∘

Hom𝐵

𝐸

≔
𝐴 𝐵

𝐴 𝐵

𝐸

𝐸

displays 𝐸 as the strong composite Hom𝐴 ⊗ 𝐸 ⊗ Hom𝐵.
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Proof. The result is immediate from Lemma 8.3.8(ii) and Lemma 8.3.9. �

8.3.11. Proposition. Let 𝐴
𝐸

𝐵 be a module encoded by the span 𝐴
𝑞
𝐸

𝑝
𝐵. Then the binary module

map represented by composite left and right adjoints of Theorem 7.1.4(iii)

𝐴 𝐸 𝐵

𝐴 𝐵

Hom𝐴(𝑞,𝐴)

⇓𝜇

Hom𝐵(𝐵,𝑝)

𝐸

exhibits a strong composite Hom𝐴(𝑞, 𝐴) ⊗ Hom𝐵(𝐵, 𝑝) ≃ 𝐸 expressing the module as the composite of the
modules representing its legs.

Proof. The result is immediate from Theorem 7.1.4(iii) and Lemma 8.3.7 applied twice.¹⁰ �

8.3.12. Remark. Nothing in the proof of Proposition 8.3.11 requires that the span 𝐴
𝑞
𝐸

𝑝
𝐵 is

actually a module, rather than a mere two-sided fibration, except for the interpretation that 𝜇 is a

binary cell in the virtual equipment of modules. For any two-sided fibration 𝐴
𝑞
𝐸

𝑝
𝐵, it is still

the case that restriction along the map of spans 𝜇 defines a bijection between maps of two-sided
isofibrations whose source includes the span 𝐸 and whose codomain is a module and maps whose source
instead includes Hom𝐴(𝑞, 𝐴) ⨰ Hom𝐵(𝐵, 𝑝). In particular, for any compatible sequence of modules

𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from 𝐴 to 𝐵 whose span composite defines the two-sided fibration 𝐴

𝑞
�⃗�

𝑝
𝐵, there

is a bijection between module maps in the virtual equipment of modules:

𝑋 𝐴 𝐵 𝑌 𝑋 𝐴 �⃗� 𝐵 𝑌

𝐶 𝐷 𝐶 𝐷

�⃗�

𝑓

�⃗�

⇓

�⃗�

𝑔

�⃗�

𝑓

Hom𝐴(𝑞,𝐴) Hom𝐵(𝐵,𝑝)

⇓

�⃗�

𝑔

𝐻

↭

𝐻

8.3.13. Remark. The composite map 𝜇∶ Hom𝐴(𝑞, 𝐴) ⨰ Hom𝐵(𝐵, 𝑝) ⇒ 𝐸 in Proposition 8.3.11 and
Remark 8.3.12 can be described in another way. The comma cones for Hom𝐴(𝑞, 𝐴) and Hom𝐵(𝐵, 𝑝)
define a pair of natural transformations to which the premises of Theorem 7.1.4(iv) apply.

Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝)

Hom𝐴(𝑞, 𝐴) Hom𝐵(𝐵, 𝑝)

𝐴 𝐸 𝐵

𝑝1 𝑝0
𝜙
⇐

𝑝1 𝑝0
𝜙
⇐

𝑞 𝑝

The conclusion of that result asserts that there is a well-defined fibered isomorphism class of functors
𝜇∶ Hom𝐴(𝑞, 𝐴) ×𝐸 Hom𝐵(𝐵, 𝑝) → 𝐸 defined by taking the 𝑞-cocartesian lift of the left comma cone,
composing with the right comma cone, and then taking the codomain of a 𝑝-cartesian lift of this
composite cell – or by first taking the 𝑝-cartesian lift, composing, and then taking the domain of a
𝑞-cartesian lift of this composite – this being the functor ℓ𝑟 ≃ 𝑟ℓ in the notation of Theorem 7.1.4(iii).

¹⁰Of course the composite of a left and a right adjoint is not an adjoint but here we are effectively composing adjoint
equivalences in which case the direction does not matter.
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In the case where𝐴
𝐸

𝐵 is itself a comma module, the resulting fibered isomorphism class of functors
𝜇 is the one that classifies the 2-cell defined by pasting the displayed composite with the comma cone
under 𝐸.

Any virtual double category has a vertical identity cell for each horizontal arrow 𝐴
𝐸

𝐵 whose
vertical boundary arrows are identities. In a virtual equipment, we also have a horizontal unary unit cell

for each vertical arrow 𝑓 ∶ 𝐴 → 𝐵 whose horizontal boundary is given by the unit modules𝐴
Hom𝐴 𝐴

and 𝐵
Hom𝐵 𝐵 of Proposition 8.2.4.

8.3.14. Definition. Using the unit modules in𝕄od(𝒦), for any functor 𝑓 ∶ 𝐴 → 𝐵 we may define a
unary unit cell as displayed below-left by appealing to the universal property of the nullary unit cell
𝜄 ∶ ∅ ⇒ Hom𝐴 for 𝐴 in the equation below-right:

𝐴 𝐴

𝐵 𝐵

𝑓

Hom𝐴

⇓Hom𝑓 𝑓

Hom𝐵

⇜

𝐴 𝐴 𝐴 𝐴

𝐴 𝐴 𝐵 𝐵

𝐵 𝐵 𝐵 𝐵

⇓𝜄 𝑓 𝑓

𝑓

Hom𝐴

⇓Hom𝑓 𝑓

≔
⇓𝜄

Hom𝐵 Hom𝐵

In the characterization of Lemma 8.1.16, both sides of the pasting equality defining the unary unit cell

correspond to the identity 2-cell 𝐴 𝐵
𝑓

𝑓

⇓id𝑓 .

As one might hope, the unit cells are units for the vertical composition of cells in the virtual
equipment of modules.

8.3.15. Lemma (composition with unit cells). Any cell 𝛼 as below-right equals the pasted composite below-left:

𝐴0 𝐴0 𝐴𝑛 𝐴𝑛

𝐴0 𝐴0 𝐴𝑛 𝐴𝑛

𝐵 𝐵 𝐶 𝐶

𝐵 𝐶

⇓𝜄

�⃗�

⇓𝜄

𝑓

Hom𝐴0

⇓Hom𝑓 𝑓 ⇓𝛼

�⃗�

𝑔

Hom𝐴𝑛

⇓Hom𝑔 𝑔

⇓∘
Hom𝐵 𝐸 Hom𝐶

𝐸

=
𝐴0 𝐴𝑛

𝐵 𝐶

𝑓

�⃗�

⇓𝛼 𝑔

𝐸

Proof. By Definition 8.3.14 and the laws for composition with identity cells in a virtual double
category stated in Definition 8.1.8, the left-hand composite of the statement equals the left-hand
composite cell displayed below and the right-hand side of the statement equals the right-hand composite
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cell displayed below:

𝐴0 𝐴0 𝐴𝑛 𝐴𝑛

𝐵 𝐵 𝐶 𝐶

𝐵 𝐵 𝐶 𝐶

𝐵 𝐶

𝑓 𝑓

�⃗�

⇓𝛼 𝑔 𝑔

⇓𝜄
𝐸

⇓𝜄

⇓∘
Hom𝐵 𝐸 Hom𝐶

𝐸

=

𝐴0 𝐴𝑛

𝐵 𝐶

𝐵 𝐶

𝑓

�⃗�

⇓𝛼 𝑔

𝐸

𝐸

By Lemma 8.3.10, the left-hand side equals the right-hand side. �

8.3.16. Definition (horizontal composition of cells). If given a horizontally compatible sequence of
unary cells

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝑓0

𝐸1

⇓𝛼1 𝑓1

𝐸2

⇓𝛼2 ⋯

𝐸𝑛

𝑓𝑛⇓𝛼𝑛

𝐹1 𝐹2 𝐹𝑛
for which the compatible sequences 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 and 𝐹1
⨰ ⋯ ⨰ 𝐹𝑛 both admit composites, then

there exists a horizontal composite unary cell 𝛼1 ∗ ⋯ ∗ 𝛼𝑛 that is uniquely determined up to the
specification of the composites ∘ ∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 and 𝐹1
⨰ ⋯ ⨰ 𝐹𝑛 ⇒ 𝐹 by the pasting equality:

𝐴0 𝐴1 ⋯ 𝐴𝑛 𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐴0 𝐴𝑛 ≔ 𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐵0 𝐵𝑛 𝐵0 𝐵𝑛

𝐸1

⇓∘

𝐸2 𝐸𝑛

𝑓0

𝐸1

⇓𝛼1 𝑓1

𝐸2

⇓𝛼2 ⋯

𝐸𝑛

⇓𝛼𝑛 𝑓𝑛

𝑓0 ⇓𝛼1∗⋯∗𝛼𝑛

𝐸

𝑓𝑛 ⇓∘
𝐹1 𝐹2 𝐹𝑛

𝐹 𝐹
(8.3.17)

By an argument very similar to the proof of Lemma 8.3.15 using the composites of Lemma 8.3.10,
the horizontal composite Hom𝑓 ∗ 𝛼 ∗ Hom𝑔 of a unary cell 𝛼 with the unit cells Hom𝑓 and Hom𝑔 at its
vertical boundary functors recovers 𝛼 (see Exercise 8.3.v). Using the horizontal composition of unary
cells of Definition 8.3.16, we can understand𝕄od(𝒦) to contain various “vertical” and “horizontal”
bicategories.

8.3.18. Proposition (the vertical 2-category in the virtual equipment). Any virtual equipment contains a
vertical 2-category whose objects are the objects of the virtual equipment, whose arrows are the vertical arrows,
and whose 2-cells are those unary cells

𝐴 𝐴

𝐵 𝐵

𝑔

Hom𝐴

⇓𝛼 𝑓

Hom𝐵
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whose horizontal boundary arrows are given by the unit modules.

Proof. To prove that these structures define a 2-category we must – adopting the standard
terminology from Definition B.1.1 – define “horizontal” composition of 2-cells (composing along
a boundary 0-cell) and “vertical” composition of 2-cells (composing along a boundary 1-cell). The
“horizontal” composition in the 2-category is defined via the vertical composition in the virtual double
category described in Definition 8.1.8. The “vertical” composition in the 2-category is defined by
Definition 8.3.16. To see that this yields a 2-category and not a bicategory note that any bicategory in
which the composition of 1-cells is strictly associative and unital is a 2-category; in this case, the 1-cells
are the vertical arrows of the virtual double category, which do indeed compose strictly. �

In Proposition 8.4.11 we prove that the vertical 2-category in the virtual equipment𝕄od(𝒦) is
isomorphic to the homotopy 2-category 𝔥𝒦.

8.3.19. Remark (horizontal bicategories in the virtual equipment). Via Definition 8.3.16, a virtual
equipment can also be understood to contain various “horizontal” bicategories, defined by taking the
1-cells to be composable modules and the 2-cells to be unary module maps whose vertical boundary
functors are identities. Particular horizontal bicategories of interest are described in Definition 8.4.12.

Exercises.

8.3.i. Exercise. Extending Exercise 8.1.ii, prove that in a virtual double category arising from an actual
double category, every compatible sequence of horizontal arrows admits a composite in the sense of
Definition 8.3.1.

8.3.ii. Exercise ([53, 8.5],[76, 3.3.4]).

(i) Suppose that for every compatible sequence 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 in a virtual equipment there

exists a cell 𝜇∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 that is weakly cocartesian meaning that every 𝑛-ary cell

𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐻 factors uniquely through 𝜇 via a unary cell 𝐸 ⇒ 𝐻. If moreover the

weakly cocartesian cells are closed under composition in the virtual double category, show
that every weakly cocartesian cell is in fact cocartesian, satisfying the universal property of
Definition 8.3.1, and conclude that the virtual equipment then admits all composites.

(ii) Suppose𝒦 is an∞-cosmos in which every two-sided fibration 𝐴
𝑞
𝐸

𝑝
𝐵 can be reflected

into a module, meaning that that there exists a map of spans with �̄� a module so that for every

module 𝐴
𝐻

𝐵, 𝜇 induces an equivalence of Kan complexes

𝐸

𝐴 𝐵

�̄�

𝜇

𝑞 𝑝

�̄��̄�

⇝ Fun𝐴×𝐵(�̄�, 𝐻) Fun𝐴×𝐵(𝐸,𝐻).∼−∘𝜇

Conclude that the virtual equipment𝕄od(𝒦) has all composites.

8.3.iii. Exercise. Prove Lemma 8.3.8.

8.3.iv. Exercise. Prove Lemma 8.3.9.
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8.3.v. Exercise. For any unary cell as displayed show that the horizontal composite Hom𝑓 ∗ 𝛼 ∗ Hom𝑔
equals 𝛼.

𝐴 𝐵

𝐶 𝐷

𝐸

𝑓 ⇓𝛼 𝑔

𝐹

8.4. Representable Modules

Any vertical arrow 𝑓 ∶ 𝐴 → 𝐵 in a virtual equipment has a pair of associated horizontal arrows

𝐵
Hom𝐵(𝑓 ,𝐵) 𝐴 and 𝐴

Hom𝐵(𝐵,𝑓 ) 𝐵, defined as restrictions of the horizontal unit arrows, that have
universal properties similar to companions and conjoints in an ordinary double category [47]. In the
virtual equipment of modules, these are sensibly referred to as the left and right representations of a
functor as a module, using the familiar terminology and notation because these coincide exactly with
the left and right representables introduced in Definitions 3.5.1 and 7.4.7.

8.4.1. Proposition (companion and conjoint relations for representables). To any functor 𝑓 ∶ 𝐴 → 𝐵
in the virtual equipment of modules, there exist canonical restriction cells displayed below-left and application
cells displayed below-right

𝐵 𝐴 𝐴 𝐵 𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵 𝐵 𝐴 𝐴 𝐵

Hom𝐵(𝑓 ,𝐵)

⇓𝜌 𝑓 𝑓 ⇓𝜌

Hom𝐵(𝐵,𝑓 )

𝑓 ⇓𝜅

Hom𝐴

⇓𝜅

Hom𝐴

𝑓

Hom𝐵 Hom𝐵 Hom𝐵(𝑓 ,𝐵) Hom𝐵(𝐵,𝑓 )

defining unary maps between the unit modules𝐴
Hom𝐴 𝐴 and 𝐵

Hom𝐵 𝐵 and the left and right representable
modules 𝐵

Hom𝐵(𝑓 ,𝐵) 𝐴 and 𝐴
Hom𝐵(𝐵,𝑓 ) 𝐵. These satisfy the identities:

𝐴 𝐴

𝐵 𝐴

𝐵 𝐵

𝑓 ⇓𝜅

Hom𝐴

⇓𝜌

Hom𝐵(𝑓 ,𝐵)

𝑓

Hom𝐵

=
𝐴 𝐴

𝐵 𝐵

𝑓

Hom𝐴

⇓Hom𝑓 𝑓

Hom𝐵

=

𝐴 𝐴

𝐴 𝐵

𝐵 𝐵

⇓𝜅

Hom𝐴

𝑓

𝑓 ⇓𝜌

Hom𝐵(𝐵,𝑓 )

Hom𝐵

(8.4.2)

and

𝐵 𝐴 𝐴

𝐵 𝐵 𝐴

𝐵 𝐴

Hom𝐵(𝑓 ,𝐵)

⇓𝜌 𝑓

Hom𝐴

⇓𝜅
Hom𝐵 Hom𝐵(𝑓 ,𝐵)

⇓∘

Hom𝐵(𝑓 ,𝐵)

=
𝐵 𝐴 𝐴

𝐵 𝐴

Hom𝐵(𝑓 ,𝐵)

⇓∘

Hom𝐴

Hom𝐵(𝑓 ,𝐵)

𝐴 𝐴 𝐵

𝐴 𝐵

Hom𝐴

⇓∘

Hom𝐵(𝐵,𝑓 )

Hom𝐵(𝐵,𝑓 )

=

𝐴 𝐴 𝐵

𝐴 𝐵 𝐴

𝐴 𝐵

Hom𝐴

⇓𝜅 𝑓

Hom𝐵(𝐵,𝑓 )

⇓𝜌
Hom𝐵(𝐵,𝑓 ) Hom𝐵

⇓∘

Hom𝐵(𝐵,𝑓 )
(8.4.3)
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Proof. The unary module maps 𝜅 are defined by the equations (8.4.2) by appealing to the universal
property of the restriction cells in Proposition 8.2.1. The relations (8.4.3) could also be verified directly
from the axioms of Theorem 8.2.6 via Propositions 8.2.4 and Lemmas 8.3.10 and 8.3.15. For sake of
variety, we appeal to Lemma 8.1.16 to characterize each of the cells in the virtual equipment as natural
transformations in the homotopy 2-category.

We prove this for the right representables. By Remark 8.3.13, the binary module morphism on the
left-hand side of the rightmost equality of (8.4.3) represents the natural transformation below-left,
while the right-hand composite is below-right:

𝐴𝟚 ×
𝐴

Hom𝐵(𝐵, 𝑓 )

𝐴𝟚 Hom𝐵(𝐵, 𝑓 )

𝐴 𝐴 𝐵

𝑝1 𝑝0
𝜅
⇐

𝑝1 𝑝0
𝜙
⇐

𝑓

=

𝐴𝟚 ×
𝐴

Hom𝐵(𝐵, 𝑓 )

𝐴𝟚 Hom𝐵(𝐵, 𝑓 )

Hom𝐵(𝐵, 𝑓 ) 𝐴 𝐵𝟚

𝐴 𝐵 𝐵

𝑓 𝜅𝑝1
𝑝0 𝜙𝑝1

𝑝0

𝑝1 𝑝0𝜙
⇐

𝑓 𝑝1 𝑝0𝜅
⇐

𝑓

By the definition of the induced functors 𝜙𝑓 𝜅 = 𝑓 𝜅 and 𝜙 = 𝜅𝜙. Thus, the left-hand side equals the
right-hand side. �

The companions and conjoints of Proposition 8.4.1 can be deployed to “bend” vertical functors
into horizontal modules, producing bijections between cells whose boundaries involve these arrows.
The following result is often called the “spider lemma,” in reference to a graphical calculus that can be
used to illustrate virtual equipment cells and their composites [87].

8.4.4. Theorem (spider lemma). In the virtual equipment of modules there are natural bijections between
cells of the following four forms implemented by composing with the canonical cells 𝜅 and 𝜌 of Proposition 8.4.1
and with the composition and nullary cells associated to the units.

𝐴 𝐵

𝐶 𝐷

𝐶 𝐴 𝐵 𝐴 𝐵 𝐷

𝐶 𝐷 𝐶 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

↭

𝑓

�⃗�

⇓ 𝑔

↭𝐹

Hom𝐶(𝑓 ,𝐶)

⇓

�⃗�

𝑔 𝑓 ⇓

�⃗� Hom𝐷(𝐷,𝑔)

𝐹

↭

𝐹

↭
Hom𝐶(𝑓 ,𝐶)

⇓

�⃗� Hom𝐷(𝐷,𝑔)

𝐹
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Proof. The composite bijection displayed vertically in the statement carries cells 𝛼 and 𝛽 to the
cells displayed below-left and below-right, respectively:

�̂� ≔

𝐶 𝐴 𝐵 𝐷

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

Hom𝐶(𝑓 ,𝐶)

⇓𝜌 ⇓𝛼𝑓

�⃗�

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌
Hom𝐶

⇓∘

𝐹 Hom𝐷

𝐹

and �̌� ≔

𝐴 𝐴 𝐵 𝐵

𝐴 𝐴 𝐵 𝐵

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

⇓𝜄

�⃗�

⇓𝜄

𝑓 ⇓𝜅

Hom𝐴 �⃗�

⇓𝜅

Hom𝐵

𝑔
Hom𝐶(𝑓 ,𝐶)

⇓𝛽

�⃗� Hom𝐷(𝐷,𝑔)

𝐹

By Proposition 8.4.1 and Lemma 8.3.15

̌�̂� ≔

𝐴 𝐴 𝐵 𝐵

𝐴 𝐴 𝐵 𝐵

𝐶 𝐴 𝐵 𝐷

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

⇓𝜄

�⃗�

⇓𝜄

𝑓 ⇓𝜅

Hom𝐴 �⃗�

⇓𝜅

Hom𝐵

𝑔
Hom𝐶(𝑓 ,𝐶)

⇓𝜌 ⇓𝛼𝑓

�⃗�

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌
Hom𝐶

⇓∘

𝐹 Hom𝐷

𝐹

=

𝐴 𝐴 𝐵 𝐵

𝐴 𝐴 𝐵 𝐵

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

⇓𝜄

�⃗�

⇓𝜄

𝑓 ⇓Hom𝑓 ⇓𝛼

Hom𝐴 �⃗�

𝑓 ⇓Hom𝑔𝑔

Hom𝐵

𝑔
Hom𝐶

⇓∘

𝐹 Hom𝐷

𝐹

=
𝐴 𝐵

𝐶 𝐷

𝑓

�⃗�

⇓𝛼 𝑔

𝐹

The other composite is:

̂�̌� ≔

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

Hom𝐶(𝑓 ,𝐶)

⇓𝜄

�⃗�

⇓𝜄

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓 ,𝐶)

⇓𝜌 𝑓 ⇓𝜅

Hom𝐴 �⃗�

⇓𝜅

Hom𝐵

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌
Hom𝐶 Hom𝐶(𝑓 ,𝐶)

⇓𝛽

�⃗� Hom𝐷(𝐷,𝑔) Hom𝐷

Hom𝐶

⇓∘
𝐹

Hom𝐷

𝐹

(8.4.5)
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By Lemma 8.3.10, we have

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐷 𝐷

𝐶 𝐷

⇓𝜄

Hom𝐶(𝑓 ,𝐶) �⃗� Hom𝐷(𝐷,𝑔)

⇓𝜄
Hom𝐶 Hom𝐶(𝑓 ,𝐶)

⇓𝛽

�⃗� Hom𝐷(𝐷,𝑔) Hom𝐷

Hom𝐶

⇓∘
𝐹

Hom𝐷

𝐹

=

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

⇓𝜄

Hom𝐶(𝑓 ,𝐶) �⃗� Hom𝐷(𝐷,𝑔)

⇓𝜄
Hom𝐶

⇓∘

Hom𝐶(𝑓 ,𝐶) �⃗� Hom𝐷(𝐷,𝑔)

⇓∘

Hom𝐷

Hom𝐶(𝑓 ,𝐶)

⇓𝛽

�⃗� Hom𝐷(𝐷,𝑔)

𝐹

since both composites equal 𝛽. By the universal property of the unit cells in Proposition 8.2.4, the
bottom two rows of these diagrams are equal, so we may substitute the bottom two rows of the
right-hand diagram for the bottom two rows of (8.4.5) to obtain:

̂�̌� =

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐶 𝐴 𝐵 𝐷 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

Hom𝐶(𝑓 ,𝐶)

⇓𝜄

�⃗�

⇓𝜄

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓 ,𝐶)

⇓𝜌 𝑓 ⇓𝜅

Hom𝐴 �⃗�

⇓𝜅

Hom𝐵

𝑔

Hom𝐷(𝐷,𝑔)

⇓𝜌
Hom𝐶

⇓∘

Hom𝐶(𝑓 ,𝐶) �⃗� Hom𝐷(𝐷,𝑔)

⇓∘

Hom𝐷

Hom𝐶(𝑓 ,𝐶)
⇓𝛽

�⃗�
Hom𝐷(𝐷,𝑔)

𝐹

By Proposition 8.4.1 and Lemma 8.3.10 this reduces to 𝛽.

=

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐴 𝐵 𝐵 𝐷

𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

Hom𝐶(𝑓 ,𝐶)

⇓𝜄

�⃗�

⇓𝜄

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓 ,𝐶)

⇓∘

Hom𝐴 �⃗� Hom𝐵

⇓∘

Hom𝐷(𝐷,𝑔)

Hom𝐶(𝑓 ,𝐶)
⇓𝛽

�⃗�
Hom𝐷(𝐷,𝑔)

𝐹

=
𝐶 𝐴 𝐵 𝐷

𝐶 𝐷

Hom𝐶(𝑓 ,𝐶)

⇓𝛽

�⃗� Hom𝐷(𝐷,𝑔)

𝐹

By vertically bisecting this construction, one obtains the one-sided bijections of the statement. �

We frequently apply this result in the following form:

8.4.6. Corollary. Given a compatible sequence of modules 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from 𝐴 to 𝐵, a module 𝐹

from 𝐶 to 𝐷, and functors 𝑓 ∶ 𝐴 → 𝐶 and 𝑔∶ 𝐵 → 𝐷, there is a bijection between fibered module maps
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Hom𝐶(𝑓 , 𝐶)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛
⨰ Hom𝐷(𝐷, 𝑔) ⇒ 𝐹 and fibered module maps 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐹(𝑔, 𝑓 ),
i.e., between cells

𝐶 𝐴 𝐵 𝐷 𝐴 𝐵

𝐶 𝐷 𝐴 𝐵

Hom𝐶(𝑓 ,𝐶)

⇓

�⃗� Hom𝐷(𝐷,𝑔)

↭

�⃗�

⇓

𝐹 𝐹(𝑔,𝑓 )

Proof. Combine Theorem 8.4.4 with Proposition 8.2.1. �

8.4.7. Proposition. For any module 𝐴
𝐸

𝐵 and pair of functors 𝑎 ∶ 𝑋 → 𝐴 and 𝑏 ∶ 𝑌 → 𝐵, the strong
composite Hom𝐴(𝐴, 𝑎) ⊗ 𝐸 ⊗ Hom𝐵(𝑏, 𝐵) exists and is given by the restriction 𝐸(𝑏, 𝑎), with the ternary
strong composite map 𝜇∶ Hom𝐴(𝐴, 𝑎) ⨰ 𝐸 ⨰ Hom𝐵(𝑏, 𝐵) ⇒ 𝐸(𝑏, 𝑎) defined by the universal property of
the restriction by the pasting diagram:

𝑋 𝐴 𝐵 𝑌

𝑋 𝑌

𝐴 𝐵

Hom𝐴(𝐴,𝑎)

⇓𝜇

𝐸 Hom𝐵(𝑏,𝐵)

𝑎
𝐸(𝑏,𝑎)
⇓𝜌 𝑏

𝐸

≔

𝑋 𝐴 𝐵 𝑌

𝐴 𝐴 𝐵 𝐵

𝐴 𝐵

𝑎 ⇓𝜌

Hom𝐴(𝐴,𝑎) 𝐸

⇓𝜌

Hom𝐵(𝑏,𝐵)

𝑏

Hom𝐴
⇓∘

𝐸
Hom𝐵

𝐸

Proof. The horizontal composite two-sided fibration of the compatible sequence is

Hom𝐴(𝐴, 𝑎) ×
𝐴
𝐸 ×

𝐵
Hom𝐵(𝑏, 𝐵)

Hom𝐴(𝑞, 𝑎) Hom𝐵(𝑏, 𝑝)

Hom𝐴(𝐴, 𝑎) 𝐸 Hom𝐵(𝑏, 𝐵)

𝑋 𝐴 𝐵 𝑌

𝑝1 𝑝0 𝑞 𝑝 𝑝1 𝑝0

from which we see that the binary composite cell

Hom𝐴(𝑞, 𝐴) ×
𝐸

Hom𝐵(𝐵, 𝑝) 𝐸

𝐴 × 𝐵
(𝑞,𝑝)

of Proposition 8.3.11 pulls back along 𝑎 × 𝑏∶ 𝑋 × 𝑌 → 𝐴 × 𝐵 to define the map 𝜇. By Lemma 8.3.7,
we conclude that 𝜇∶ Hom𝐴(𝐴, 𝑎) ⨰ 𝐸 ⨰ Hom𝐵(𝑏, 𝐵) ⇒ 𝐸(𝑏, 𝑎) is a strong composite. �

When one of the three modules appearing in the source of the ternary composite of Proposition
8.4.7 is a unit module, we can use Lemma 8.3.8 and the nullary composite cell associated with the unit
to reduce this ternary composite to a binary composite (see Exercise 8.4.iii). This argument proves the
following pair of corollaries.
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8.4.8. Corollary. For any cospan of functors 𝐶
𝑔
𝐴

𝑓
𝐵, the comma module Hom𝐴(𝑓 , 𝑔) factors as a

strong composite
Hom𝐴(𝐴, 𝑔) ⊗ Hom𝐴(𝑓 , 𝐴) ≃ Hom𝐴(𝑓 , 𝑔). �

A similar reduction (see Exercise 8.2.i) proves that right representable modules can always be
composed with each other and dually left representable modules can always be composed with each
other:

8.4.9. Corollary. Any composable pair of functors 𝐴
𝑓
𝐵

𝑔
𝐶 defines a strongly composable pair of right

represented modules and a strongly composable pair of left represented modules

𝐴 𝐵 𝐶 𝐶 𝐵 𝐴
Hom𝐵(𝐵,𝑓 ) Hom𝐶(𝐶,𝑔) Hom𝐶(𝑔,𝐶) Hom𝐵(𝑓 ,𝐵)

and moreover the strong composites are again represented:

Hom𝐵(𝐵, 𝑓 )⊗Hom𝐶(𝐶, 𝑔) ≃ Hom𝐶(𝐶, 𝑔𝑓 ) and Hom𝐶(𝑔, 𝐶)⊗Hom𝐵(𝑓 , 𝐵) ≃ Hom𝐶(𝑔𝑓 , 𝐶). �

This result combines with Proposition 8.3.11 to prove a generalization of Theorem 3.5.12, which
allows us to detect representable modules.

8.4.10. Proposition. Let 𝐴
𝑞
𝐸

𝑝
𝐵 encode a module.

(i) The module𝐴
𝐸

𝐵 is right representable just when its left leg 𝑞 ∶ 𝐸 ↠ 𝐴 has a right adjoint 𝑟 ∶ 𝐴 → 𝐸
in which case 𝐸 ≃ Hom𝐵(𝐵, 𝑝𝑟).

(ii) The module𝐴
𝐸

𝐵 is left representable just when its right leg 𝑝∶ 𝐸 ↠ 𝐵 has a left adjoint ℓ ∶ 𝐵 → 𝐸
in which case 𝐸 ≃ Hom𝐴(𝑞ℓ, 𝐴).

Proof. By Lemma 3.5.9 and Theorem 3.5.12, the claimed adjoints and fibered equivalences exist for
representable modules, so it remains only to prove the converse. By Proposition 8.3.11, any module 𝐸
can be expressed as a composite Hom𝐴(𝑞, 𝐴) ⊗Hom𝐵(𝐵, 𝑝) ≃ 𝐸 of the left representation of its left leg
followed by the right representation of its right leg. If 𝑞 ⊣ 𝑟, then by Proposition 4.1.1 Hom𝐴(𝑞, 𝐴) ≃
Hom𝐸(𝐸, 𝑟) as modules from 𝐴 to 𝐸, so by Lemma 8.3.3, Hom𝐸(𝐸, 𝑟) ⊗ Hom𝐵(𝐵, 𝑝) ≃ 𝐸. By Corollary
8.4.9, Hom𝐸(𝐸, 𝑟) ⊗ Hom𝐵(𝐵, 𝑝) ≃ Hom𝐵(𝐵, 𝑝𝑟) so by Lemma 8.3.3 again, Hom𝐵(𝐵, 𝑝𝑟) ≃ 𝐸. �

Finally, we revisit the “cheap” version of the Yoneda lemma presented in Corollary 3.5.11, which
encodes natural transformations in the homotopy 2-category as maps of represented modules.

8.4.11. Proposition. For any parallel pair of functors there are natural bijections between 2-cells in the
homotopy 2-category

𝐴 𝐵
𝑓

𝑔
⇓𝛼

and cells in the virtual equipment of modules:

𝐴 𝐵 𝐴 𝐴 𝐵 𝐴

𝐴 𝐵 𝐵 𝐵 𝐵 𝐴
⇓𝛼∗

Hom𝐵(𝐵,𝑓 )

↭ ⇓�⃖�𝑔

Hom𝐴

𝑓 ↭

Hom𝐵(𝑔,𝐵)

⇓𝛼∗

Hom𝐵(𝐵,𝑔) Hom𝐵 Hom𝐵(𝑓 ,𝐵)
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Proof. The bijections in𝕄od(𝒦) can then be derived from Theorem 8.4.4 and Corollary 8.4.6.
The bijection between 2-cells in the homotopy 2-category and unary module maps between left or
right representables is simply a restatement of Corollary 3.5.11. �

8.4.12. Definition (the covariant and contravariant embeddings). Proposition 8.4.11 defines the action
on 2-cells of two identity-on-objects locally fully faithful homomorphisms

𝔥𝒦 𝕄od(𝒦) 𝔥𝒦coop 𝕄od(𝒦)

𝐴 𝑓 𝐵 𝐴 Hom𝐵(𝐵,𝑓 ) 𝐵 𝐴 𝑓 𝐵 𝐵 Hom𝐵(𝑓 ,𝐵) 𝐴
that embed the homotopy 2-category fully faithfully into the sub “bicategory” of𝕄od(𝒦) containing
only those unary cells whose vertical boundaries are identities.

This substructure of𝕄od(𝒦) is not quite a bicategory because not all horizontally composable
modules can be composed, but if we restrict only to the right representable modules or only to the left
representable modules, then by Corollary 8.4.9 the composites do exist and the embeddings define

genuine bicategorical homomorphisms: given 𝐴
𝑓
𝐵

𝑔
𝐶 we have Hom𝐵(𝐵, 𝑓 ) ⊗ Hom𝐶(𝐶, 𝑔) ≃

Hom𝐶(𝐶, 𝑔𝑓 ) and Hom𝐶(𝑔, 𝐶)⊗Hom𝐵(𝑓 , 𝐵) ≃ Hom𝐶(𝑔𝑓 , 𝐶). We refer to these as the covariant and
contravariant embeddings, respectively.

8.4.13. Remark. In addition to the covariant and contravariant embeddings, there is a third locally
fully faithful embedding of the homotopy 2-category 𝔥𝒦 into 𝕄od(𝒦) that is identity on objects,
sends 𝑓 ∶ 𝐴 → 𝐵 to the corresponding vertical 1-cell, and uses the third bijection of Proposition 8.4.11
to define the action on 2-cells. Since Hom𝐴 ⊗ Hom𝐴 ≃ Hom𝐴, the unary cells in this image of this
embedding can be composed horizontally as well as vertically, and this embedding is functorial in both
directions: vertical composites of natural transformations in 𝔥𝒦 coincide with horizontal composites
of unary cells and horizontal composites of natural transformations in 𝔥𝒦 coincide with vertical
composites of unary cells. The image is precisely the vertical 2-category of Proposition 8.3.18. We make
much greater use of the covariant and contravariant embeddings of Definition 8.4.12 however.

Exercises.

8.4.i. Exercise. Prove Proposition 8.4.1 in any virtual equipment, without appealing to Lemma 8.1.16.

8.4.ii. Exercise. State and prove a generalization of Theorem 8.4.4 in which the bottom 𝑛 + 2-ary cell
appearing in the statement is not fibered, but has vertical boundary defined by an arbitrary pair of
nonidentity functors.

8.4.iii. Exercise. Prove a binary version of Proposition 8.4.7: that for any module 𝐴
𝐸

𝐵 and any
functors 𝑎 ∶ 𝑋 → 𝐴 and 𝑏 ∶ 𝑌 → 𝐵 the strong composites Hom𝐴(𝐴, 𝑎) ⊗ 𝐸 and 𝐸 ⊗ Hom𝐵(𝑏, 𝐵) exist
and are given by the restrictions 𝐸(1, 𝑎) and 𝐸(𝑏, 1), respectively.

8.4.iv. Exercise. Prove the nonstrong version of Proposition 8.4.7 in any virtual equipment, without
appealing to Lemma 8.3.7.

8.4.v. Exercise. For any functor 𝑓 ∶ 𝐴 → 𝐵, define a canonical unary cell 𝜂∶ Hom𝐴 ⇒ Hom𝐵(𝑓 , 𝑓 ) ≃
Hom𝐵(𝐵, 𝑓 ) ⊗ Hom𝐵(𝑓 , 𝐵) and a binary cell 𝜖 ∶ Hom𝐵(𝑓 , 𝐵)

⨰ Hom𝐵(𝐵, 𝑓 ) ⇒ Hom𝐵. Use this data

to demonstrate that the modules 𝐴
Hom𝐵(𝐵,𝑓 ) 𝐵 and 𝐵

Hom𝐵(𝑓 ,𝐵) 𝐴 are “adjoint” in a suitable sense.
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CHAPTER 9

Formal∞-Category Theory in a Virtual Equipment

Mac Lane famously asserted that “all concepts are Kan extensions” [81, §X.7] – at least in category
theory. Right and left extensions of a functor 𝑓 ∶ 𝐴 → 𝐶 along a functor 𝑘 ∶ 𝐴 → 𝐵 can be defined
internally to any 2-category (see Definition 9.1.1) – at this level of generality the eponym “Kan” is
typically dropped. However, in the homotopy 2-category of an ∞-cosmos, the universal property
defining left and right extensions is too weak, and indeed the correct universal property is associated
to the stronger notion of a pointwise extension, for which the values of a right or left extension at an
element of 𝐵 can be computed as limits or colimits indexed by the appropriate comma∞-category
(see Proposition 9.4.9 for a precise statement). Indeed, Kelly later amended Mac Lane’s assertion,
arguing that the pointwise Kan extensions, which he calls simply “Kan extensions” are the important ones,
writing “Our present choice of nomenclature is based on our failure to find a single instance where a
[nonpointwise] Kan extension plays any mathematical role whatsoever” [68, §4].

Using the calculus of modules, we can now add the theory of pointwise Kan extensions of functors
between ∞-categories to the basic ∞-category theory developed in Part I. In fact, we give multiple
definitions of pointwise extension. One is fundamentally 2-categorical: a pointwise extension is an
ordinary 2-categorical extension in the homotopy 2-category that is stable under pasting with comma
squares. Another definition is that a natural transformation defines a pointwise right extension if and
only if its image under the covariant embedding into the virtual equipment of modules defines a right
extension there. Theorem 9.3.3 proves that these two notions coincide.

In §9.1, we introduce right liftings and right extensions in the virtual equipment of modules and
establish their elementary properties. Before turning our attention to pointwise extensions, we first
introduce exact squares in §9.2, a collection of squares in the homotopy 2-category that includes comma
squares, which are used to characterize the pointwise extensions internally to the homotopy 2-category.
Pointwise extensions are introduced in a variety of equivalent ways in §9.3 and deployed in §9.4 to
develop a few aspects of the formal theory of∞-categories.

The explorations of §9.4 begin with a discussion of adjunctions and fully faithful functors, revisiting
well-trodden ground. The vital applications of pointwise right and left extensions arrive in the later
part of that section, where we define limits and colimits of∞-category indexed diagrams in general
∞-cosmoi, that are not necessarily cartesian closed. In §9.5, we introduce a more general class of limits
and colimits for diagrams between∞-categories that are weighted by an arbitrary module and quickly
establish the key components of the calculus of weighted limits and colimits. These results can be
understood as revealing that many aspects of ∞-category are automatically enriched over discrete
∞-categories.

There is one question we do not address in this chapter: namely criteria that guarantee the existence
of pointwise left and right extensions. We return to this topic in §12.3 where we take advantage of the
results about pointwise defined universal properties established in Chapter 12 to prove the expected
converse to Proposition 9.4.9 in an ∞-cosmos of (∞, 1)-categories, reducing the question of the
existence of pointwise left or right extensions to the existence of certain colimits or limits.
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9.1. Liftings and Extensions of Modules

In this section we introduce and study liftings and extensions in the virtual equipment of modules.
To motivate Definition 9.1.2, we briefly recall the standard 2-categorical notion:

9.1.1. Definition. A right extension of a 1-cell 𝑓 ∶ 𝐴 → 𝐶 along a 1-cell 𝑘 ∶ 𝐴 → 𝐵 is given by a pair
(𝑟 ∶ 𝐵 → 𝐶, 𝜈 ∶ 𝑟𝑘 ⇒ 𝑓 ) as below-left

𝐴 𝐶 𝐴 𝐶 𝐴 𝐶

𝐵 𝐵 𝐵
𝑘

𝑓

𝑘

𝑓

= 𝑘

𝑓

𝑟
⇑𝜈

𝑔
⇑𝛾

𝑔

𝑟⇑𝜈
⇑∃!

so that any similar pair as above-center factors uniquely through 𝜈 as above right.
Dually, a left extension of a 1-cell 𝑓 ∶ 𝐴 → 𝐶 along a 1-cell 𝑘 ∶ 𝐴 → 𝐵 is given by a pair (ℓ ∶ 𝐵 →

𝐶, 𝜆∶ 𝑓 ⇒ ℓ𝑘) as below-left

𝐴 𝐶 𝐴 𝐶 𝐴 𝐶

𝐵 𝐵 𝐵
𝑘

𝑓

𝑘

𝑓

= 𝑘

𝑓

ℓ
⇓𝜆

𝑔
⇓𝛿

𝑔

ℓ⇓𝜆
⇓∃!

so that any similar pair as above-center factors uniquely through 𝜆 as above right.

The op-duals of Definition 9.1.1 define right and left lifting diagrams in any 2-category. Analogous
notions of right extension and right lifting can be defined for horizontal arrows in a virtual double
category, where in the presence of the restrictions of a virtual equipment it suffices to consider “fibered”
cells, whose vertical boundary arrows are identities. We specialize our language to the virtual equipment
of modules, as this is the case of interest:

9.1.2. Definition. A right extension of a module 𝐴
𝐹
𝐶 along a module 𝐴

𝐾
𝐵 consists of a pair

given by a module 𝐵
𝑅

𝐶 together with a binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

𝐾 𝑅

⇓𝜈

𝐹

with the property that every 𝑛 + 1-ary cell of the form displayed below-left factors uniquely through
𝜈∶ 𝐾 ⨰ 𝑅 ⇒ 𝐹 as below-right:

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐶

𝐾

⇓

𝐸1 𝐸𝑛

𝐹

=

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐵 𝐶

𝐴 𝐶

𝐾

⇓∃!

𝐸1 𝐸𝑛

𝐾

⇓𝜈

𝑅

𝐹
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Dually, a right lifting of 𝐴
𝐹
𝐶 through 𝐵

𝐻
𝐶 consists of a pair given by a module 𝐴

𝐿
𝐵

together with a binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

𝐿 𝐻

⇓𝜆

𝐹
with the property that every 𝑛 + 1-ary cell of the form displayed below-left factors uniquely through
𝜆∶ 𝐿 ⨰ 𝐻 ⇒ 𝐹 as below-right:

𝐴 ⋯ 𝐵 𝐶

𝐴 𝐶

𝐸1

⇓

𝐸𝑛 𝐻

𝐹

=

𝐴 ⋯ 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐶

⇓∃!

𝐸1 𝐸𝑛 𝐻

⇓𝜆

𝐿 𝐻

𝐹

Because of the asymmetry in Definition 8.1.8, there is no corresponding notion of left extension or
left lifting. It follows easily from these definitions that right extensions or right liftings are unique up
to vertical isomorphism in𝕄od(𝒦) (see Exercise 9.1.i).

9.1.3. Lemma. For any functor 𝑓 ∶ 𝐴 → 𝐵, there is a binary cell

𝐵 𝐴 𝐵

𝐵 𝐵

Hom𝐵(𝑓 ,𝐵)

⇓𝜖

Hom𝐵(𝐵,𝑓 )

Hom𝐵

that defines both a right extension of 𝐵
Hom𝐵 𝐵 through 𝐵

Hom𝐵(𝑓 ,𝐵) 𝐴 and a right lifting of 𝐵
Hom𝐵 𝐵

through 𝐴
Hom𝐵(𝐵,𝑓 ) 𝐵.

Proof. The binary cell 𝜖 ∶ Hom𝐵(𝑓 , 𝐵)
⨰ Hom𝐵(𝐵, 𝑓 ) ⇒ Hom𝐵, which also appears as a counit

of sorts in Exercise 8.4.v, corresponds to the unary unit cell Hom𝑓 under the bijections of Theorem
8.4.4 and Proposition 8.2.4. The verification of the universal properties is left as Exercise 9.1.ii. �

The result of Lemma 9.1.3 is a special case of a more general family of examples:

9.1.4. Lemma. For any module 𝐴
𝐸

𝐵 and any pair of functors 𝑔∶ 𝐶 → 𝐴 and 𝑓 ∶ 𝐷 → 𝐵 the canonical
cells

𝐴 𝐶 𝐵 𝐴 𝐷 𝐵

𝐴 𝐵 𝐴 𝐵

Hom𝐴(𝑔,𝐴) 𝐸(1,𝑔)

⇓𝜌

𝐸(𝑓 ,1) Hom𝐵(𝐵,𝑓 )

⇓𝜌

𝐸 𝐸
exhibit 𝐸(1, 𝑔) as the right extension of 𝐸 through Hom𝐴(𝑔, 𝐴) and exhibit 𝐸(𝑓 , 1) as the right lifting of 𝐸
through Hom𝐵(𝐵, 𝑓 ).
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Proof. The canonical cells of the statement are defined by applying the bijection of Theorem
8.4.4 to the restriction cells of Proposition 8.2.1, which is to say that in the case of the right extension
diagram above-left this cell is obtained as the composite

𝐴 𝐶 𝐵

𝐴 𝐴 𝐵

𝐴 𝐵

Hom𝐴(𝑔,𝐴)

𝑔

𝐸(1,𝑔)

⇓𝜌⇓𝜌

Hom𝐴 𝐸

⇓∘

𝐸

The universal property of the right extension is provided by Corollary 8.4.6. �

In particular:

9.1.5. Corollary. Any module 𝐴
𝐸

𝐵 is the right extension of itself along 𝐴
Hom𝐴 𝐴 as well as the right

lifting of itself through 𝐵
Hom𝐵 𝐵. �

Right extensions and right liftings can be understood as right adjoints to horizontal composition
with a module on the left or on the right, respectively (see Theorem 12.3.6). This leads to the following
“associativity” result, which we formulate for right extensions, leaving the dual result for right liftings
to the reader.

9.1.6. Proposition. Suppose 𝐴
𝐾

𝐵, 𝐵
𝐻

𝐶, and 𝐴
𝐹
𝐷 are modules so that the composite 𝐾 ⊗ 𝐻 and

right extension 𝐵
𝑅𝐾𝐹 𝐷 modules exist. Then the right extension of 𝑅𝐾𝐹 along𝐻 exists if and only if the right

extension of 𝐹 along 𝐾 ⊗ 𝐻 exists, in which case 𝑅𝐻(𝑅𝐾𝐹) ≃𝐶×𝐷 𝑅𝐾⊗𝐻𝐹.

Proof. The universal property of the binary composite cell 𝜇∶ 𝐾 ⨰ 𝐻 ⇒ 𝐾 ⊗ 𝐻 and right
extension cell 𝜈∶ 𝐾 ⨰ 𝑅𝐾𝐹 ⇒ 𝐹 provide a bijection between cells involving an arbitrary compatible
sequence of modules 𝑅1

⨰ ⋯ ⨰ 𝑅𝑛 from 𝐶 to 𝐷 (see Notation 8.2.7):

𝐴 𝐵 𝐶 𝐷 𝐴 𝐵 𝐶 𝐷

𝐴 𝐶 𝐷 𝐴 𝐵 𝐷

𝐴 𝐷 𝐴 𝐷

𝐾 𝐻

⇓𝜇

�⃗� 𝐾 𝐻 �⃗�

⇓∃!

𝐾⊗𝐻

⇓∃!

�⃗� ↭ 𝐾 𝑅𝐾𝐹
⇓𝜈

𝐹 𝐹

In the case of an empty sequence of modules, this bijection encodes an adjointness between fibered
module maps 𝐾 ⊗ 𝐻 ⇒ 𝐹 and fibered module maps 𝐻 ⇒ 𝑅𝐾𝐹.

If the right extension 𝑅𝐾⊗𝐻𝐹 exists we take this for 𝑅 and use the binary cell on the lower-left
to induce the binary cell on the upper-right, which can be shown to exhibit 𝑅𝐾⊗𝐻𝐹 as the right
extension 𝑅𝐻(𝑅𝐾𝐹) of 𝑅𝐾𝐹 along 𝐻. Conversely, if the right extension 𝑅𝐻(𝑅𝐾𝐹) exists we use the
binary cell on the upper-right to induce the binary cell on the lower-left, which can be shown to exhibit
𝑅𝐻(𝑅𝐾𝐹) as the right extension 𝑅𝐾⊗𝐻𝐹 of 𝐹 along 𝐾 ⊗ 𝐻. This transference of universal properties is
straightforward, following again from the bijection just exhibited.
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Finally, if separately the right extensions 𝑅𝐻(𝑅𝐾𝐹) and 𝑅𝐾⊗𝐻𝐹 are known to exist, then the
argument given above combined with the uniqueness of right extensions combines to show that
𝑅𝐾⊗𝐻𝐹 ≃ 𝑅𝐻(𝑅𝐾𝐹) as modules from 𝐶 to 𝐷 (see Exercise 9.1.i). �

We now explain how Definition 9.1.2 relates to Definition 9.1.1 via the covariant and contravariant
embeddings of Definition 8.4.12.

9.1.7. Lemma. If

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘) Hom𝐶(𝐶,𝑟)

⇓𝜈∗

Hom𝐶(𝐶,𝑓 )

defines a right extension in the virtual equipment of modules, then 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a right extension in the
homotopy 2-category. Dually if

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐴(ℓ,𝐴) Hom𝐵(ℎ,𝐵)

⇓𝜆∗

Hom𝐴(𝑔,𝐴)

defines a right lifting in the virtual equipment of modules, then 𝜆∶ 𝑔 ⇒ ℓℎ is a left extension in the homotopy
2-category.

Proof. By Corollary 8.4.9 binary cells 𝜈∗ ∶ Hom𝐵(𝐵, 𝑘)
⨰ Hom𝐶(𝐶, 𝑟) ⇒ Hom𝐶(𝐶, 𝑓 ) correspond

to unary cells 𝜈∗ ∶ Hom𝐶(𝐶, 𝑟𝑘) ⇒ Hom𝐶(𝐶, 𝑓 ), and by Proposition 8.4.11, these correspond to natural
transformations 𝜈∶ 𝑟𝑘 ⇒ 𝑓 in the homotopy 2-category. Under this correspondence the universal
property of Definition 9.1.2 clearly subsumes that of Definition 9.1.1 by restricting to right represented
modules. The left extension case is similar, via the contravariant embedding of Definition 8.4.12. �

A sharper characterization of the right extension diagrams of modules in the image of the covariant
embedding appears in Theorem 9.3.3, but we can characterize the right lifting diagrams of modules
in the image of the covariant embedding now. Recall the notion of absolute right lifting diagram
introduced in Definition 2.3.5.

9.1.8. Proposition. A natural transformation in the homotopy 2-category of an ∞-cosmos as below-left
defines an absolute right lifting diagram if and only if the corresponding binary cell displayed below-right defines
a right lifting in the virtual equipment of modules:

𝐵 𝐶 𝐵 𝐴

𝐶 𝐴 𝐶 𝐴
⇓𝜌

𝑓 ↭

Hom𝐵(𝐵,𝑟) Hom𝐴(𝐴,𝑓 )

⇓𝜌∗
𝑟

𝑔 Hom𝐴(𝐴,𝑔)

Dually, a 2-cell in the homotopy 2-category of an∞-cosmos as below-left defines an absolute left lifting diagram if
and only if the corresponding binary cell displayed below-right defines a right extension in the virtual equipment
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of modules:

𝐵 𝐴 𝐵 𝐴

𝐶 𝐴 𝐴 𝐶
⇑𝜆

𝑓 ↭

Hom𝐴(𝑓 ,𝐴) Hom𝐵(ℓ,𝐵)

⇓𝜆∗
ℓ

𝑔 Hom𝐴(𝑔,𝐴)

Proof. By Proposition 8.4.11, natural transformations in the homotopy 2-category of an∞-cosmos
correspond bijectively to unary squares in the virtual equipment of modules of various forms. By this
result and Corollaries 8.4.6 and 8.4.9, there are canonical bijections:

𝑋

𝐶 𝐵

𝐴

𝑏𝑐
𝜒
⇐

𝑔 𝑓

↭
𝑋 𝐴 𝐶 𝑋 𝐵 𝐴

𝑋 𝐴 𝐶 𝐴

Hom𝐴(𝐴,𝑓 𝑏)

⇓𝜒∗ ↭

Hom𝐶(𝑐,𝐶)

⇓�̂�

Hom𝐵(𝐵,𝑏) Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔𝑐) Hom𝐴(𝐴,𝑔)

(9.1.9)
If the binary cell 𝜌∗ ∶ Hom𝐵(𝐵, 𝑟)

⨰ Hom𝐴(𝐴, 𝑓 ) ⇒ Hom𝐴(𝐴, 𝑔) defines a right lifting diagram
in the virtual equipment of modules, then there is a unique factorization

𝐶 𝑋 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑐,𝐶)

⇓�̂�

Hom𝐵(𝐵,𝑏) Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

=

𝐶 𝑋 𝐵 𝐴

𝐶 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑐,𝐶) Hom𝐵(𝐵,𝑏)

∃!⇓�̂�

Hom𝐴(𝐴,𝑓 )

Hom𝐵(𝐵,𝑟)
⇓𝜌∗

Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

Reversing the canonical bijection (9.1.9), this defines the desired unique factorization in the homotopy
2-category:

𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴

𝑏

𝑐 ⇓𝜒 𝑓 =

𝑏

𝑐
∃!⇓𝜁

⇓𝜌
𝑓

𝑔 𝑔

𝑟

Thus if 𝜌∗ ∶ Hom𝐵(𝐵, 𝑟)
⨰ Hom𝐴(𝐴, 𝑓 ) ⇒ Hom𝐴(𝐴, 𝑔) is a right lifting, then 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 is an

absolute right lifting.
Conversely, suppose 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 is an absolute right lifting and consider a cell in the virtual

equipment of modules of the following form:

𝐶 ⋯ 𝐵 𝐴

𝐶 𝐴

𝐸1

⇓�̄�

𝐸𝑛 Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

Let 𝐶
𝑞

�⃗�
𝑝

𝐵 denote the composite two-sided fibration 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛. By Remark 8.3.12,

module maps �̄� ∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛

⨰ Hom𝐴(𝐴, 𝑓 ) ⇒ Hom𝐴(𝐴, 𝑔) correspond to module maps
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�̂� ∶ Hom𝐶(𝑞, 𝐶)
⨰ Hom𝐵(𝐵, 𝑝)

⨰ Hom𝐴(𝐴, 𝑓 ) ⇒ Hom𝐴(𝐴, 𝑔), as displayed below-left. As argued in
(9.1.9), these stand in canonical bijection with natural transformations as below-center:

𝐶 �⃗� 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑞,𝐶)

⇓�̂�

Hom𝐵(𝐵,𝑝) Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

↭

�⃗�

𝐶 𝐵

𝐴

𝑝𝑞

𝜓
⇐

𝑔 𝑓

↭

�⃗�

𝐶 𝐵

𝐴

𝑝𝑞 ∃!𝜉
⇐

𝜌
⇐𝑔

𝑟

𝑓

Since 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 is assumed to be an absolute right lifting, 𝜓 factors uniquely through 𝜌 to define
a corresponding 2-cell 𝜉∶ 𝑝 ⇒ 𝑟𝑞 as above-right. Applying (9.1.9) again, this constructs a unique
factorization in the virtual equipment of modules

𝐶 �⃗� 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑞,𝐶)

⇓�̂�

Hom𝐵(𝐵,𝑝) Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

=

𝐶 �⃗� 𝐵 𝐴

𝐶 𝐵 𝐴

𝐶 𝐴

Hom𝐶(𝑞,𝐶)

∃!⇓�̂�

Hom𝐵(𝐵,𝑝) Hom𝐴(𝐴,𝑓 )

Hom𝐵(𝐵,𝑟)
⇓𝜌∗

Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

By Remark 8.3.12, this defines a bijection

𝐶 ⋯ 𝐵 𝐴

𝐶 𝐴

𝐸1

⇓�̄�

𝐸𝑛 Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

=

𝐶 ⋯ 𝐵 𝐴

𝐶 𝐵 𝐴

𝐶 𝐴

𝐸1

∃!⇓�̄�

𝐸𝑛 Hom𝐴(𝐴,𝑓 )

Hom𝐵(𝐵,𝑟)
⇓𝜌∗

Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑔)

Thus if 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 defines an absolute right lifting, then 𝜌∗ ∶ Hom𝐵(𝐵, 𝑟)
⨰ Hom𝐴(𝐴, 𝑓 ) ⇒

Hom𝐴(𝐴, 𝑔) defines a right lifting. �

In Theorem 9.3.3 we discover that right extensions of modules in the image of the covariant
embedding are precisely characterized by the sought-for pointwise right extensions in the homotopy
2-category; dually pointwise left extensions correspond to right liftings of modules in the image of
the contravariant embedding. In the next section, we build toward the 2-categorical definition of this
notion.

Exercises.

9.1.i. Exercise. Suppose 𝐵
𝑅

𝐶 and 𝐵
𝑆
𝐶 both define right extensions of a module 𝐴

𝐹
𝐶 along

a module 𝐴
𝐾

𝐵 in the sense of Definition 9.1.2. Prove that 𝑅 ≃𝐵×𝐶 𝑆.

9.1.ii. Exercise. Complete the proof of Lemma 9.1.3 without appealing to Lemma 9.1.4.

9.1.iii. Exercise. A virtual equipment is closed if the right extensions and right liftings of Definition
9.1.2 always exist. In a closed virtual equipment, prove that a cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 is a composite
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if and only if restriction along 𝜇 defines a bijection between fibered unary cells 𝐸 ⇒ 𝐹 and fibered
cells 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐹 for all modules 𝐹 that are parallel to 𝐸.

9.1.iv. Exercise. Dualize Proposition 9.1.6 to characterize right liftings through a composite of two
modules.

9.1.v. Exercise. Establish the dual of Proposition 9.1.8, by verifying that absolute left lifting diagrams
𝜆∶ 𝑔 ⇒ 𝑓 ℓ correspond to right extension diagrams 𝜆∗ ∶ Hom𝐴(𝑓 , 𝐴) ⨰ Hom𝐵(ℓ, 𝐵) ⇒ Hom𝐴(𝑔, 𝐴).

9.2. Exact Squares

To motivate the main definition of this section, let us try to guess the universal property of a
pointwise right extension in an∞-cosmos by considering a special case that we already understand. If
the ambient∞-cosmos is cartesian closed, then the pointwise right extension of a diagram 𝑓 ∶ 𝐴 → 𝐶
along a functor 𝑘 ∶ 𝐴 → 𝐵 is intended to define the value of a right adjoint, which may or may not exist
in toto, to the restriction functor res𝑘 ∶ 𝐶𝐵 → 𝐶𝐴 at the element 𝑓 ∶ 1 → 𝐶𝐴. In the case of extensions
along a functor ! ∶ 𝐴 → 1, the restriction functor is the constant diagram functor Δ∶ 𝐶 → 𝐶𝐴

considered in Definition 2.3.2, and so via Definition 2.3.8 we can understand the pointwise right
extension as computing the limit of 𝑓. The following lemma describes the transposed form of this
universal property.

9.2.1. Lemma. In a cartesian closed ∞-cosmos, the triangle below-left is an absolute right lifting diagram
– defining the limit element and limit cone of 𝑓 – if and only if the transposed triangle below-center has the
property that for any∞-category 𝑋, the composite diagram below-right is a right extension diagram.

𝐶 𝐴 𝐶 𝑋 × 𝐴 𝐴 𝐶

1 𝐶𝐴 1 𝑋 1
⇓𝜖

Δ ↭ !

𝑓 𝜋

𝜋 !

𝑓

lim 𝑓

𝑓

lim 𝑓
⇑𝜖

!
lim 𝑓

⇑𝜖

Proof. A factorization of a cone with summit 𝑋 through the absolute right lifting of 𝑓 along the
constant diagram functor

𝑋 𝐶 𝑋 𝐶

1 𝐶𝐴 1 𝐶𝐴

!

𝑐

⇓𝜒 Δ = !

𝑐
∃!⇓𝜁

⇓𝜖
Δ

𝑓

lim 𝑓

𝑓

transposes to a factorization as below:

𝑋 × 𝐴 𝐴 𝐶 𝑋 × 𝐴 𝐴 𝐶

𝑋 𝑋 1

𝜋

𝜋

𝑓

=

𝜋

𝜋 !

𝑓

𝑐

⇑𝜒
!

𝑐

∃!⇑𝜁

lim 𝑓
⇑𝜖 �

Lemma 9.2.1 reveals that to define the limit of 𝑓 ∶ 𝐴 → 𝐶 in an∞-cosmos that is not necessarily
cartesian closed, it is not enough to form the right extension of ! ∶ 𝐴 → 1. In terminology introduced
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in Definition 9.3.1, we must ask in addition that the right extension diagram is stable under pasting with
squares of the form:

𝑋 × 𝐴 𝐴

𝑋 1

𝜋

𝜋 !

!
How might we characterize such squares? First, they are pullbacks each of whose legs is a bifibration.
Second, they are comma squares, where the comma cone is an identity 2-cell best regarded as pointing
in a direction compatible with 𝜈 in the statement of Lemma 9.2.1. By Lemmas 9.2.6 and 9.2.7, we shall
see that both of these are instances of exact squares, which we now introduce.

By Proposition 8.4.11, natural transformations in the homotopy 2-category of an∞-cosmos cor-
respond bijectively to unary squares in the virtual equipment of modules of various forms, and in
particular, that result, Theorem 8.4.4, Proposition 8.2.4, and Proposition 8.2.1 defines a canonical
bijection:

𝐷

𝐶 𝐵

𝐴

ℎ𝑘
𝛼
⇐

𝑔 𝑓

↭
𝐷 𝐷 𝐶 𝐷 𝐵

𝐴 𝐴 𝐶 𝐵

𝑔𝑘

Hom𝐷

⇓�⃖� 𝑓 ℎ ↭

Hom𝐶(𝑘,𝐶)

⇓�̂�

Hom𝐵(𝐵,ℎ)

Hom𝐴 Hom𝐴(𝑓 ,𝑔)

9.2.2. Definition (exact square). A square in the homotopy 2-category of an∞-cosmos

𝐷

𝐶 𝐵

𝐴

ℎ𝑘
𝛼
⇐

𝑔 𝑓

is exact¹ if and only if the corresponding cell below-left, which under the bijection of Lemma 8.1.16
encodes the below-right pasted composite

𝐶 𝐷 𝐵

𝐶 𝐵

Hom𝐶(𝑘,𝐶)

⇓�̂�

Hom𝐵(𝐵,ℎ)

Hom𝐴(𝑓 ,𝑔)

↭

Hom𝐶(𝑘, 𝐶) ×𝐷 Hom𝐵(𝐵, ℎ)

Hom𝐶(𝑘, 𝐶) Hom𝐵(𝐵, ℎ)

𝐷

𝐶 𝐵

𝐴

𝑝0

𝑝1
𝜙
⇐

𝑝1

𝑝0
𝜙

⇐
ℎ𝑘

𝛼
⇐

𝑔 𝑓

(9.2.3)

displays Hom𝐴(𝑓 , 𝑔) as the composite Hom𝐶(𝑘, 𝐶) ⊗ Hom𝐵(𝐵, ℎ) as defined in Definition 8.3.1.

¹Unfortunately the terminology “exact square” is used in a variety of different settings. We hope that the context
makes it clear that the present notion has nothing to do with squares that are both pushouts and pullbacks in a stable∞-
category. Exercise 9.4.ii reveals a connection between this notion of exact square and commuting squares between adjoint
functors whose mates are isomorphisms (see Proposition 6.3.10).
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When the boundary square is clear from context, for economy of language we may write that
“𝛼∶ 𝑓 ℎ ⇒ 𝑔𝑘 is an exact square” but note that the meaning of the exactness condition is changed if the
positions of any of the four boundary arrows of the square inhabited by the 2-cell 𝛼 are shifted.²

9.2.4. Remark (exactness as a Beck–Chevalley condition). By Corollary 8.4.8, the map of spans defined
by 1-cell induction

Hom𝐴(𝐴, 𝑔) ×
𝐴

Hom𝐴(𝑓 , 𝐴)

Hom𝐴(𝐴, 𝑔) Hom𝐴(𝑓 , 𝐴)

𝐶 𝐴 𝐵

𝑝1 𝑝0
𝜙⇐

𝑝1 𝑝0𝜙⇐

𝑔 𝑓

=

Hom𝐴(𝐴, 𝑔) ×
𝐴

Hom𝐴(𝑓 , 𝐴)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝜇

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

encodes a binary cell 𝜇∶ Hom𝐴(𝐴, 𝑔) ⨰ Hom𝐴(𝑓 , 𝐴) ⇒ Hom𝐴(𝑓 , 𝑔) which is a composite. Exactness
says that 𝛼 induces an isomorphism

�̂� ∶ Hom𝐶(𝑘, 𝐶) ⊗ Hom𝐵(𝐵, ℎ) ≃ Hom𝐴(𝐴, 𝑔) ⊗ Hom𝐴(𝑓 , 𝐴)
of modules from 𝐶 to 𝐵.

9.2.5. Digression (strong exactness). Recall from §8.3 that many of the formally defined composite
cells that are found in any virtual equipment are in fact strong composites in the virtual equipment
of modules associated to an∞-cosmos. Based on this experience, one might expect that many of the
exact squares we encounter in the virtual equipment of modules are in fact strongly exact, meaning
that the cell �̂� ∶ Hom𝐶(𝑘, 𝐶)

⨰ Hom𝐵(𝐵, ℎ) ⇒ Hom𝐴(𝑓 , 𝑔) is a strong composite, and indeed this is
the case. In fact, in an∞-cosmos of (∞, 1)-categories, all composites exist and are strong: the tensor
product of modules can be defined by a fiberwise coinverter construction that is stable under pullback.
Since the composite of any compatible sequence of modules is equivalent to the strong composite, in
such∞-cosmoi, all composites, and hence all exact squares, automatically satisfy the stronger universal
property.

The primary role played by exact squares here is in developing the notion of pointwise left and
right extensions, and for this the weaker 2-categorical universal property suffices. We note in passing
that our formally defined exact squares are strong, but typically only appeal to the weaker exactness
property in proofs. There is one instance when a stronger notion of exactness may be preferable, which
we discuss in Remark 9.4.12.

The remainder of this section is devoted to examples of exact squares.

9.2.6. Lemma (comma squares are exact). For any cospan 𝐶
𝑔
𝐴

𝑓
𝐵, the comma cone defines a strongly

exact square:

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝1 𝑝0
𝜙
⇐

𝑔 𝑓

²For instance, compare the statements of Lemmas 9.2.8 and 9.4.4.
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Proof. By Proposition 8.3.11, the module 𝐶
Hom𝐴(𝑓 ,𝑔) 𝐵 is the strong composite of the left rep-

resentation of its left leg followed by the right representation of its right leg. By Remark 8.3.13, the
binary composition cell Hom𝐶(𝑝1, 𝐶)

⨰ Hom𝐵(𝐵, 𝑝0) ⇒ Hom𝐴(𝑓 , 𝑔) corresponds under the bijection
of Lemma 8.1.16 to the pasted composite

Hom𝐶(𝑝1, 𝐶)
⨰ Hom𝐵(𝐵, 𝑝0)

Hom𝐶(𝑝1, 𝐶) Hom𝐵(𝐵, 𝑝0)

Hom𝐴(𝑓 , 𝑔)

𝐶 𝐵

𝐴

𝑝0

𝑝1
𝜙
⇐

𝑝1

𝑝0
𝜙

⇐
𝑝0𝑝1

𝜙
⇐

𝑔 𝑓

This recovers the cell �̂� defined by (9.2.3) that tests the exactness of comma square 𝜙∶ 𝑓 𝑝0 ⇒ 𝑔𝑝1. �

9.2.7. Lemma. If 𝑔∶ 𝐶 → 𝐴 is a cartesian fibration or 𝑓 ∶ 𝐵 → 𝐴 is a cocartesian fibration, then the pullback
square is strongly exact:

𝑃

𝐶 𝐵

𝐴

𝜋1 𝜋0

𝑔 𝑓

Proof. The two statements are dual though the positions of the cocartesian and cartesian fibrations
cannot be interchanged, as the proof reveals. If 𝑓 ∶ 𝐵 ↠ 𝐴 is a cocartesian fibration, observe that the
functor Δ∶ 𝑃 → Hom𝐴(𝑓 , 𝑔) induced by the identity 2-cell 𝑓 𝜋0 = 𝑔𝜋1 is a pullback of the functor
Δ𝑓 ∶ 𝐵 → Hom𝐴(𝑓 , 𝐴) induced by the identity 2-cell id𝑓.

𝑃 𝐵

Hom𝐴(𝑓 , 𝑔) Hom𝐴(𝑓 , 𝐴)

𝐶 𝐴

𝜋0

Δ
⊥

𝜋1
𝑓

Δ𝑓 ⊥

𝑝1

ℓ

𝑝1

ℓ

𝑔

Since 𝑓 is a cocartesian fibration, Theorem 5.2.8(iii) tells us that Δ𝑓 ∶ 𝐵 → Hom𝐴(𝑓 , 𝐴) has a fibered
left adjoint over 𝐴. This fibered adjunction pulls back along 𝑔∶ 𝐶 → 𝐴 to define a fibered left adjoint
to Δ∶ 𝑃 → Hom𝐴(𝑓 , 𝑔).

Since 𝜋0 = 𝑝0Δ, Corollary 8.4.9 implies that the canonical cell

HomHom𝐴(𝑓 ,𝑔)(Hom𝐴(𝑓 , 𝑔), Δ)
⨰ Hom𝐵(𝐵, 𝑝0) ⇒ Hom𝐵(𝐵, 𝜋0)
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is a strong composite. Since ℓ ⊣ Δ, Hom𝑃(ℓ, 𝑃) ≃ HomHom𝐴(𝑓 ,𝑔)(Hom𝐴(𝑓 , 𝑔), Δ) by Proposition 4.1.1.
And since 𝑝1 = 𝜋1ℓ, by Corollary 8.4.9 the canonical cell

Hom𝐶(𝜋1, 𝐶)
⨰ Hom𝑃(ℓ, 𝑃) ⇒ Hom𝐶(𝑝1, 𝐶)

is a strong composite. Composing these bijections, we see that cells with domain Hom𝐶(𝜋1, 𝐶)
⨰

Hom𝐵(𝐵, 𝜋0) correspond bijectively to cells with domain Hom𝐶(𝑝1, 𝐶)
⨰ Hom𝐵(𝐵, 𝑝0).

Since ℓ ⊣ Δ is a fibered adjunction, the transpose of the natural transformation 𝜙∶ 𝑓 𝑝0 ⇒ 𝑔𝑝1 =
𝑔𝜋1ℓ along ℓ ⊣ Δ equals 𝜙Δ = id ∶ 𝑓 𝜋0 = 𝑓 𝑝0𝑖 ⇒ 𝑔𝑝1𝑖 = 𝑔𝜋1. This tells us that the cells

�id ∶ Hom𝐶(𝜋1, 𝐶)
⨰ Hom𝐵(𝐵, 𝜋0) ⇒ Hom𝐴(𝑓 , 𝑔) and

�̂� ∶ Hom𝐶(𝑝1, 𝐶)
⨰ Hom𝐵(𝐵, 𝑝0) ⇒ Hom𝐴(𝑓 , 𝑔)

correspond under the bijection just described. Since Lemma 9.2.6 proves that �̂� is a strong composite,

by Lemma 8.3.8 so is �id. �

For later use, we note some trivial examples of exact squares:

9.2.8. Lemma. For any pair of functors 𝑘 ∶ 𝐴 → 𝐵 and ℎ∶ 𝐶 → 𝐷 the pullback square is strongly exact:

𝐴 × 𝐶

𝐴 × 𝐷 𝐵 × 𝐶

𝐵 × 𝐷

𝑘×𝐶𝐴×ℎ

𝑘×𝐷 𝐵×ℎ

In particular, the identity cells define strongly exact squares:

𝐴 𝐴

𝐴 𝐵 𝐵 𝐴

𝐵 𝐵

𝑘 𝑘

𝑘 𝑘

Proof. Exercise 9.2.ii. �

Finally, the exact squares just established can be composed to yield further exact squares:

9.2.9. Lemma (composites of exact squares). Given a diagram of squares in the homotopy 2-category

𝐻 𝐺

𝐹 𝐷 𝐸

𝐶 𝐵

𝐴

𝑟𝑠
𝛾
⇐

𝑝𝑞

𝛽
⇐

𝑐 ℎ𝑘
𝛼
⇐

𝑏

𝑔 𝑓

if 𝛼∶ 𝑓 ℎ ⇒ 𝑔𝑘, 𝛽∶ 𝑏𝑝 ⇒ ℎ𝑞, and 𝛾∶ 𝑘𝑟 ⇒ 𝑐𝑠 are all exact squares then so are the composite rectangles
𝛼𝑞 ⋅ 𝑓 𝛽 and 𝑔𝛾 ⋅ 𝛼𝑟, and these are strongly exact if the constituent squares are. Consequently, arbitrary “double
categorical” composites of (strongly) exact squares define (strongly) exact squares.
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Proof. The two cases are co-duals, so it suffices to prove that the rectangle 𝛼𝑞⋅𝑓 𝛽 ∶ 𝑔(𝑘𝑞) ⇒ (𝑓 𝑏)𝑝
is exact. The corresponding cell �𝛼𝑞 ⋅ 𝑓 𝛽 displayed below-left factors as below-right through the
composite �̂�

𝐶 𝐷 𝐺 𝐸

𝐶 𝐸

Hom𝐶(𝑘,𝐶)

⇓�𝛼𝑞⋅𝑓 𝛽

Hom𝐷(𝑞,𝐷) Hom𝐸(𝐸,𝑝)

Hom𝐴(𝑓 𝑏,𝑔)

=

𝐶 𝐷 𝐺 𝐸

𝐶 𝐷 𝐸

𝐶 𝐸

Hom𝐶(𝑘,𝐶) Hom𝐷(𝑞,𝐷)

⇓�̂�

Hom𝐸(𝐸,𝑝)

Hom𝐶(𝑘,𝐶)
⇓�̄�

Hom𝐵(𝑏,ℎ)

Hom𝐴(𝑓 𝑏,𝑔)

and by comparing the formulae of (9.2.3) with Lemma 8.1.16, we see that the cell �̄� satisfies the pasting
equality:

𝐶 𝐷 𝐵 𝐸 𝐶 𝐷 𝐵 𝐸

𝐶 𝐷 𝐸 ≔ 𝐶 𝐵 𝐸

𝐶 𝐸 𝐶 𝐸

Hom𝐶(𝑘,𝐶) Hom𝐵(𝐵,ℎ)

⇓∘

Hom𝐵(𝑏,𝐵) Hom𝐶(𝑘,𝐶)

⇓�̂�

Hom𝐵(𝐵,ℎ) Hom𝐵(𝑏,𝐵)

Hom𝐶(𝑘,𝐶)
⇓�̄�

Hom𝐵(𝑏,ℎ) Hom𝐴(𝑓 ,𝑔)
⇓∘

Hom𝐵(𝑏,𝐵)

Hom𝐴(𝑓 𝑏,𝑔) Hom𝐴(𝑓 𝑏,𝑔)

Both canonical cells named ∘ are composites, as is �̂� by exactness of 𝛼, so by Lemma 8.3.3 or 8.3.8, �̄� is

a composite as well. By exactness of 𝛽 and Lemma 8.3.3 or 8.3.8 again it now follows that �𝛼𝑞 ⋅ 𝑓 𝛽 is
also a composite, proving exactness of the rectangle 𝛼𝑞 ⋅ 𝑓 𝛽 ∶ 𝑔(𝑘𝑞) ⇒ (𝑓 𝑏)𝑝. �

Exercises.

9.2.i. Exercise. For any exact square

𝐷

𝐶 𝐵

𝐴

ℎ𝑘
𝛼
⇐

𝑔 𝑓

show that the square obtained by composing with any isomorphisms 𝛽∶ 𝑓 ′ ≅ 𝑓, 𝛾∶ 𝑔 ≅ 𝑔′, 𝛿∶ ℎ′ ≅ ℎ,
and 𝜖 ∶ 𝑘 ≅ 𝑘′ is also exact.

9.2.ii. Exercise. Prove Lemma 9.2.8.

9.3. Pointwise Right and Left Kan Extensions

In this section, we give four definitions of pointwise right Kan extensions for functors between
∞-categories and prove they are equivalent. Our proof reveals that the general 2-categorical notion of
right extensions (see Definition 9.1.1) is too weak on its own. The dual theory of pointwise left Kan
extensions is previewed by Lemma 9.1.7 (see Exercise 9.3.i).
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9.3.1. Definition (stability of extensions under pasting). A right extension diagram 𝜈∶ 𝑟𝑘 ⇒ 𝑓 in a
2-category is said to be stable under pasting with a square 𝛼 if the pasted composite

𝐴 𝐶

𝐵
𝑘

𝑓

𝑟
⇑𝜈

𝐷

𝐴 𝐸

𝐵

ℎ𝑔

𝛼
⇐

𝑘 𝑏

𝐷 𝐴 𝐶

𝐸 𝐵

𝑔

ℎ ⇗𝛼 𝑘

𝑓

𝑏

𝑟
⇑𝜈 (9.3.2)

defines a right extension 𝑟𝑏 ∶ 𝐸 → 𝐶 of 𝑓 𝑔 ∶ 𝐷 → 𝐶 along ℎ∶ 𝐷 → 𝐸.

9.3.3. Theorem (pointwise right extensions). For a diagram

𝐴 𝐶

𝐵
𝑘

𝑓

𝑟
⇑𝜈

in the homotopy 2-category of an∞-cosmos𝒦 the following are equivalent:

(i) 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a right extension in 𝔥𝒦 that is stable under pasting with exact squares.
(ii) 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a right extension in 𝔥𝒦 that is stable under pasting with comma squares.
(iii) 𝜈∗ ∶ Hom𝐵(𝐵, 𝑘)

⨰ Hom𝐶(𝐶, 𝑟) ⇒ Hom𝐶(𝐶, 𝑓 ) defines a right extension in𝕄od(𝒦).
(iv) For any exact square

𝐷

𝐴 𝐸

𝐵

ℎ𝑔

𝛼
⇐

𝑘 𝑏

(𝜈𝑔 ⋅ 𝑟𝛼)∗ ∶ Hom𝐸(𝐸, ℎ)
⨰ Hom𝐶(𝐶, 𝑟𝑏) ⇒ Hom𝐶(𝐶, 𝑓 𝑔) defines a right extension in𝕄od(𝒦).

When these conditions hold, we say 𝑟 ∶ 𝐵 → 𝐶 defines a pointwise right extension of 𝑓 ∶ 𝐴 → 𝐶 along
𝑘 ∶ 𝐴 → 𝐵.

Proof. Lemma 9.2.6 proves (i)⇒(ii).
To show (ii)⇒(iii), suppose 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a right extension in 𝔥𝒦 that is stable under pasting

with comma squares and consider a cell in𝕄od(𝒦):

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

⇓�̄�

𝐸1 𝐸𝑛

Hom𝐶(𝐶,𝑓 )

Let 𝐵
𝑞
�⃗�

𝑝
𝐶 denote the composite two-sided fibration 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛. By Remark 8.3.12, module
maps 𝛽∶ Hom𝐵(𝐵, 𝑘)

⨰ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓 ) correspond to module maps �̂� ∶ Hom𝐵(𝐵, 𝑘)

⨰

Hom𝐵(𝑞, 𝐵)
⨰ Hom𝐶(𝐶, 𝑝) ⇒ Hom𝐶(𝐶, 𝑓 ). By Corollary 8.4.6 and Proposition 8.4.7, such module

maps stand in bijection with module maps �̌� ∶ Hom𝐵(𝑞, 𝑘) ⇒ Hom𝐶(𝑝, 𝑓 ). By Lemma 8.1.16, these
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module maps correspond bijectively to 2-cells

Hom𝐵(𝑞, 𝑘)

𝐴 �⃗�

𝐶

𝑝1 𝑝0
𝛽
⇐

𝑓 𝑝

in the homotopy 2-category. By the hypothesis (ii),

Hom𝐵(𝑞, 𝑘) 𝐴 𝐶

�⃗� 𝐵

𝑝1

𝑝0 ⇗𝜙 𝑘

𝑓

𝑞

𝑟
⇑𝜈

defines a right extension in 𝔥𝒦, so 𝛽 factors uniquely through this pasted composite via a natural
transformation 𝛾∶ 𝑝 ⇒ 𝑟𝑞. By Proposition 8.4.11, this defines a cell 𝛾∗ ∶ Hom𝐶(𝐶, 𝑝) ⇒ Hom𝐶(𝐶, 𝑟𝑞),
which by Corollary 8.4.6 gives rise to a canonical cell �̂� ∶ Hom𝐵(𝑞, 𝐵)

⨰ Hom𝐶(𝐶, 𝑝) ⇒ Hom𝐶(𝐶, 𝑟).
By Remark 8.3.12 again, this produces the desired unique factorization

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

⇓�̄�

𝐸1 𝐸𝑛

Hom𝐶(𝐶,𝑓 )

=

𝐴 𝐵 ⋯ 𝐶

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

∃!⇓�̄�

𝐸1 𝐸𝑛

Hom𝐵(𝐵,𝑘)

⇓𝜈∗

Hom𝐶(𝐶,𝑟)

Hom𝐶(𝐶,𝑓 )

To show (iii)⇒(iv), consider a diagram (9.3.2) in which 𝛼∶ 𝑏ℎ ⇒ 𝑘𝑔 is exact and 𝜈∗ ∶ Hom𝐵(𝐵, 𝑘)
⨰

Hom𝐶(𝐶, 𝑟) ⇒ Hom𝐶(𝐶, 𝑓 ) defines a right extension diagram in𝕄od(𝒦). Now by Corollary 8.4.6, a
cell

�̄� ∶ Hom𝐸(𝐸, ℎ)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓 𝑔)
corresponds to a cell

�̂� ∶ Hom𝐴(𝑔, 𝐴) ⨰ Hom𝐸(𝐸, ℎ)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓 ).
By exactness of 𝛼, this corresponds to a cell

�̂� ∶ Hom𝐵(𝑏, 𝑘)
⨰ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓 ),
or equivalently, upon restricting along the compositemap ∘ ∶ Hom𝐵(𝐵, 𝑘)

⨰ Hom𝐵(𝑏, 𝐵) ⇒ Hom𝐵(𝑏, 𝑘)
to a cell

�̂� ∶ Hom𝐵(𝐵, 𝑘)
⨰ Hom𝐵(𝑏, 𝐵)

⨰ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑓 ).

Since 𝐵
Hom𝐶(𝐶,𝑟) 𝐶 is the right extension of 𝐴

Hom𝐶(𝐶,𝑓 ) 𝐶 along 𝐴
Hom𝐵(𝐵,𝑘) 𝐵, this corresponds

to a cell
�̂� ∶ Hom𝐵(𝑏, 𝐵)

⨰ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑟),

which transposes via Corollary 8.4.6 to a cell

�̄� ∶ 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐶(𝐶, 𝑟𝑏),
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which gives the factorization required to prove that the module 𝐸
Hom𝐶(𝐶,𝑟𝑏) 𝐶 is the right extension

of 𝐷
Hom𝐶(𝐶,𝑓 𝑔) 𝐶 along 𝐷

Hom𝐸(𝐸,ℎ) 𝐸. A slightly more delicate argument is required to see that
this bijection is implemented by composing with the map (𝜈𝑔 ⋅ 𝑟𝛼)∗ ∶ Hom𝐸(𝐸, ℎ)

⨰ Hom𝐶(𝐶, 𝑟𝑏) ⇒
Hom𝐶(𝐶, 𝑓 𝑔) corresponding to the pasted composite (9.3.2), but for this it suffices by the Yoneda
lemma to start with the identity cell idHom𝐶(𝐶,𝑟𝑏) and trace back up through the bijection just described.
Using Lemma 8.1.16 this is straightforward.

Finally Lemma 9.1.7 and the trivial example of Lemma 9.2.8 prove that (iv)⇒(i). �

Using the various characterizations of Theorem 9.3.3, we can establish some basic stability properties
of pointwise right extensions.

9.3.4. Corollary. The pasted composite (9.3.2) of a pointwise right extension with an exact square is a
pointwise right extension.

Proof. Lemma 9.2.9, the pasted composite of two exact squares remains an exact square, so by
Theorem 9.3.3(i), the pasted composite of a pointwise right extension remains stable under pasting
with exact squares. �

9.3.5. Corollary. Consider a diagram of functors and natural transformations

𝐴 𝐷

𝐵

𝐶

𝑘

𝑓

𝑟

ℎ

⇑𝜈

𝑠⇑𝜎

where (𝑟, 𝜈 ∶ 𝑟𝑘 ⇒ 𝑓 ) is a pointwise right extension of 𝑓 along 𝑘. Then (𝑠, 𝜎 ∶ 𝑠ℎ ⇒ 𝑟) is a pointwise right
extension of 𝑟 along ℎ if and only if (𝑠, 𝜈 ⋅ 𝜎𝑘 ∶ 𝑠ℎ𝑘 ⇒ 𝑓 ) is a pointwise right extension of 𝑓 along ℎ𝑘.

Proof. By Theorem, 9.3.3, a natural transformation in the homotopy 2-category is a pointwise
right extension if and only if its covariant embedding into the virtual equipment of modules is a
right extension. The binary module maps 𝜎∗ ∶ Hom𝐶(𝐶, ℎ)

⨰ Hom𝐷(𝐷, 𝑠) ⇒ Hom𝐷(𝐷, 𝑟) and
(𝜈 ⋅ 𝜎𝑘)∗ ∶ Hom𝐶(ℎ𝑘)

⨰ Hom𝐷(𝐷, 𝑠) ⇒ Hom𝐷(𝐷, 𝑓 ) correspond under the bijection of Proposition
9.1.6:

𝐴 𝐵 𝐶 𝐷 𝐴 𝐵 𝐶 𝐷

𝐴 𝐶 𝐷 𝐴 𝐵 𝐷

𝐴 𝐷 𝐴 𝐷

Hom𝐵(𝐵,𝑘) Hom𝐶(𝐶,𝑘)

⇓𝜇

Hom𝐷(𝐷,𝑠) Hom𝐵(𝐵,𝑘) Hom𝐶(𝐶,ℎ) Hom𝐷(𝐷,𝑠)

⇓𝜎∗

Hom𝐶(𝐶,ℎ𝑘)

⇓(𝜈⋅𝜎𝑘)∗

Hom𝐷(𝐷,𝑠)
↭

Hom𝐵(𝐵,𝑘) Hom𝐷(𝐷,𝑟)

⇓𝜈∗

Hom𝐷(𝐷,𝑓 ) Hom𝐷(𝐷,𝑓 )

Thus, by that result, 𝜎∗ is a right extension if and only if (𝜈 ⋅ 𝜎𝑘)∗ is a right extension, as claimed. �

Exercises.

9.3.i. Exercise. Using Lemma 9.1.7 as a hint, state and prove a dual version of Theorem 9.3.3 defining
pointwise left extensions in the homotopy 2-category of an∞-cosmos.
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9.4. Formal Category Theory in a Virtual Equipment

One reason for our interest in the virtual equipment of modules is that it captures their calculus
within an∞-cosmos. A stronger justification is provided by the theorems about∞-category theory
that can be proven within a virtual equipment. In this section, we revisit adjunctions and fully faithful
functors from a module-theoretic point of view, before turning our attention to limits and colimits of
functors between∞-categories.

9.4.1. Proposition. For any pair of functors 𝑓 ∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 and natural transformation
𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 the following are equivalent:

(i) The natural transformation 𝜖 is the counit of an adjunction 𝑓 ⊣ 𝑢.
(ii) The unary cell representing the functor 𝜖 ⋅ 𝑓 (−) ∶ Hom𝐵(𝐵, 𝑢) → Hom𝐴(𝑓 , 𝐴) defines a vertical

isomorphism in the virtual equipment of modules:

𝐴 𝐵

𝐴 𝐵

Hom𝐵(𝐵,𝑢)

⇓

Hom𝐴(𝑓 ,𝐴)

(iii) The counit defines an exact square:

𝐴

𝐴 𝐵

𝐴

𝜖
⇐

𝑢

𝑓

(iv) The counit defines a pointwise right extension diagram that is absolute, preserved by any functor
ℎ∶ 𝐴 → 𝐶.

𝐴 𝐴

𝐵

𝑢
𝑓

⇑𝜖 (9.4.2)

Proof. The equivalence (i)⇔(ii) is proven by Proposition 4.1.1, via Lemma 8.1.17.
To say that 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 is exact is to say that the binary cell below-left is a composite:

𝐴 𝐴 𝐵

𝐴 𝐵

Hom𝐴

⇓ ̂𝜖

Hom𝐵(𝐵,𝑢)

Hom𝐴(𝑓 ,𝐴)

↭

𝐴 𝐴 𝐵

𝐴 𝐴 𝐵

𝐴 𝐵

⇓𝜄

Hom𝐵(𝐵,𝑢)

Hom𝐴

⇓ ̂𝜖

Hom𝐵(𝐵,𝑢)

Hom𝐴(𝑓 ,𝐴)

By Lemmas 8.3.3 and 8.3.9(i), this is the case if and only if the unary cell above-right is a composite,
and by Lemma 8.3.9(ii) this is exactly the assertion made in (ii). Thus (ii)⇔(iii).
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To prove that (ii)⇒(iv), we must show that the binary cell displayed below-left defines a right
extension diagram in the virtual equipment of modules.

𝐴 𝐵 𝐴

𝐴 𝐶

Hom𝐵(𝐵,𝑢)

⇓ℎ𝜖∗

Hom𝐶(𝐶,ℎ𝑓 )

Hom𝐶(𝐶,ℎ)

≅
𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐴(𝑓 ,𝐴)

⇓

Hom𝐴(𝐴,ℎ𝑓 )

Hom𝐶(𝐶,ℎ)

≔

𝐴 𝐵 𝐶

𝐴 𝐴 𝐶

𝐴 𝐶

Hom𝐴(𝑓 ,𝐴)

𝑓

Hom𝐴(𝐴,ℎ𝑓 )

⇓𝜌⇓𝜌

Hom𝐴 Hom𝐶(𝐶,ℎ)

⇓∘

Hom𝐶(𝐶,ℎ)

By (ii), this binary cell is isomorphic to a binary cell of the form displayed above-center. Indeed, Lemma
8.1.16 and Remark 8.3.13 can be used to check that the cell defined by the formula above-right composes
with the vertical isomorphism 𝜖 ⋅ 𝑓 (−) ∶ Hom𝐵(𝐵, 𝑢) ≃ Hom𝐴(𝑓 , 𝐴) to yield the binary cell above-left.
This is why we used the notation “𝜖” for the binary cell in Lemma 9.1.3. Thus, by Lemma 9.1.4, these
binary cells are right extensions in the virtual equipment of modules, so we see that (ii)⇒(iv).

The proof that (iv)⇒(i) can be given entirely in the homotopy 2-category and does not require the
adjective “pointwise.” Indeed, this is the op-dual of the part of Lemma 2.3.7 left as Exercise 2.3.iii. �

It follows that right extensions along right adjoints and left extensions along left adjoints are easy
to calculate:

9.4.3. Corollary. The pointwise right extension of any functor along a right adjoint 𝑢∶ 𝐴 → 𝐵 is given by
its restriction along the left adjoint 𝑓 ∶ 𝐵 → 𝐴, while the pointwise left extension of any functor along a left
adjoint is given by its restriction along the right adjoint:

𝐴 𝐶 𝐵 𝐶

𝐵 𝐴

ℎ

𝑢

𝑔

𝑓
ran𝑢ℎ≅ℎ𝑓

⇑ℎ𝜖
lan𝑓𝑔≅𝑔𝑢

⇓𝑔𝜂

Proof. To say in Proposition 9.4.1 that the counit 𝜖 of an adjunction 𝑓 ⊣ 𝑢 is an absolute pointwise
right extension means that for any functor ℎ∶ 𝐴 → 𝐶 the diagram

𝐴 𝐴 𝐶

𝐵

𝑢

ℎ

𝑓
⇑𝜖

is a pointwise right extension. In particular, ℎ𝑓 ≅ ran𝑢ℎ. �

Corollary 3.5.6 describes a number of equivalent characterizations of fully faithful functors between
∞-categories, including one characterization that was implicitly module-theoretic: a functor 𝑘 ∶ 𝐴 → 𝐵
is fully faithful if and only if id𝑘 ∶ 𝐴𝟚 ∼ Hom𝐵(𝑘, 𝑘) is a fibered equivalence over 𝐴×𝐴. In the virtual
equipment of modules, this condition can be rephrased in a number of ways:

9.4.4. Lemma. A functor 𝑘 ∶ 𝐴 → 𝐵 is fully faithful when any of the following equivalent conditions hold:
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(i) The square is exact:

𝐴

𝐴 𝐴

𝐵𝑘 𝑘

(ii) The module map id𝑘 defines a vertical isomorphism in the virtual equipment of modules:

𝐴 𝐴

𝐴 𝐴

Hom𝐴

⇓

Hom𝐵(𝑘,𝑘)

Proof. After unpacking the definitions, the equivalence follows from the nullary and unary
composites of Lemma 8.3.9 and the composition relationHom𝐴⊗Hom𝐴 ≃ Hom𝐴 of Lemma 8.3.10. �

Famously, pointwise left and right extensions along fully faithful functors are genuine extensions,
in the sense that the universal natural transformation is an isomorphism.

9.4.5. Proposition (extensions along fully faithful functors). If 𝑘 ∶ 𝐴 → 𝐵 is fully faithful then for any
pointwise right extension the natural transformation 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is an isomorphism.

𝐴 𝐶

𝐵
𝑘

𝑓

𝑟
⇑𝜈

Proof. Pasting the pointwise right extension in the statement with the exact square of Lemma
9.4.4 yields a pointwise right extension diagram, whose universal property in the homotopy 2-category
can be used to construct an inverse isomorphism to 𝜈 and prove it defines a two-sided inverse:

𝐴 𝐶 𝐴 𝐶 𝐴 𝐶

𝐴 𝐴 𝐴

𝑓 𝑓

=

𝑓

𝑟𝑘
⇑𝜈

𝑓
⇑id𝑓

𝑓

𝑟𝑘
⇑𝜈

⇑∃!
�

9.4.6. Proposition. A right adjoint 𝑢∶ 𝐴 → 𝐵 is fully faithful if and only if the counit 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 is an
isomorphism.

Proof. If 𝑓 ⊣ 𝑢 with counit 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴, then by Proposition 9.4.1, the counit 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 is
exact. If 𝑢 is fully faithful, then by Lemma 9.2.9 the composite rectangle below is also exact.

𝐴

𝐴 𝐴

𝐴 𝐵

𝐴

𝜖
⇐

𝑢
𝑢

𝑓
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Unpacking Definition 9.2.2, this is to say, by Lemmas 8.3.10 and 8.3.9, that that the image of 𝜖 under
the contravariant embedding of Definition 8.4.12 induces an equivalence of modules 𝜖∗ ∶ Hom𝐴 ≃
Hom𝐴(𝑓 𝑢,𝐴). By Proposition 8.4.11, this embedding is fully faithful, so it follows that 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴
is an isomorphism.

Conversely, assume 𝑓 ⊣ 𝑢with invertible counit 𝜖 ∶ 𝑓 𝑢 ≅ id𝐴. The fibered equivalences of Exercise
3.6.ii and Corollary 4.1.3

Hom𝐴 Hom𝐴(𝑓 𝑢,𝐴) Hom𝐵(𝑢, 𝑢)∼𝜖∗ ∼𝑢(−)⋅𝜂

compose to define the module map id𝑢 ∶ Hom𝐴 ⇒ Hom𝐵(𝑢, 𝑢). Thus, by Lemma 9.4.4, 𝑢 is fully
faithful. �

We now turn to limits and colimits of diagrams indexed by∞-categories. Recall from Definition
1.2.23 that an ∞-cosmos 𝒦 is cartesian closed if for any 𝐽 ∈ 𝒦 there is a cosmological functor
(−)𝐽 ∶ 𝒦 → 𝒦 equipped with a simplicial natural isomorphism

Fun(𝑋 × 𝐽, 𝐴) ≅ Fun(𝑋,𝐴𝐽).
It follows that elements 𝑓 ∶ 1 → 𝐴𝐽 in the∞-category of 𝐽-shaped diagrams in𝐴 correspond bijectively
to functors 𝑓 ∶ 𝐽 → 𝐴 between ∞-categories. In such contexts, Definition 2.3.8 defines limits and
colimits of an∞-category indexed diagram 𝑓 ∶ 𝐽 → 𝐴 to be absolute right and left liftings, respectively:

𝐴 𝐴

1 𝐴𝐽 1 𝐴𝐽
⇓𝜖

Δ
⇑𝜂

Δlim 𝑓

𝑓

colim 𝑓

𝑓

We now argue that such limits and colimits can also be expressed as pointwise Kan extensions,
extending the previously developed theory to∞-cosmoi that are not necessarily cartesian closed.

9.4.7. Definition. A limit of a diagram of ∞-categories 𝑓 ∶ 𝐽 → 𝐴 is given by a pointwise right
extension as below-left, while a colimit of a diagram of∞-categories 𝑓 ∶ 𝐽 → 𝐴 is given by a pointwise
left extension as below-right.

𝐽 𝐴 𝐽 𝐴

1 1

𝑓

!

𝑓

!
lim 𝑓

⇑𝜖

colim 𝑓

⇓𝜂

As in Definition 2.3.8, we refer to the natural transformations 𝜖 and 𝜂 as the limit cone and colimit
cone, respectively. Our first task is to reconcile these definitions:

9.4.8. Proposition. In a cartesian closed∞-cosmos any limit as encoded by the absolute right lifting diagram
below-right transposes to define a pointwise right extension diagram as below-left:

𝐽 𝐴 𝐴

1 1 𝐴𝐽

𝑓

! ↭ ⇓𝜖
Δ

lim 𝑓

⇑𝜖 lim 𝑓

𝑓

Conversely, any pointwise right extension diagram of this form transposes to define a limit in 𝐴.
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Proof. By Lemma 9.2.1, the universal property of an absolute right lifting diagram as below-left
transposes to the universal property of a right extension diagram that is stable under pasting with
pullback squares:

𝐴 𝐽 𝐴 𝑋 × 𝐽 𝐽 𝐴

1 𝐴𝐽 1 𝑋 1
⇓𝜖

Δ ↭ !

𝑓 𝜋

𝜋 !

𝑓

lim 𝑓

𝑓

lim 𝑓

⇑𝜖

!
lim 𝑓

⇑𝜖

Since comma squares over cospans whose codomain is the terminal∞-category reduce to pullbacks,
we conclude from Theorem 9.3.3(ii) that 𝜖 ∶ Δ lim 𝑓 ⇒ 𝑓 is an absolute right lifting diagram if and
only if 𝜖 ∶ lim 𝑓 ! ⇒ 𝑓 is a pointwise right extension. �

In classical category theory, there is a well-known formula that calculates the values of a pointwise
right Kan extension “pointwise” as limits. A dual colimit formula calculates pointwise left Kan
extensions. These can now be recovered, essentially as tautologies.

9.4.9. Proposition. For any pointwise right extension as below-left and element 𝑏 ∶ 1 → 𝐵, the element
𝑟𝑏 ∶ 1 → 𝐶 is the limit of the diagram below-right:

𝐴 𝐶

𝐵
𝑘

𝑓

𝑟
⇑𝜈 Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

𝑝1 𝑓

while for any pointwise left extension as below-left and element 𝑏 ∶ 1 → 𝐵, the element ℓ𝑏 ∶ 1 → 𝐶 is the
colimit of the diagram below-right:

𝐴 𝐶

𝐵
𝑘

𝑓

ℓ
⇓𝜆 Hom𝐵(𝑘, 𝑏) 𝐴 𝐶

𝑝0 𝑓

Proof. By Theorem 9.3.3(ii), the composite

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

1 𝐵

𝑝1

! ⇗𝜙 𝑘

𝑓

𝑏

𝑟
⇑𝜈

is a pointwise right extension. By Definition 9.4.7 this can be interpreted as saying that 𝑟𝑏 ∶ 1 → 𝐵
defines the limit of the restriction of the diagram 𝑓 ∶ 𝐴 → 𝐶 along 𝑝1 ∶ Hom𝐵(𝑏, 𝑘) ↠ 𝐴. �

In Definition 2.2.1, initial and terminal elements in 𝐴 are defined respectively as left or right
adjoints to the unique functor ! ∶ 𝐴 → 1

1 𝐴
𝑖
⊥

𝑡
⊥

!
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or equivalently, by Example 2.3.10, as colimits or limits for the empty diagram in 𝐴∅ ≅ 1. As observed
in Example 2.3.11, an initial element may also be characterized as a limit and a terminal element may be
characterized as a colimit of the identity diagram id𝐴 ∶ 𝐴 → 𝐴, as we now show for∞-cosmoi that are
not necessarily cartesian closed:

9.4.10. Proposition. For an∞-category 𝐴:
(i) An element 𝑡 ∶ 1 → 𝐴 is terminal if and only if it defines a colimit for the identity functor id𝐴 ∶ 𝐴 → 𝐴

in which case the unit for the adjunction ! ⊣ 𝑡 defines the colimit cone.
(ii) An element 𝑖 ∶ 1 → 𝐴 is initial if and only if it defines a limit for the identity functor id𝐴 ∶ 𝐴 → 𝐴 in

which case the counit for 𝑖 ⊣ ! defines the limit cone.

Proof. We prove (ii). By Definition 2.2.1, an element 𝑖 ∶ 1 → 𝐴 is initial if and only if it defines a
right adjoint to the unique functor ! ∶ 𝐴 → 1. If this adjunction exists, then by Proposition 9.4.1, the
counit defines a pointwise right extension diagram

𝐴 𝐴

1
!

𝑖
⇑𝜖

which by Definition 9.4.7 expresses 𝑖 as the limit of the diagram id𝐴 ∶ 𝐴 → 𝐴.
Conversely, we must show that a pointwise right extension diagram (𝑖, 𝜖 ∶ 𝑖! ⇒ id𝐴) gives rise to

an adjunction 𝑖 ⊣ ! with counit 𝜖. By Lemma 2.2.2, it suffices to show that 𝜖𝑖 = id𝑖. By naturality
of whiskering (see Lemma B.1.3), the horizontal composite of 𝜖 with itself gives rise to an equation
𝑖!𝜖 ⋅ 𝜖 = 𝜖 ⋅ 𝜖𝑖!. Since the∞-category 1 is 2-terminal, 𝑖!𝜖 = id𝑖!, so this reduces to the pasting equation:

𝐴 𝐴 𝐴 𝐴

1 1
! = !

𝑖
⇑𝜖

𝑖

𝑖
⇑𝜖

⇑𝜖𝑖

By the uniqueness statement in the universal property of right extensions, it follows that 𝜖𝑖 = id𝑖 as
desired. �

Recall from Definition 2.4.5 that a functor 𝑘 ∶ 𝐼 → 𝐽 is final if and only if for any∞-category 𝐴,
the square

𝐴 𝐴

𝐴𝐽 𝐴𝐼

Δ Δ

𝐴𝑘

preserves and reflects all absolute left lifting diagrams. Dually a functor 𝑘 ∶ 𝐼 → 𝐽 is initial if this square
preserves and reflects all absolute right lifting diagrams. We can now give a more concise formulation
of these notions.
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9.4.11. Definition. A functor 𝑘 ∶ 𝐼 → 𝐽 is final if and only if the square below-left is exact and initial
if and only if the square below-right is exact.

𝐼 𝐼

1 𝐽 𝐽 1

1 1

! 𝑘 𝑘 !

! !

Note that the functor ! ∶ 𝐽 → 1 is represented on the right and on the left by the modules 𝐽
𝐽
1 and

1
𝐽
𝐽. So we see that 𝑘 ∶ 𝐼 → 𝐽 is final if and only if the map of spans below-left is a composite in the

virtual equipment of modules

Hom𝐽(𝐽 , 𝑘) Hom𝐽(𝑘, 𝐽)

1 𝐽 𝐽 1

𝐽 𝐽

𝑝0

! 𝑝0

𝑝1

!𝑝1

! !

while 𝑘 ∶ 𝐼 → 𝐽 is initial if and only if the map of spans above-right is a composite.

9.4.12. Remark. As discussed in Digression 9.2.5, exact squares in an∞-cosmos of (∞, 1)-categories
are automatically strongly exact, in which case the universal property satisfied by final functors can be
enriched. Since modules from 1 to 𝐽 reduce to discrete cartesian fibrations over 𝐽, in such contexts
finality of 𝑘 ∶ 𝐼 → 𝐽 implies that for every discrete cartesian fibration 𝑝∶ 𝐸 ↠ 𝐽, the map

Fun𝐽(𝐽 , 𝐸) Fun𝐽(Hom𝐽(𝐽 , 𝑘), 𝐸) Fun𝐽(𝐼, 𝐸)∼−∘𝑝0

∼
−∘𝑘

∼−∘id𝑘
(9.4.13)

is an equivalence of Kan complexes, the first equivalence by strong exactness and the second by
the Yoneda lemma of Corollary 5.7.19. In the ∞-cosmos of quasi-categories, the condition (9.4.13)
characterizes final functors between quasi-categories, a definition that Lurie attributes to Joyal [78,
4.1.1.1].

As just argued, in an ∞-cosmos of (∞, 1)-categories, our notion of final functor implies this
characterization, and we now argue the converse holds as well. Corollary 12.3.8 proves that the ∞-
cosmoi of (∞, 1)-categories are strongly closed, meaning that right extensions and right liftings of
modules always exist and satisfy a universal property expressed as an equivalence of Kan complexes,
not merely a bijection of cells in the virtual equipment. It follows, by the strong analog of Exercise
9.1.iii, that (9.4.13) defines an equivalence for all discrete cartesian fibrations over 𝐽 if and only if the
square of Definition 9.4.11 is strongly exact. Thus, in the∞-cosmos of quasi-categories, our notion of
final functor is equivalent to the standard definition.

We now show that limits are preserved and reflected by reindexing along initial functors.

9.4.14. Proposition. If 𝑘 ∶ 𝐼 → 𝐽 is initial and 𝑓 ∶ 𝐽 → 𝐴 is any diagram, then a limit of 𝑓 also defines a
limit of 𝑓 𝑘 ∶ 𝐼 → 𝐴 and conversely if the limit of 𝑓 𝑘 ∶ 𝐼 → 𝐴 exists, then it also defines a limit of 𝑓 ∶ 𝐽 → 𝐴.
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Proof. By Definition 9.4.7, a limit of 𝑓 defines a pointwise right extension as below left, which by
Corollary 9.3.4 and Definition 9.4.11 gives rise to another pointwise right extension below-right.

𝐽 𝐴 𝐼 𝐽 𝐴

1 1 1

𝑓

!

𝑘

!

𝑓

!ℓ

⇑𝜈

ℓ

⇑𝜈

By Definition 9.4.7 again, this tells us that ℓ is the limit of 𝑓 𝑘.
For the converse, suppose we are given a pointwise right extension diagram

𝐼 𝐴

1

𝑓 𝑘

!
ℓ

⇑𝜇

By Theorem 9.3.3(iii), this means that for any compatible sequence of modules 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from

1 to 𝐴, composing with 𝜇∶ Hom!(1, !)
⨰ Hom𝐴(𝐴, ℓ) ⇒ Hom𝐴(𝐴, 𝑓 𝑘) defines a bijection between

cells 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 ⇒ Hom𝐴(𝐴, ℓ) and the cells below-left:

𝐼 1 𝐴 𝐽 𝐼 1 𝐴

𝐼 𝐴 𝐽 𝐴

Hom1(1,!)

⇓

�⃗�

↭

Hom𝐽(𝑘,𝐽) Hom1(1,!)

⇓

�⃗�

Hom𝐴(𝐴,𝑓 𝑘) Hom𝐴(𝐴,𝑓 )

By Corollary 8.4.6, the cells above-left stand in bijection with the cells above-right.
To say that 𝑘 ∶ 𝐼 → 𝐽 is initial means, by Definition 9.4.11, that the map Hom𝐽(𝑘, 𝐽)

⨰ Hom1(1, !) ⇒
Hom1(1, !) of modules from 𝐽 to 1 induced by the identity is a composite. Hence, the cells above-right
stand in bijection with cells of the form:

𝐽 1 𝐴

𝐽 𝐴

Hom1(1,!)

⇓

�⃗�

Hom𝐴(𝐴,𝑓 )

The composite bijection asserts that the cell 𝜈∶ Hom1(1, !)
⨰ Hom𝐴(𝐴, ℓ) ⇒ Hom𝐴(𝐴, 𝑓 ) that

corresponds to id ∶ Hom𝐴(𝐴, ℓ) ⇒ Hom𝐴(𝐴, ℓ) displays 1
Hom𝐴(𝐴,ℓ)

𝐴 as the right extension of

𝐽
Hom𝐴(𝐴,𝑓 )

𝐴 along 𝐽
Hom1(1,!) 1. Unpacking the bijections that defined 𝜈, we see that 𝜈𝑘 = 𝜇. Thus

𝜈∶ ℓ! ⇒ 𝑓 is a pointwise right extension and by Proposition 9.4.8 we conclude that ℓ ∶ 1 → 𝐴 defines
a limit of 𝑓 ∶ 𝐽 → 𝐴 as claimed. �

It remains to extend Theorem 2.4.2 – that right adjoints preserve limits and left adjoints preserve
colimits – to diagrams indexed by∞-categories in general∞-cosmoi. In Theorem 9.5.7, we prove a
generalization of this result that covers limits and colimits weighted by a module, in a sense we now
introduce.
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Exercises.

9.4.i. Exercise. Show that the unit of an adjunction 𝑓 ⊣ 𝑢 defines an exact square:

𝐵

𝐴 𝐵

𝐵

𝜂
⇐

𝑓

𝑢

9.4.ii. Exercise. Show that any square 𝛼 involving parallel adjunctions 𝑓 ⊣ 𝑢 and 𝑘 ⊣ 𝑟 as below-left
whose mate defines an isomorphism is exact.

𝐷 𝐷

𝐶 𝐵 ↭ 𝐶 𝐵

𝐴 𝐴

ℎ𝑘
𝛼
⇐

ℎ

≅⇓𝛽

𝑔 𝑓 𝑔

𝑟

𝑢

9.4.iii. Exercise. Show that if 𝑘 ∶ 𝐼 → 𝐽 is a right adjoint then the square

𝐼

1 𝐽

1

! 𝑘

!

is exact, reproving Proposition 2.4.6.

9.5. Weighted Limits and Colimits in∞-Categories

In this section we generalize the limits and colimits of diagrams between∞-categories encoded
by Definition 9.4.7 to limits and colimits weighted by a module. The notions of weighted limit and
colimit subsume Definition 9.4.7 (see Exercise 9.5.i) and are quite natural from the point of view of
the virtual equipment of modules. This can be understood as the∞-categorical version of the theory
introduced in §A.6 in the context of enriched categories, though from the outset we allow our weights
to be profunctors, as in Exercise A.6.iv.

9.5.1. Definition. Given amodule𝐴
𝑊

𝐵 and a functor 𝑓 ∶ 𝐴 → 𝐶, a functor lim𝑊 𝑓 ∶ 𝐵 → 𝐶 defines
the 𝑊-weighted limit of 𝑓 if it covariantly represents the right extension of Hom𝐶(𝐶, 𝑓 ) along 𝑊.

Dually, given 𝐴
𝑊

𝐵 and a functor 𝑔∶ 𝐵 → 𝐶, a functor colim𝑊 𝑔∶ 𝐴 → 𝐶 defines the𝑊-weighed
colimit of 𝑔 if it contravariantly represents the right lifting of Hom𝐶(𝑔, 𝐶) through𝑊.

𝐴 𝐵 𝐶 𝐶 𝐴 𝐵

𝐴 𝐶 𝐶 𝐵

𝑊

⇓𝜆

Hom𝐶(𝐶,lim𝑊 𝑓 ) Hom𝐶(colim𝑊 𝑔,𝐶)

⇓𝛾

𝑊

Hom𝐶(𝐶,𝑓 ) Hom𝐶(𝑔,𝐶)

By comparing Definition 9.5.1 with Theorem 9.3.3(iii) we see that pointwise right and left extensions
can be understood as special cases of weighted limits and colimits (see also Example A.6.15).
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9.5.2. Lemma. The pointwise right extension of 𝑓 ∶ 𝐴 → 𝐶 along 𝑘 ∶ 𝐴 → 𝐵 is the limit of 𝑓 weighted by
𝐴

Hom𝐵(𝐵,𝑘) 𝐵, while the pointwise left extension of 𝑓 along 𝑘 is the colimit of 𝑓 weighted by 𝐵
Hom𝐵(𝑘,𝐵) 𝐴.

𝐴 𝐶 𝐴 𝐶

𝐵 𝐵

𝑓

𝑘

𝑓

𝑘
ran𝑘𝑓 ≅limHom𝐵(𝐵,𝑘) 𝑓

⇑𝜈
lan𝑘𝑓 ≅colimHom𝐵(𝑘,𝐵) 𝑓

⇓𝜆

Proof. By Theorem 9.3.3(iii) a pointwise right extension defines a right extension of modules
while a pointwise left extension defines a right lifting of modules:

𝐴 𝐵 𝐶 𝐶 𝐵 𝐴

𝐴 𝐶 𝐶 𝐴

Hom𝐵(𝐵,𝑘)

⇓𝜈∗

Hom𝐶(𝐶,ran𝑘𝑓 ) Hom𝐶(lan𝑘𝑓 ,𝐶)

⇓𝜆∗

Hom𝐵(𝑘,𝐵)

Hom𝐶(𝐶,𝑓 ) Hom𝐶(𝑓 ,𝐶)

ByDefinition 9.5.1 this means that ran𝑘𝑓 ≅ limHom𝐵(𝐵,𝑘) 𝑓 and lan𝑘𝑓 ≅ colimHom𝐵(𝑘,𝐵) 𝑓 as claimed. �

In enriched category theory, weighted limits or colimits with representable weights are computed
by evaluating at the representing object (see Definition A.6.1). By analogy:

9.5.3. Lemma. For any functor 𝑓 ∶ 𝐴 → 𝐶 and generalized element 𝑎 ∶ 𝑋 → 𝐴, the restriction 𝑓 𝑎 ∶ 𝑋 → 𝐶
is the limit of 𝑓 weighted by 𝐴

Hom𝐴(𝑎,𝐴)
𝑋 and also the colimit of 𝑓 weighted by 𝑋

Hom𝐴(𝐴,𝑎)
𝐴.

Proof. By Lemma 9.1.4, the right extension of the module 𝐴
Hom𝐶(𝐶,𝑓 ) 𝐶 along 𝐴

Hom𝐴(𝑎,𝐴)
𝑋

is given by the restricted module 𝑋
Hom𝐶(𝐶,𝑓 𝑎) 𝐶, while the right lifting of 𝐶

Hom𝐶(𝑓 ,𝐶) 𝐴 through

𝑋
Hom𝐴(𝐴,𝑎)

𝐴 is given by 𝐶
Hom𝐶(𝑓 𝑎,𝐶) 𝑋.

𝐴 𝑋 𝐶 𝐴 𝑋 𝐴

𝐴 𝐶 𝐶 𝐴

Hom𝐴(𝑎,𝐴) Hom𝐶(𝐶,𝑓 𝑎)

⇓𝜌

Hom𝐶(𝑓 𝑎,𝐶) Hom𝐴(𝐴,𝑎)

⇓𝜌

Hom𝐶(𝐶,𝑓 ) Hom𝐶(𝑓 ,𝐶)

In the terminology introduced in Definition 9.5.1, this says that the composite functor 𝑓 𝑎 ∶ 𝑋 → 𝐶 is
the limit of 𝑓 weighted by the contravariant module representing 𝑎 and also the colimit of 𝑓 weighted
by the covariant module representing 𝑎. �

By Proposition 9.1.6 and its dual we have immediately:

9.5.4. Proposition. For any functors 𝑓 ∶ 𝐴 → 𝐸 and 𝑔∶ 𝐶 → 𝐸 and weights 𝐴
𝑊

𝐵 and 𝐵
𝑉

𝐶, the
functors lim𝑊⊗𝑉 𝑓 and lim𝑉(lim𝑊 𝑓 ) are isomorphic and the functors colim𝑊⊗𝑉 𝑔 and colim𝑊(colim𝑉 𝑔)
are isomorphic whenever the composite weight and these weighted limits and colimits exist. �

We derive various formulae for computing weighted limits and colimits from this result. The first
of these determines the values of a weighted limit or colimit functor at a generalized element of its
domain.
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9.5.5. Lemma. If 𝑓 ∶ 𝐴 → 𝐶 admits a limit lim𝑊 𝑓 ∶ 𝐵 → 𝐶 weighted by 𝐴
𝑊

𝐵 then for any generalized
element 𝑏 ∶ 𝑋 → 𝐵, the functor lim𝑊 𝑓 ∘ 𝑏 ∶ 𝑋 → 𝐶 is isomorphic to the limit of 𝑓 weighted by𝐴

𝑊(𝑏,1)
𝑋.

Dually, if 𝑔∶ 𝐵 → 𝐶 admits a colimit colim𝑊 𝑔∶ 𝐴 → 𝐶 weighted by𝑊 then for any generalized element

𝑎 ∶ 𝑌 → 𝐴, the functor colim𝑊 𝑔 ∘ 𝐴∶ 𝑌 → 𝐶 is isomorphic to the colimit of 𝑔 weighted by 𝑌
𝑊(1,𝑎)

𝐵.
Proof. Recall from Proposition 8.4.7 that𝑊(𝑏, 1) ≅ 𝑊 ⊗Hom𝐵(𝑏, 𝐵). Thus, by Proposition 9.5.4,

the𝑊(𝑏, 1)-weighted limit of 𝑓, if it exists, is the functor that right represents the right extension of the
module Hom𝐶(𝐶, lim𝑊 𝑓 ) along the module Hom𝐵(𝑏, 𝐵). By Lemma 9.5.3, the right extension of the
module Hom𝐶(𝐶, lim𝑊 𝑓 ) along Hom𝐵(𝑏, 𝐵) is the module Hom𝐶(𝐶, lim𝑊 𝑓 ∘ 𝑏). By Definition 9.5.1,
it follows that lim𝑊 𝑓 ∘ 𝑏 ∶ 𝑋 → 𝐶 defines the𝑊(𝑏, 1)-weighted limit of 𝑓 ∶ 𝐴 → 𝐶, as claimed. �

A second useful computational result reduces general weighted limits or weighted colimits to right
or left extensions in the homotopy 2-category.

9.5.6. Lemma. Consider a weight 𝐴
𝑊

𝐵 encoded by the two-sided isofibration 𝐴
𝑞
𝑊

𝑝
𝐵.

(i) For any functor 𝑓 ∶ 𝐴 → 𝐶 the weighted limit lim𝑊 𝑓 ∶ 𝐵 → 𝐶 is given by the pointwise right extension

𝑊 𝐴 𝐶

𝐵

𝑞

𝑝

𝑓

ran𝑝(𝑓 𝑞)≅lim𝑊 𝑓
⇑

(ii) For any functor 𝑔∶ 𝐵 → 𝐶 the weighted colimit colim𝑊 𝑔∶ 𝐴 → 𝐶 is given by the pointwise left
extension

𝑊 𝐵 𝐶

𝐴

𝑝

𝑞

𝑔

lan𝑞(𝑓 𝑝)≅colim𝑊 𝑓
⇓

In particular, limits weighted by modules from 𝐴 to 1 and colimits weighted by modules from 1 to 𝐵 reduce to
ordinary limits and colimits.

Proof. Recall from Proposition 8.3.11 that any module 𝐴
𝑞

𝑊
𝑝

𝐵 factors as a composite
Hom𝐴(𝑞, 𝐴) ⊗ Hom𝐵(𝐵, 𝑝) ≃ 𝑊. Thus by Proposition 9.5.4, Lemma 9.5.5, and Lemma 9.5.2

lim𝑊 𝑓 ≅ limHom𝐵(𝐵,𝑝)(limHom𝐴(𝑞,𝐴) 𝑓 ) ≅ limHom𝐵(𝐵,𝑝)(𝑓 𝑞) ≅ ran𝑝(𝑓 𝑞). �

In a cartesian closed∞-cosmos, Theorem 2.4.2 proves right adjoints preserve limits and left adjoints
preserve colimits of∞-category indexed diagrams. We can now extend this result to weighted limits
and colimits, while dropping the hypothesis that the ambient∞-cosmos is cartesian closed.

9.5.7. Theorem. Right adjoints preserve weighted limits and left adjoints preserve weighted colimits.

Proof. Consider a weight 𝐽
𝑊

𝐾, a diagram 𝑑∶ 𝐽 → 𝐴, and an adjunction with right adjoint
𝑢∶ 𝐴 → 𝐵 and left adjoint 𝑓 ∶ 𝐵 → 𝐴. The weighted limit lim𝑊 𝑑∶ 𝐾 → 𝐴 defines a right extension
of modules

𝐽 𝐾 𝐴

𝐽 𝐴

𝑊

⇓𝜆

Hom𝐴(𝐴,lim𝑊 𝑑)

Hom𝐴(𝐴,𝑑)
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Our task is to demonstrate that the cell 𝑢𝜆 defined by the unique factorization of the cell below-left
through the composite below-right

𝐽 𝐾 𝐴 𝐵 𝐽 𝐾 𝐴 𝐵

𝐽 𝐴 𝐵 𝐽 𝐾 𝐵

𝐽 𝐵 𝐽 𝐵

𝑊

⇓𝜆

Hom𝐴(𝐴,lim𝑊 𝑑) Hom𝐵(𝐵,𝑢) 𝑊 Hom𝐴(𝐴,lim𝑊 𝑑)

⇓∘

Hom𝐵(𝐵,𝑢)

Hom𝐴(𝐴,𝑑)

⇓∘

Hom𝐵(𝐵,𝑢)
=

𝑊 Hom𝐵(𝐵,𝑢 lim𝑊 𝑑)

∃!⇓𝑢𝜆

Hom𝐵(𝐵,𝑢𝑑) Hom𝐵(𝐵,𝑢𝑑)

is again a right extension of modules. To that end consider a cell

𝐽 𝐾 𝐵

𝐽 𝐵

𝑊

⇓

�⃗�

Hom𝐵(𝐵,𝑢𝑑)

By Corollary 4.1.3, there is an equivalence of modules Hom𝐵(𝐵, 𝑢𝑑) ≃ Hom𝐴(𝑓 , 𝑑) and hence by
Proposition 8.2.1 there is a restriction cell

𝐽 𝐵

𝐽 𝐴

Hom𝐵(𝐵,𝑢𝑑)

⇓𝜌 𝑓

Hom𝐴(𝐴,𝑑)

so that composition with 𝜌 induces a bijection between the cells𝑊 ⨰ �⃗� ⇒ Hom𝐵(𝐵, 𝑢𝑑) and cells of
the form displayed below-left:

𝐽 𝐾 𝐵 𝐽 𝐾 𝐵 𝐴

𝐽 𝐴 𝐽 𝐴

𝑊

⇓

�⃗�

𝑓 ↭

𝑊

⇓

�⃗� Hom𝐴(𝐴,𝑓 )

Hom𝐴(𝐴,𝑑) Hom𝐴(𝐴,𝑑)

By Theorem 8.4.4 these cells are in natural bijection with cells of the form displayed above-right. Since
Hom𝐴(𝐴, lim𝑊 𝑑) is a right extension of Hom𝐴(𝐴, 𝑑) along𝑊, such cells are in bijection with cells of
the form below-left

𝐾 𝐵 𝐴 𝐾 𝐵

𝐾 𝐴 𝐾 𝐴
⇓

�⃗� Hom𝐴(𝐴,𝑓 )

↭ ⇓

�⃗�

𝑓

Hom𝐴(𝐴,lim𝑊 𝑑) Hom𝐴(𝐴,lim𝑊 𝑑)

and by Theorem 8.4.4 again these cells are in natural bijection with cells of the form displayed above-
right. By Proposition 8.2.1, such cells stand in bijection with the cells defined by factoring through
the restriction Hom𝐴(𝑓 , lim𝑊 𝑑) of Hom𝐴(𝐴, lim𝑊 𝑑) along 𝑓 ∶ 𝐵 → 𝐴. By Corollary 4.1.3, there is an
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equivalence of modules Hom𝐴(𝑓 , lim𝑊 𝑑) ≃ Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑) so via this restriction the cells are in
bijection to cells of the form

𝐾 𝐵

𝐾 𝐵

�⃗�

⇓

Hom𝐵(𝐵,𝑢 lim𝑊 𝑑)

When we implement this bijection starting from the identity cell at the module Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑)
and reverse this composite bijection we obtain the cell 𝑢𝜆∶𝑊 ⨰ Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑) ⇒ Hom𝐵(𝐵, 𝑢𝑑),
so this proves that 𝑢𝜆 displays Hom𝐵(𝐵, 𝑢 lim𝑊 𝑑) as the right extension of Hom𝐵(𝐵, 𝑢𝑑) along 𝑊.
Thus 𝑢 lim𝑊 𝑑 is the𝑊-weighted limit of 𝑢𝑑 as claimed. �

Theorem 9.5.7 should be compared with Proposition A.6.20, which observes that the right adjoints
of enriched category theory preserve weighted limits, as defined in §A.6. In ∞-cosmoi of (∞, 1)-
categories, we can think of the results of this section as developing an analogous theory of weighted
limits and colimits for categories weakly enriched over∞-groupoids. In particular, adjunctions between
(∞, 1)-categories are automatically enriched over∞-groupoids, as alluded to in Remark 4.1.4, so they
should be expected to preserve limits weighted by modules, whose fibers are∞-groupoids.

Exercises.

9.5.i. Exercise. Determine weights𝑊lim and𝑊colim so that the𝑊lim-weighted limit of a diagram 𝑓 is
the ordinary limit of 𝑓, as defined in 9.4.7, and the𝑊colim-weighted colimit is the ordinary colimit.

9.5.ii. Exercise. Define the tensor and cotensor of an element 𝑎 ∶ 1 → 𝐴 of an∞-category by a discrete
∞-category 𝑆 as a weighted colimit and weighted limit, respectively, and compare this construction
with Definition 4.3.6.
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Part III

Model Independence



The rapidly proliferating literature on (∞, 1)-categories begs the following question: if a theorem
has been proven for one model of (∞, 1)-categories, does it apply to them all?

To discuss this concern, it is useful to distinguish between “synthetically proven” theorems and
“analytically proven” theorems about (∞, 1)-categories. Synthetically proven theorems include the
myriad results found in Parts I and II of this text about the objects in an arbitrary∞-cosmos. While these
results can of course be specialized to any particular∞-cosmos of (∞, 1)-categories, their statements
and proofs are entirely agnostic to any particular model that may ultimately be used. Such results are
“model independent” in a strong sense.

The situation is more delicate for analytically proven theorems, whose statements and proofs might
take advantage of the features of a particular model. For instance, Barwick, Glasman, and Nardin prove
that for any cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories, there is a cocartesian fibration
𝑝∨ ∶ 𝐸∨ ↠ 𝐵op so that the fibers 𝐸𝑏 ≃ 𝐸∨

𝑏 are equivalent [6].³ This result would be useful to have in all
models.

A minor obstacle is presented by the statement, which references the opposite (∞, 1)-category.
While an opposite-category involution is not axiomatized as part of the structure of an∞-cosmos, in
practice a construction along these lines is easy to give or can be transferred from another model (see
§12.1). Once opposite (∞, 1)-categories are understood, a larger challenge is presented by the proof,
which appeals to the twisted arrow quasi-category construction [28, §5.6]. Certainly one could transfer
that particular quasi-category to another model, but the analytic aspects of the proof, involving explicit
horns and simplices in that quasi-category, are no longer so easy to express.

The larger question is not just about the formal theory of (∞, 1)-categories but also concerns
concrete examples. The prototypical (∞, 1)-category is the (∞, 1)-category of spaces, but how can it
be defined? One strategy is give a clever characterization of its universal property so that it can be
characterized in any model: for instance, the (∞, 1)-category of spaces is freely generated by the point
under colimits [78, 5.1.5.6]. But even so, it is necessary to prove that there exists an (∞, 1)-category
with this property, which involves an explicit construction in a particular model.

To address these sorts of questions, we begin in Chapter 10 with the formal study of the best
behaved class of change-of-model functors, namely the cosmological biequivalences (see Definition 1.3.8).
Not all∞-cosmoi are biequivalent, but there typically exist biequivalences connecting∞-cosmoi whose
objects are infinite-dimensional categories of the same type, supplied by the experts who have developed
the various models (see Appendix E). In Proposition 10.3.6, we prove that cosmological biequivalences
preserve, reflect, and create a lengthy list of∞-categorical structures. Cosmological biequivalences
also induce various bijections: between ∞-categories up to equivalence, between ∞-functors up to
isomorphism modulo these equivalences, between modules up to fibered equivalence, and between
natural transformations with specified boundary. These results can be applied to transfer an explicit
adjoint to a given functor or a colimit of a given diagram between models, as we illustrate in Chapter
11. More systematically, any biequivalence of∞-cosmoi induces a biequivalence between their virtual
equipments of modules.

We consider this result, recorded as Theorem 11.1.6, as the basis for the model independence of
∞-category, given how much of the theory of∞-categories can be expressed in a virtual equipment
leveraging the various embeddings of the homotopy 2-category. For instance, it subsumes the model
invariance results recorded in Proposition 10.3.6. More profoundly, the virtual equipment of modules
forms the basis for the formal language for model independent∞-category theory that is introduced

³In fact, they prove that both fibrations classify the same contravariant 𝐵-indexed functor 𝑏 ↦ 𝐸𝑏 valued in the
(∞, 1)-category of (∞, 1)-categories, but to simplify this discussion, we focus on the first part of the statement.



in §11.3. The study of the model independence of∞-category theory concludes with Corollary 11.3.10,
which proves that formulae written in this formal language are invariant under biequivalence of∞-
cosmoi precisely because such a biequivalence induces a biequivalence between the virtual equipments
of modules.

The key takeaway is that the conclusions of both synthetically and analytically proven theorems
about∞-categories can be transferred to biequivalent∞-cosmoi. In Chapter 12, we specialize to∞-
cosmoi of (∞, 1)-categories (see Example 1.2.24 and Definition 1.3.10) to illustrate applications of this
transfer principle to (∞, 1)-category theory: introducing opposite∞-categories and their∞-groupoid
cores, establishing the pointwise nature of universal properties, and proving an existence theorem for
pointwise right and left Kan extensions.
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CHAPTER 10

Change-of-Model Functors

In this chapter, we study a certain class of cosmological functors between∞-cosmoi that do not
merely preserve ∞-categorical structure but also reflect and create it. We refer to these functors
as cosmological biequivalences because the 2-functors they induce between homotopy 2-categories are
biequivalences: surjective on objects up to equivalence and defining a local equivalence of hom-categories.
Informally, we refer to cosmological biequivalences as “change-of-model functors.” For example, the
four ∞-cosmoi of (∞, 1)-categories introduced in Example 1.2.24 are connected by the following
biequivalences briefly described in Example 1.3.9 and revisited in §E.2:

𝒞𝒮𝒮 𝒮𝑒𝑔𝑎𝑙

𝒬𝒞𝑎𝑡

1-𝒞𝑜𝑚𝑝

(−)0
disc

(−)0

♮

nervenerve

(−)0

(10.0.1)

In §10.1, we collect together a number of results about cosmological functors that are scattered
throughout the text. In §10.2, we reintroduce the special class of biequivalences and discuss general
examples. In particular, we discover that the ∞-cosmology of Chapter 6 is biequivalence invariant:
for instance, a cosmological biequivalence𝒦 ∼ ℒ induces a cosmological biequivalence 𝒞𝑎𝑟𝑡(𝒦) ∼

𝒞𝑎𝑟𝑡(ℒ).
Since our biequivalences between∞-cosmoi are required to be cosmological functors, resembling

enriched right Quillen adjoints, the relation “admits a biequivalence to” is not symmetric. Thus, when
we say that two∞-cosmoi “are biequivalent” we mean that there exists a finite zigzag of biequivalences
connecting them, in other words, that they lie in the same equivalence class under the symmetric
transitive closure of the relation defined by the presence of a cosmological biequivalence. In particular,
under this definition, an ∞-cosmos of (∞, 1)-categories is an ∞-cosmos that is connected by a finite
zigzag of cosmological biequivalences to any of the∞-cosmoi in (10.0.1). In this special case, a simpler
characterization is established in Proposition 10.2.1, which proves that an∞-cosmos𝒦 is an∞-cosmos
of (∞, 1)-categories just when the underlying quasi-category functor (−)0 ≔ Fun(1, −) ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 is
a cosmological biequivalence – retroactively justifying Definition 1.3.10.

In §10.3, we establish the basic 2-categorical properties of biequivalences, which provides an
essential ingredient in the proof of the model independence results in Chapter 11. Finally, in §10.4, we
explore the properties of formally defined “inverses” to cosmological biequivalences. These are not
guaranteed to be cosmological functors, nor even simplicial functors in the customary strict sense. The
situation is analogous to 2-category theory: a 2-functor that defines a biequivalence admits an inverse
biequivalence but this may only be a pseudofunctor, a notion recalled in Definition 10.4.1. Accordingly,
the inverse to a cosmological biequivalence defines a “quasi-categorically enriched pseudofunctor” or
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quasi-pseudofunctor for short that is not cosmological but does define a biequivalence and so that the
composite endofunctors are quasi-pseudonaturally equivalent to the identity functors on each∞-cosmos.
These structures reappear in Chapter 12 as tools to transport analytically defined structures between
biequivalent∞-cosmoi.

10.1. Cosmological Functors Revisited

Recall from Definition 1.3.1 that a cosmological functor is a simplicial functor 𝐹∶ 𝒦 → ℒ between
∞-cosmoi that preserves

• the specified classes of isofibrations and
• all of the cosmological limits.

Lemma 1.3.2 demonstrates that cosmological functors also preserve the equivalences and the trivial
fibrations. By Proposition 6.2.8(i), cosmological functors also preserve all flexible weighted limits.

Examples of cosmological functors abound – for instance, see Proposition 1.3.4 and the cosmolog-
ical embeddings of replete sub∞-cosmoi constructed in §6.3. There are also cosmological functors
connecting the∞-cosmoi of fibrant diagrams indexed by an inverse category (see Exercise 6.1.iii), such
as the domain, codomain, and identity functors

𝒦 𝒦
dom

cod

id

which are shown to be cosmological in Proposition 6.1.1.
Cosmological functors frequently restrict to define further cosmological functors between parallel

replete sub∞-cosmoi:

10.1.1. Lemma. Suppose that𝒦′ 𝒦 andℒ′ ℒ are cosmological embeddings of replete sub∞-cosmoi. If
𝐹∶ 𝒦 → ℒ is a cosmological functor that carries objects and 0-arrows of𝒦′ to objects and 0-arrows of ℒ′

then the restricted functor is cosmological:

𝒦′ ℒ′

𝒦 ℒ

𝐹

𝐹

Proof. Recall that the repleteness of Definition 6.3.1 includes the requirement that the inclusions
𝒦′ 𝒦 and ℒ′ ℒ are full on positive dimensional arrows. So if the simplicial functor 𝐹 carries
objects and 0-arrows of𝒦′ to objects and 0-arrows ofℒ′ then it restricts to define a simplicial functor
𝐹′ ∶ 𝒦′ → ℒ′. As cosmological embeddings create isofibrations and the cosmological limit notions,
the restricted functor is cosmological. �

For example, by Proposition 5.2.4 and Exercise 5.3.i, pullback 𝑓 ∗ ∶ 𝒦/𝐵 → 𝒦/𝐴 preserves cartesian
fibrations and cartesian functors. Thus, pullback along any functor 𝑓 ∶ 𝐴 → 𝐵 in𝒦 restricts to define
a cosmological functor (see Proposition 7.2.4):

𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝒞𝑎𝑟𝑡(𝒦)/𝐴

𝒦/𝐵 𝒦/𝐴

𝑓 ∗

𝑓 ∗
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Our aim in this section is to show that cosmological functors preserve all of the ∞-categorical
structures we have introduced – with a single notable exception discussed in Warning 10.1.5. In many
cases this is not evident from the original 2-categorical definitions (e.g., of cartesian fibrations in
Definition 5.2.1) but can be deduced quite easily from the accompanying “internal characterization” of
each categorical notion (such as given in Theorem 5.2.8(ii)).

Importantly:

10.1.2. Proposition. Cosmological functors preserve comma∞-categories: if 𝐹∶ 𝒦 → ℒ is a cosmological
functor and the diagram below-left is a comma cone in𝒦, then the diagram below-right is a comma cone inℒ.

𝐸 𝐹𝐸

𝐶 𝐵
𝐹
⇝ 𝐹𝐶 𝐹𝐵

𝐴 𝐹𝐴

𝑒1 𝑒0

𝜖
⇐

𝐹𝑒1 𝐹𝑒0

𝐹𝜖
⇐

𝑔 𝑓 𝐹𝑔 𝐹𝑓

(10.1.3)

Proof. The simplicial pullback (3.4.2) that constructs the comma cone is preserved by any cosmo-
logical functor. By Proposition 3.4.11, any comma cone as above left arises from a fibered equivalence
𝜖 ∶ 𝐸 ≃𝐶×𝐵 Hom𝐴(𝑓 , 𝑔) where 𝜖 = 𝜙𝜖, and any fibered equivalence of this form defines a comma cone.
Since 𝐹 defines a cosmological functor 𝐹∶ 𝒦/𝐶×𝐵 → ℒ/𝐹𝐶×𝐹𝐵, 𝐹𝜖∶ 𝐹𝐸 ≃𝐹𝐶×𝐹𝐵 𝐹(Hom𝐴(𝑓 , 𝑔)) ≅
Hom𝐹𝐴(𝐹𝑓 , 𝐹𝑔), and we conclude that the right-hand data again defines a comma cone. �

Using Proposition 10.1.2, we can quickly establish the following preservation properties of cos-
mological functors. For ease of reference, this list includes the preservation properties established
elsewhere.

10.1.4. Proposition. Cosmological functors preserve:

(i) Equivalences between∞-categories.
(ii) Invertible natural transformations and mates.
(iii) Adjunctions between∞-categories, including right adjoint right inverse adjunctions and left adjoint

right inverse adjunctions.
(iv) Fibered adjunctions and equivalences.
(v) Isofibrations, trivial fibrations and discrete∞-categories.
(vi) Flexible weighted limits.
(vii) Comma spans and comma cones.
(viii) Absolute right and left lifting diagrams.
(ix) Limits or colimits of diagrams indexed by a simplicial set and co/limit-preserving functors.
(x) Stable∞-categories and exact functors.
(xi) Cartesian and cocartesian fibrations and cartesian functors between them.
(xii) Discrete cartesian fibrations and discrete cocartesian fibrations.
(xiii) Two-sided fibrations and cartesian functors between them.
(xiv) Modules and represented modules.

Proof. By Lemma 1.4.4, a cosmological functor induces a 2-functor between homotopy 2-categories,
and an arbitrary 2-functor preserves the structures of (i), (ii), and (iii) (see e.g., Lemma 2.1.3). As
cosmological functors induce cosmological functors between sliced∞-cosmoi, (iv) can be understood
as a special case of (i) and (iii).
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The preservation of trivial fibrations is established in Lemma 1.3.2 and the preservation of discrete
∞-categories follows (see Remark 1.3.3). Proposition 6.2.8(i) proves that cosmological functors preserve
all flexible weighted limits as stated in (vi). Proposition 10.1.2 proves that cosmological functors
preserve comma spans in the∞-cosmos and comma cones in the homotopy 2-category as stated in (vii).

The preservation property (viii), first observed in Corollary 3.5.7, follows from Theorem 3.5.3, which
characterizes absolute lifting diagrams as fibered equivalences of comma∞-categories, Proposition
10.1.2, which says that cosmological functors preserve commas, and the fact that cosmological functors
preserve equivalences. Now (ix) follows from this by Definition 2.3.8 and the fact that cosmological
functors preserve simplicial tensors, with the statement about co/limit preserving functors following
from (ii). By Theorem 4.4.12(iii), (x) can be understood as a special case of (ix).

The preservation properties (xi) and (xii) also follow from Proposition 10.1.2 and the fact that cos-
mological functors preserve right or left adjoint right inverse adjunctions, mates, and trivial fibrations
via the characterizations of Theorem 5.2.8(ii), Theorem 5.3.4(ii), and Proposition 5.5.8. More details
are given in the proof of Corollary 5.3.5, which also observes that cartesian natural transformations are
preserved by cosmological functors.

Directly from the internal characterization of Theorem 7.1.4 and the preservation of adjunctions
and invertible natural transformations, cartesian functors preserve two-sided fibrations and cartesian
functors between them, as observed in Corollary 7.1.8. This establishes (xiii). By Proposition 1.3.4(vi), a
cosmological functor induces a direct image cosmological functor between sliced∞-cosmoi, which then
preserves discrete objects by (v). Thus, modules are also preserved. By specializing Proposition 10.1.2 to
cospans involving identities, it becomes clear that left and right representable commas are preserved.
Since a module is representable if and only if it is fibered equivalent to one of these, representable
modules are preserved as well, completing the proof of (xiv). �

10.1.5. Warning. Conspicuously missing from the list of∞-categorical structures that are preserved
by cosmological functors are composites in the virtual equipment of modules and then a variety of
further structures that were defined in reference to this notion: exact squares, pointwise right and left
extensions, and (weighted) limits and colimits of∞-category indexed diagrams.

There are a number of factors that contribute to the failure of composites and strong composites
to be preserved by cosmological functors in general. One immediate issue is presented by the universal
properties given in Definitions 8.3.1 and 8.3.5, which each involve universal quantifiers. As cosmological
functors need not be essentially surjective, a universal quantifier in the domain need not scope over
the codomain.

In other contexts, universal quantifiers are done awaywith bymeans of an “internal characterization”
of the∞-categorical notion, but no such characterization is given in this case. At issue is the fact that
the composite module should be understood as defined using a “pullback stable fiberwise coinverter,”
reflecting the two-sided fibration formed by the composite of the spans into discrete two-sided
fibrations. We have not presented such a construction because our axiomatic notion of ∞-cosmos
does not include colimits, but even if it did – and Digression E.1.8 reveals that homotopy colimits of
∞-categories are often present in examples – cosmological functors, being “right-adjoint like” would
not preserve them.

That said, any strong composites that are obtained by applying Lemma 8.3.7 are preserved by
cosmological functors, since fibered adjunctions are preserved. This includes all of the formally defined
composites established in §8.3 and §8.4. Similar remarks apply to exact squares. Because generic
composites are not preserved by cosmological functors, generic exact squares need not be preserved
either. But the formally defined exact squares established in §9.2 are preserved by cosmological functors.
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For instance, Lemma 9.2.6 proves that comma squares are exact squares in any ∞-cosmos. Since
cosmological functors preserve comma square, this class of exact squares is then preserved.

As we shall discover, cosmological biequivalences do preserve all of these∞-categorical notions, as
well as reflect and create them. It is to this subject that we now turn.

Exercises.

10.1.i. Exercise. Argue that any cosmological functor 𝐹∶ 𝒦 → ℒ induces a cosmological functor
𝐹∶ 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 → 𝐹𝐴\ℱ𝑖𝑏(ℒ)/𝐹𝐵 for each pair of∞-categories 𝐴 and 𝐵 in𝒦.

10.1.ii. Exercise. Exercise 6.3.iv shows that cosmological embeddings reflect discrete∞-categories
in addition to preserving them. What other ∞-categorical properties are reflected or created by
cosmological embeddings?

10.2. Cosmological Biequivalences

Special cosmological functors, the biequivalences, reflect and create the∞-category theory devel-
oped in this text as well as preserve it. Recall from Definition 1.3.8 that a cosmological biequivalence
is a cosmological functor 𝐹∶ 𝒦 → ℒ that is

• surjective on objects up to equivalence: for all 𝐶 ∈ ℒ there exists 𝐴 ∈ 𝒦 so that 𝐹𝐴 ≃ 𝐶; and
• a local equivalence of quasi-categories: for every pair 𝐴,𝐵 ∈ 𝒦, the map

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵)∼

is an equivalence of quasi-categories.

In this section, we pursue further examples of cosmological biequivalences. In the next section, we
explore their role as change-of-model functors.

For example, the functors (10.0.1) are all biequivalences (see Example 1.3.9 and §E.2). Except for
the functor ♮ ∶ 𝒬𝒞𝑎𝑡 → 1-𝒞𝑜𝑚𝑝, each arises from a simplicially enriched right Quillen equivalence
between model categories enriched over the Joyal model structure with all objects cofibrant. Corollary
E.1.2 demonstrates that any functor of this form encodes a cosmological biequivalence.

Two∞-cosmoi are biequivalent if there exists a finite zigzag of biequivalences connecting them.
Recall that any∞-cosmos has an underlying quasi-category functor

𝒦 𝒬𝒞𝑎𝑡(−)0≔Fun(1,−)

defined by mapping out of the terminal∞-category. We now show that the underlying quasi-category
functor of any∞-cosmos that is biequivalent to 𝒬𝒞𝑎𝑡 is a cosmological biequivalence. This justifies
the characterization of an∞-cosmos of (∞, 1)-categories given in Definition 1.3.10.

10.2.1. Proposition. If an∞-cosmos𝒦 is biequivalent to 𝒬𝒞𝑎𝑡, then the underlying quasi-category functor
(−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 is a cosmological biequivalence.

Proof. We will show that in the presence of cosmological biequivalences

𝒦 ℒ 𝒬𝒞𝑎𝑡∼𝐺 ∼𝐹

the underlying quasi-category functor (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 is a cosmological biequivalence. Note this
formulation includes the special cases where one of the functors 𝐹 or 𝐺 is an identity. By induction,
the same conclusion holds for any∞-cosmos connected by a finite zigzag of biequivalences to 𝒬𝒞𝑎𝑡.
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As 𝐹 is a biequivalence, for each quasi-category 𝑄, there exists an ∞-category 𝐵 ∈ ℒ so that
𝐹𝐵 ≃ 𝑄. Because 𝐹 and 𝐺 are both local equivalences preserving the terminal ∞-category 1 – for
which we adopt the same notation in each of𝒦,ℒ, and 𝒬𝒞𝑎𝑡 – there is then a zigzag of equivalences
of quasi-categories

(𝐺𝐵)0 = Fun(1, 𝐺𝐵) Fun(1, 𝐵) Fun(1, 𝐹𝐵) ≅ 𝐹𝐵 ≃ 𝑄.∼ ∼

This proves that there exists an∞-category 𝐺𝐵 ∈ 𝒦 whose underlying quasi-category is equivalent to
𝑄.

To show that the underlying quasi-category functor (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 is a local equivalence,
consider a pair of ∞-categories 𝐴,𝐵 ∈ 𝒦. By essential surjectivity of 𝐺, there exist ∞-categories
𝑋,𝑌 ∈ ℒ so that𝐺𝑋 ≃ 𝐴 and 𝐵 ≃ 𝐺𝑌. By pre- and postcomposing with these equivalences, Corollary
1.4.8 implies that Fun(𝐴, 𝐵) → Fun(𝐴0, 𝐵0) is equivalent to Fun(𝐺𝑋,𝐺𝑌) → Fun((𝐺𝑋)0, (𝐺𝑌)0),
so it suffices to prove that the latter map is an equivalence of quasi-categories.

By simplicial functoriality (see Definition A.2.6), the actions on functor spaces of 𝐹 and𝐺 commutes
with the composition map

Fun(𝑋, 𝑌) × Fun(1, 𝑋) Fun(1, 𝑌)∘

which transposes to define the action on functor spaces of the underlying quasi-category functor. Thus,
there is a commutative diagram whose vertical maps are equivalences

Fun(𝐺𝑋,𝐺𝑌) Fun(Fun(1, 𝐺𝑋),Fun(1, 𝐺𝑌))

Fun(Fun(1, 𝑋),Fun(1, 𝐺𝑌))

Fun(𝑋, 𝑌) Fun(Fun(1, 𝑋), Fun(1, 𝑌))

Fun(Fun(1, 𝑋),Fun(1, 𝐹𝑌))

Fun(𝐹𝑋, 𝐹𝑌) Fun(Fun(1, 𝐹𝑋),Fun(1, 𝐹𝑌))

∘

∼

∼

∘

∼

∼
∼

≃∘

∼

Any quasi-category is isomorphic to its underlying quasi-category, so the bottom horizontal map is an
isomorphism. By the 2-of-3 property, it follows that the top horizontal map is an equivalence, which is
what we wanted to show. �

Recall from Proposition 1.3.4(vi) that a cosmological functor 𝐹∶ 𝒦 → ℒ induces a cosmological
functor 𝐹∶ 𝒦/𝐵 → ℒ/𝐹𝐵 for any 𝐵 ∈ 𝒦.

10.2.2. Proposition. If 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence, then for any 𝐵 ∈ 𝒦 the induced functor
𝐹∶ 𝒦/𝐵 ∼ ℒ/𝐹𝐵 is also a cosmological biequivalence.

Proof. We first argue that the 𝐹 defines a local equivalence of functor spaces, as defined in
Proposition 1.2.22(ii). Given a pair of isofibration 𝑝∶ 𝐸 ↠ 𝐵 and 𝑝′ ∶ 𝐸′ ↠ 𝐵 in𝒦, the induced map
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on fibered functor spaces is defined by the pullback

Fun𝐵(𝑝, 𝑝′) Fun(𝐸, 𝐸′)

Fun𝐹𝐵(𝐹𝑝, 𝐹𝑝′) Fun(𝐹𝐸, 𝐹𝐸′)

1 Fun(𝐸, 𝐵)

1 Fun(𝐹𝐸, 𝐹𝐵)

∼ ∼

∼

As the maps between the cospans in 𝒬𝒞𝑎𝑡 are equivalences, by Proposition 3.3.4 so is the induced map
between the pullbacks.

For surjectivity up to equivalence, consider an isofibration 𝑞 ∶ 𝐿 ↠ 𝐹𝐵 inℒ. As 𝐹 is surjective on
objects up to equivalence, there exists some 𝐴 ∈ 𝒦 together with an equivalence 𝑖 ∶ 𝐹𝐴 ∼ 𝐿 ∈ ℒ. As
𝐹 defines a local equivalence of mapping quasi-categories, there is moreover a functor 𝑓 ∶ 𝐴 → 𝐵 inℒ
so that 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 is naturally isomorphic to 𝑞𝑖 (see Exercise 10.2.i). The map 𝑓 need not be an

isofibration, but Lemma 1.2.19 allows us to factor 𝑓 as 𝐴 ∼ 𝐾
𝑝
𝐵. Choosing an equivalence inverse

𝑗 ∶ 𝐾 ∼ 𝐴, this data defines a diagram in 𝔥ℒ that commutes up to isomorphism:

𝐹𝐾 𝐹𝐴 𝐿

𝐹𝐵
𝐹𝑝

∼𝐹𝑗

𝐹𝑓

∼𝑖

𝑞
≅ ≅

Proposition 1.4.9 tells us that isofibrations in ∞-cosmoi define isofibrations in the homotopy
2-category. In particular, we may lift the displayed isomorphism along the isofibration 𝑞 ∶ 𝐿 ↠ 𝐹𝐵 to
define a commutative triangle:

𝐹𝐾 𝐹𝐴 𝐿 𝐹𝐾 𝐿

𝐹𝐵 𝐹𝐵
𝐹𝑝

∼𝐹𝑗

𝐹𝑓

∼𝑖

𝑞 𝐹𝑝

∼𝑖⋅𝐹𝑗

≅
∼
𝑒

𝑞
≅ ≅

=

By Exercise 1.4.iii, since 𝑒 is isomorphic to an equivalence 𝑖 ⋅ 𝐹𝑗, it must also define an equivalence.
Thus, by Proposition 1.2.22(vii), we have shown that the isofibration 𝑝∶ 𝐾 ↠ 𝐵 maps under 𝐹 to an
isofibration that is equivalent to our chosen 𝑞 ∶ 𝐿 ↠ 𝐹𝐵. �

A similar argument proves that a cosmological biequivalence induces a biequivalence between the
corresponding∞-cosmoi of isofibrations of Proposition 6.1.1.

10.2.3. Proposition. If 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence then the induced functor 𝐹∶ 𝒦 ∼ ℒ is
a biequivalence.

Proof. Exercise 10.2.ii. �

We establish another family of biequivalences of sliced∞-cosmoi:

10.2.4. Proposition. If 𝑓 ∶ 𝐴 ∼ 𝐵 is an equivalence in𝒦, then the pullback functor 𝑓 ∗ ∶ 𝒦/𝐵 ∼ 𝒦/𝐴 is a
cosmological biequivalence.
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Proof. To see that 𝑓 ∗ ∶ 𝒦/𝐵 → 𝒦/𝐴 is essentially surjective, consider an object 𝑟 ∶ 𝐷 ↠ 𝐴 and use
Lemma 1.2.19 to factor the composite map 𝑓 𝑟 ∶ 𝐷 → 𝐵 as an equivalence followed by an isofibration,
and pull the result back along 𝑓.

𝐷

𝑃 𝐸

𝐴 𝐵

∼

𝑟
∼

𝑞 𝑝

∼
𝑓

By Proposition 3.3.3, the pullback of 𝑓 is an equivalence, so by the 2-of-3 property, 𝑟 is equivalent to the
isofibration 𝑞 ∶ 𝑃 ↠ 𝐴, which is in the image of 𝑓 ∗ ∶ 𝒦/𝐵 → 𝒦/𝐴.

To show that this simplicial functor is a local equivalence, consider a pair of isofibrations 𝑝∶ 𝐸 ↠
𝐵 and 𝑞 ∶ 𝐹 ↠ 𝐵. We will show that the quasi-category of functors over 𝐵 is equivalent to the
quasi-category of functors over 𝐴 between their pullbacks

𝑓 ∗𝐸 𝐸

𝑓 ∗𝐹 𝐹

𝐴 𝐵

𝑟

∼ℎ

𝑝𝑠

∼𝑘

𝑞
∼
𝑓

To define the comparisonmap Fun𝐵(𝐸, 𝐹) → Fun𝐴(𝑓 ∗𝐸, 𝑓 ∗𝐹) consider the following commutative
prism

Fun𝐵(𝐸, 𝐹) Fun(𝐸, 𝐹)

Fun𝐴(𝑓 ∗𝐸, 𝑓 ∗𝐹) Fun(𝑓 ∗𝐸, 𝑓 ∗𝐹) Fun(𝑓 ∗𝐸, 𝐹)

𝟙 Fun(𝐸, 𝐵)

𝟙 Fun(𝑓 ∗𝐸,𝐴) Fun(𝑓 ∗𝐸, 𝐵)

∼
𝑞∗

∼ℎ∗

∼𝑘∗

𝑝

∼
ℎ∗

𝑟

𝑠∗

∼
𝑓∗

𝑞∗

The front-right square is a pullback by the simplicial universal property of 𝑓 ∗𝐹, while the front-left
square and back face are the pullbacks that define Fun𝐴(𝑓 ∗𝐸, 𝑓 ∗𝐹) and Fun𝐵(𝐸, 𝐹). The universal
property of the composite front pullback rectangle induces the map Fun𝐵(𝐸, 𝐹) → Fun𝐴(𝑓 ∗𝐸, 𝑓 ∗𝐹).
As this functor is the pullback of the equivalences ℎ∗ of Corollary 1.4.8, by Proposition 3.3.4 the induced
map defines an equivalence of quasi-categories. �

Further induced cosmological biequivalences arise by application of the following lemma, which
revisits the setting of Proposition 6.3.3, a result used to construct cosmologically embedded∞-cosmoi.
We leave its applications to the exercises and return to this topic in Corollary 10.3.7.
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10.2.5. Lemma. Consider a pullback diagram of∞-cosmoi and cosmological functors in which 𝐹∶ 𝒦 ∼ ℒ is a
cosmological biequivalence andℒ′ ℒ and𝒦′ 𝒦 are cosmological embeddings.¹

𝒦′ ℒ′

𝒦 ℒ

𝐹

∼
𝐹

Then 𝐹∶ 𝒦′ ∼ ℒ′ is a cosmological biequivalence.

Proof. The essential point is the repleteness of the cosmological embeddingℒ′ ℒ enumerated
in Definition 6.3.1 and explored in Exercise 6.3.i. To see that 𝐹∶ 𝒦′ → ℒ′ is essentially surjective,
consider an∞-category 𝐿 ∈ ℒ′. By essential surjectivity of the cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ
there exists an ∞-category 𝐾 ∈ 𝒦 so that 𝐹𝐾 ≃ 𝐿 in ℒ. By repleteness of ℒ′ ℒ, the equivalence
𝐹𝐾 ≃ 𝐿 also lies inℒ′ and hence 𝐾 lies in the pullback𝒦′ and maps via 𝐹 to an object equivalent to 𝐿
inℒ′.

For the local equivalence, the induced mappings on functor spaces associated to a pair of ∞-
categories 𝐴 and 𝐵 in𝒦′ form a pullback of quasi-categories

Fun𝒦′(𝐴, 𝐵) Funℒ′(𝐹𝐴, 𝐹𝐵)

Fun𝒦(𝐴, 𝐵) Funℒ(𝐹𝐴, 𝐹𝐵)

𝐹

∼
𝐹

By Exercise 6.3.i, the vertical functors are isofibrations between quasi-categories. Thus, by Proposition
3.3.3, the local equivalence of 𝐹∶ 𝒦 → ℒ pulls back to define a local equivalence for 𝐹∶ 𝒦′ → ℒ′. So
we conclude that the restricted functor remains a cosmological biequivalence. �

Exercises.

10.2.i. Exercise (10.3.1). Demonstrate that an equivalence of quasi-categories 𝑓 ∶ 𝐾 ∼ 𝐿 induces a
bijection on isomorphism classes of vertices, i.e., a bijection on isomorphism classes of objects in the
homotopy categories of 𝐾 and 𝐿. Conclude that for any cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ and
any pair of∞-categories 𝐴,𝐵 ∈ 𝒦

(i) For any functor 𝑓 ′ ∶ 𝐹𝐴 → 𝐹𝐵 there exists a functor 𝑓 ∶ 𝐴 → 𝐵 and a natural isomorphism
𝐹𝑓 ≅ 𝑓 ′ inℒ.

(ii) If 𝑓 , 𝑔 ∶ 𝐴 → 𝐵 are functors so that 𝐹𝑓 ≅ 𝐹𝑔 inℒ then 𝑓 ≅ 𝑔 in𝒦.

10.2.ii. Exercise. Prove Proposition 10.2.3.

10.2.iii. Exercise. If 𝐹∶ 𝒦 ∼ ℒ is a biequivalence and 𝐴 ∈ 𝒦 and 𝐵 ∈ ℒ are so that 𝐹𝐴 ≃ 𝐵 prove
that the slice∞-cosmoi𝒦/𝐴 andℒ/𝐵 are biequivalent.

10.2.iv. Exercise (10.3.7). Explore the applicability of Lemma 10.2.5 to the task of verifying that the
∞-cosmoi constructed in §6.3 are biequivalence invariant.

¹If the∞-cosmos structure on𝒦′ is created by this pullback, then𝒦′ 𝒦 is automatically a cosmological embedding
and the functor𝒦′ → ℒ′ is automatically cosmological (see Proposition 6.3.3).
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10.3. Cosmological Biequivalences as Change-of-Model Functors

We refer to biequivalences between ∞-cosmoi as change-of-model functors. In this section, we
enumerate their basic properties. First, we observe that cosmological biequivalences descend to
biequivalences between homotopy 2-categories, hence the name:

10.3.1. Proposition. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ induces a biequivalence 𝐹∶ 𝔥𝒦 ∼ 𝔥ℒ of
homotopy 2-categories: i.e., the 2-functor is

(i) surjective on objects up to equivalence and
(ii) defines a local equivalence of categories hFun(𝐴, 𝐵) ∼ hFun(𝐹𝐴, 𝐹𝐵) for all 𝐴,𝐵 ∈ 𝒦.

Note that the local equivalences of (ii) necessarily have the properties enumerated in Exercise 10.2.i.

Proof. By Theorem 1.4.7,∞-cosmos-level equivalences coincide with 2-categorical equivalences,
proving (i), and by Lemma 1.2.15 the homotopy category functor h ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝑎𝑡 carries equivalences
of quasi-categories to equivalences of categories, proving (ii). �

In particular, it follows that the homotopy category of an∞-category is invariant under change of
model (see Exercise 10.3.i). More generally, any biequivalence between 2-categories induces a variety of
local and global bijections, as enumerated below:

10.3.2. Corollary. Consider any cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ.
(i) The biequivalence 𝐹 preserves, reflects, and creates equivalences between∞-categories and defines a

bijection between equivalence classes of objects.
(ii) The biequivalence 𝐹 induces local bijections between natuarl isomorphism classes of functors extending

the bijections of (i): choosing any pairs of objects 𝐴,𝐵 ∈ 𝒦 and 𝐴′, 𝐵′ ∈ ℒ and equivalences
𝑎 ∶ 𝐴′ ∼ 𝐹𝐴 and 𝑏 ∶ 𝐹𝐵 ∼ 𝐵′, the map

hFun(𝐴, 𝐵) ∼ hFun(𝐹𝐴, 𝐹𝐵) ∼ hFun(𝐴′, 𝐵′) (10.3.3)

defines a bijection between isomorphism classes of functors 𝐴 → 𝐵 in𝒦 and isomorphism classes of
functors 𝐴′ → 𝐵′ inℒ.

(iii) The biequivalence 𝐹 defines local bijections between natural transformations with specified boundary
extending the bijections of (i) and (ii): choosing any pairs of objects𝐴,𝐵 ∈ 𝒦 and𝐴′, 𝐵′ ∈ ℒ, specified
equivalences 𝑎 ∶ 𝐴′ ≃ 𝐹𝐴 and 𝑏 ∶ 𝐹𝐵 ≃ 𝐵′, functors 𝑓 , 𝑔 ∶ 𝐴 → 𝐵 and 𝑓 ′, 𝑔′ ∶ 𝐴′ → 𝐵′, and
natural isomorphisms

𝐹𝐴 𝐹𝐵 𝐹𝐴 𝐹𝐵

𝐴′ 𝐵′ 𝐴′ 𝐵′

𝐹𝑓

≅𝛼 ∼ 𝑏

𝐹𝑔

≅𝛽 ∼ 𝑏∼𝑎

𝑓 ′ 𝑔′

∼𝑎

the map (10.3.3) induces a bijection between natural transformations 𝑓 ⇒ 𝑔 in 𝒦 and natural
transformations 𝑓 ′ ⇒ 𝑔′ inℒ.

Proof. Lemma 1.3.12 proves that cosmological biequivalences preserve, reflect, and create equiva-
lences via a fundamentally 2-categorical argument that the reader is invited to revisit. This, together
with essential surjectivity of cosmological biequivalences implies that such functors induce a bijection
on equivalence classes of objects. This proves (i).
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For (ii), by Corollary 1.4.8, the chosen equivalences 𝐹𝐴 ≃ 𝐴′ and 𝐹𝐵 ≃ 𝐵′ induce an equivalence
of quasi-categories

Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵) Fun(𝐴′, 𝐵′)∼ ∼

which descends to the equivalence of homotopy categories (10.3.3). Since equivalences of quasi-cate-
gories induce bijections between isomorphism classes of vertices, this yields in particular a bijection
between isomorphism classes of functors.

For (iii), the equivalence (10.3.3) is full and faithful, inducing a bijection between natural trans-
formations 𝑓 ⇒ 𝑔 and 𝑏 ⋅ 𝐹𝑓 ⋅ 𝑎 ⇒ 𝑏 ⋅ 𝐹𝑔 ⋅ 𝑎. This bijection can be transported along any chosen
isomorphisms 𝛼 and 𝛽 to yield a bijection between natural transformations 𝑓 ⇒ 𝑔 in hFun(𝐴, 𝐵) in
𝒦 and natural transformations 𝑓 ′ ⇒ 𝑔′ in hFun(𝐴′, 𝐵′) inℒ. �

As an application of Corollary 10.3.2, we now fulfill a promise made in §2.3, establishing an
equivalence between the internal hom 𝐵𝐴 between∞-categories 𝐴 and 𝐵 in an∞-cosmos of (∞, 1)-
categories and the simplicial cotensor 𝐵𝐴0 of 𝐵 with the underlying quasi-category of 𝐴.

10.3.4. Observation. Even if an∞-cosmos of (∞, 1)-categories𝒦 is not cartesian closed, its homotopy
2-category 𝔥𝒦 is cartesian closed in the bicategorical sense, replacing the natural isomorphisms of
Proposition 1.4.5(ii) with natural equivalences. On account of the biequivalence (−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡
of Proposition 10.2.1, we define 𝐵𝐴 ∈ 𝒦 to be any ∞-category whose underlying quasi-category is

equivalent to 𝐵𝐴0
0 . By composing equivalences

Fun(𝑋, 𝐵𝐴) Fun(𝑋0, 𝐵
𝐴0
0 )

Fun(𝑋 × 𝐴, 𝐵) Fun(𝑋0 × 𝐴0, 𝐵0)

∼

∼ ≅ ≃

∼

we see that Fun(𝑋, 𝐵𝐴) ≃ Fun(𝑋 ×𝐴, 𝐵) for any 𝑋. In the terminology of Definition 10.4.13, the map
Fun(𝑋, 𝐵𝐴) ∼ Fun(𝑋 × 𝐴, 𝐵) is a quasi-pseudonatural equivalence. Note that if𝒦 is cartesian closed,
this universal property demonstrates that the weak exponentials are equivalent to the strictly defined
ones.

For this reason, the statement of Proposition 10.3.5 does not require that the ambient∞-cosmos is
cartesian closed; the exponentials can be inferred to exist a posteriori.

10.3.5. Proposition. For any∞-categories 𝐴 and 𝐵 in an∞-cosmos of (∞, 1)-categories, the exponential
𝐵𝐴 is equivalent to the cotensor 𝐵𝐴0 of 𝐵 with the underlying quasi-category of 𝐴.

Proof. By Corollary 10.3.2, cosmological biequivalences reflect equivalences of∞-categories. Thus,
to prove 𝐵𝐴 ≃ 𝐵𝐴0 , it suffices by Proposition 10.2.1 and Corollary 10.3.2 to prove that 𝐵𝐴 and 𝐵𝐴0 have
equivalent underlying quasi-categories. The defining universal properties of the exponential and coten-
sor provide equivalences, which compose with the local equivalence of the underlying quasi-category
functor to provide the desired equivalence:

Fun(1, 𝐵𝐴) ≃ Fun(𝐴, 𝐵) Fun(𝐴0, 𝐵0) ≅ Fun(1, 𝐵𝐴0)∼ �

Wenow prove that biequivalences reflect and create, as well as preserve, the∞-categorical structures
considered in Proposition 10.1.4.
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10.3.6. Proposition. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ
(i) Preserves, reflects, and creates equivalences.
(ii) Preserves and reflects the invertibility of natural transformations and creates natural isomorphisms

between given functors.
(iii) Preserves, reflects, and creates adjunctions between∞-categories, including right adjoint right inverse

adjunctions and left adjoint right inverse adjunctions.
(iv) Preserves, reflects, and creates fibered adjunctions and equivalences.
(v) Preserves and reflects discreteness.
(vi) Preserves and reflects comma∞-categories: a cell defines a comma cone in𝒦 if and only if its image is

a comma cone inℒ.
(vii) Preserves, reflects, and creates absolute right and left lifting diagrams over a given cospan.
(viii) Preserves and reflects limits or colimits of diagrams indexed by a simplicial set and creates the property

of an∞-category admitting a limit or colimit of a given diagram.
(ix) Preserves and reflects the stability of an∞-category and the exactness of functors between such.
(x) Preserves and reflects cartesian and cocartesian fibrations and cartesian functors between them.
(xi) Preserves and reflects discrete cartesian fibrations and discrete cocartesian fibrations.
(xii) Preserves and reflects two-sided fibrations and cartesian functors between them.
(xiii) Preserves and reflects modules and represented modules and induces a bijection on equivalence classes of

modules between a fixed pair of∞-categories.

Proof. The preservation results are proven in Proposition 10.1.4 under the weaker hypothesis that
𝐹 is a mere cosmological functor. So it remains only to address reflection of properties and creation of
∞-categorical structures.

Properties (i), (ii), and (iii) hold for any biequivalence between 2-categories, such as 𝐹∶ 𝔥𝒦 ∼ 𝔥ℒ.
The aspects that have not already been discussed are left to Exercise 10.3.ii as a useful exercise to
familiarize oneself with the 2-categorical notion of biequivalence. By Proposition 10.2.2, (iv) is a special
case of (i) and (iii).

Property (v) follows from (ii): if 𝐹𝐸 is discrete, then the image under 𝐹 of any 2-cell in 𝒦 with
codomain 𝐸 is invertible, which implies that that 2-cell is invertible in 𝐸.

Since both𝒦 andℒ admit comma∞-categories and Proposition 3.4.11 shows that comma spans
are characterized by a fibered equivalence class of two-sided isofibrations, (vi) follows from (iv).

The reflection properties of (vii) and (viii) follow fromTheorem 3.5.3 and the creation properties fol-
low from Theorem 3.5.12 and (vi). Then (ix) can be argued from any of the equivalent characterizations
in Theorem 4.4.12 using (ii) and (viii).

Proposition (x) follows from (iii) and (ii) via Theorem 5.2.8, and (xi) follows by applying (i) to the
morphism considered in Proposition 5.5.8. Property (xii) follows similarly from Theorem 7.1.4(iii) and
(iii) and (ii). Preservation and reflection of modules now follows from this and (v) and the bijection
between equivalence classes follows from (iv).² The representability statement of (xiii) combines (iv)
with (vi), as elaborated upon in Proposition 11.1.5. �

10.3.7. Corollary. If 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence then the following induced cosmological
functors are all biequivalences:

(i) 𝐹∶ 𝒟𝑖𝑠𝑐(𝒦) ∼ 𝒟𝑖𝑠𝑐(ℒ)
(ii) 𝐹∶ 𝒦⊤,𝐽 ∼ ℒ⊤,𝐽 and 𝐹∶ 𝒦⊥,𝐽 ∼ ℒ⊥,𝐽

²A more precise statement appears as Proposition 11.1.4.
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(iii) 𝐹∶ ℛ 𝑎𝑟𝑖(𝒦)/𝐵 ∼ ℛ 𝑎𝑟𝑖(ℒ)/𝐹𝐵 and 𝐹∶ ℒ𝑎𝑟𝑖(𝒦)/𝐵 ∼ ℒ𝑎𝑟𝑖(ℒ)/𝐹𝐵
(iv) 𝐹∶ ℛ 𝑎𝑟𝑖(𝒦) ∼ ℛ 𝑎𝑟𝑖(ℒ) and 𝐹∶ ℒ𝑎𝑟𝑖(𝒦) ∼ ℒ𝑎𝑟𝑖(ℒ)
(v) 𝐹∶ 𝒞𝑎𝑟𝑡(𝒦)/𝐵 ∼ 𝒞𝑎𝑟𝑡(ℒ)/𝐹𝐵 and 𝐹∶ 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵 ∼ 𝑐𝑜𝒞𝑎𝑟𝑡(ℒ)/𝐹𝐵
(vi) 𝐹∶ 𝒞𝑎𝑟𝑡(𝒦) ∼ 𝒞𝑎𝑟𝑡(ℒ) and 𝐹∶ 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦) ∼ 𝑐𝑜𝒞𝑎𝑟𝑡(ℒ)
(vii) 𝐹∶ 𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦) ∼ 𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(ℒ) and 𝐹∶ 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦) ∼ 𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(ℒ)
(viii) 𝐹∶ 𝒮𝑡𝑎𝑏(𝒦) ∼ 𝒮𝑡𝑎𝑏(ℒ)
(ix) 𝐹∶ 𝐴\ℱ𝑖𝑏(𝒦)/𝐵 ∼ 𝐹𝐴\ℱ𝑖𝑏(ℒ)/𝐹𝐵
(x) 𝐹∶ 𝐴\ℳ𝑜𝑑(𝒦)/𝐵 ∼ 𝐹𝐴\ℳ𝑜𝑑(ℒ)/𝐹𝐵
Proof. In each case we start with a cosmological biequivalence – for instance 𝒦/𝐵 ∼ ℒ/𝐹𝐵 or

𝒦 ∼ ℒ – and must show that the restricted cosmological functor of Lemma 10.1.1 is again a
biequivalence between the cosmologically embedded∞-cosmoi. Each of the arguments is similar; for
concreteness’ sake, we prove (viii). Proposition 10.3.6 proves that the property that characterizes the
objects and 0-arrows of the sub∞-cosmos is preserved and reflected by any biequivalence. Thus, the
diagram of cosmological functors is a pullback:

𝒮𝑡𝑎𝑏(𝒦) 𝒮𝑡𝑎𝑏(ℒ)

𝒦 ℒ

𝐹

∼
𝐹

so Lemma 10.2.5 allows us to conclude that the induced functor 𝐹∶ 𝒮𝑡𝑎𝑏(𝒦) ∼ 𝒮𝑡𝑎𝑏(ℒ) is a cosmo-
logical biequivalence. �

Warning 10.1.5 mentioned some ∞-categorical properties that are not necessarily preserved by
cosmological functors. Importantly, these notions are preserved, reflected, and created by cosmological
biequivalences. Lemma 11.1.7 proves this in the case of composites and exact squares, two notions
which are situated in the virtual equipment of modules, but we address the case of pointwise right and
left extensions now.

10.3.8. Proposition. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ preserves, reflects, and creates pointwise left
and right extensions:

(i) A diagram in𝒦 of the form

𝐴 𝐶 𝐴 𝐶

𝐵 𝐵
𝑘

𝑓

or 𝑘

𝑓

𝑟
⇑𝜈

ℓ
⇓𝜆

defines a pointwise right or left extension in𝒦, respectively, if and only if its image under 𝐹 defines,
respectively, a pointwise right or left extension inℒ.

(ii) If 𝑓 ∶ 𝐴 → 𝐶 and 𝑘 ∶ 𝐴 → 𝐵 are functors in𝒦 so that 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐶 admits a pointwise right or
left extension along 𝐹𝑘∶ 𝐹𝐴 → 𝐹𝐵 inℒ, then 𝑓 admits a pointwise right or left extension, respectively,
along 𝑘 in𝒦, and its image under 𝐹 is isomorphic to the corresponding data inℒ.

To explain the idea of the proof, we first show that cosmological biequivalences preserve and reflect
right extensions; they create them as well, but this can be proven just as easily in the pointwise case,
which is discussed subsequently.
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Suppose first that 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a right extension in 𝒦. To prove that its image defines a right
extension inℒ, we must show that for all 𝑑∶ 𝐹𝐵 → 𝐹𝐶 the map

hFun(𝐹𝐵, 𝐹𝐶)(𝑑, 𝐹𝑟) hFun(𝐹𝐴, 𝐹𝐶)(𝑑 ⋅ 𝐹𝑘, 𝐹𝑓 )

𝑑 𝛾 𝐹𝑟 𝑑 ⋅ 𝐹𝑘 𝛾𝐹𝑘 𝐹𝑟 ⋅ 𝐹𝑘 𝐹𝜈 𝐹𝑓

𝐹𝜈∘−

defines a bijection between sets of 2-cells. By Corollary 10.3.2(ii), there exists a functor 𝑐 ∶ 𝐵 → 𝐶
in 𝒦 together with a natural isomorphism 𝛿∶ 𝑑 ≅ 𝐹𝑐. By Corollary 10.3.2(iii), application of 𝐹 and
composition with 𝛿 defines a bijection

hFun(𝐵, 𝐶)(𝑐, 𝑟) hFun(𝐹𝐵, 𝐹𝐶)(𝐹𝑐, 𝐹𝑟) hFun(𝐹𝐵, 𝐹𝐶)(𝑑, 𝐹𝑟)

𝑐 𝛼 𝑟 𝐹𝑐 𝐹𝛼 𝐹𝑟 𝑑 𝛿 𝐹𝑐 𝐹𝛼 𝐹𝑟

𝐹 −∘𝛿

There is a similar bijection defined from the invertible 2-cell 𝛿𝐹𝑘∶ 𝑑 ⋅ 𝐹𝑘 ≅ 𝐹𝑐 ⋅ 𝐹𝑘. Since 𝜈∶ 𝑟𝑘 ⇒ 𝑓
is a right extension, composition with 𝜈 induces its own family of bijections. From the commutative
square of functions

hFun(𝐵, 𝐶)(𝑐, 𝑟) hFun(𝐴, 𝐶)(𝑐 ⋅ 𝑘, 𝑓 )

hFun(𝐹𝐵, 𝐹𝐶)(𝑑, 𝐹𝑟) hFun(𝐹𝐴, 𝐹𝐶)(𝑑 ⋅ 𝐹𝑘, 𝐹𝑓 )

≃𝜈∘−

≃𝐹−∘𝛿 ≃ 𝐹−∘𝛿𝐹𝑘
𝐹𝜈∘−

three of which are known to be bijections, we see that 𝐹𝜈∶ 𝐹𝑟 ⋅ 𝐹𝑘 ⇒ 𝐹𝑓 is a right extension inℒ, as
claimed.

Now suppose 𝐹𝜈∶ 𝐹𝑟 ⋅𝐹𝑘 ⇒ 𝐹𝑓 is a right extension inℒ. To see that 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a right extension
in𝒦, note that for any functor 𝑐 ∶ 𝐵 → 𝐶, there is a commutative square of functions

hFun(𝐵, 𝐶)(𝑐, 𝑟) hFun(𝐴, 𝐶)(𝑐 ⋅ 𝑘, 𝑓 )

hFun(𝐹𝐵, 𝐹𝐶)(𝐹𝑐, 𝐹𝑟) hFun(𝐹𝐴, 𝐹𝐶)(𝐹𝑐 ⋅ 𝐹𝑘, 𝐹𝑓 )

𝜈∘−

≃𝐹 ≃ 𝐹

≃𝐹𝜈∘−

three of which are known to be bijections. This proves that 𝜈∶ 𝑟𝑘 ⇒ 𝑓 has the universal property of a
right extension.

The argument for pointwise right extensions is essentially the same, where we additionally make
use of the fact that comma∞-categories are preserved by cosmological functors and invariant under
equivalence, in the sense of Exercise 3.4.iv.

Proof. Throughout we use the 2-categorical definition of a pointwise right extension appearing
in Theorem 9.3.3(ii). The idea is to take advantage of the local bijections provided by Corollary 10.3.2.

Assume that 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a pointwise right extension in𝒦. Wemust show that for every ℎ∶ 𝐿 → 𝐹𝐵
inℒ the diagram

Hom𝐹𝐵(ℎ, 𝐹𝑘) 𝐹𝐴 𝐹𝐶

𝐿 𝐹𝐵

𝑝0

𝑝1

⇑𝜙 𝐹𝑘

𝐹𝑓

ℎ

𝐹𝑟
⇑𝐹𝜈
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is a right extension diagram inℒ, meaning that for all 𝑑∶ 𝐿 ⇒ 𝐹𝐶 the map

hFun(𝐿, 𝐹𝐶)(𝑑, 𝐹𝑟 ⋅ ℎ) hFun(Hom𝐹𝐵(ℎ, 𝐹𝑘))(𝑑𝑝0, 𝐹𝑓 ⋅ 𝑝1)

𝑑 𝜁 𝐹𝑟 ⋅ ℎ 𝑑𝑝0
𝜁𝑝0 𝐹𝑟 ⋅ ℎ𝑝0

𝐹𝑟𝜙 𝐹𝑟 ⋅ 𝐹𝑘 ⋅ 𝑝1
𝐹𝜈𝑝1 𝐹𝑓 ⋅ 𝑝1

𝐹𝜈𝑝1∘𝐹𝑟𝜙∘−

defines a bijection between sets of 2-cells. By Corollary 10.3.2(i) there exists an∞-category 𝐾 ∈ 𝒦 and
an equivalence 𝑒 ∶ 𝐿 ∼ 𝐹𝐾, and by Corollary 10.3.2(ii) there exist functors 𝑏 ∶ 𝐾 → 𝐵 and 𝑐 ∶ 𝐾 → 𝐶
and natural isomorphisms 𝛽∶ 𝐹𝑏 ⋅ 𝑒 ≅ ℎ and 𝛿∶ 𝑑 ≅ 𝐹𝑐 ⋅ 𝑒. By Corollary 10.3.2(iii), application of 𝐹
and composition with 𝑒, 𝛽, and 𝛿 defines a bijection

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) Fun(𝐿, 𝐹𝐶)(𝑑, 𝐹𝑟 ⋅ ℎ)

𝑐 𝛾 𝑟𝑏 𝑑 𝛿 𝐹𝑐 ⋅ 𝑒 𝐹𝛾𝑒 𝐹𝑟 ⋅ 𝐹𝑏 ⋅ 𝑒 𝐹𝑟𝛽 𝐹𝑟 ⋅ ℎ

≃

Since 𝜈∶ 𝑟𝑘 ⇒ 𝑓 is a pointwise right extension in𝒦, the diagram

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

𝐾 𝐵

𝑝0

𝑝1

⇑𝜙 𝑘

𝑓

𝑏

𝑟
⇑𝜈 (10.3.9)

is a (pointwise) right extension as well, defining a bijection

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) hFun(Hom𝐵(𝑏, 𝑘), 𝐶)(𝑐𝑝0, 𝑓 𝑝1)

𝑐 𝛾 𝑟𝑏 𝑐𝑝0
𝛾𝑝0 𝑟𝑏𝑝0

𝑟𝜙 𝑟𝑘𝑝1
𝜈𝑝1 𝑓 𝑝1

≃

By Exercise 3.4.iv, there is an equivalence 𝑦∶ Hom𝐹𝐵(ℎ, 𝐹𝑘) ∼ Hom𝐹𝐵(𝐹𝑏, 𝐹𝑘) ≅ 𝐹Hom𝐵(𝑏, 𝑘) over
𝑒 × id ∶ 𝐿 × 𝐹𝐴 ∼ 𝐹𝐾 × 𝐹𝐴. By Corollary 10.3.2(iii), application of 𝐹, composition with 𝑦, 𝛽, and 𝛿
defines the right-hand bijection in the commutative square of functions

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) hFun(Hom𝐵(𝑏, 𝑘), 𝐶)(𝑐𝑝0, 𝑓 𝑝1)

hFun(𝐿, 𝐹𝐶)(𝑑, 𝐹𝑟 ⋅ ℎ) hFun(Hom𝐹𝐵(ℎ, 𝐹𝑘), 𝐹𝐶)(𝑑𝑝0, 𝐹𝑓 ⋅ 𝑝1)

≃

≃ ≃

and thus our pasted diagram inℒ is a right extension diagram, as desired.
To see that pointwise right extensions are reflected we must show that (10.3.9) is a right extension

diagram in𝒦 under the hypothesis that 𝐹𝜈∶ 𝐹𝑟 ⋅ 𝐹𝑘 ⇒ 𝐹𝑓 is a pointwise right extension diagram in
ℒ. For any functor 𝑐 ∶ 𝐾 → 𝐶, we have a commutative square of functions:

hFun(𝐾, 𝐶)(𝑐, 𝑟𝑏) hFun(Hom𝐵(𝑏, 𝑘), 𝐶)(𝑐𝑝0, 𝑓 𝑝1)

hFun(𝐹𝐾, 𝐹𝐶)(𝐹𝑐, 𝐹𝑟 ⋅ 𝐹𝑏) hFun(Hom𝐹𝐵(𝐹𝑏, 𝐹𝑘), 𝐹𝐶)(𝐹𝑐 ⋅ 𝑝0, 𝐹𝑓 ⋅ 𝑝1)

≃𝐹 ≃ 𝐹

≃

Since comma squares are preserved by cosmological functors, the bottom map is a bijection, as our the
vertical functions, defined by application of 𝐹. Thus, 𝜈∶ 𝑟 ⋅ 𝑘 ⇒ 𝑓 satisfies the universal property of a
pointwise right extension in𝒦.
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Finally, to see that pointwise right extension diagrams are created by cosmological biequivalences
suppose we are given a pointwise right extension diagram

𝐹𝐴 𝐹𝐶

𝐹𝐵

𝐹𝑓

𝐹𝑘 𝑠
⇑𝜎

inℒ. By Corollary 10.3.2, there exists a functor 𝑟 ∶ 𝐵 → 𝐶 together with an isomorphism 𝛼∶ 𝑠 ≅ 𝐹𝑟
and a natural transformation 𝜈∶ 𝑟𝑘 ⇒ 𝑓 mapping to 𝜎 under the bijection

hFun(𝐴, 𝐶)(𝑟𝑘, 𝑓 ) hFun(𝐹𝐴, 𝐹𝐶)(𝐹𝑟 ⋅ 𝐹𝑘, 𝐹𝑓 ) hFun(𝐹𝐴, 𝐹𝐶)(𝑠 ⋅ 𝐹𝑘, 𝐹𝑓 )

𝑟𝑘 𝜈 𝑓 𝑠 ⋅ 𝐹𝑘 𝜎 𝐹𝑓

𝐹 −∘𝛼𝐹𝑘

Since 𝐹𝜈 is isomorphic to a pointwise right extension diagram inℒ it is a pointwise right extension
diagram inℒ, and since pointwise right extension diagrams are reflected by cosmological biequivalences,
𝜈 exhibits 𝑟 as a pointwise right extension of 𝑓 along 𝑘 as claimed. �

Immediately from Definition 9.4.7 and Lemma 9.5.6:

10.3.10. Corollary. Cosmological biequivalences preserve, reflect, and create (weighted) limits and colimits
of∞-category indexed diagrams. �

Exercises.

10.3.i. Exercise. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence. Show, that 𝐹 induces an equivalence
of homotopy categories h𝐴 ∼ h𝐹𝐴 for any∞-category 𝐴 ∈ 𝒦 (see Definition 1.4.11).

10.3.ii. Exercise. Consider a 2-functor 𝐹∶ 𝒞 → 𝒟 that defines a biequivalence as in Proposition 10.3.1.
Prove that:

(i) A 2-cell 𝐴 𝐵
𝑓

𝑔
⇓𝛼 in 𝒞 is invertible if and only if 𝐹𝛼 is invertible in𝒟.

(ii) A 1-cell 𝑢∶ 𝐴 → 𝐵 admits a left adjoint in 𝒞 if and only if 𝐹𝑢∶ 𝐹𝐴 → 𝐹𝐵 admits a left adjoint
in𝒟, in which case 𝐹 preserves the adjunction.

10.3.iii. Exercise. Prove that cosmological biequivalences between cartesian closed∞-cosmoi preserve
exponential objects up to equivalence.

10.4. Inverse Cosmological Biequivalences

Two∞-cosmoi are biequivalent just when they are connected by a finite zigzag of cosmological
biequivalences. In this section, we establish a few useful properties of the “composite” of such a
zigzag, the analysis of which immediately reduces to the base case: describing the inverse 𝐺∶ ℒ ∼

𝒦 to a cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ. The definitions introduced here describe the ∞-
categorical structures that transfer to biequivalent∞-cosmoi, such as the weak exponentials discussed
in Observation 10.3.4. The reader might consider skipping this section for now and referring back to it
with the applications of Chapter 12 in mind.

To explain what to expect at the level of (∞, 2)-categories, consider the analogous 2-categorical case.
By Proposition 10.3.1, a cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ induces a biequivalence 𝐹∶ 𝔥𝒦 ∼ 𝔥ℒ
of homotopy 2-categories, this being a 2-functor that is:
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• surjective on objects up to equivalence and
• defines a local equivalence of categories hFun(𝐴, 𝐵) ∼ hFun(𝐹𝐴, 𝐹𝐵) for all 𝐴,𝐵 ∈ 𝔥𝒦.

From these properties we may attempt to define an inverse biequivalence 𝐺 as follows:

• For each 𝐶 ∈ 𝔥ℒ, we choose an 𝐴 ∈ 𝔥𝒦 together with a specified equivalence 𝜖𝐶 ∶ 𝐹𝐴 ≃ 𝐶 and
define 𝐺𝐶 ≔ 𝐴.

• For each pair 𝐶,𝐷 ∈ 𝔥ℒ, we define the action of 𝐺 on hom-categories to be the composite

𝐺𝐶,𝐷 ≔ hFun(𝐶,𝐷) hFun(𝐹𝐺𝐶, 𝐹𝐺𝐷) hFun(𝐺𝐶,𝐺𝐷)∼(−∘𝜖𝐶,𝜖−1𝐷 ∘−) ∼𝐹𝐺𝐶,𝐺𝐷−1

of the equivalence defined by pre- and postcomposing with the maps of the specified equivalences
𝜖𝐶 ∶ 𝐹𝐺𝐶 ≃ 𝐶 and 𝜖𝐷 ∶ 𝐹𝐺𝐷 ≃ 𝐷 together with an inverse of the equivalence defined by the
action of 𝐹.

These choices are suitably unique: the action of 𝐺 on objects is well-defined up to equivalence and the
action of 𝐺 on hom-categories is well-defined up to natural isomorphism. However, these mappings
cannot in general be chosen to define a 2-functor (see Definition B.2.1 and [71, 3.1]): for instance, while
the triangle on the left commutes on the nose – expressing the unit axiom for the 2-functor 𝐹 – the
composite triangle on the right only commutes up to isomorphism:

𝟙 𝟙

hFun(𝐴,𝐴) hFun(𝐹𝐴, 𝐹𝐴) hFun(𝐶, 𝐶) hFun(𝐹𝐺𝐶, 𝐹𝐺𝐶) hFun(𝐺𝐶,𝐺𝐶)

id𝐴 id𝐹𝐴

≅

id𝐶
id𝐹𝐺𝐶

id𝐺𝐶

≅

𝐹𝐴,𝐴 (−∘𝜖𝐶,𝜖−1𝐶 ∘−) 𝐹−1𝐺𝐶,𝐺𝐶

Instead, the mapping 𝐺∶ 𝔥ℒ 𝔥𝒦 defines a pseudofunctor between the homotopy 2-categories, a
notion we now recall.

10.4.1. Definition. A pseudofunctor 𝐺∶ 𝒞 𝒟 between 2-categories 𝒞 and𝒟 is given by:

• a mapping on objects 𝒞 ∋ 𝑥 ↦ 𝐺𝑥 ∈ 𝒟;
• a mapping on hom-categories 𝐺𝑥,𝑦 ∶ 𝒞(𝑥, 𝑦) → 𝒟(𝐺𝑥,𝐺𝑦) for each 𝑥, 𝑦 ∈ 𝒞;
• an invertible 2-cell for each 𝑥 ∈ 𝒞

𝟙

𝒞(𝑥, 𝑥) 𝒟(𝐺𝑥,𝐺𝑥)

id𝐺𝑥id𝑥

𝐺𝑥,𝑥

𝜄𝑥⇓≅

defining an isomorphism 𝜄𝑥 ∶ id𝐺𝑥 ≅ 𝐺 id𝑋 in𝒟(𝐺𝑥,𝐺𝑥); and
• an natural isomorphism for each triple of objects 𝑥, 𝑦, 𝑧 ∈ 𝒞

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) 𝒟(𝐺𝑦,𝐺𝑧) × 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑥, 𝑧) 𝒟(𝐺𝑥,𝐺𝑧)

∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑧⇓≅ ∘

𝐺
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satisfying three coherence conditions encoded by the pasting equalities:

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒟(𝐺𝑦,𝐺𝑧) × 𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐺𝑤,𝐺𝑥)

𝒞(𝑥, 𝑧) × 𝒞(𝑤, 𝑥) 𝒟(𝐺𝑥,𝐺𝑧) × 𝒟(𝐺𝑤,𝐺𝑥)

𝒞(𝑤, 𝑧) 𝒟(𝐺𝑤,𝐺𝑧)

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒟(𝐺𝑦,𝐺𝑧) × 𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐺𝑤,𝐺𝑥)

𝒞(𝑦, 𝑧) × 𝒞(𝑤, 𝑦) 𝒟(𝐺𝑦,𝐺𝑧) × 𝒟(𝐺𝑤,𝐺𝑦)

𝒞(𝑤, 𝑧) 𝒟(𝐺𝑤,𝐺𝑧)

∘

𝐺×𝐺×𝐺

𝛼𝑥,𝑦,𝑧×id⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑥,𝑧⇓≅ ∘

𝐺

=

∘

𝐺×𝐺×𝐺

id×𝛼𝑤,𝑥,𝑦⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑦,𝑧⇓≅ ∘

𝐺

𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦) 𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑥, 𝑦) × 𝒞(𝑥, 𝑥) 𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐺𝑥,𝐺𝑥) 𝒞(𝑦, 𝑦) × 𝒞(𝑥, 𝑦) 𝒟(𝐺𝑦,𝐺𝑦) × 𝒟(𝐺𝑥,𝐺𝑦)

𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦) 𝒞(𝑥, 𝑦) 𝒟(𝐺𝑥,𝐺𝑦)

𝐺

id× id𝑥 id×𝜄𝑥⇓≅ id× id𝐺𝑥

𝐺

id𝑦 × id 𝜄𝑦×id⇓≅ id𝐺𝑦 × id

∘

𝐺×𝐺

𝛼𝑥,𝑥,𝑦⇓≅ ∘

=
∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑦⇓≅ ∘

𝐺 𝐺
where both of these latter composites equal the unit 2-cell id𝐺𝑥,𝑦 .

A 2-functor is a pseudofunctor in which the unit and composition cells 𝜄 and 𝛼 are identities. The
notion of a 2-natural transformation (see Definition B.2.2) between 2-functors similarly generalizes to
a pseudonatural transformation between pseudofunctors.

10.4.2. Definition. For any 2-categories 𝒞 and 𝒟 and parallel pseudofunctors 𝐹,𝐺∶ 𝒞 𝒟, a
pseudonatural transformation 𝜙∶ 𝐹 𝐺 is given by:

• a 1-cell 𝜙𝑥 ∶ 𝐹𝑥 → 𝐺𝑥 ∈ 𝒟 for every object 𝑥 ∈ 𝒞 and
• an invertible 2-cell in𝒟 for each 1-cell 𝑓 ∶ 𝑥 → 𝑦 ∈ 𝒞

𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦

𝐹𝑓

𝜙𝑥 𝜙𝑓⇓≅ 𝜙𝑦

𝐺𝑓

so that this data
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• is natural, in the sense that for each 2-cell 𝑥 𝑦
𝑓

𝑔
⇓𝛾 in 𝒞 the pasted composites are equal

𝐹𝑥 𝐹𝑦 𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦 𝐺𝑥 𝐺𝑦

𝐹𝑓

𝐹𝑔

⇓𝐹𝛾

𝜙𝑥
𝜙𝑔⇓≅

𝜙𝑦 =

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑦

𝐺𝑔

𝐺𝑓

𝐺𝑔

⇓𝐺𝛾

and

• respects the composition and unit constraints specified by the pseudofunctors

𝐹𝑦 𝐹𝑦

𝐹𝑥 𝐹𝑧 𝐹𝑥 𝐹𝑧

𝐺𝑦

𝐺𝑥 𝐺𝑧 𝐺𝑥 𝐺𝑧

𝐹𝑘 𝐹𝑘

𝜙𝑦

𝐹𝑓

𝐹(𝑘𝑓 )𝜙𝑥

𝛼𝑥,𝑦,𝑧𝑓 ,𝑘 ⇓≅

𝜙𝑧

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑧

=
𝐺𝑘

𝜙𝑘⇓≅

𝐺(𝑘𝑓 )

𝜙𝑘𝑓⇓≅
𝐺𝑓

𝐺(𝑘𝑓 )

𝛼𝑥,𝑦,𝑧𝑓 ,𝑘 ⇓≅

and
𝐹𝑥 𝐹𝑥 𝐹𝑥 𝐹𝑥

𝐺𝑥 𝐺𝑥 𝐺𝑥 𝐺𝑥

id𝐹𝑥

𝐹 id𝑥

𝜄𝑥⇓≅

𝜙𝑥
𝜙id𝑥⇓≅

𝜙𝑥 =

id𝐹𝑥

𝜙𝑥 𝜙𝑥

𝐺 id𝑥

id𝐺𝑥

𝐺 id𝑥

𝜄𝑦⇓≅

One context where pseudofunctors emerge are as inverses to 2-functors that define biequivalences.
The pseudofunctors that arise in this manner are themselves biequivalences: surjective on objects up
to equivalence and defining local equivalences on hom-categories. These functors are inverses in the
sense that there exist pseudonatural equivalences between the composites and the identities, these
being pseudonatural transformations that are componentwise equivalences (see Exercise 10.4.ii for an
alternate characterization). Collectively, this data defines an equivalence of 2-categories in a sense
appropriate to bicategory theory:

10.4.3. Proposition. If 𝐹∶ 𝒞 → 𝒟 is a 2-functor between 2-categories 𝒞 and𝒟 and a biequivalence then
there exists a pseudofunctor 𝐺∶ 𝒟 𝒞 that is also a biequivalence and is a pseudoinverse to 𝐹 in the sense
that there exist pseudonatural equivalences id𝒞 𝐺𝐹 and 𝐹𝐺 id𝒟.

Proof. Exercise 10.4.v. �

Proposition 10.4.3 describes a classical result in bicategory theory that Johnson and Yau refer to as
“the bicategorical Whitehead theorem” [59, 7.4.1], so we feel content to leave its proof to the exercises
(see also Proposition 10.4.16).

Recall from Definition 1.2.1 that an∞-cosmos is, among other things, a category enriched in the
cartesian closed category of quasi-categories, while a cosmological functor is, among other things, an
enriched functor between quasi-categorically enriched categories (see §A.2). To define a quasi-categori-
cally enriched pseudofunctor, we need to extend the 1-category of quasi-categories and functors to a
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2-category, so that we may use its 2-cells to encode the unit and composition coherences. Fortunately,
we have such a 2-category at our disposal: the homotopy 2-category of quasi-categories 𝔥𝒬𝒞𝑎𝑡. By
Proposition 1.4.5, this 2-category of quasi-categories, functors between them, and natural transforma-
tions between these is cartesian closed, so we have well-behaved cartesian product and transposition
operations on these 2-cells.

The extra dimension in the 2-category 𝔥𝒬𝒞𝑎𝑡 enables us to define quasi-categorically enriched
pseudofunctors as follows:

10.4.4. Definition. For quasi-categorically enriched categories 𝒦 and ℒ, a quasi-categorically en-
riched pseudofunctor – a quasi-pseudofunctor for short – 𝐺∶ 𝒦 ℒ is given by:

• a mapping on objects𝒦 ∋ 𝑥 ↦ 𝐺𝑥 ∈ ℒ;
• a functor of hom quasi-categories 𝐺𝑥,𝑦 ∶ 𝒦(𝑥, 𝑦) → ℒ(𝐺𝑥,𝐺𝑦) for each 𝑥, 𝑦 ∈ 𝒦;
• an invertible 2-cell in the homotopy 2-category of quasi-categories for each 𝑥 ∈ 𝒦

𝟙

𝒦(𝑥, 𝑥) ℒ(𝐺𝑥,𝐺𝑥)

id𝐺𝑥id𝑥

𝐺𝑥,𝑥

𝜄𝑥⇓≅

• an invertible 2-cell in the homotopy 2-category of quasi-categories for each triple of objects
𝑥, 𝑦, 𝑧 ∈ 𝒦

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

𝒦(𝑥, 𝑧) ℒ(𝐺𝑥,𝐺𝑧)

∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑧⇓≅ ∘

𝐺
satisfying three coherence conditions encoded by the pasting equalities:

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) × 𝒦(𝑤, 𝑥) ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦) × ℒ(𝐺𝑤,𝐺𝑥)

𝒦(𝑥, 𝑧) × 𝒦(𝑤, 𝑥) ℒ(𝐺𝑥,𝐺𝑧) × ℒ(𝐺𝑤,𝐺𝑥)

𝒦(𝑤, 𝑧) ℒ(𝐺𝑤,𝐺𝑧)

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) × 𝒦(𝑤, 𝑥) ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦) × ℒ(𝐺𝑤,𝐺𝑥)

𝒦(𝑦, 𝑧) × 𝒦(𝑤, 𝑦) ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑤,𝐺𝑦)

𝒦(𝑤, 𝑧) ℒ(𝐺𝑤,𝐺𝑧)

∘

𝐺×𝐺×𝐺

𝛼𝑥,𝑦,𝑧×id⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑥,𝑧⇓≅ ∘

𝐺

=

∘

𝐺×𝐺×𝐺

id×𝛼𝑤,𝑥,𝑦⇓≅ ∘

𝐺×𝐺

∘ 𝛼𝑤,𝑦,𝑧⇓≅ ∘

𝐺

(10.4.5)
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𝒦(𝑥, 𝑦) ℒ(𝐺𝑥,𝐺𝑦) 𝒦(𝑥, 𝑦) ℒ(𝐺𝑥,𝐺𝑦)

𝒦(𝑥, 𝑦) × 𝒦(𝑥, 𝑥) ℒ(𝐺𝑥,𝐺𝑦) × ℒ(𝐺𝑥,𝐺𝑥) 𝒦(𝑦, 𝑦) × 𝒦(𝑥, 𝑦) ℒ(𝐺𝑦,𝐺𝑦) × ℒ(𝐺𝑥,𝐺𝑦)

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥,𝐺𝑦) 𝒦(𝑥, 𝑦) ℒ(𝐺𝑥,𝐺𝑦)

𝐺

id× id𝑥 id×𝜄𝑥⇓≅ id× id𝐺𝑥

𝐺

id𝑦 × id 𝜄𝑦×id⇓≅ id𝐺𝑦 × id

∘

𝐺×𝐺

𝛼𝑥,𝑥,𝑦⇓≅ ∘

=
∘

𝐺×𝐺

𝛼𝑥,𝑦,𝑦⇓≅ ∘

𝐺 𝐺
where both of these latter composites equal the unit 2-cell id𝐺𝑥,𝑦 .

10.4.6. Remark. To emphasize the analogy between Definitions 10.4.1 and 10.4.4, we write 𝟙 for the
terminal quasi-category, which is also the nerve of the terminal category; elsewhere we write 1 for the
terminal∞-category in a generic∞-cosmos. For any pair of objects 𝑎, 𝑏 ∈ ℒ in a quasi-categorically
enriched category,

Fun(𝟙,ℒ(𝑎, 𝑏)) ≅ ℒ(𝑎, 𝑏),
and so hFun(𝟙,ℒ(𝑎, 𝑏)) ≅ hℒ(𝑎, 𝑏). Thus 2-cells in the homotopy 2-category of quasi-categories 𝔥𝒬𝒞𝑎𝑡
with domain 𝟙 and codomainℒ(𝑎, 𝑏) correspond to 2-cells in the homotopy 2-category ofℒ – defined
exactly as in Definition 1.4.1 – from 𝑎 to 𝑏.

In particular, the data of the invertible 2-cell 𝜄𝑥 is no more and no less than an invertible 2-cell

𝐺𝑥 𝐺𝑥
id𝐺𝑥

𝜄𝑥⇓≅

𝐺 id𝑥

in the homotopy 2-category ofℒ.

The notion of “quasi-pseudofunctor” introduced in Definition 10.4.4 should be regarded as a
2-categorical truncation of an (∞, 2)-categorical notion in the following sense:

10.4.7. Digression (quasi-pseudofunctors as (∞, 2)-functors). A quasi-categorically enriched functor
between quasi-categorically enriched categories can be understood as a “functor of (∞, 2)-categories.”
Indeed, the category of simplicially enriched categories has a model structure that presents the (∞, 1)-
category of (∞, 2)-categories, in which the fibrant objects are exactly the quasi-categorically enriched
categories [79, 0.0.4]. However, the fibrant objects in this category are not necessarily cofibrant. The
cofibrant objects are the simplicial computads first defined by Dwyer and Kan [37, 4.5]. So to model a
generic (∞, 2)-categorical functor from𝒦 to ℒ as a quasi-categorically enriched functor, one must
first replace𝒦 by a weakly equivalent simplicial computad.

This explains why the inverse to a cosmologically biequivalence is not necessarily a strict simplicial
functor but something weaker. The 2-cell coherences that enumerate the data of a quasi-categorically
enriched pseudofunctor can be understood as a truncation of the higher coherences of a functor
of (∞, 2)-categories, much like the homotopy 2-category of quasi-categories is a truncation of the
quasi-categorically enriched category of quasi-categories. Since a theme of this text is that much of
∞-category theory can be developed in the truncated homotopy 2-category rather than the full (∞, 2)-
category, we decline to enumerate the higher coherences of an inverse to a cosmological biequivalence
as part of Definition 10.4.4.

10.4.8. Definition. A quasi-pseudofunctor 𝐺∶ 𝒦 ℒ whose codomain ℒ is an ∞-cosmos is a
biequivalence when it is:

(i) surjective on objects up to equivalence: if for all 𝑎 ∈ ℒ there exists 𝑥 ∈ 𝒦 so that 𝐹𝑥 ≃ 𝑎; and
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(ii) a local equivalence of quasi-categories: if for every pair 𝑥, 𝑦 ∈ 𝒦, the map

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥,𝐺𝑦)∼𝐺𝑥,𝑦

is an equivalence of quasi-categories.

10.4.9. Remark. We find it convenient to assume thatℒ is an∞-cosmos in Definition 10.4.8 because
that provides us access to the various characterizations of the equivalences inℒ given by Theorem 1.4.7.
In what follows we ask that an equivalence 𝑎 ≃ 𝑏 inℒ
• defines an equivalence in the homotopy 2-category ofℒ and
• induces an equivalence of quasi-categories ℒ(𝑥, 𝑎) ∼ ℒ(𝑥, 𝑏) in the homotopy 2-category of

quasi-categories that is 2-natural in 𝑥.
The latter of these properties implies the former, so if we required a notion of quasi-pseudofunctorial
biequivalence between general quasi-categorically enriched categories, we could use this notion of
equivalence in Definition 10.4.8. But we make no use of the concept outside of the context provided by
∞-cosmoi and so prefer the simpler terminology. Note that we permit the domain 𝒦 to be merely
quasi-categorically enriched.

Similarly:

10.4.10. Definition. For quasi-categorically enriched categories𝒦 andℒ and quasi-pseudofunctors
𝐹,𝐺∶ 𝒦 ℒ, a quasi-categorically enriched pseudonatural transformation – a quasi-pseudonatural
transformation for short – 𝜙∶ 𝐹 𝐺 is given by:

• a 0-arrow 𝜙𝑥 ∶ 𝐹𝑥 → 𝐺𝑥 ∈ ℒ for every object 𝑥 ∈ 𝒦 and
• an invertible 2-cell in the homotopy 2-category of quasi-categories, for each pair of objects 𝑥, 𝑦 ∈ 𝒦

𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝑦)

ℒ(𝐺𝑥,𝐺𝑦) ℒ(𝐹𝑥, 𝐺𝑦)

𝐹𝑥,𝑦

𝐺𝑥,𝑦 𝜙𝑥,𝑦⇓≅ 𝜙𝑦∘−

−∘𝜙𝑥

so that this data respects the composition and unit constraints specified by the quasi-pseudofunctors,
as expressed by the following two pasting diagrams

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐹𝑥, 𝐹𝑦)

𝒦(𝑥, 𝑧) ℒ(𝐹𝑥, 𝐹𝑧)

ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦) =

ℒ(𝐺𝑥,𝐺𝑧) ℒ(𝐹𝑥, 𝐺𝑧)

∘
𝐺×𝐺

𝐹×𝐹

∘
𝛼𝑥,𝑦,𝑧⇓≅

𝐹

𝐺 𝜙𝑥,𝑧⇓≅ 𝜙𝑧∘−

∘

𝛼𝑥,𝑦,𝑧⇓≅

−∘𝜙𝑥
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𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐹𝑥, 𝐹𝑦)

ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝑦, 𝐺𝑧) × ℒ(𝐹𝑥, 𝐹𝑦)

ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐹𝑥, 𝐺𝑦) ℒ(𝐹𝑥, 𝐺𝑧)

𝐺×𝐹
𝐺×𝐺

𝐹×𝐹
(𝜙𝑧∘−)×id

𝜙𝑦,𝑧×id⇓≅

(−∘𝜙𝑦)×id

id×(𝜙𝑦∘−) = ∘

id×(−∘𝜙𝑥)

id×𝜙𝑥,𝑦⇓≅

∘

and

𝟙 𝟙

𝒦(𝑥, 𝑥) ℒ(𝐹𝑥, 𝐹𝑥) 𝒦(𝑥, 𝑥) ℒ(𝐺𝑥,𝐺𝑥)

ℒ(𝐺𝑥,𝐺𝑥) ℒ(𝐹𝑥, 𝐺𝑥) ℒ(𝐺𝑥,𝐺𝑥) ℒ(𝐹𝑥, 𝐺𝑥)

id𝐹𝑥id𝑥 id𝐺𝑥id𝑥

𝐹𝑥,𝑥
𝐺𝑥,𝑥 𝜙𝑥,𝑦⇓≅

𝜄𝑥⇓≅
=

𝜙𝑥∘−
𝐺𝑥,𝑥

𝐺𝑥,𝑥

𝜄𝑥⇓≅

−∘𝜙𝑥

−∘𝜙𝑥 −∘𝜙𝑥

10.4.11. Remark. There is an analogy between Definitions 10.4.2 and 10.4.10 that parallels the analogy
between Definitions 10.4.1 and 10.4.4 that is concealed by our presentation. The naturality require-
ment for the invertible 2-cell components of a pseudonatural transformation 𝜙∶ 𝐹 𝐺 between
pseudofunctors 𝐹,𝐺∶ 𝒞 𝒟 tells us that they assemble into a natural isomorphism between the
functors

𝒞(𝑥, 𝑦) 𝒟(𝐹𝑥, 𝐹𝑦)

𝒟(𝐺𝑥,𝐺𝑦) 𝒟(𝐹𝑥, 𝐺𝑦)

𝐹𝑥,𝑦

𝐺𝑥,𝑦 𝜙𝑥,𝑦⇓≅ 𝜙𝑦∘−

−∘𝜙𝑥

for every 𝑥, 𝑦 ∈ 𝒞. The coherence conditions that express the compatibility of these natural isomor-
phisms with the composition and unit constraints can then be expressed in the form appearing in
Definition 10.4.10, but since two natural isomorphisms are equal just when their components are equal,
we can reduce these coherence conditions to the two remaining pasting identities of Definition 10.4.2
expressed in terms of the components of 𝜙.

The data of a natural isomorphism between functors between quasi-categories is more intricate than
the data of a natural isomorphism between functors between categories, which is why the coherence
conditions in Definition 10.4.10 must be expressed in a more universal way. However, the coherence
conditions of Definition 10.4.2 can be extracted from these as follows.

Recall the 0-arrows in 𝒦(𝑥, 𝑦) correspond to functors 𝑓 ∶ 𝟙 → 𝒦(𝑥, 𝑦). By Remark 10.4.6, the
restriction 𝜙𝑥,𝑦𝑓 defines the component

𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦

𝐹𝑓

𝜙𝑥 𝜙𝑓⇓≅ 𝜙𝑦

𝐺𝑓
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of an invertible 2-cell in the homotopy 2-category of 𝔥ℒ. This 2-cell is automatically natural, in the

sense that for each 2-cell 𝑥 𝑦
𝑓

𝑔
⇓𝛾 in the homotopy 2-category of𝒦 the pasted composites

𝐹𝑥 𝐹𝑦 𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦 𝐺𝑥 𝐺𝑦

𝐹𝑓

𝐹𝑔

⇓𝐹𝛾

𝜙𝑥
𝜙𝑔⇓≅

𝜙𝑦 =

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑦

𝐺𝑔

𝐺𝑓

𝐺𝑔

⇓𝐺𝛾

are equal in the homotopy 2-category ofℒ. This follows by naturality of whiskering (see Lemma B.1.3),
since both pasted composites are represented by the horizontal composite

𝟙 𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐺𝑦)
𝑓

𝑔
⇓𝛾

(𝜙𝑦∘−)∘𝐹𝑥,𝑦

(−∘𝜙𝑥)∘𝐺𝑥,𝑦

𝜙𝑥,𝑦⇓≅

in the homotopy 2-category of quasi-categories.
Similarly, the composition and unit diagrams of Definition 10.4.10 imply that the corresponding

diagrams displayed in Definition 10.4.2 commute in the homotopy 2-category ofℒ (see Exercise 10.4.iii).

For any quasi-categorically enriched category𝒦, the hom bifunctor𝒦(−, −) ∶ 𝒦op ×𝒦 → 𝒬𝒞𝑎𝑡
is a quasi-categorically enriched functor.

10.4.12. Lemma. The action on homs of a quasi-pseudofunctor 𝐹∶ 𝒦 ℒ between quasi-categorically
enriched categories defines a quasi-pseudonatural transformation

𝐹−,− ∶ 𝒦(−, −) ℒ(𝐹−, 𝐹−)
between quasi-pseudonatural functors𝒦op ×𝒦 𝒬𝒞𝑎𝑡.

Proof. The 2-cell component of the quasi-pseudonatural transformation associated to a pair of
objects (𝑥, 𝑦) and (𝑤, 𝑧) in𝒦op ×𝒦 is given by

𝒦(𝑦, 𝑧) × 𝒦(𝑤, 𝑥) 𝒦(𝑤, 𝑧)𝒦(𝑥,𝑦)

ℒ(𝐹𝑤, 𝐹𝑧)ℒ(𝐹𝑥,𝐹𝑦) ℒ(𝐹𝑤, 𝐹𝑧)𝒦(𝑥,𝑦)

∘

𝐹 𝛼𝑤,𝑥,𝑦,𝑧⇓≅ 𝐹𝑤,𝑧∘−

−∘𝐹𝑥,𝑦

where 𝛼𝑤,𝑥,𝑦,𝑧 is a transpose of the common 2-cell defined by (10.4.5). We leave the verification of the
composition and unit axioms to Exercise 10.4.iv. �

10.4.13. Definition. A quasi-pseudonatural transformation𝜙∶ 𝐹 𝐺 between quasi-pseudofunctors
𝐹,𝐺∶ 𝒦 ℒ whose codomain is an ∞-cosmos is a quasi-pseudonatural equivalence if each of its
components 𝜙𝑥 ∶ 𝐹𝑥 → 𝐺𝑥 defines an equivalence in the homotopy 2-category ofℒ.

For the reasons noted in Remark 10.4.9, it is convenient to assume thatℒ is an∞-cosmos so we
need not be more explicit about the appropriate notion of equivalence in the target category. Our
interest in the class of quasi-pseudonatural equivalences stems from the following result, which can
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be understood as a version of the bicategorical Yoneda lemma in the context of quasi-categorically
enriched categories, quasi-pseudofunctors, and quasi-pseudonatural transformations.

10.4.14. Lemma. If there exists a quasi-pseudonatural equivalence

𝜙∶ 𝒦(−, 𝑎) 𝒦(−, 𝑏)
between the simplicial functors𝒦op → 𝒬𝒞𝑎𝑡 represented by a pair of objects 𝑎, 𝑏 in an∞-cosmos𝒦, then 𝑎
and 𝑏 are equivalent in𝒦.

Proof. We will show that the 0-arrow 𝑦 ≔ 𝜙𝑎(id𝑎) ∶ 𝑎 → 𝑏 is an equivalence in𝒦. First observe
that for every 𝑥 ∈ 𝒦 the component 𝜙𝑥 ∶ 𝒦(𝑥, 𝑎) ∼ 𝒦(𝑥, 𝑏) – the top-right composite in the following
diagram – is isomorphic in the homotopy 2-category of quasi-categories to postcomposition with 𝑦 –
the lower-left composite in the diagram:

𝒦(𝑥, 𝑎) 𝒦(𝑥, 𝑎)𝒦(𝑎,𝑎)

𝒦(𝑥, 𝑎)

𝒦(𝑥, 𝑏)𝒦(𝑎,𝑏) 𝒦(𝑥, 𝑏)𝒦(𝑎,𝑎)

𝒦(𝑥, 𝑏) 𝒦(𝑥, 𝑏)

∘

∘ 𝜙𝑥,𝑎⇓≅

evid𝑎

𝜙𝑥∘−

𝜙𝑥

ev𝑦
−∘𝜙𝑎 evid𝑎

≕ 𝒦(𝑥, 𝑎) 𝒦(𝑥, 𝑏)

𝜙𝑥

𝑦∘−

⇓≅

In particular, by Exercise 1.4.iii, the map 𝑦 ∘ −∶ 𝒦(𝑥, 𝑎) ∼ 𝒦(𝑥, 𝑏) is an equivalence for any 𝑥 ∈ 𝒦,
which means that 𝑦∶ 𝑎 ∼ 𝑏 is an equivalence in the∞-cosmos𝒦. �

Quasi-pseudonatural equivalences may be constructed as adjoint equivalence inverses of simplicial
natural transformations that define componentwise equivalences.

10.4.15. Lemma. Consider a simplicial natural transformation 𝒦 ℒ
𝐹

𝐺
⇓𝜙 between quasi-categorically

enriched functors between∞-cosmoi in which the 0-arrow components 𝜙𝑥 ∶ 𝐹𝑥 ∼ 𝐺𝑥 all define equivalences
in ℒ. Then any choice of adjoint equivalence inverses 𝜓𝑥 ∶ 𝐺𝑥 ∼ 𝐹𝑥 assemble into the components of a
quasi-pseudonatural transformation 𝜓∶ 𝐺 𝐹 that is a quasi-pseudonatural equivalence.

Proof. The components of the quasi-pseudonatural transformation 𝜓 are defined by the adjoint
equivalence inverse arrows 𝜓𝑥 ∶ 𝐺𝑥 ∼ 𝐹𝑥 and by the pasted composite natural transformation

𝒦(𝑥, 𝑦) ℒ(𝐺𝑥,𝐺𝑦)

𝜓𝑥,𝑦 ≔ ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝑥, 𝐺𝑦) ℒ(𝐺𝑥,𝐺𝑦)

ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐺𝑥, 𝐹𝑦)

𝐺𝑥,𝑦

𝐹𝑥,𝑦 −∘𝜙𝑥 𝜂𝑥≅𝜙𝑦∘−

𝜓𝑦∘−
−∘𝜓𝑥

𝜓𝑦∘−
𝜖𝑦≅

−∘𝜓𝑥

involving the unit and counit isomorphisms of the adjoint equivalence.
Since 𝐹 and 𝐺 are simplicial functors, the unit condition simplifies to ask only that the component

of this pasted natural transformation at the identity arrow id𝑥 ∶ 𝟙 → 𝒦(𝑥, 𝑥) is an identity 2-cell id𝜓𝑥 .
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This component is the pasted composite

𝐺𝑥 𝐺𝑥

𝐹𝑥 𝐹𝑥
𝜓𝑥

𝜓𝑥𝜙𝑥𝜂≅
𝜖≅

which is indeed the identity, since the specified data defines an adjoint equivalence.
Similarly, to verify the composition axiom, we must show that the composite

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦)

𝒦(𝑥, 𝑧) ℒ(𝐺𝑥,𝐺𝑧)

ℒ(𝐹𝑥, 𝐹𝑧) ℒ(𝐹𝑥, 𝐺𝑧) ℒ(𝐺𝑥,𝐺𝑧)

ℒ(𝐹𝑥, 𝐹𝑧) ℒ(𝐺𝑥, 𝐹𝑧)

∘

𝐺𝑥,𝑧

𝐹𝑥,𝑧 −∘𝜙𝑥 𝜂𝑥≅𝜙𝑧∘−

𝜓𝑧∘−
−∘𝜓𝑥

𝜓𝑧∘−
𝜖𝑧≅

−∘𝜓𝑥

equals

𝒦(𝑦, 𝑧) × 𝒦(𝑥, 𝑦) ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐺𝑥,𝐺𝑦) ℒ(𝐹𝑦, 𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦) ℒ(𝐺𝑦,𝐺𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐹𝑥, 𝐹𝑦)

ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐹𝑥, 𝐺𝑦) ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐺𝑥,𝐺𝑧) ℒ(𝐺𝑦, 𝐹𝑧) × ℒ(𝐺𝑥,𝐺𝑦)

ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝑦, 𝐹𝑧) × ℒ(𝐺𝑥, 𝐹𝑦) ℒ(𝐺𝑥, 𝐹𝑧)

𝐺×𝐺

𝐹×𝐺

𝐹×𝐹

−∘𝜙𝑦 𝜂𝑦≅
𝜙𝑧∘−

−∘𝜙𝑥

−∘𝜓𝑦

𝜓𝑧∘− 𝜓𝑧∘−
𝜙𝑦∘−

𝜓𝑦∘−
−∘𝜓𝑥

𝜂𝑥≅

𝜖𝑧≅

−∘𝜓𝑦

𝜓𝑦∘− ∘𝜖𝑦≅

−∘𝜓𝑥
∘

The pre- and postcomposition maps appearing in this diagram are 2-natural (see Definition B.2.2),
so for instance the whiskered composite of 𝜖𝑦 and − ∘ 𝜓𝑥 can be formed in either order. Using this
commutativity property repeatedly in the second pasting diagram and applying the triangle identity
𝜙𝑦𝜖𝑦 ⋅ 𝜂𝑦𝜙𝑦 = id𝜙𝑦 , the second pasting diagram reduces to the first one. �

Wenow show that any biequivalence𝐹∶ 𝒦 ∼ ℒ between∞-cosmoi admits a quasi-pseudofunctorial
“inverse” 𝐺∶ ℒ 𝒦 equipped with quasi-pseudonatural equivalences 𝜂∶ id𝒦 𝐺𝐹 and 𝜖 ∶ 𝐹𝐺
idℒ.

10.4.16. Proposition. If 𝐹∶ 𝒦 → ℒ is a quasi-categorically enriched functor between ∞-cosmoi and a
biequivalence then there exists a quasi-pseudofunctor 𝐺∶ ℒ 𝒦 that is also a biequivalence. Moreover 𝐺
is a quasi-pseudoinverse to 𝐹 in the sense that there exist quasi-pseudonatural equivalences id𝒦 𝐺𝐹 and
𝐹𝐺 idℒ.
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Proof. To coherently define an inverse to a biequivalence 𝐹∶ 𝒦 ∼ ℒ, we “fully specify” its data,
choosing:

(𝛽) fully specified adjoint equivalences 𝜖𝑎 ∶ 𝐹𝑥𝑎 ≃ 𝑎 for each 𝑎 ∈ ℒ and
(𝛾) fully specified inverse adjoint equivalences of quasi-categories

𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝑦)∼𝐹𝑥,𝑦

for each pair 𝑥, 𝑦 ∈ 𝒦 whose inverse is quasi-pseudonatural in 𝑥 and 𝑦.
In (𝛾), we apply to the simplicial natural transformation 𝐹−,− ∶ 𝒦(−, −) → ℒ(𝐹−, 𝐹−) to observe that
the pointwise adjoint equivalences to these maps assemble into a quasi-pseudonatural transformation,
which is also a pointwise equivalence.

Now, to define 𝐺∶ ℒ 𝒦, use (𝛽) to specify for each 𝑎 ∈ ℒ an object 𝐺𝑎 ≔ 𝑥𝑎 ∈ 𝒦 together
with an equivalence 𝜖𝑎 ∶ 𝐹𝐺𝑎 ≃ 𝑎 in ℒ. This defines the mapping of 𝐺 on objects and the 0-arrow
components of the quasi-pseudonatural transformation 𝜖. To define the action of 𝐺 on functor spaces,
use this data and (𝛾) to define

𝐺𝑎,𝑏 ≔ ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑏)∼(−∘𝜖𝑎,𝜖−1𝑏 ∘−) ∼

𝐹−1𝐺𝑎,𝐺𝑏

For each 𝑎 ∈ ℒ define 𝜄𝑎 ∶ id𝐺𝑎 ≅ 𝐺𝑎,𝑎 id𝑎 to be the composite

𝟙

ℒ(𝑎, 𝑎) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑎) 𝒦(𝐺𝑎, 𝐺𝑎)
𝛽≅

id𝑎
id𝐹𝐺𝑎

id𝐺𝑎

𝛾≅

(−∘𝜖𝑎,𝜖−1𝑎 ∘−) 𝐹−1𝐺𝑎,𝐺𝑎

of the isomorphism 𝛽𝑎 ∶ 𝜖−1𝑎 ∘ 𝜖𝑎 ≅ id𝐹𝐺𝑎 in the homotopy 2-category of ℒ with the component of

the isomorphism 𝛾∶ 𝐹−1
𝐺𝑎,𝐺𝑎 ∘ 𝐹𝐺𝑎,𝐺𝑎 ≅ id𝒦(𝐺𝑎,𝐺𝑎) at id𝐺𝑎. For each 𝑎, 𝑏, 𝑐 ∈ ℒ, define 𝛼𝑎,𝑏,𝑐 to be the

composite

ℒ(𝑏, 𝑐) × ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑏, 𝐹𝐺𝑐) × ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑏,𝐺𝑐) × 𝒦(𝐺𝑎,𝐺𝑏)

ℒ(𝑎, 𝑐) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑐) 𝒦(𝐺𝑎, 𝐺𝑐)

∘

(−∘𝜖𝑏,𝜖−1𝑐 ∘−)×(−∘𝜖𝑎,𝜖−1𝑏 ∘−)

𝛽≅

𝐹−1𝐺𝑏,𝐺𝑐×𝐹
−1
𝐺𝑎,𝐺𝑏

∘ 𝛾≅ ∘

(−∘𝜖𝑎,𝜖−1𝑐 ∘−) 𝐹−1𝐺𝑎,𝐺𝑐

of the canonical natural transformations built from the data of (𝛽) and (𝛾).
We next verify that these choices make 𝐺 into a quasi-pseudofunctor. For the unit condition, we

must verify that the composite

ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑏)

ℒ(𝑏, 𝑏) × ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑏, 𝐹𝐺𝑏) × ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑏,𝐺𝑏) × 𝒦(𝐺𝑎,𝐺𝑏)

ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑏)

(−∘𝜖𝑎,𝜖−1𝑏 ∘−)

id𝑏 × id 𝛽≅ 𝛾≅

𝐹−1𝐺𝑎,𝐺𝑏

id𝐹𝐺𝑏 × id id𝐺𝑏 × id

∘

(−∘𝜖𝑏,𝜖−1𝑏 ∘−)×(−∘𝜖𝑎,𝜖−1𝑏 ∘−)

𝛽≅

𝐹−1𝐺𝑏,𝐺𝑏×𝐹
−1
𝐺𝑎,𝐺𝑏

∘ 𝛾≅ ∘

(−∘𝜖𝑎,𝜖−1𝑏 ∘−) 𝐹−1𝐺𝑎,𝐺𝑏
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is the identity; in fact, each pair of vertical composites is the identity. On the left-hand side, this is
on account of one of the triangle equality relations for the adjoint equivalence 𝜖𝑏. On the right-hand
side, this is a consequence of quasi-pseudonaturality of the pair 𝐹−1

𝐺𝑎,𝐺𝑏 and 𝛾 established in Lemma
10.4.15. The right unit constraint and associativity conditions are similar. This completes the proof
that 𝐺∶ ℒ 𝒦 defines a quasi-pseudofunctor.

By construction, the quasi-pseudofunctor 𝐺 is a local equivalence: its action on homs is defined by
composing an equivalence with a map induced by pre- and postcomposing with equivalences in the∞-
cosmosℒ, which is then an equivalence by Corollary 1.4.8. We use this local equivalence to argue that for
each 𝑥 ∈ 𝒦, there is an equivalence 𝜂𝑥 ∶ 𝑥 ∼ 𝐺𝐹𝑥, proving essential surjectivity of 𝐺. This component
is defined by applying the specified inverse adjoint equivalence 𝐹−1

𝑥,𝐺𝑓 𝑥 ∶ ℒ(𝐹𝑥, 𝐹𝐺𝐹𝑥) ∼ 𝒦(𝑥, 𝐺𝐹𝑥) of
(𝛾) to the inverse of the specified adjoint equivalence 𝜖−1𝐹𝑥 ∶ 𝐹𝑥 → 𝐹𝐺𝐹𝑥 of (𝛽). Since 𝐹 is a cosmological
biequivalence, which carries the map 𝜂𝑥 to an equivalence inℒ, 𝜂𝑥 is itself an equivalence in𝒦. Thus,
the quasi-pseudofunctor 𝐺 is an biequivalence.

It remains only to check quasi-pseudonaturality of 𝜂 and 𝜖. For the latter, we define the component
natural isomorphism by the pasting diagram

𝜖𝑎,𝑏 ≔
ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏) 𝒦(𝐺𝑎,𝐺𝑏) ℒ(𝐹𝐺𝑎, 𝐹𝐺𝑏)

ℒ(𝑎, 𝑏) ℒ(𝐹𝐺𝑎, 𝑏)

−∘𝜖𝑎 𝜖−1𝑏 ∘−

≅𝛽

𝐹−1𝐺𝑎,𝐺𝑏 𝐹𝐺𝑎,𝐺𝑏

𝜖𝑏∘−

−∘𝜖𝑎

≅𝛾

For the former, using the definition 𝜂𝑥 ≔ 𝐹−1𝜖−1𝐹𝑥 and the quasi-pseudonaturality of 𝐹−1
−,−, we have a

pasting diagram

𝜂𝑥,𝑦 ≔
𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝑦) ℒ(𝐹𝐺𝐹𝑥, 𝐹𝐺𝐹𝑦) 𝒦(𝐺𝐹𝑥,𝐺𝐹𝑦)

𝒦(𝑥, 𝑦) ℒ(𝐹𝑥, 𝐹𝐺𝐹𝑦) 𝒦(𝑥, 𝐺𝐹𝑦)

𝐹𝑥,𝑦

𝜖−1𝐹𝑦∘−

(−∘𝜖𝐹𝑥,𝜖−1𝐹𝑦∘−)

−∘𝜖−1𝐹𝑥

𝐹−1𝐺𝐹𝑥,𝐺𝐹𝑦

−∘𝜂𝑥

𝜂𝑦∘−

𝛾≅ 𝛽≅

𝐹−1𝑥,𝐺𝐹𝑦

𝛾≅

which defines component natural isomorphism. We leave the verification that these natural transforma-
tions satisfy the unit and composition coherence conditions to define quasi-pseudonatural equivalences
𝜂∶ id𝒦 𝐺𝐹 and 𝜖 ∶ 𝐹𝐺 idℒ to the reader. �

It follows direction from the definitions that composites of quasi-pseudofunctors are quasi-pseudo-
functors and composites of biequivalences are biequivalences. Hence:

10.4.17. Corollary. Any zigzag of cosmological biequivalences composes to define a quasi-pseudofunctor
𝒦 ∼ ℒ between∞-cosmoi that is also a biequivalence. �

Moreover, the preservation and reflection properties of cosmological biequivalences established in
Proposition 10.3.6 extend to their quasi-pseudofunctorial inverses, as the reader is invited to explore in
Exercise 10.4.vi.

Exercises.
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10.4.i. Exercise. For a fixed pair of 2-categories 𝒞 and𝒟, show that the collection of pseudofunctors
𝒞 𝒟, pseudonatural transformations between them, and modifications (see Definition B.2.3)
between these assemble into a 2-category.

10.4.ii. Exercise ([59, 6.2.16]). For a pseudonatural transformation𝜙∶ 𝐹 𝐺 between pseudofunctors
𝐹,𝐺∶ 𝒞 𝒟 between 2-categories 𝒞 and𝒟, show that the following are equivalent.

• Each 1-cell component 𝜙𝑥 ∶ 𝐹𝑥 ∼ 𝐺𝑥 is an equivalence in𝒟.
• The 1-cell 𝜙 defines an equivalence in the 2-category described in Exercise 10.4.i.

10.4.iii. Exercise. Let𝜙∶ 𝐹 𝐺 be a quasi-pseudonatural transformation between quasi-pseudofunct-
ors 𝐹,𝐺∶ 𝒦 ℒ. For any pair of 0-arrows 𝑓 ∶ 𝑥 → 𝑦 and 𝑘 ∶ 𝑦 → 𝑧 in the 𝒦, verify the following
pasting equalities in the homotopy 2-category ofℒ.

𝐹𝑦 𝐹𝑦

𝐹𝑥 𝐹𝑧 𝐹𝑥 𝐹𝑧

𝐺𝑦

𝐺𝑥 𝐺𝑧 𝐺𝑥 𝐺𝑧

𝐹𝑘 𝐹𝑘

𝜙𝑦

𝐹𝑓

𝐹(𝑘𝑓 )𝜙𝑥

𝛼𝑥,𝑦,𝑧𝑓 ,𝑘 ⇓≅

𝜙𝑧

𝐹𝑓

𝜙𝑥

𝜙𝑓⇓≅
𝜙𝑧

=
𝐺𝑘

𝜙𝑘⇓≅

𝐺(𝑘𝑓 )

𝜙𝑘𝑓⇓≅
𝐺𝑓

𝐺(𝑘𝑓 )

𝛼𝑥,𝑦,𝑧𝑓 ,𝑘 ⇓≅

and
𝐹𝑥 𝐹𝑥 𝐹𝑥 𝐹𝑥

𝐺𝑥 𝐺𝑥 𝐺𝑥 𝐺𝑥

id𝐹𝑥

𝐹 id𝑥

𝜄𝑥⇓≅

𝜙𝑥
𝜙id𝑥⇓≅

𝜙𝑥 =

id𝐹𝑥

𝜙𝑥 𝜙𝑥

𝐺 id𝑥

id𝐺𝑥

𝐺 id𝑥

𝜄𝑦⇓≅

10.4.iv. Exercise. Finish the proof of Lemma 10.4.12.

10.4.v. Exercise. Derive a proof of Proposition 10.4.3 from the proof of Proposition 10.4.16, modified
according to Remark 10.4.9.

10.4.vi. Exercise. Develop a heuristic argument that explains why any ∞-categorical property or
structure that is preserved and reflected by a cosmological biequivalence is also preserved and reflected
by its inverse quasi-pseudofunctor.
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CHAPTER 11

Model Independence

Our aim in this chapter is to prove that the theory of ∞-categories is invariant under change
of model. Part of the meaning of this result is established in Chapter 10, where we prove that the
∞-categorical notions developed in this text are preserved, reflected, and created, by cosmological
biequivalences, which provide our change-of-model functors. But our aim here is to establish something
stronger: that statements about ∞-categories that may have been proven by “analytic” techniques
particular to a single∞-cosmos are alsomodel independent, provided that the statements are expressible
in a suitable equivalence invariant language. Chapter 12 illustrates applications of this transfer principle.

The problem with our naïve explorations of the model independence of∞-category theory – such
as the results enumerated in Proposition 10.3.6 – is they are ad hoc and tiresome. In §11.1, we pursue a
more systematic result. We review the construction of the virtual equipment of modules associated to
an∞-cosmos and explain why it describes a suitable context for proving the model independence of the
fundamental∞-categorical notions. We then prove in Theorem 11.1.6 that a cosmological biequivalence
induces a biequivalence of virtual equipments, and revisit a few of our ad hoc model independence
statements from the vantage point of this result.

Informally, Theorem 11.1.6 means that any∞-categorical notion that can be encoded as a property
of the virtual equipment of modules is model independent: a biequivalence of virtual equipments gives
a mechanism by which results proven with one model of∞-categories can be transferred to another
model. But how can we be sure when a statement about∞-categories that has been expressed in the
language of virtual equipments is in fact invariant under a biequivalence of virtual equipments?

Building on past work of Blanc [18], Freyd [43], Preller [92], and Cartmell [25], Makkai has been
in pursuit of a higher categorical foundation of mathematics. In particular, his First-Order Logic with
Dependent Sorts (FOLDS) [82] provides a formal language for writing mathematical sentences about
finite-dimensional higher categorical structures. In §11.2, we sketch the key ideas behind Makkai’s
FOLDS framework and explain how his work specializes to show that any statement written in the
“language of 2-categories” is invariant under a biequivalence between 2-categories.

Since∞-categories live as objects in an infinite-dimensional category, it is not immediately apparent
that Makkai’s theory is applicable to the situation at hand. However, a key theme of this text is that a
significant chunk of∞-category theory can be developed in a truncated finite-dimensional framework:
namely the virtual equipment of modules. In §11.3, we adapt Makkai’s framework to prove that any
statement that can be expressed in the “language of virtual equipments,” as we define it in a precise
sense, gives rise to a model independent statement about∞-categories.

11.1. A Biequivalence of Virtual Equipments

In this section, we show that a cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ induces a biequivalence of
virtual equipments 𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ). We then explain the interpretation of this result: that the
category theory of∞-categories is preserved, reflected, and created by any “change-of-model” functor
of this form.
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The claim that “the theory of ∞-categories is model independent” should certainly encompass
assertions like:

• A functor between∞-categories admits a left adjoint in a particular model if and only if it admits
a left adjoint in every model.

• An∞-category-valued diagram has a limit in one model if and only if it has a limit in every model.

In our setting, change-of-model functors such as (10.0.1) define cosmological biequivalences, or zigzags
thereof. Thus, along these lines, an ad hoc approach to proving the model independence of the basic
category theory of∞-categories is developed in §10.3, where we observe that ad hoc translations of
∞-categorical data and properties between biequivalent∞-cosmoi can be given relatively mechanically
and in excruciating detail, if desired.

A more systematic approach to model independence makes use of most comprehensive framework
for the formal category theory of∞-categories, namely the virtual equipment of modules. We briefly
review its essential features. Recall from Chapter 8 that the virtual double category of modules
𝕄od(𝒦) in an∞-cosmos𝒦 consists of:

• a category of objects and vertical arrows, here the∞-categories and∞-functors, drawn vertically

• for any pair of objects𝐴,𝐵, a collection of horizontal arrows𝐴
𝐸

𝐵, here themodules (𝑞, 𝑝) ∶ 𝐸 ↠
𝐴 × 𝐵 from 𝐴 to 𝐵.

• cells, with boundary depicted as follows

𝐴 𝐵

𝐶 𝐷

𝑓

�⃗�

⇓𝛼 𝑔

𝐹

where �⃗� abbreviates a compatible sequence of modules 𝐸1
⨰ ⋯ ⨰ 𝐸𝑛 from 𝐴 to 𝐵, which may be

empty in the case where 𝐴 = 𝐵. Here, a cell with the displayed boundary is an isomorphism class

of objects in the functor space Fun𝑓 ×𝑔(�⃗�, 𝐹) of maps from the two-sided fibration 𝐴 ↞ �⃗� ↠ 𝐵
to 𝐶 ↞ 𝐹 ↠ 𝐷 over 𝑓 × 𝑔.

• a composite cell, for any configuration

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶0 𝐶𝑛

𝑓0

�⃗�1

⇓𝛼1

�⃗�2

𝑓1 ⇓𝛼2

�⃗�𝑛

⋯ ⇓𝛼𝑛 𝑓𝑛

𝑔

𝐹1 𝐹2

⇓𝛽

𝐹𝑛

ℎ

𝐺

defined by pulling back and then composing fibered isomorphism classes of maps of spans.
• an identity cell for every horizontal arrow

𝐴 𝐵

𝐴 𝐵

𝐸

⇓id𝐸

𝐸
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so that composition of cells is strictly associative and unital in the usual multicategorical sense.

11.1.1. Lemma. A cosmological functor induces a functor of virtual double categories, preserving all of the
structure.

Proof. In Corollary 8.1.14, the categorical structures in the virtual double category of modules
are inherited from the double category of two-sided isofibrations. We can understand the action of a
cosmological functor 𝐹∶ 𝒦 → ℒ on the virtual double category of modules by taking a similar route.

As outlined in Exercise 8.1.i, the nonunital double category of two-sided isofibrations can be
understood as a quotient of the “nonunital internal category” (see Definition B.1.8) of∞-cosmoi and
cosmological functors

𝒦⤩ ×
𝒦
𝒦⤩ 𝒦⤩ 𝒦∘ l-cod

r-cod

where𝒦⤩ is the∞-cosmos of two-sided isofibrations and l-cod, r-cod ∶ 𝒦⤩ → 𝒦 refer to the left and

right codomain functors that map a two-sided isofibration 𝐴
𝑞
𝐸

𝑝
𝐵 to the base∞-categories 𝐴

and 𝐵 of the span. Note these functors combine to define a Grothendieck fibration cod ∶ 𝒦⤩ → 𝒦×𝒦.
The pullback

𝒦⤩ ×
𝒦
𝒦⤩ 𝒦⤩

𝒦⤩ 𝒦

l-cod

r-cod
is an∞-cosmos (see Exercise 6.1.iii), namely the∞-cosmos of horizontally composable pairs of two-

sided isofibrations 𝐴
𝑞
𝐸

𝑝
𝐵

𝑟
𝐹

𝑠
𝐶. The composition functor ∘ ∶ 𝒦⤩ ×𝒦 𝒦⤩ → 𝒦⤩, which

sends a horizontal composable pair of two-sided isofibrations to a chosen composite span, is associative
only up to simplicial natural isomorphism, which accounts for the “pseudo-ness” in the horizontal
composition in the double category of two-sided isofibrations. The (nonunital pseudo) double category
of two-sided isofibrations can be understood as the quotient of this structure obtained by replacing
the ∞-cosmos 𝒦 by its underlying category and replacing the fibers of cod ∶ 𝒦⤩ → 𝒦×𝒦 by the
quotient 1-categories with the same objects but with hom-sets defined to be the isomorphism classes of
vertices in the sliced functor spaces.

Now any cosmological functor 𝐹∶ 𝒦 → ℒ induces cosmological functors

𝒦⤩ ×
𝒦
𝒦⤩ 𝒦⤩ 𝒦

ℒ⤩ ×
ℒ
ℒ⤩ ℒ⤩ ℒ

∘

𝐹 ≅

l-cod

r-cod
𝐹 𝐹

∘ l-cod

r-cod

that commute strictly with the codomain functors and up to isomorphism with the composition
functor. Thus, a cosmological functor induces a double functor between the double categories of two-
sided isofibrations that strictly preserves vertical composition of functors and squares and preserves
horizontal composition of spans and squares up to coherent natural isomorphism.

It follows that a cosmological functor 𝐹∶ 𝒦 → ℒ induces a functor of virtual double categories of
modules 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) that preserves all of the structure strictly, since the multicategorical

331



composition of module maps is derived from the strictly defined vertical composition of squares in the
double category of two-sided isofibrations. �

Of crucial importance to its utility as a setting for formal category theory is the fact that the
virtual double category of modules is a virtual equipment, which means that it satisfies the two further
properties:

(i) For any module and pair of functors as displayed on the left, there exists a restriction module
and cartesian cell as displayed on the right

𝐴′ 𝐵′ 𝐴′ 𝐵′

𝐴 𝐵 𝐴 𝐵

𝑎 𝑏 ⇝ 𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸 𝐸

characterized by the universal property that any cell as displayed below-left factors uniquely
through 𝜌 as below-right:

𝑋 𝑌

𝐴 𝐵

𝑎𝑓

�⃗�

⇓ 𝑏𝑔

𝐸

=

𝑋 𝑌

𝐴′ 𝐵′

𝐴 𝐵

𝑓

�⃗�

∃!⇓ 𝑔

𝑎

𝐸(𝑏,𝑎)

⇓𝜌 𝑏

𝐸

The restriction module is defined by pulling back a module𝐴
𝐸

𝐵 along functors 𝑎 ∶ 𝐴′ → 𝐴
and 𝑏 ∶ 𝐵′ → 𝐵. The simplicial pullback defining 𝐸(𝑏, 𝑎) induces an equivalence of functor
spaces

Fun𝑎𝑓 ×𝑏𝑔(𝐸1 ×⋯× 𝐸𝑛, 𝐸) ≃ Fun𝑓 ×𝑔(𝐸1 ×⋯× 𝐸𝑛, 𝐸(𝑏, 𝑎)),
which gives rise to the universal property (see Proposition 8.2.1).

(ii) Every object 𝐴 admits a unit module equipped with a nullary cocartesian cell

𝐴 𝐴

𝐴 𝐴
⇓𝜄

Hom𝐴

satisfying the universal property that any cell in the virtual double category of modules whose
horizontal source includes the object 𝐴, as displayed on the left

𝑋 𝐴 𝑌

𝐵 𝐶

𝑓

�⃗�

⇓

�⃗�

𝑔

𝐺

=

𝑋 𝐴 𝐴 𝑌

𝑋 𝐴 𝐴 𝑌

𝐵 𝐶

�⃗�

⇓id ⇓𝜄

�⃗�

⇓id

𝑓

�⃗� Hom𝐴

⇓∃!

�⃗�

𝑔

𝐺
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factors uniquely through 𝜄 as displayed on the right. The unit module is the arrow∞-category,

given the notation 𝐴
Hom𝐴 𝐴 when considered as a module from 𝐴 to 𝐴. The universal

property follows from the Yoneda lemma (see Proposition 8.2.4).

Lemma 11.1.1 extends to the virtual equipments of modules:

11.1.2. Proposition. A cosmological functor 𝐹∶ 𝒦 → ℒ induces a functor 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) of
virtual equipments, preserving all of the structure.

Proof. In light of Lemma 11.1.1, it remains to consider unit and restriction modules and cells. It
follows immediately from the constructions given in the proofs of Propositions 8.2.4 and 8.2.1 that
these are preserved by cosmological functors:

𝐴

𝐴 𝐴

Hom𝐴

𝜄

𝑝1 𝑝0

𝐸(𝑏, 𝑎) 𝐸

𝐴′ × 𝐵′ 𝐴 × 𝐵

𝜌

(𝑎,𝑏)

�

The functors and natural transformations in the homotopy 2-category 𝔥𝒦 embed into the virtual
equipment 𝕄od(𝒦) in three ways. A functor 𝑓 ∶ 𝐴 → 𝐵 is represented as a vertical arrow and also

by the horizontal modules 𝐴
Hom𝐵(𝐵,𝑓 ) 𝐵 and 𝐵

Hom𝐵(𝑓 ,𝐵) 𝐴, which behave like adjoints is a sense

suitable to a virtual double category: the module 𝐴
Hom𝐵(𝐵,𝑓 ) 𝐵 defines a companion and the module

𝐵
Hom𝐵(𝑓 ,𝐵) 𝐴 defines a conjoint to the vertical arrow 𝑓 ∶ 𝐴 → 𝐵 (see Proposition 8.4.1, Theorem

8.4.4, and Corollary 8.4.6). These embeddings extend to natural transformations by Proposition 8.4.11:
for any parallel pair of functors there are natural bijections between natural transformations in the
homotopy 2-category

𝐴 𝐵
𝑓

𝑔
⇓𝛼

and cells in the virtual equipment of modules:

𝐴 𝐵 𝐴 𝐴 𝐵 𝐴

𝐴 𝐵 𝐵 𝐵 𝐵 𝐴
⇓𝛼∗

Hom𝐵(𝐵,𝑓 )

↭ ⇓�⃖�𝑔

Hom𝐴

𝑓 ↭

Hom𝐵(𝑔,𝐵)

⇓𝛼∗

Hom𝐵(𝐵,𝑔) Hom𝐵 Hom𝐵(𝑓 ,𝐵)

As remarked upon in Definition 8.4.12, as a consequence of these results, there are three locally
fully faithful homomorphisms from the homotopy 2-category 𝔥𝒦 into the virtual equipment𝕄od(𝒦).
The vertical embedding described by Propositions 8.3.18 sends the functors of 𝔥𝒦 to vertical arrows and
the 2-cells to unary cells whose sources and targets are given by unit modules. The other two are the
covariant and contravariant embeddings, respectively – embedding the homotopy 2-category into the
substructure¹ of𝕄od(𝒦) comprised only of unary cells whose vertical boundaries are identities. The
modules in the image of the covariant embedding are the right representables and the modules in the
image of the contravariant embedding are the left representables. We leave it to the reader to verify:

¹This substructure is very nearly a bicategory, with horizontal composites of unary cells constructed as in Definition
8.3.16, except that compatible sequences of modules do not always admit a horizontal composite.
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11.1.3. Lemma. The functor of virtual equipments 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) induced by a cosmological
functor 𝐹∶ 𝒦 → ℒ commutes with the covariant, contravariant, and vertical embeddings.

Proof. Exercise 11.1.ii. �

The theme of Chapter 9 could be summarized by saying that the virtual equipment of modules in
an∞-cosmos is a robust setting to develop the category theory of∞-categories. On the one hand, it
contains the homotopy 2-category of the∞-cosmos, which is the setting for most of the results of Part I.
It is also a very natural home to study∞-categorical properties that are somewhat awkward to express
in the homotopy 2-category. For instance, the weak 2-universal property of comma ∞-categories
is now encoded by a bijection in Lemma 8.1.16: cells in the virtual equipment whose codomain is a
comma module correspond bijectively to natural transformations of a particular form in the homotopy
2-category. Fibered equivalences of modules, as used to express the universal properties of adjunctions,
limits, and colimits in Chapter 4, are now vertical isomorphisms in the virtual equipment between
parallel modules. The virtual equipment also cleanly encodes the universal property of pointwise left
and right Kan extensions, which are used to define (weighted) limits and colimits of functors between
∞-categories.

We will show that when 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequivalence, the corresponding functor of
virtual equipments is a biequivalence in a suitable sense. In pursuit of this result, we first elaborate on
Proposition 10.3.1(xiii).

11.1.4. Proposition. A cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ preserves, reflects, and creates modules:

(i) An isofibration (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 is a module in𝒦 if and only if (𝐹𝑞, 𝐹𝑝) ∶ 𝐹𝐸 ↠ 𝐹𝐴 × 𝐹𝐵 is a
module inℒ.

(ii) A pair of modules 𝐴
𝐸

𝐵 and 𝐴
𝐸′

𝐵 are equivalent in𝒦 if and only if the modules 𝐹𝐴
𝐹𝐸

𝐹𝐵
and 𝐹𝐴

𝐹𝐸′
𝐹𝐵 define equivalent modules inℒ.

(iii) For every module𝐴′ 𝐺
𝐵′ inℒ and every pair of∞-categories𝐴,𝐵 in𝒦 with specified equivalences

𝐹𝐴 ≃ 𝐴′ and 𝐹𝐵 ≃ 𝐵′ there is a module 𝐴
𝐸

𝐵 in𝒦 so that 𝐹𝐸 is equivalent to 𝐺 over the pair of
equivalences.

Proof. The result of (i) was proven already in Proposition 10.3.1(xiii). The result of (ii) follows
from the fact that the induced cosmological biequivalence

𝐴\ℳ𝑜𝑑(𝒦)/𝐵 𝐹𝐴\ℳ𝑜𝑑(ℒ)/𝐹𝐵

𝒦/𝐴×𝐵 ℒ/𝐹𝐴×𝐹𝐵

∼𝐹

∼𝐹

preserves and reflects equivalences between objects.
For (iii), fix a pair of equivalences 𝐹𝐴 ≃ 𝐴′ and 𝐹𝐵 ≃ 𝐵′, defining an equivalence 𝑒 ∶ 𝐴′ × 𝐵′ ∼

𝐹𝐴 × 𝐹𝐵, and consider the composite biequivalence

𝒦/𝐴×𝐵 ℒ/𝐹𝐴×𝐹𝐵 ℒ/𝐴′×𝐵′

∼𝐹 ∼𝑒∗

given by Propositions 10.2.2 and 10.2.4. Consider a module 𝐺 ↠ 𝐴′ × 𝐵′. By essential surjectivity,
there is an isofibration 𝐸 ↠ 𝐴 × 𝐵 whose image under this cosmological functor – the pullback of
𝐹𝐸 ↠ 𝐹𝐴 × 𝐹𝐵 along 𝑒 ∶ 𝐴′ × 𝐵′ ∼ 𝐹𝐴 × 𝐹𝐵 – defines an isofibration (𝑞, 𝑝) ∶ 𝐸′ ↠ 𝐴′ × 𝐵′ that is
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equivalent to 𝐺 inℒ/𝐴′×𝐵′ . It remains only to argue that 𝐸 defines a module from 𝐴 to 𝐵, which will
follow, essentially as in the proof of (i), from the fact that 𝐸′ ≃ 𝐺 defines a module from 𝐴′ to 𝐵′.

As the image 𝐸′ of 𝐸 is equivalent to a discrete object, Proposition 10.3.6(v) tells us 𝐸 is discrete in
𝒦/𝐴×𝐵. The final step is to argue that the desired right adjoint to 𝐸 → Hom𝐵(𝐵, 𝑝) is present in the
image of the biequivalence𝒦/𝐴×𝐵 ∼ ℒ/𝐴′×𝐵′ , and apply Proposition 10.3.6(iii) to deduce its presence
in𝒦/𝐴×𝐵; a similar argument of course applies to the functor 𝐸 → Hom𝐴(𝑞, 𝐴). To see this note that
𝐹∶ 𝒦/𝐴×𝐵 ∼ ℒ/𝐹𝐴×𝐹𝐵 carries Hom𝐵(𝐵, 𝑝) ↠ 𝐴×𝐵 to Hom𝐹𝐵(𝐹𝐵, 𝐹𝑝) ↠ 𝐹𝐴×𝐹𝐵. By (i), it suffices
to argue that this functor has a right adjoint over 𝐹𝐴 × 𝐹𝐵. Applying Proposition 10.3.6(iii) to the
biequivalence 𝑒∗ ∶ ℒ/𝐹𝐴×𝐹𝐵 ∼ ℒ/𝐴′×𝐵′ , this follows from the fact that 𝐸′ → Hom𝐵′(𝐵′, 𝑝′) has a right
adjoint over 𝐴′ × 𝐵′. �

11.1.5. Proposition. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence. Then a module 𝐴
𝐸

𝐵 in𝒦 is right

representable if and only if the module 𝐹𝐴
𝐹𝐸

𝐹𝐵 is right representable in ℒ, in which case, 𝐹 carries the
representing functor 𝑓 ∶ 𝐴 → 𝐵 in𝒦 to a representing functor 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 inℒ.

Proof. To say that𝐴
𝐸

𝐵 is right representable in𝒦 is to say that there exists a functor 𝑓 ∶ 𝐴 → 𝐵
together with an equivalence 𝐸 ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑓 ) of modules over 𝐵. If this is the case then any
cosmological functor 𝐹∶ 𝒦 → ℒ carries this to a fibered equivalence 𝐹𝐸 ≃𝐹𝐴×𝐹𝐵 Hom𝐹𝐵(𝐹𝐵, 𝐹𝑓 ),
and hence the module 𝐹𝐴

𝐹𝐸
𝐹𝐵 is right represented by 𝐹𝑓∶ 𝐹𝐴 → 𝐹𝐵 inℒ.

Conversely, if 𝐹𝐴
𝐹𝐸

𝐹𝐵 is right represented by some functor 𝑔∶ 𝐹𝐴 → 𝐹𝐵, then by Corollary
10.3.2(ii), there exists a functor 𝑓 ∶ 𝐴 → 𝐵 in𝒦 so that 𝐹𝑓 ≅ 𝑔 inℒ. By Proposition 8.4.11, naturally
isomorphic functors represent equivalent modules; that is, Hom𝐹𝐵(𝐹𝐵, 𝑔) ≃𝐹𝐴×𝐹𝐵 Hom𝐹𝐵(𝐹𝐵, 𝐹𝑓 ).
Thus 𝐹𝐸 ≃𝐹𝐴×𝐹𝐵 Hom𝐹𝐵(𝐹𝐵, 𝐹𝑓 ). By Proposition 11.1.4(ii), this fibered equivalence lifts along the
cosmological functor 𝐹∶ 𝒦/𝐴×𝐵 → ℒ/𝐹𝐴×𝐹𝐵 to a fibered equivalence 𝐸 ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑓 ), which
proves that 𝐸 is right represented by 𝑓 ∶ 𝐴 → 𝐵 in𝒦. �

We have seen that cosmological functors induce functors of virtual equipments, preserving all the
structure. When a cosmological functor is a biequivalence, the induced functor of virtual equipments
also creates structure and reflects universal properties, on account of bijections we now enumerate.

11.1.6. Theorem (model independence of∞-category theory). If 𝐹∶ 𝒦 ∼ ℒ is a cosmological biequiva-
lence, then the induced functor of virtual equipments

𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ)
defines a biequivalence of virtual equipments: i.e., it is

(i) bijective on equivalence classes of objects;
(ii) locally bijective on isomorphism classes of parallel vertical functors extending the bijection of (i);
(iii) locally bijective on equivalence classes of parallel modules extending the bijection of (ii);
(iv) locally bijective on cells extending the bijections of (i), (ii), and (iii).

Note further that if two ∞-cosmoi are connected by a finite zigzag of biequivalences, then the
bijections described in Theorem 11.1.6 compose.

Proof. Properties (i) and (ii) are restatements of Corollary 10.3.2(i) and (ii).
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The local bijection (iii) follows immediately from Proposition 11.1.4 and the fact that for any pair
of equivalences 𝑒 ∶ 𝐴′ × 𝐵′ ∼ 𝐹𝐴 × 𝐹𝐵, the composite biequivalence

𝒦/𝐴×𝐵 ℒ/𝐹𝐴×𝐹𝐵 ℒ/𝐴′×𝐵′

∼𝐹 ∼𝑒∗

preserves, reflects, and creates equivalences between objects, again by Corollary 10.3.2(i). Finally (iv) is
an application of Corollary 10.3.2(ii) to this cosmological biequivalence. �

Theorem 11.1.6 subsumes many of the model independence statements established thus far. For
instance, the presence of an adjunctions between∞-categories and the existence of limits and colimits
inside an ∞-category can both be encoded as an equivalence invariant proposition in the virtual
equipment of modules. The model independence of pointwise right and left extensions, first proven in
Proposition 10.3.8, can also be established as an elementary corollary of Theorem 11.1.6, by an argument
left to Exercise 11.1.iii. Along the same lines, a biequivalence of virtual equipments preserves, reflects,
and creates composites of modules:

11.1.7. Lemma. Let 𝐹∶ 𝒦 ∼ ℒ be a cosmological biequivalence.

(i) Then a compatible sequence of modules in𝒦 admits a composite in𝕄od(𝒦) if and only if the image of
this sequence admits a composite in𝕄od(ℒ).

(ii) Hence, cosmological biequivalences preserve and reflect exact squares.

Proof. Via Definition 9.2.2, (ii) follows immediately from (i), so it remains only to show that a
biequivalence of virtual equipments𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ) preserves, reflects, and creates composites
of modules. To see that an 𝑛-ary composite cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 in 𝔥𝒦 is preserved, note that
by Theorem 11.1.6(iv), any cell in𝕄od(ℒ) is isomorphic to a cell in the image of 𝐹: first replace the
objects by equivalent ones in the image, then replace the vertical functors by naturally isomorphic ones
in the image, then replace the modules by equivalent ones in the image over the specified equivalences
between their ∞-categorical sources and targets, and then finally apply the local bijection (iv) to
replace the cell in 𝕄od(ℒ) by a unique cell in the image of 𝕄od(𝒦) by composing with this data.
Now, by local full and faithfulness and essential surjectivity, the universal property of the cocartesian
cell 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 implies that its image 𝐹𝜇∶ 𝐹𝐸1
⨰ ⋯ ⨰ 𝐹𝐸𝑛 ⇒ 𝐹𝐸 is again a cocartesian

cell. Thus composites 𝐸1 ⊗⋯⊗ 𝐸𝑛 ≃ 𝐸 are preserved by cosmological biequivalences.
Now if 𝐹𝜇∶ 𝐹𝐸1

⨰ ⋯ ⨰ 𝐹𝐸𝑛 ⇒ 𝐹𝐸 is a composite, since 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) is locally fully
faithful, then 𝜇∶ 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 is also a composite; thus composites 𝐹𝐸1 ⊗⋯⊗ 𝐹𝐸𝑛 ≃ 𝐹𝐸 are
reflected by cosmological biequivalences.

Finally, suppose the sequence 𝐹𝐸1
⨰ ⋯ ⨰ 𝐹𝐸𝑛 of modules in 𝕄od(ℒ) admits a composite

𝐹𝐴0
𝐺

𝐹𝐴𝑛; since the compatible sequence of modules is in the image of 𝐹 the source and target
∞-categories of the composite module 𝐺 are as well. By Theorem 11.1.6(iii) there exists a module

𝐴0
𝐸

𝐴𝑛 in 𝔥𝒦 so that 𝐹𝐸 ≃ 𝐺 as modules from 𝐹𝐴0 to 𝐹𝐴𝑛. The cocartesian cell 𝐹𝐸1
⨰ ⋯ ⨰

𝐹𝐸𝑛 ⇒ 𝐺 that witnesses the composition relation composes with the unary cell of this equivalence
to define a cocartesian cell 𝐹𝐸1

⨰ ⋯ ⨰ 𝐹𝐸𝑛 ⇒ 𝐹𝐸. By Theorem 11.1.6(iv), this lifts to an 𝑛-ary
cell 𝐸1

⨰ ⋯ ⨰ 𝐸𝑛 ⇒ 𝐸 in 𝕄od(𝒦). As we have just seen that cocartesianness of cells is reflected
by biequivalences 𝐹∶ 𝕄od(𝒦) ∼ 𝕄od(ℒ), this completes the proof that composites are created by
cosmological biequivalences. �

The upshot of Theorem 11.1.6, and the reason that we consider this as a proof of the model
independence of∞-category theory, is that any statement about∞-categories that can be encoded in
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the “language of virtual equipments” is invariant under change of model. Our experience gives us some
informal understanding of this language. It includes statements that characterize an∞-category up
to equivalence (such as a comma or arrow∞-category) or a functor up to natural isomorphism (such
as a left or right adjoint). Other model independent statements are those which are expressible as an
equivalence between modules (such as results concerning the left or right representability of modules)
or in terms of the existence of a cell between modules with certain properties (such as in the case of
pointwise extensions). But as we shall discover, this model independent language can be described
much more formally by taking advantage of a logical framework that we now introduce.

Exercises.

11.1.i. Exercise. Pick your favorite ∞-categorical notion and give an ad hoc proof of its model
independence. Compare this with a proof using Theorem 11.1.6.

11.1.ii. Exercise. Prove Lemma 11.1.3.

11.1.iii. Exercise. Use Theorem 11.1.6 to prove a module-theoretic proof that cosmological biequiv-
alences preserve, reflect, and create pointwise right and left extensions, and compare this argument
with the proof of Proposition 10.3.8.

11.1.iv. Exercise. Prove that cosmological biequivalences between cartesian closed∞-cosmoi preserve
and reflect initial and final functors.

11.2. First-Order Logic with Dependent Sorts

There is an important caveat to the invariance of∞-category theory under change of model. After
passing from a complete Segal space to its underlying quasi-category and then back

𝒞𝒮𝒮 𝒬𝒞𝑎𝑡 𝒞𝒮𝒮∼(−)0 ∼nerve

the resulting complete Segal space is equivalent, but likely not equal to the original one. But even in the
classical strict case, not every statement about 1-categories is invariant under equivalence: “this category
has a single object” is a famous counterexample. Similarly, not every statement about 2-categories
is invariant under biequivalence. Consider, for instance, the statement that Proposition 1.4.5 proves
for homotopy 2-categories: “this 2-category has a 2-terminal object.” If 𝐹∶ 𝒞 ∼ 𝒟 is a biequivalence
between 2-categories and𝒟 has a 2-terminal object 𝑡, then by essential surjectivity there is an 𝑠 ∈ 𝒞 so
that 𝐹𝑠 ≃ 𝑡 in𝒟. But the local equivalence property only supplies an equivalence

𝒞(𝑐, 𝑠) ≃ 𝒟(𝐹𝑐, 𝐹𝑠) ≃ 𝒟(𝐹𝑐, 𝑡) ≅ 1,
making 𝑠 into a biterminal object but not necessarily a 2-terminal object.

The Model Independence Theorem 11.1.6 supplies a biequivalence between the virtual equipments
of modules defined for any pair of biequivalent∞-cosmoi. Since the important statements about∞-
categories can be expressed as properties of the virtual equipment, this biequivalence gives a mechanism
by which results proven with one model of∞-categories can be transferred to another model. But how
can we be sure when a statement about∞-categories that has been expressed in the language of virtual
equipments is in fact invariant under a biequivalence of virtual equipments?

This sort of problem has a long history. Blanc [18] and Freyd [43] characterize the properties of
ordinary categories that are invariant under equivalence of categories (see also Preller [92]). Makkai’s
FOLDS was developed to extend these results to higher categorical structures, such as 2-categories and
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bicategories [82]. In future work, we hope to provide a complete characterization of the statements
about ∞-categories that are invariant under biequivalence of ∞-cosmoi,² but our present aim is a
result that is arguably more useful and much more easily obtained. In this section, we sketch the key
ideas behind Makkai’s FOLDS framework; all the main concepts and results that follow are due to him,
though we have made a few minor modifications in the definitions and depart somewhat in notation
and terminology, taking inspiration from conversations with Henry [52]. In §11.3, we apply this work
to prove that any statement that can be expressed in the language of virtual equipments – a specialization
of Makkai’s formal language to a signature we introduce in 11.3.2 – gives rise to a model independent
statement about∞-categories.

Makkai’s FOLDS provides a formal language for writing mathematical sentences whose variables are
structured according to a given signature. As the name suggests, sentences in FOLDS closely resemble
the sentences of first-order logic, with an important new ingredient. Each variable is typed to belong to
a specific sort and these sorts may depend on a finite family of compatibly defined variables belonging
to other sorts of lower degree. Universal and existential quantification is defined only over the variables
of a single sort at a time, and the formula being quantified cannot contain any variables that depend
on the variable being quantified over. Finally, relations, such as equality, are only permitted on the
maximal sorts. For example, in the language of categories it is permissible to write “for all objects 𝑥
and 𝑦 and for all arrows 𝑓 and 𝑔 from 𝑥 to 𝑦, 𝑓 equals 𝑔,” asserting that the category is a pre-order. But
it is not permissible to write “there exists an object 𝑥 so that for all arrows ℎ, ℎ equals 1𝑥” – asserting
that the category is the terminal category – since the equality relation ranges over all arrows, rather
than over the a single specified hom-set.

Before we introduce the FOLDS language, we must describe its signatures.

11.2.1. Definition. A simple inverse category is an inverse category ℐ (see Definition C.1.16) with
“finite fan-out,” meaning each object is the domain of only finitely many arrows. The objects of such
categories can be assigned canonical degrees by examining the graph of nonidentity arrows:

• objects which are not domains of any (nonidentity) arrow have degree 0, while
• an object for which every (nonidentity) “outgoing arrow” has codomain of degree 0 is assigned

degree 1, and continuing inductively,
• any object is assigned the minimal degree that exceeds the degree of the codomain of each of its
(nonidentity) outgoing arrows.

This defines a canonical identity-reflecting functor deg ∶ ℐ → 𝝎op.

An object in a simple inverse category is maximal if it is not the codomain of any nonidentity
arrow.

11.2.2. Definition. A FOLDS signature is a simple inverse category with a distinguished (possibly
empty) set of maximal objects called “relation symbols.” The remaining objects are referred to as
“kinds.”

Each nonidentity arrow in a FOLDS signature indicates some dependency of a kind or relation
symbol on other kinds, while commutativity conditions in the category encode compatibility conditions
among the dependencies. In what follows, we indicate the relation symbols with a dot “ ̇ ”.

²Note our sought-for result is more similar to Makkai’s result about bicategories than Blanc and Freyd’s result about
1-categories, since our concern has to do with invariance change of model of higher categories rather than with invariance
under equivalence between∞-categories in a given model.
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11.2.3. Example. The FOLDS signature ℐ𝒞𝑎𝑡 for categories has kinds for the objects and arrows

̇𝐼 �̇� �̇�

𝐴

𝑂

𝑖 ℓ 𝑟 𝑐 ℓ𝑟

𝑡𝑠

with the composition relations

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑟
𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑡 ⋅ 𝑟
𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟

In this instance, every maximal object is a relation symbol. The unary relation symbol ̇𝐼 encodes identity
arrows, while �̇� witnesses ternary composition relations, and �̇� expresses the equality of parallel arrows.

11.2.4. Example. The FOLDS signature ℐ2-𝒞𝑎𝑡 for 2-categories has kinds for the 0-, 1-, and 2-cells,
as well as for identity 1-cells and composition of 1-cells. In addition there are relation symbols for
equality of parallel 2-cells, identity 2-cells, and vertical and horizontal composition of 2-cells:

�̇� �̇�

�̇� 𝐶2 ̇𝐼2

𝑇 𝐶1 𝐼1

𝐶0

ℓ 𝑟 𝑐 ℓ𝑟

ℓ
𝑟
𝑐

𝑡𝑠 𝑡𝑠

𝑖

ℓ
𝑟
𝑐

𝑡𝑠

𝑖

The inverse category ℐ2-𝒞𝑎𝑡 has the relations from the underlying 1-category

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟,
globularity relations

𝑠 ⋅ 𝑠 = 𝑠 ⋅ 𝑡 𝑡 ⋅ 𝑠 = 𝑡 ⋅ 𝑡,
relations governing vertical composition, identities, and equality between parallel 2-cells

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑟
𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑡 ⋅ 𝑟
𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟

plus relations relating horizontal composition to composition of 1-cells

𝑠 ⋅ ℓ = ℓ ⋅ 𝑠 𝑠 ⋅ 𝑟 = 𝑟 ⋅ 𝑠 𝑠 ⋅ 𝑐 = 𝑐 ⋅ 𝑠
𝑡 ⋅ ℓ = ℓ ⋅ 𝑡 𝑡 ⋅ 𝑟 = 𝑟 ⋅ 𝑡 𝑡 ⋅ 𝑐 = 𝑐 ⋅ 𝑡.
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11.2.5. Definition. For a given FOLDS signature ℐ, an ℐ-structure is a functorΜ∶ ℐ → 𝒮𝑒𝑡 so that
for each relation symbol �̇� ∈ ℐ, the map induced by the family of nonidentity arrows with domain �̇�
is a monomorphism.³

Μ�̇� ∏
𝑝∶ �̇�

≠
→𝐾𝑝

Μ𝐾𝑝

11.2.6. Example. Consider the functor 𝐷𝒞𝑎𝑡 ∶ ℐ
op
𝒞𝑎𝑡 → 𝒞𝑎𝑡 whose image is given by

𝟙 𝟛 𝟚

𝟚

𝟙

! 𝛿1𝛿0𝛿2
id

id

0 1

Mapping out of𝐷𝒞𝑎𝑡 defines a functorΜ− ∶ 𝒞𝑎𝑡 → 𝒮𝑒𝑡ℐ𝒞𝑎𝑡 whose image lies in the full subcategory of
ℐ𝒞𝑎𝑡-structures.⁴ For any small 1-category 𝐶,Μ𝐶𝑂 is the set of objects andΜ𝐶𝐴 is the set of arrows,
withΜ𝐶 ̇𝐼,Μ𝐶�̇�, andΜ𝐶�̇� encoding the relations that detect identity arrows, commutative triangles,
and equality between parallel arrows, respectively.

11.2.7. Example. Consider the functors 𝐸2-𝒞𝑎𝑡, 𝐷2-𝒞𝑎𝑡 ∶ ℐ
op
2-𝒞𝑎𝑡 → 2-𝒞𝑎𝑡 defined by

Σ[𝟛] Σ[𝟚] Σ[𝟛] Σ[𝟚]

ℍ= Σ[𝟚] 𝟚 ℍ≅ Σ[𝟚] 𝟚

𝟛 𝟚 𝟙 𝕋 𝟚 𝔸

𝟙 𝟙

where

𝕋 ≔
•

• •
≅ , 𝔸 ≔ • ≅ , Σ𝟚 ≔ • •⇓ , Σ[𝟛] ≔ • •

⇓

⇓
,

ℍ= ≔ • • •⇓ ⇓ , and ℍ≅ ≔ • • •
≅

≅

⇓ ⇓

³An alternate, and arguably more useful, way to state this condition is to require that the components of the matching
maps of Observation 11.2.8 for the relation symbols are monomorphisms (see Exercise 11.2.i.)

⁴This follows because the latching maps (see Definition C.4.14) for the diagram 𝐷𝒞𝑎𝑡 at the objects ̇𝐼, �̇�, and �̇� each
define epimorphisms, surjective functors of categories.
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are the free 2-categories generated by the depicted data. The diagram 𝐷2-𝒞𝑎𝑡 can be understood as a
Reedy cofibrant replacement of 𝐸2-𝒞𝑎𝑡 relative to Lack’s model structure for 2-categories (see Theorem
C.5.14), in which the cofibrations are the 2-functors that are injective on objects and 1-cells and the
trivial fibrations are the surjective equivalences [71].

Mapping out of 𝐸2-𝒞𝑎𝑡 or out of𝐷2-𝒞𝑎𝑡 defines functorsΝ−,Μ− ∶ 2-𝒞𝑎𝑡 → 𝒮𝑒𝑡ℐ2-𝒞𝑎𝑡 whose images
lie in the full subcategory of ℐ2-𝒞𝑎𝑡-structures.⁵ We refer toΜ𝒞 as the “saturated” ℐ2-𝒞𝑎𝑡-structure and
Ν𝒞 as the “naïve” ℐ2-𝒞𝑎𝑡-structure associated to a 2-category 𝒞.

11.2.8. Observation (the fibers of the matching map). For each ℐ-structureΜ∶ ℐ → 𝒮𝑒𝑡 and object
𝐾 ∈ ℐ, either a kind or a relation symbol, there is a canonical matching map

Μ𝐾 ∏
𝑝∶ 𝐾

≠
→𝐾𝑝

Μ𝐾𝑝

𝜕𝐾Μ ≔ lim
𝑝∶ 𝐾

≠
→𝐾𝑝

Μ𝐾𝑝
𝑚𝐾

whose codomain is the matching object defined in Observation C.1.18. Note both the limit and the
product are over nonidentity arrows with domain𝐾, an implicit condition in similar constructions that
follow. We think of an ℐ-structureΜ as a structured set in which each setΜ𝐾 is further partitioned
into the fibers of the matching map 𝑚𝑘 ∶ Μ𝐾 → 𝜕𝐾Μ.

We now describe Makkai’s “dependent sorts,” which are defined together with their variables by
mutual recursion. The variables can be introduced purely syntactically, but we find it more intuitive to
think of them as belonging to a context, this being an ℐ-structure Γ in which the sets Γ𝐾 associated to
each kind 𝐾 ∈ ℐ are disjoint.

11.2.9. Definition (sorts and their variables). Fix a FOLDS signature ℐ and a context Γ∶ ℐ → 𝒮𝑒𝑡.
• Each kind 𝐾 of degree zero defines a sort, also denoted by 𝐾, whose variables are the elements of

the set Γ𝐾. Write “𝑥 ∶ 𝐾” to mean that 𝑥 ∈ Γ𝐾, i.e., that 𝑥 is a variable belonging to the sort 𝐾 in
context Γ.

• For each kind 𝐾 of degree one, the matching map 𝑚𝐾 takes the form displayed below-right, where
the product is over arrows in ℐ with domain 𝐾 and codomain of degree zero. For any family of
variables {𝑥𝑝 ∶ 𝐾𝑝}𝑝∶ 𝐾 ≠

→𝐾𝑝
, there is a sort 𝐾⟨𝑥𝑝⟩ whose variables are the elements of the fiber

Γ𝐾⟨𝑥𝑝⟩ Γ𝐾

1 ∏
𝑝∶ 𝐾

≠
→𝐾𝑝

Γ𝐾𝑝

𝑚𝐾

⟨𝑥𝑝⟩

and are said to depend on the variables 𝑥𝑝 ∶ 𝐾𝑝.
• For a kind 𝐾 of higher degree, a family of variables {𝑥𝑝 ∶ 𝐾𝑝⟨𝑥𝑞𝑝⟩}𝑝∶ 𝐾 ≠

→𝐾𝑝
is compatible if ⟨𝑥𝑝⟩ ∈

∏
𝑝∶ 𝐾

≠
→𝐾𝑝

Γ𝐾𝑝 belongs to the matching object 𝜕𝐾Γ. In practice, this means that the higher degree

variables in the list depend on the lower degree ones in the way prescribed by the dependency

⁵Again, the latching maps for each diagram at all four of the relation symbols are epimorphisms.
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relations in the FOLDS signature. For any compatible family of variables, there is a sort 𝐾⟨𝑥𝑝⟩
whose variables are the elements of the fiber of the matching map 𝑚𝐾 over ⟨𝑥𝑝⟩ ∈ 𝜕𝐾Γ.

Γ𝐾⟨𝑥𝑝⟩ Γ𝐾

1 𝜕𝐾Γ

𝑚𝐾

⟨𝑥𝑝⟩

By convention, the only variables that are explicitly listed in the specification of a sort are those
of highest degree; the lower-degree variables that these variables depend on can be deduced from the
sorts to which the highest degree variables belong.

11.2.10. Example. For the FOLDS signature ℐ𝒞𝑎𝑡:

• There is a sort 𝑂.
• There is a sort 𝐴⟨𝑥, 𝑦⟩ for any pair of variables 𝑥, 𝑦 ∶ 𝑂.

11.2.11. Example. For the FOLDS signature ℐ2-𝒞𝑎𝑡:

• There is a sort 𝐶0.
• There is a sort 𝐶1⟨𝑥, 𝑦⟩ for any pair of variables 𝑥, 𝑦 ∶ 𝐶0.
• There is a sort𝐶2⟨𝑥, 𝑦, 𝑓 , 𝑔⟩ for any 𝑥, 𝑦 ∶ 𝐶0 and 𝑓 , 𝑔 ∶ 𝐶1⟨𝑥, 𝑦⟩. This sort is typically abbreviated

by 𝐶2⟨𝑓 , 𝑔⟩ with the implicit variables 𝑥, 𝑦 ∶ 𝐶0 inferable from the sort in which the variables 𝑓
and 𝑔 live.

Using the same abbreviations:

• There is a sort 𝐼1⟨𝑓 ⟩ for any 𝑥 ∶ 𝐶0 and 𝑓 ∶ 𝐶1⟨𝑥, 𝑥⟩.
• There is a sort 𝑇⟨𝑓 , 𝑔, ℎ⟩ for any 𝑥, 𝑦, 𝑧 ∶ 𝐶0 and 𝑓 ∶ 𝐶1⟨𝑥, 𝑦⟩, 𝑔 ∶ 𝐶1⟨𝑦, 𝑧⟩, and ℎ ∶ 𝐶1(𝑥, 𝑧⟩.
We are now prepared to introduce the formulas and sentences of the formal language associated to

a FOLDS signature ℐ. These are defined by recursion starting from the atomic formulae, which are
governed by the relation symbols. Again, we fix a FOLDS signature ℐ and a context Γ∶ ℐ → 𝒮𝑒𝑡.
11.2.12. Definition. An atomic formula in the logic with dependent sorts is an entity of the form
�̇�⟨𝑥𝑝⟩, where �̇� is a relation symbol and the variables {𝑥𝑝 ∶ 𝐾𝑝⟨𝑥𝑞𝑝⟩}𝑝∶ �̇� ≠

→𝐾𝑝
must define a compatible

family, meaning that they define an element ⟨𝑥𝑝⟩ ∈ 𝜕�̇�Γ.

11.2.13. Example. In the FOLDS signature ℐ𝒞𝑎𝑡, there is an atomic formula �̇�⟨𝑥, 𝑦, 𝑧, 𝑓 , 𝑔, ℎ⟩, abbrevi-
ated �̇�⟨𝑓 , 𝑔, ℎ⟩, for any 𝑥, 𝑦, 𝑧 ∶ 𝑂 and 𝑓 ∶ 𝐴⟨𝑥, 𝑦⟩, 𝑔 ∶ 𝐴⟨𝑦, 𝑧⟩, and ℎ ∶ 𝐴⟨𝑥, 𝑧⟩, which can be thought
of as asserting the commutativity of the triangle formed by the arrows 𝑓, 𝑔, and ℎ.
11.2.14. Digression. A key idea in the FOLDS philosophy is that it should express a logic with restricted
equality. This is visible in the FOLDS signaturesℐ𝒞𝑎𝑡 andℐ2-𝒞𝑎𝑡, which include binary equality relation
symbols on the kinds 𝐴 and 𝐶2, but no similar equality predicates on the kinds 𝑂, 𝐶0, and 𝐶1 on
which these depend. More precisely, the atomic formulae �̇�⟨𝑓 , 𝑔⟩ for ℐ𝒞𝑎𝑡 and �̇�⟨𝛼, 𝛽⟩ for ℐ2-𝒞𝑎𝑡 may
be used to express the equality of a parallel pair of arrows, since compatibility requires 𝑓 , 𝑔 ∶ 𝐴⟨𝑥, 𝑦⟩
for some 𝑥, 𝑦 ∶ 𝑂, or the equality of parallel 2-cells, since compatibility requires 𝛼, 𝛽 ∶ 𝐶1⟨𝑓 , 𝑔⟩ for
some 𝑓 , 𝑔 ∶ 𝐶1⟨𝑥, 𝑦⟩ and some 𝑥, 𝑦 ∶ 𝑂. This sort of restriction is essential for the main theorem: that
the validity of a sentence expressed in the FOLDS language for a given signature is invariant under
suitably defined equivalences between structures.
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In FOLDS, one can quantify either universally or existentially only over the variables in a specified
sort, provided the variables in the predicate under consideration do not depend on the variable being
quantified over.

11.2.15. Definition. Formulae 𝜙 and their sets of free variables var(𝜙) are defined by simultaneous
recursion:

• An atomic formula is a formula. The variables of �̇�⟨𝑥𝑝⟩ are the 𝑥𝑝.
Compound formulae are defined inductively from other formulae via the following procedures:

• ⊤,⊥ are formulae, with var(⊤) ≔ var(⊥) ≔ ∅.
• Formulae may be combined using the sentential connectives ∧, ∨, and →, in which case the
variables combine by unions: e.g., var(𝜙 ∧ 𝜓) = var(𝜙) ∪ var𝜓.

• When 𝜙 is a formula and 𝑥 is a variable so that no variable in var(𝜙) depends on 𝑥 – though
𝑥 ∈ var(𝜙) is permitted – then ∀𝑥𝜙 and ∃𝑥𝜙 are well-formed formulas⁶ whose variables are given
by the set

var(∀𝑥𝜙) ≔ var(∃𝑥𝜙) ≔ (var(𝜙) − {𝑥}) ∪ dep(𝑥)
formed by removing 𝑥 from the variables of 𝜙 if it appears and then adding all the variables on
which 𝑥 depends if they do not already appear.

When the set of variables in a formula is empty, we call the formula a sentence.

An evaluation of an ℐ-context Γ in an ℐ-structureΜ is given by a natural transformation 𝛼∶ Γ →
𝑀, which defines an interpretation of its variables, sending a variable 𝑥 ∶ 𝐾⟨𝑥𝑝⟩ to an element in

the fiber ofΜ𝐾 → 𝜕𝐾Μ over ⟨𝛼𝑥𝑝⟩. To interpret a particular formula 𝜙, it is not necessary to have
specified an interpretation of the full context Γ. It suffices to merely specify the interpretation of its
variables var(𝜙) ⊂ Γ, which may be regarded as a context in their own right (see Exercise 11.2.ii).

Inductively in the complexity of a formula, we define what it means for an ℐ-structureΜ to satisfy
a formula 𝜙 under a given interpretation of its variables 𝛼∶ var(𝜙) → 𝑀, a property we denote by
Μ ⊧ 𝜙[𝛼].

11.2.16. Definition. An ℐ-structure Μ satisfies an atomic formula �̇�⟨𝑥𝑝⟩ under an interpretation

𝛼 if and only if the tuple ⟨𝛼𝑥𝑝⟩ ∈ ∏
𝑝∶ �̇�→𝐾𝑝

Μ𝐾𝑝 lies in the subset Μ�̇�, in which case one writes

Μ ⊧ �̇�[𝛼].

The sentences ⊤ and ⊥ have no variables so their semantics are independent of interpretation.
Any ℐ-structure satisfies ⊤ and no ℐ-structure satisfies ⊥.

11.2.17. Definition. A ℐ-structure Μ satisfies compound formulas built from 𝜙 and 𝜓 under an
interpretation 𝛼∶ var(𝜙) ∪ var(𝜓) → 𝑀 according to the rules:

• Μ ⊧ (𝜙 ∧ 𝜓)[𝛼] if and only ifΜ ⊧ 𝜙[𝛼] andΜ ⊧ 𝜓[𝛼]
• Μ ⊧ (𝜙 ∨ 𝜓)[𝛼] if and only ifΜ ⊧ 𝜙[𝛼] orΜ ⊧ 𝜓[𝛼]
• Μ ⊧ (𝜙 → 𝜓)[𝛼] if and only if wheneverΜ ⊧ 𝜙[𝛼] then alsoΜ ⊧ 𝜓[𝛼].

11.2.18. Definition. Consider a formula ∀𝑥𝜙 where 𝑥 ∶ 𝐾⟨𝑥𝑝⟩ together with an interpretation

𝛼∶ var(∀𝑥𝜙) → 𝑀

⁶As we demonstrate in examples, the full syntax requires that each quantified variable is declared with its sort, which
expresses the range of the quantification.
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in an ℐ-structureΜ; note that 𝑥 ∉ var(∀𝑥𝜙) so this does not give an interpretation of the variable 𝑥
itself. We say thatΜ satisfies ∀𝑥𝜙 under the interpretation 𝛼 if for all 𝑎 in the fiber ofΜ𝐾 → 𝜕𝐾Μ
over ⟨𝛼𝑥𝑝⟩, Μ ⊧ 𝜙(𝑎/𝑥)[𝛼]. That is, Μ ⊧ ∀𝑥𝜙[𝛼] if any 𝑎 with appropriate dependencies can be
substituted for 𝑥 in the interpretation of 𝜙 to yield a formula thatΜ satisfies.

SimilarlyΜ satisfies ∃𝑥𝜙 under the interpretation 𝛼 if there is some 𝑎 in the fiber ofΜ𝐾 → 𝜕𝐾Μ
over ⟨𝛼𝑥𝑝⟩, so thatΜ ⊧ 𝜙(𝑎/𝑥)[𝛼]. That is,Μ ⊧ ∃𝑥𝜙[𝛼] if some 𝑎 with appropriate dependencies can
be substituted for 𝑥 in the interpretation of 𝜙 to yield a formula thatΜ satisfies.

11.2.19. Example. In the language for ℐ𝒞𝑎𝑡, in the context given by 𝑥, 𝑦 ∶ 𝑂, the formula

∃𝑓 ∶ 𝐴⟨𝑥, 𝑦⟩, ∃𝑔 ∶ 𝐴⟨𝑦, 𝑥⟩, ∀1𝑥 ∶ 𝐴⟨𝑥, 𝑥⟩, ∀1𝑦 ∶ 𝐴⟨𝑦, 𝑦⟩, ( ̇𝐼⟨1𝑥⟩∧ ̇𝐼⟨1𝑦⟩)→(�̇�⟨𝑓 , 𝑔, 1𝑥⟩∧�̇�⟨𝑔, 𝑓 , 1𝑦⟩)
asserts the existence of an isomorphism between two objects specified by an interpretation.

11.2.20. Example. Modulo a change in notation, there is a similar sentence in the language for ℐ2-𝒞𝑎𝑡
in the context given by 𝑥, 𝑦 ∶ 𝐶0:

∃𝑓 ∶ 𝐶1⟨𝑥, 𝑦⟩, ∃𝑔 ∶ 𝐶1⟨𝑦, 𝑥⟩, ∀1𝑥 ∶ 𝐶1⟨𝑥, 𝑥⟩, ∀1𝑦 ∶ 𝐶1⟨𝑦, 𝑦⟩,
∀𝜇 ∶ 𝐼1⟨1𝑥⟩, ∀𝜈 ∶ 𝐼1⟨1𝑦⟩, ∃𝛼 ∶ 𝑇⟨𝑓 , 𝑔, 1𝑥⟩ ∧ ∃𝛽 ∶ 𝑇⟨𝑔, 𝑓 , 1𝑦⟩

where “∃𝛼 ∶ 𝑇⟨𝑓 , 𝑔, 1𝑥⟩” is shorthand for the formula “∃𝛼 ∶ 𝑇⟨𝑓 , 𝑔, 1𝑥⟩.⊤.”
In the naïve ℐ2-𝒞𝑎𝑡-structure Ν𝒞 associated to a 2-category 𝒞, the interpretation again gives

an isomorphism between the specified objects, but in the saturated ℐ2-𝒞𝑎𝑡-structure Μ𝒞 defined
in Example 11.2.7, the interpretation now gives an equivalence. By the construction of Example
11.2.27, formulae in the language of 2-categories that are interpreted in the ℐ2-𝒞𝑎𝑡-structuresΜ𝒞 are
invariant under biequivalence of 2-categories, though this result does not necessarily hold when they
are interpreted in the naïve ℐ2-𝒞𝑎𝑡-structuresΝ𝒞 (see Exercise 11.2.vi and Digression B.1.7).

We now give a criterion under which two ℐ-structures are guaranteed to satisfy the same formulas.

11.2.21. Definition. A natural transformation 𝜌∶ Μ → Ν of ℐ-structures is fiberwise surjective if
for each 𝐾 ∈ ℐ, either a relation symbol or a kind, the map to the pullback

Μ𝐾 Ν𝐾
•

𝜕𝐾Μ 𝜕𝐾Ν

𝜌𝐾

𝑚𝐾 𝑚𝐾

𝜕𝐾𝜌

(11.2.22)

in the “matching square” for 𝐾 is an epimorphism.

In the terminology of §C.5, the fiberwise surjective maps are exactly those natural transformations
that define Reedy epimorphisms, i.e., for which the relative matching maps (11.2.22) are epimorphisms.

11.2.23. Lemma. Let 𝜌∶ Μ → Ν be fiberwise surjection between ℐ-structures. Then for each relation symbol
�̇�, the matching square is a pullback:

Μ�̇� Ν�̇�

𝜕�̇�Μ 𝜕�̇�Ν

𝑚�̇�

𝜌�̇�

𝑚�̇�

𝜕�̇�𝜌
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Proof. Since Μ and Ν are ℐ-structures, the matching maps for the relation symbols of ℐ are
monomorphisms (see Exercise 11.2.i). Thus, the induced map to the pullback is a monomorphism and
by the fiberwise surjectivity hypothesis also an epimorphism. Thus, this map is an isomorphism in the
category of sets, and so the square is a pullback. �

Recall the structures constructed in Examples 11.2.6 and 11.2.7.

11.2.24. Lemma.

(i) A surjective equivalence of categories 𝒞 ∼ 𝒟 induces a fiberwise surjectionΜ𝒞 ↠ Μ𝒟 of ℐ𝒞𝑎𝑡-
structures.

(ii) A surjective biequivalence of 2-categories 𝒞 ∼ 𝒟 induces a fiberwise surjection Μ𝒞 ↠ Μ𝒟 of
ℐ2-𝒞𝑎𝑡-structures.

Proof. The two statements are special cases of a more general result and thus have a common
proof [52]. On both 𝒞𝑎𝑡 and 2-𝒞𝑎𝑡 there is a (cofibration, trivial fibration) weak factorization systems
whose trivial fibrations are the surjective bi/equivalences referred to in the statement. The structures
are defined by applying the hom bifunctors

(𝒞𝑎𝑡ℐ
op
𝒞𝑎𝑡)op × 𝒞𝑎𝑡 𝒮𝑒𝑡ℐ𝒞𝑎𝑡 (2-𝒞𝑎𝑡ℐ

op
2-𝒞𝑎𝑡)op × 2-𝒞𝑎𝑡 𝒮𝑒𝑡ℐ2-𝒞𝑎𝑡hom hom

to diagrams 𝐷𝒞𝑎𝑡 and 𝐷2-𝒞𝑎𝑡 that are Reedy cofibrant. By Lemma C.2.11 and Corollary C.5.16, these
are right Leibniz bifunctors with respect to the Reedy weak factorization systems built from any weak
factorization system on 𝒞𝑎𝑡 and 2-𝒞𝑎𝑡 and the (monomorphism, epimorphism) weak factorization
system on 𝒮𝑒𝑡, since they are the right adjoints in a two-variable adjunction involving the (unenriched)

weighted colimit bifunctor. Consequently, the functors Μ− ∶ 𝒞𝑎𝑡 → 𝒮𝑒𝑡ℐ𝒞𝑎𝑡 and Μ− ∶ 2-𝒞𝑎𝑡 →
𝒮𝑒𝑡ℐ2-𝒞𝑎𝑡 carry trivial fibrations, i.e., surjective bi/equivalences, to Reedy epimorphisms, i.e., fiberwise
surjections. �

11.2.25. Definition. Let ℐ be a FOLDS signature and let Γ∶ ℐ → 𝒮𝑒𝑡 be a context with given
interpretations 𝛼∶ Γ → Μ and 𝛽∶ Γ → Ν in ℐ-structures Μ,Ν∶ ℐ → 𝒮𝑒𝑡. The ℐ-structures Μ
and Ν are ℐ-equivalent in context Γ, denoted Μ ≃Γ

ℐ Ν, just when there is a diagram of fiberwise
surjections 𝜎 and 𝜌 between ℐ-structures under Γ

Γ

Μ Ν

Ρ

𝛼 𝛽

𝛾

𝜎 𝜌

The relation ℐ-equivalent in context Γ is manifestly reflexive and symmetric. In fact, it is also
transitive, as the reader may verify in Exercise 11.2.v.

11.2.26. Example. Consider an equivalence of categories 𝑓 ∶ 𝐶 ∼ 𝐷 and form the iso-comma category
of Definition 6.2.10 by the pullback.

𝐷 ⨰
𝐷
𝐶 𝐷𝕀

𝐷 × 𝐶 𝐷 ×𝐷

(𝑞1,𝑞0) (𝑞1,𝑞0)

id×𝑓
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Since 𝑓 is an equivalence of categories, the functors 𝐷
𝑞1 𝐷 ⨰

𝐷
𝐶

𝑞0 𝐶 are surjective equivalences.

It follows from Lemma 11.2.24 that the corresponding natural transformations between the naïve
ℐ𝒞𝑎𝑡-structures of Example 11.2.6 are fiberwise surjections

Μ𝐷⨰
𝐷
𝐶

Μ𝐶 Μ𝐷

𝑞0 𝑞1

defining an ℐ𝒞𝑎𝑡-equivalence betweenΜ𝐶 andΜ𝐷.

11.2.27. Example. Consider a biequivalence of 2-categories 𝐹∶ 𝒞 → 𝒟 and form the pseudo-comma
2-category 𝒫 whose

• objects are triples (𝑥 ∈ 𝒞, 𝑥′ ∈ 𝒟, 𝑎 ∶ 𝐹𝑥 ∼ 𝑥′ ∈ 𝒟) with 𝑎 an equivalence in𝒟,
• 1-cells (𝑥, 𝑥′, 𝑎) → (𝑦, 𝑦′, 𝑏) are triples

⎛
⎜
⎜
⎜
⎜
⎝

𝑥

𝑦
𝑓 ∈ 𝒞,

𝑥′

𝑦′
𝑓 ′ ∈ 𝒟,

𝐹𝑥 𝑥′

𝐹𝑦 𝑦′

∼𝑎

𝐹𝑓 ≅𝛼 𝑓 ′

∼
𝑏

∈ 𝒟

⎞
⎟
⎟
⎟
⎟
⎠

• 2-cells (𝑓 , 𝑓 ′, 𝛼) ⇒ (𝑔, 𝑔′, 𝛽) are given by a pair (𝛾 ∶ 𝑓 ⇒ 𝑔 ∈ 𝒞, 𝛿 ∶ 𝑓 ′ ⇒ 𝑔′ ∈ 𝒟) so that

𝐹𝑥 𝑥′ 𝐹𝑥 𝑥′

𝐹𝑦 𝑦′ 𝐹𝑦 𝑦′

𝐹𝑓 𝐹𝑔𝐹𝛾
⇒

∼𝑎

≅𝛽 𝑔′ = 𝐹𝑓 ≅𝛼

∼𝑎

𝑓 ′ 𝑔′𝛿
⇒

∼
𝑏

∼
𝑏

The evident projections 𝒞 ← 𝒫 → 𝒟 define surjective biequivalences – 2-functors that are surjective
on objects, full on 1-cells, and fully faithful on 2-cells – which by Lemma 11.2.24 induce fiberwise
surjective natural transformations between the saturated ℐ2-𝒞𝑎𝑡-structures of Example 11.2.7 defining
an ℐ2-𝒞𝑎𝑡-equivalence

Μ𝒫

Μ𝒞 Μ𝒟

𝜎 𝜌

Both of these constructions can be understood as instances of the Brown factorization C.1.6 applied
in the folk model structures on 𝒞𝑎𝑡 and on 2-𝒞𝑎𝑡. Our interest in these notions is on account of the
following theorem of Makkai:

11.2.28. Theorem. IfΜ andΝ are ℐ-equivalent in a context Γ

Γ

Μ Ν

Ρ

𝛼 𝛽

𝛾

𝜎 𝜌

thenΜ ⊧ 𝜙[𝛼] if and only ifΝ ⊧ 𝜙[𝛽] for all formulae 𝜙 with var(𝜙) ⊂ Γ.
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Proof. Since Ρ is itself an ℐ-structure with an interpretation 𝛾∶ Γ → Ρ of the variables defined
by the context, it suffices to show that for any fiberwise surjection 𝜎∶ Ρ → Μ then Ρ andΜ satisfy the
same formulas: Ρ ⊧ 𝜙[𝛾] if and only ifΜ ⊧ 𝜙[𝜎𝛾]. This is proven by an induction over the complexity
of the formula 𝜙.

For the base case, consider an atomic formula �̇�⟨𝑥𝑝⟩ with an interpretation 𝑥𝑝 ↦ 𝛾𝑥𝑝 in Ρ. From
the pullback of Lemma 11.2.23, ⟨𝛾𝑥𝑝⟩ ∈ 𝜕�̇�Ρ lies in Ρ�̇� if and only if ⟨𝜎𝛾𝑥𝑝⟩ ∈ 𝜕�̇�𝑀 lies inΜ�̇�. Thus
Ρ ⊧ �̇�[𝛾] if and only ifΜ ⊧ �̇�[𝜎𝛾].

Next consider the compound formulas 𝜙 ∧ 𝜓, 𝜙 ∨ 𝜓, and 𝜙 → 𝜓 built from 𝜙 and 𝜓. Under
the inductive hypothesis, we may assume that Ρ ⊧ 𝜙[𝛾] if and only ifΜ ⊧ 𝜙[𝜎𝛾] and similarly for 𝜓.
Now it follows immediately that Ρ ⊧ (𝜙 ∧ 𝜓)[𝛾] if and only if Μ ⊧ (𝜙 ∧ 𝜓)[𝜎𝛾] and similarly for
compound formulas 𝜙 ∨ 𝜓 and 𝜙 → 𝜓.

Finally, consider a formula of the form∀𝑥𝜙where 𝑥 ∶ 𝐾⟨𝑥𝑝⟩. The interpretation𝛾∶ var(∀𝑥𝜙) → Ρ
defines an element in the matching object ⟨𝛾𝑥𝑝⟩ ∈ 𝜕𝐾Ρ. The fiberwise surjectivity condition tells
us that the map from Ρ𝐾 to the pullback in the matching square for 𝐾 displayed below-right is a
surjection:

Ρ𝐾⟨𝛾𝑥𝑝⟩ Ρ𝐾 Μ𝐾

Μ𝐾⟨𝜎𝛾𝑥𝑝⟩ •

1 𝜕𝐾Ρ 𝜕𝐾Μ

𝜎𝐾

𝑚𝐾

⟨𝛾𝑥𝑝⟩ 𝜕𝐾𝜎

By composing pullbacks, it follows that we get a surjection from the fiber of Ρ𝐾 → 𝜕𝐾Ρ over ⟨𝛾𝑥𝑝⟩
to the fiber of Μ𝐾 → 𝜕𝐾𝑀 over ⟨𝜎𝛾𝑥𝑝⟩. In particular, if for all 𝑎 in the fiber of Ρ𝐾 → 𝜕𝐾Ρ,
Ρ ⊧ 𝜙(𝑎/𝑥)[𝛾], then by the inductive hypothesis Μ ⊧ 𝜙(𝜎𝑎/𝑥)[𝜎𝛾]. By fiberwise surjectivity, every
element 𝑏 in the fiber ofΜ𝐾 → 𝜕𝐾Μ equals 𝜎𝑎 for some 𝑎 in the fiber of Ρ𝐾 → 𝜕𝐾Ρ, so this tells us
Ρ ⊧ (∀𝑥𝜙)[𝛾] if and only ifΜ ⊧ (∀𝑥𝜙)[𝜎𝛾].

Similarly, for ∃𝑥𝜙, Ρ ⊧ (∃𝑥𝜙)[𝛾] if and only if there exists some 𝑎 in the fiber so that Ρ ⊧ 𝜙(𝑎/𝑥)[𝛾].
But this holds if and only ifΜ ⊧ 𝜙(𝜎𝑎/𝑥)[𝜎𝛾] and, by naturality of 𝜎, 𝜎𝑎 lives in the appropriate fiber.
So if Ρ ⊧ (∃𝑥𝜙)[𝛾] thenΜ ⊧ (∃𝑥𝜙)[𝜎𝛾]. Conversely ifΜ ⊧ (∃𝑥𝜙)[𝜎𝛾], then there is some 𝑏 in the
fiber ofΜ𝐾 ↠ 𝜕𝐾𝑀 over ⟨𝜎𝛾𝑥𝑝⟩ so thatΜ ⊧ 𝜙(𝑏/𝑥)[𝜎𝛾]. By fiberwise surjectivity, there is some 𝑎
in the fiber of Ρ𝐾 ↠ 𝜕𝐾Ρ over ⟨𝛾𝑥𝑝⟩ so that 𝜎𝑎 = 𝑏. By the inductive hypothesis Ρ ⊧ 𝜙(𝑎/𝑥)[𝛾] if
and only ifΜ ⊧ 𝜙(𝑏/𝑥)[𝜎𝛾], so we see that ifΜ ⊧ (∃𝑥𝜙)[𝜎𝛾] then Ρ ⊧ (∃𝑥𝜙)[𝛾]. �

11.2.29. Remark. An observation of Henry [52] provides a nice perspective on Makkai’s Theorem
11.2.28. Henry proves that the collection of formulae for a fixed FOLDS signature ℐ and define the
initial functor from the category of contexts for that signature to boolean algebras, with the property
that the restriction homomorphisms associated to display maps admit both left and right adjoints
(existential and universal quantification) satisfying the Beck–Chevalley condition. By taking powersets,
any ℐ-structure gives rise to a canonical functor from the category of contexts to boolean algebras,
and the unique map from the initial object sends a formula to the subset of interpretations of its free
variables that satisfy the formula. A map 𝜌 of ℐ-structures defines a natural transformation between
the corresponding boolean algebra valued functors – contravariantly, by reindexing – and this natural
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transformation respects the left and right adjoints if and only if 𝜌 is fiberwise surjective. Thus, by
initiality, we see that fiberwise surjections respect the interpretation of formulas.

Exercises.

11.2.i. Exercise. Let ℐ be a FOLDS signature with relation symbol �̇� ∈ ℐ and letΜ∶ ℐ → 𝒮𝑒𝑡 be
any functor. Prove that the map of Definition 11.2.5 is a monomorphism if and only if the matching
map of Observation C.1.18 is a monomorphism:

Μ�̇� ∏
𝑝∶ �̇�

≠
→𝐾𝑝

Μ𝐾𝑝

𝜕�̇�Μ ≔ lim
𝑝∶ �̇�

≠
→𝐾𝑝

Μ𝐾𝑝
𝑚�̇�

11.2.ii. Exercise.

(i) Show that if 𝜙 is any formula then var(𝜙) is closed under dependences: if 𝑥 ∈ var(𝜙) then
dep(𝑥) ⊂ var(𝜙).

(ii) Show that the variables var(𝜙) defined for a particular formula 𝜙 in context Γ define a subcon-
text var(𝜙) ⊂ Γ.

11.2.iii. Exercise. An object 𝑠 in a 2-category 𝒞 is biterminal if for every 𝑐 ∈ 𝒞, the hom-category
𝒞(𝑐, 𝑠) ≃ 𝟙 is a contractible groupoid. Write a sentence in the language of 2-categories that asserts
that the 2-category has a biterminal object.

11.2.iv. Exercise. Connect the result of Lemma 11.2.23 to the statement thatΜ ⊧ �̇�[𝛼] if and only if
Ν ⊧ �̇�[𝜌𝛼] for some interpretation 𝛼∶ Γ → Μ.

11.2.v. Exercise. Verify that the relation defined by Definition 11.2.25 is transitive by composing the
spans formed by the fiberwise surjections.

11.2.vi. Exercise. Use a sentence or formula along the lines considered in Example 11.2.20 and the
result of Theorem 11.2.28 to show that there exist biequivalent 2-categories 𝒞 and𝒟 so that the naïve
ℐ2-𝒞𝑎𝑡-structuresΝ𝒞 andΝ𝒟 are not ℐ2-𝒞𝑎𝑡-equivalent in an appropriate context.

11.3. A Language for Model Independent∞-Category Theory

Our aim in this section is to apply Makkai’s Theorem 11.2.28 to prove that statements about∞-
categories that are written in the language of virtual equipments, defined for a FOLDS signature ℐ𝒱ℰ
introduced in Definition 11.3.2, are invariant under change-of-model. Most of the complexity in the
simple inverse category ℐ𝒱ℰ is present already in the FOLDS signature for virtual double categories,
which we introduce first.
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11.3.1. Definition. The FOLDS signature ℐ𝑣𝒟𝑏𝑙𝒞𝑎𝑡 for virtual double categories has kinds for the
objects, vertical arrows, horizontal modules, and 𝑛-ary cells for each 𝑛 ≥ 0.

𝐶0 𝐶1 𝐶2 ⋯ 𝐶𝑛 ⋯

𝐴 𝑀

𝑂

𝑡𝑡

𝑟ℓ 𝑟ℓ 𝑡𝑠𝑟ℓ
𝑠2

𝑡𝑠1

𝑡

𝑠1
𝑠𝑛

⋱

𝑡𝑠 𝑡
𝑠

Each arrow and each module has a source object and target object. Each 𝑛-ary cell has a left boundary
arrow, a right boundary arrow, a target module, and 𝑛 source modules. The source and target objects
of this boundary data must be compatible in the way specified by the composition relations

𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑠1 𝑠 ⋅ 𝑟 = 𝑡 ⋅ 𝑠𝑛 𝑡 ⋅ 𝑠𝑘 = 𝑠 ⋅ 𝑠𝑘+1, 1 ≤ 𝑘 < 𝑛
𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑡 𝑡 ⋅ 𝑟 = 𝑡 ⋅ 𝑡

in the case 𝑛 ≥ 1.⁷
Two further kinds 𝐼𝐴 and 𝑇 parametrize identity vertical arrows and composition of vertical arrows

with the composition relations from the signature for 1-categories:

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 𝑠 ⋅ 𝑐 = 𝑠 ⋅ ℓ 𝑡 ⋅ 𝑐 = 𝑡 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑠 ⋅ 𝑟
Each sort of 𝑛-ary cells supports a binary equality relation:

̇𝐸0 ̇𝐸1 ̇𝐸2 ̇𝐸𝑛

̇𝐼𝐶

𝐶0 𝐶1 𝐶2 ⋯ 𝐶𝑛

𝐼𝐴

𝑇 𝐴 𝑀

𝑂

𝑟ℓ 𝑟ℓ 𝑟ℓ 𝑟ℓ

𝑖
ℓ 𝑟

𝑡𝑡

𝑟ℓ 𝑟ℓ 𝑡𝑠𝑟ℓ
𝑠2

𝑡𝑠1

𝑡

𝑠1
𝑠𝑛

⋱

𝑖

ℓ
𝑟
𝑐

𝑡𝑠 𝑡
𝑠

satisfying equations that demand that equal cells must have the same boundary type:

ℓ ⋅ ℓ = ℓ ⋅ 𝑟 𝑟 ⋅ ℓ = 𝑟 ⋅ 𝑟 𝑡 ⋅ ℓ = 𝑡 ⋅ 𝑟 𝑠𝑘 ⋅ ℓ = 𝑠𝑘 ⋅ 𝑟

⁷For nullary cells, the relation 𝑠 ⋅ ℓ = 𝑠 ⋅ 𝑟 replaces the relations involving the absent source modules.
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In addition, in a virtual double category, each module has a specified unary identity cell whose vertical
sources and targets are identity arrows. The relation symbol ̇𝐼𝐶 satisfies the composition relation

𝑠 ⋅ 𝑖 = 𝑡 ⋅ 𝑖 ℓ ⋅ 𝑖 = 𝑖 ⋅ ℓ 𝑟 ⋅ 𝑖 = 𝑖 ⋅ 𝑟
which require that the source and target modules coincide and the left and right vertical arrows are
identities.

Finally, for each partition 𝑛1 +⋯+ 𝑛𝑘 = 𝑛 there is a (𝑘 + 4)-ary relation symbols �̇�𝑛1,…,𝑛𝑘 with
the indicated dependencies:

�̇�𝑛1,…,𝑛𝑘

𝐶𝑛1 𝐶𝑛2 ⋯ 𝐶𝑛𝑘 𝐶𝑘 𝐶𝑛

𝑇

𝐴 𝑀

ℓ 𝑟

𝑠1 𝑠2 𝑠𝑘 𝑡
𝑐

⋱

ℓ 𝑟 ℓ 𝑟

⋱

𝑟ℓ

𝑡
𝑠1

𝑠𝑛𝑘⋱

ℓ𝑟
𝑡

𝑠1 𝑠𝑘⋯
ℓ 𝑟

𝑡𝑠1 𝑠𝑛⋱
ℓ𝑟 𝑐

satisfying the composition relations

𝑠𝑖 ⋅ 𝑠𝑗 = 𝑠𝑛1+⋯+𝑛𝑗−1+𝑖 ⋅ 𝑐 ℓ ⋅ ℓ = ℓ ⋅ 𝑠1 ℓ ⋅ 𝑟 = 𝑟 ⋅ 𝑠𝑘 𝑟 ⋅ 𝑠𝑗 = ℓ ⋅ 𝑠𝑗+1
𝑡 ⋅ 𝑠𝑗 = 𝑠𝑗 ⋅ 𝑡 𝑟 ⋅ ℓ = ℓ ⋅ 𝑡 𝑟 ⋅ 𝑟 = 𝑟 ⋅ 𝑡
𝑡 ⋅ 𝑡 = 𝑡 ⋅ 𝑐 𝑐 ⋅ ℓ = ℓ ⋅ 𝑐 𝑐 ⋅ 𝑟 = 𝑟 ⋅ 𝑐

Here �̇�𝑛1,…,𝑛𝑘 is the relation that witnesses that a given 𝑛-cell is a composite of 𝑘 specified source cells
with arities 𝑛1, … , 𝑛𝑘 into a given target 𝑘-cell. Such a composition depends also on the specification
of left and right commutative triangles of vertical arrows.

11.3.2. Definition. The FOLDS signature for a virtual equipment ℐ𝒱ℰ extends the FOLDS signature
for virtual double categories with two additional unary relation symbols �̇� and �̇� identifying the
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nullary unit modules and unary restriction modules:

̇𝐸0 ̇𝐸1 ̇𝐸2 ̇𝐸𝑛

�̇� ̇𝐼𝐶 �̇�

𝐶0 𝐶1 𝐶2 ⋯ 𝐶𝑛

𝐼𝐴

𝑇 𝐴 𝑀

𝑂

𝑟ℓ 𝑟ℓ 𝑟ℓ 𝑟ℓ

𝑜

𝜄 𝑖
ℓ 𝑟 𝜌

𝑡𝑡

𝑟ℓ 𝑟ℓ 𝑡𝑠𝑟ℓ
𝑠2

𝑡𝑠1

𝑡

𝑠1
𝑠𝑛

⋱

𝑖

ℓ
𝑟
𝑐

𝑡𝑠 𝑡
𝑠

The left and right vertical arrows of a unit module are identities on the same object, as expressed by
the composition relations

ℓ ⋅ 𝜄 = 𝑖 ⋅ 𝑜 = 𝑟 ⋅ 𝜄.
There are no composition relations imposed on the boundary of the unary restriction cell. This data
comprises the FOLDS signature for virtual equipments a la Cruttwell and Shulman.

Any virtual equipment defines an ℐ𝒱ℰ-structure in a naïve manner, with the functor ℐ𝒱ℰ → 𝒮𝑒𝑡
assigning each kind or relation symbol its intended interpretation.⁸ But as was the case for 2-categories,
the objects 𝐼𝐴 and 𝑇 are not relation symbols in the FOLDS signature for virtual equipments, so the
matching maps associated to these objects need not be monomorphisms. This gives us the flexibility to
convert a virtual equipment into an ℐ𝒱ℰ-structure in a more “saturated” manner. In fact, in analogy
with Example 11.2.27 and Exercise 11.2.vi, it is necessary to “saturate” the ℐ𝒱ℰ-structures associated to
virtual equipments in this manner to prove one of our desired results: that a biequivalence of virtual
equipments gives rise to an ℐ𝒱ℰ-equivalence, in the sense of Definition 11.2.25. As in Example 11.2.7,
it is possible to define the “saturated” ℐ𝒱ℰ-structure associated to a virtual equipment by defining a
corresponding contravariant functor from ℐ𝒱ℰ to the category of virtual equipments and structure-
preserving functors, but in this case the virtual equipments that appear in the indexing diagram are
more complicated to describe, so instead we just describe the structure directly.

11.3.3. Recall. Recall from Proposition 8.3.18 that any virtual equipment contains a vertical 2-category
whose objects are the objects of the virtual equipment, whose arrows are the vertical arrows, and whose
2-cells are those unary cells

𝐴 𝐴

𝐵 𝐵

𝑔

Hom𝐴

⇓�⃖� 𝑓

Hom𝐵

(11.3.4)

⁸As the virtual equipments of greatest interest are large, the ℐ𝒱ℰ-structures are large as well.
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whose horizontal boundary arrows are given by the unit modules. Confusingly, the “horizontal compo-
sition” of 2-cells is captured by the vertical composition of unary cells in the virtual equipment, while
the “vertical composition” of 2-cells is captured by the horizontal composition operation defined by
Definition 8.3.16. In particular, we describe a unary cell in the vertical 2-category as “invertible” when
it is invertible in the usual sense for a 2-cell in a 2-category, that is for the horizontal composition
operation of unary cells between unit modules in the virtual equipment; note that the vertical boundary
1-cells of an invertible cell in the vertical 2-category need not be invertible in any sense.

In fact, the construction described in Definition 8.3.16 generalizes as follows. Given any cell in the
virtual equipment and pair of cells in the vertical 2-category as displayed

𝐴 𝐴 𝐶 𝐶

𝐵 𝐵 𝐷 𝐷

Hom𝐴

𝑔 ⇓�⃖� 𝑓

�⃗�

⇓𝛽 ℎ

Hom𝐶

⇓𝛾 𝑘

Hom𝐵 𝐹 Hom𝐷

(11.3.5)

there is a unique “horizontal composite” cell with boundary

𝐴 𝐶

𝐵 𝐷

𝑔

�⃗�

⇓�⃖�∗𝛽∗𝛾 𝑘

𝐹

(11.3.6)

satisfying the analogue of the pasting equality (8.3.17) defined relative to the canonical composition
cells of Lemma 8.3.10. In what follows, we abuse notation and write an expression like (11.3.5) to denote
the composite cell (11.3.6).

In the virtual equipment 𝕄od(𝒦) of modules in an ∞-cosmos 𝒦, this vertical 2-category is
isomorphic to the homotopy 2-category 𝔥𝒦. Since our intention is to apply the following construction
in that context, we borrow notation from the homotopy 2-category when it is simpler to read, for
instance writing 𝛼∶ 𝑓 ⇒ 𝑔 for a unary cell (11.3.4) in the vertical 2-category whose right boundary is 𝑓
and whose left boundary is 𝑔.
11.3.7. Definition. For any virtual equipment ℂ, there is an ℐ𝒱ℰ-structureΜℂ in which:

• The setsΜℂ𝑂,Μℂ𝐴,Μℂ𝑀, andΜℂ𝐶𝑛 for each 𝑛 ≥ 0 are given their naïve interpretations as
the sets of objects, vertical arrows, horizontal modules, and 𝑛-ary cells of ℂ.

• The binary relations �̇�𝑛 encode equality between parallel cells.
• The relation �̇� encodes all unary cells that are cartesian, satisfying the universal property that

characterizes the restriction cells.
• For any 𝑖 ∶ Μℂ𝐴⟨𝑋,𝑋⟩, the setΜℂ𝐼𝐴⟨𝑖⟩ is the set of invertible cells 𝛼∶ id𝑋 ≅ 𝑖 in the vertical

2-category.
• For any 𝑖 ∶ Μℂ𝐴⟨𝑋,𝑋⟩, 𝛼 ∶ Μℂ𝐼𝐴⟨𝑖⟩, 𝑗 ∶ Μℂ𝐴⟨𝑌, 𝑌⟩, 𝛽∶ Μℂ𝐼𝐴⟨𝑗⟩, 𝐸 ∶ Μℂ𝑀⟨𝑋,𝑌⟩, and
𝜈 ∶ Μℂ𝐶1⟨𝑖, 𝑗, 𝐸, 𝐸⟩, the set Μℂ ̇𝐼𝐶⟨𝜈⟩ is a singleton if the identity cell id𝐸 associated to the
module 𝐸 equals the horizontal composite cell

𝑋 𝑋 𝑌 𝑌 𝑋 𝑌

𝑋 𝑋 𝑌 𝑌 𝑋 𝑌

Hom𝑋

⇓�𝛼−1 𝑖

𝐸

⇓𝜈

Hom𝑌

𝑗 ⇓𝛽 =

𝐸

⇓id𝐸

Hom𝑋 𝐸 Hom𝑌 𝐸
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and is empty otherwise.
• For any 𝑖 ∶ Μℂ𝐴⟨𝑋,𝑋⟩, 𝛼 ∶ Μℂ𝐼𝐴⟨𝑖⟩, 𝐻 ∶ Μℂ𝑀⟨𝑋,𝑋⟩, and 𝜃 ∶ Μℂ𝐶0⟨𝑖, 𝑖, 𝐻⟩, the set
Μℂ�̇�⟨𝑖, 𝜃⟩ is a singleton if the nullary composite cell

𝑋 𝑋 𝑋 𝑋

𝑋 𝑋 𝑋 𝑋

Hom𝑋

⇓�𝛼−1 𝑖 ⇓𝜃

Hom𝑋

𝑖 ⇓�⃖�

Hom𝑋 𝐻 Hom𝑋

is cocartesian and is empty otherwise.
• For any 𝑓 ∶ Μℂ𝐴⟨𝑋,𝑌⟩, 𝑔∶ Μℂ𝐴⟨𝑌, 𝑍⟩, and ℎ ∶ Μℂ𝐴⟨𝑋,𝑍⟩, the set Μℂ𝑇⟨𝑓 , 𝑔, ℎ⟩ is the set

of invertible cells 𝛾∶ 𝑔𝑓 ≅ ℎ in the vertical 2-category.
• For any 𝑛1 +⋯+ 𝑛𝑘 = 𝑛, cells

𝐴0 𝐴1 ⋯ 𝐴𝑘

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶 𝐷

𝑓0

�⃗�1

⇓𝛼1

�⃗�2

𝑓1 ⇓𝛼2

�⃗�𝑘

⋯ ⇓𝛼𝑘 𝑓𝑘

𝑔

𝐹1 𝐹2

⇓𝛽

𝐹𝑘

ℎ

𝐺

and

𝐴0 𝐴1 ⋯ 𝐴𝑘

𝐶 𝐷
𝑘

�⃗�1 �⃗�2

⇓𝜖

�⃗�𝑘

ℓ

𝐺

and isomorphisms 𝛾 ∶ 𝑇⟨𝑓0, 𝑔, 𝑘⟩ and 𝛿∶ 𝑇⟨𝑓𝑘, ℎ, ℓ⟩, the setΜℂ�̇�𝑛1,…,𝑛𝑘⟨𝛼1, … , 𝛼𝑘, 𝛽, 𝜖, 𝛾, 𝛿⟩ is a
singleton if 𝜖 equals the composite

𝐴0 𝐴0 𝐴1 ⋯ 𝐴𝑘 𝐴𝑘

𝐵0 𝐵1 ⋯ 𝐵𝑛

𝐶 𝐶 𝐷 𝐷

𝑘

Hom𝐴0

⇓𝛾

𝑓0

�⃗�1

⇓𝛼1

�⃗�2

𝑓1 ⇓𝛼2

�⃗�𝑘

⋯ ⇓𝛼𝑘 𝑓𝑘

Hom𝐴𝑘

⇓𝛿−1 ℓ

𝑔

𝐹1 𝐹2

⇓𝛽

𝐹𝑘

ℎ

Hom𝐶 𝐺 Hom𝐷

and is empty otherwise.

We write Μ𝒦 ∶ ℐ𝒱ℰ → 𝒮𝑒𝑡 for the ℐ𝒱ℰ-structure obtained by applying the construction of
Definition 11.3.7 to the virtual equipment of modules𝕄od(𝒦).

11.3.8. Remark. Recall that a functor of virtual equipments 𝐹∶ ℂ → 𝔻 is a map of virtual double
categories that preserves all the structure, including unit and restriction cells. It follows that applica-
tion of 𝐹 directly defines the components of a natural transformation 𝐹∶ Μℂ → Μ𝔻 between the
corresponding ℐ𝒱ℰ-structures. By Proposition 11.1.2, a cosmological functor 𝐹∶ 𝒦 → ℒ induces a
functor 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) of virtual equipments, which thus induces a natural transformation
𝐹∶ Μ𝒦 → Μℒ between ℐ𝒱ℰ-structures.

11.3.9. Proposition. Consider a pair of∞-cosmoi connected by a cosmological functor 𝐹∶ 𝒦 → ℒ.
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(i) If 𝐹∶ 𝒦 → ℒ is a cosmological biequivalence, then there exists a pair of fiberwise surjections between
the corresponding ℐ𝒱ℰ-structures:

Ρ

Μ𝒦 Μℒ

𝜎 𝜌

(ii) Moreover, if the induced map between ℐ𝒱ℰ-structures preserves the given interpretations of a context Γ

Γ

Μ𝒦 Μℒ

𝛼 𝛽

𝐹

then the fiberwise surjections constructed in (i) defines an ℐ𝒱ℰ-equivalence in context Γ:

Γ

Μ𝒦 Μℒ

Ρ

𝛼 𝛽

𝛾

𝜎 𝜌

Proof. We apply the same strategy used in Examples 11.2.26 and 11.2.27, forming a structure
that we call the pseudo-comma virtual equipment ℙ associated to the functor of virtual equipments
𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ).⁹ Theℐ𝒱ℰ-structure Ρ is then defined to beΜℙ and 𝜎 and 𝜌 are the evident
projections. We then argue that these maps are fiberwise surjective under the hypothesis that 𝐹 is a
biequivalence of virtual equipments.

The pseudo-comma virtual equipment ℙ associated to 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) has
• objects given by triples (𝐴 ∈ 𝒦,𝐴′ ∈ ℒ, 𝑎 ∶ 𝐹𝐴 ∼ 𝐴′ ∈ ℒ) where 𝑎 is an equivalence,
• vertical arrows (𝐴,𝐴′, 𝑎) → (𝐵, 𝐵′, 𝑏) given by triples

⎛
⎜
⎜
⎜
⎜
⎝

𝐴

𝐵

𝑓 ∈ 𝒦,
𝐴′

𝐵′

𝑓 ′ ∈ ℒ,
𝐹𝐴 𝐴′

𝐹𝐵 𝐵′

∼𝑎

𝐹𝑓 ≅𝛼 𝑓 ′

∼
𝑏

∈ 𝔥ℒ

⎞
⎟
⎟
⎟
⎟
⎠

• modules (𝐴,𝐴′, 𝑎) (𝐵, 𝐵′, 𝑏) given by triples

⎛
⎜
⎜
⎜
⎜
⎝

𝐴 𝐵𝐸 ∈ 𝒦, 𝐴′ 𝐵′𝐸′ ∈ ℒ,
𝐹𝐴 𝐹𝐵

𝐴′ 𝐵′

𝑎

𝐹𝐸

⇓𝜖 𝑏

𝐸′

∈ 𝕄od(ℒ)

⎞
⎟
⎟
⎟
⎟
⎠

where 𝜖 is a cartesian cell,

⁹A pseudo-comma virtual equipment can be defined for any functor (or more generally cospan of functors) between
virtual equipments in exactly the samemanner, but where it simplifies notation we refer also to structures in the∞-cosmoi
and their homotopy 2-categories.
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• 𝑛-ary cells given by a pair of 𝑛-ary cells 𝜇 in𝒦 and 𝜈 inℒ so that the composite cells formed from
their boundary data are equal:

𝐹𝐴0 𝐹𝐴0 𝐹𝐴1 ⋯ 𝐹𝐴𝑛

𝐴′
0 𝐹𝐵 𝐹𝐶

𝐵′ 𝐵′ 𝐶′

𝐹𝐴0 𝐹𝐴1 ⋯ 𝐹𝐴𝑛 𝐹𝐴𝑛

𝐴′
0 𝐴′

1 ⋯ 𝐴′
𝑛 𝐹𝐶

𝐵′ 𝐶′ 𝐶′

𝑎0

𝐹Hom𝐴0

⇓�⃖�

𝐹𝐸1

𝐹𝑓 ⇓𝐹𝜇

𝐹𝐸2 𝐹𝐸𝑛

𝐹𝑔

𝑓 ′ ⇓𝜖𝑏
𝐹𝐺

𝑐

=

Hom𝐵′ 𝐺′

𝐹𝐸1

⇓𝜖𝑎0 ⇓𝜖𝑎1

𝐹𝐸2

⋯

𝐹𝐸𝑛

⇓𝜖 𝑎𝑛

𝐹Hom𝐴𝑛

⇓𝛽

𝐹𝑔

⇓𝜈𝑓 ′

𝐸′1 𝐸′2 𝐸′𝑛

𝑔′ 𝑐

𝐺′ Hom𝐶′

We argue that ℙ is a virtual double category. Note the objects and vertical arrows form a category:
indeed it is in the underlying 1-category of the pseudo comma 2-category of Example 11.2.27 for the

2-functor 𝐹∶ 𝔥𝒦 → 𝔥ℒ. Each module (𝐸, 𝐸′, 𝜖) ∶ (𝐴,𝐴′, 𝑎) (𝐵, 𝐵′, 𝑏) has an identity cell

whose components are the identity cells id𝐸 ∈ 𝒦 and id𝐸′ ∈ ℒ. Composition of cells is inherited from
𝕄od(𝒦) and𝕄od(ℒ), though we leave it to the reader to verify that the required pasting equation
between the composite cells defined in this manner by drawing a very large diagram. This makes ℙ
into a virtual double category.

In factℙ is a virtual equipment. Each object (𝐴,𝐴′, 𝑎) admits a unitmodule (Hom𝐴,Hom𝐴′,Hom𝑎)
with a nullary cocartesian cell

(𝐴,𝐴′, 𝑎) (𝐴,𝐴′, 𝑎)

(𝐴,𝐴′, 𝑎) (𝐴,𝐴′, 𝑎)

(id𝐴,id𝐴′ ,id𝑎) ⇓(𝜄,𝜄) (id𝐴,id𝐴′,id𝑎)

(Hom𝐴,Hom𝐴′ ,Hom𝑎)

↭

𝐹𝐴 𝐹𝐴 𝐹𝐴 𝐹𝐴

𝐹𝐴 𝐹𝐴 𝐴′ 𝐴′

𝐴′ 𝐴′ 𝐴′ 𝐴′

⇓𝐹𝜄 𝑎 𝑎

𝑎

𝐹Hom𝐴

⇓Hom𝑎 𝑎

≔
⇓𝜄

Hom𝐴′ Hom𝐴′

whose vertical arrows are both taken to be the identity (id𝐴, id𝐴′, id𝑎) and whose component cells in
𝒦 andℒ are the unit cells for 𝐴 and 𝐴′. Since 𝐹 preserves cocartesian cells, the universal property of
𝐹𝜄 may be used to define a cell Hom𝑎 satisfying the required pasting equality (compare with Definition
8.3.14). This cell is cocartesian in ℙ since both components define cocartesian cells.
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Finally, any diagram comprised of two vertical arrows and a horizontal module

(𝑋,𝑋′, 𝑥) (𝑌, 𝑌′, 𝑦)

(𝐴,𝐴′, 𝑎) (𝐵, 𝐵′, 𝑏)

(𝑓 ,𝑓 ′,𝛼) (𝑔,𝑔′,𝛽)

(𝐸,𝐸′,𝜖)

can be completed to a unary cartesian cell

𝐹𝑋 𝐹𝑋 𝐹𝑌 𝐹𝑋 𝐹𝑌 𝐹𝑌

𝑋′ 𝐹𝐴 𝐹𝐵 𝑋′ 𝑌′ 𝐹𝐵

𝐴′ 𝐴′ 𝐵′ 𝐴′ 𝐵′ 𝐵′

𝑥

𝐹Hom𝑋

𝐹𝑓

𝐹𝐸(𝑔,𝑓 )

⇓𝜌 𝐹𝑔 ⇓𝜁𝑥

𝐹𝐸(𝑔,𝑓 )

𝑦

𝐹Hom𝑌

𝐹𝑔

𝑓 ′
⇓�⃖�

𝑎

𝐹𝐸

⇓𝜖 𝑏

=
𝑓 ′

𝐸′(𝑔′,𝑓 ′)

⇓𝜌′ 𝑔′
⇓𝛽

𝑏

Hom𝐴′ 𝐸′ 𝐸′ Hom𝐵′

where 𝜌 and 𝜌′ are the restriction cells in𝒦 andℒ, respectively, and the cell 𝜁 is defined by factoring
the left-hand pasting diagram below through the cartesian cell 𝜌′.

𝐹𝑋 𝐹𝑋 𝐹𝑌 𝐹𝑌 𝐹𝑋 𝐹𝑌

𝑋′ 𝐹𝐴 𝐹𝐵 𝑌′ 𝑋′ 𝑌′

𝐴′ 𝐴′ 𝐵′ 𝐵′ 𝐴′ 𝐵′

𝑥

𝐹Hom𝑋

𝐹𝑓

𝐹𝐸(𝑔,𝑓 )

⇓𝜌 𝐹𝑔

𝐹Hom𝑌

𝑦 ∃!⇓𝜁𝑥

𝐹𝐸(𝑔,𝑓 )

𝑦

𝑓 ′
⇓�⃖�

𝑎

𝐹𝐸

⇓𝜖 𝑏

⇓�𝛽−1

𝑔′
=

𝑓 ′

𝐸′(𝑔′,𝑓 ′)

⇓𝜌′ 𝑔′

Hom𝐴′ 𝐸′ Hom𝐵′ 𝐸′

Since 𝜖, 𝐹𝜌, and 𝜌′ are cartesian cells inℒ, 𝜁 is a cartesian cell as well, making (𝐸(𝑔, 𝑓 ), 𝐸′(𝑔′, 𝑓 ′), 𝜁)
into a module in ℙ. This makes the virtual double category ℙ into a virtual equipment so that the
evident forgetful functors to𝕄od(𝒦) and𝕄od(ℒ) define functors of virtual equipments.

By Remark 11.3.8 we obtain a diagram of ℐ𝒱ℰ-structures and natural transformations

Μℙ

Μ𝒦 Μℒ

𝜎 𝜌

Finally, when 𝐹∶ 𝕄od(𝒦) → 𝕄od(ℒ) is a biequivalence of virtual equipments, satisfying the proper-
ties enumerated in Theorem 11.1.6, the forgetful functors

𝕄od(𝒦) ℙ 𝕄od(ℒ)

are surjective on objects, full on vertical arrows, full on horizontal modules, and fully faithful on cells,
and reflect unit cells and restriction cells. It follows that the maps 𝜎 and 𝜌 are fiberwise surjective.

Finally, if 𝐹∶ Μ𝒦 → Μℒ strictly preserves the interpretations of a context Γ in 𝕄od(𝒦) and
𝕄od(ℒ), we claim that it is possible to simultaneously lift these interpretations along 𝜎 and 𝜌 to
an interpretation 𝛾∶ Γ → Ρ. This can easily be verified inductively in the ℐ𝒱ℰ-structure Γ. For a
variable 𝑥 ∶ 𝑂, if 𝛼(𝑥) = 𝐴 and 𝛽(𝑥) = 𝐹𝐴, then define 𝛾(𝑥) ≔ (𝐴, 𝐹𝐴, id𝐹𝐴). The definition of 𝛾
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at higher-degree variables is similar, with the missing data chosen to be the appropriate identities in
ℒ. �

Combining these results we obtain the desired corollary:

11.3.10. Corollary (a language for model independent∞-category theory). Formulae in the language
of virtual equipments are invariant under biequivalence of∞-cosmoi.

Proof. Consider a formula 𝜙 in the language of virtual equipments with compatibly defined
interpretations of its free variables, meaning that there is a commutative diagram

var(𝜙)

Μ𝒦 Μℒ

𝛼 𝛽

𝐹

arising from the cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ and the ℐ𝒱ℰ-structures proscribed by Defini-
tion 11.3.7. By Proposition 11.3.9, these ℐ𝒱ℰ-structures are ℐ𝒱ℰ-equivalent in the context defined by
the variables of 𝜙. By Theorem 11.2.28,Μ𝒦 andΜℒ then satisfy the same formulas. �

We conclude with some examples.

11.3.11. Example. In the context of a pair of objects 𝑎, 𝑏 ∶ 𝑂 and an arrow 𝑢 ∶ 𝐴⟨𝑎, 𝑏⟩, the formula

∃𝑓 ∶ 𝐴⟨𝑏, 𝑎⟩, ∀𝑖𝑎 ∶ 𝐴⟨𝑎, 𝑎⟩, ∀𝜔 𝑎 ∶ 𝐼𝐴⟨𝑖𝑎⟩, ∀𝑢𝑎 ∶ 𝑀⟨𝑎, 𝑎⟩, ∀𝜄𝑎 ∶ 𝐶0⟨𝑖𝑎, 𝑖𝑎, 𝑢𝑎⟩, �̇�⟨𝜔 𝑎, 𝜄𝑎⟩,
∀𝑖𝑏 ∶ 𝐴⟨𝑏, 𝑏⟩, ∀𝜔 𝑏 ∶ 𝐼𝐴⟨𝑖𝑏⟩, ∀𝑢𝑏 ∶ 𝑀⟨𝑏, 𝑏⟩, ∀𝜄𝑏 ∶ 𝐶0⟨𝑖𝑏, 𝑖𝑏, 𝑢𝑏⟩, �̇�⟨𝜔 𝑏, 𝜄𝑏⟩,

∃𝑚 ∶ 𝑀⟨𝑎, 𝑏⟩, ∃𝜌𝑓 ∶ 𝐶1⟨𝑖𝑎, 𝑓 , 𝑚, 𝑢𝑎⟩, ∃𝜌𝑢 ∶ 𝐶1⟨𝑢, 𝑖𝑏, 𝑚, 𝑢𝑏⟩, �̇�⟨𝜌𝑓⟩ ∧ �̇�⟨𝜌𝑢⟩,
which may be paraphrased as “there is an arrow 𝑓 so that the covariant representation of 𝑢 is equivalent
to the contravariant representation of 𝑓,” asserts the existence of a left adjoint to 𝑢.

11.3.12. Example. In the context of three objects 𝑎, 𝑏, 𝑐 ∶ 𝑂 and a span of arrows 𝑘 ∶ 𝐴⟨𝑎, 𝑏⟩ and
𝑓 ∶ 𝐴⟨𝑎, 𝑐⟩, the formula

∃𝑟 ∶ 𝐴⟨𝑏, 𝑐⟩, ∀𝑖𝑎 ∶ 𝐴⟨𝑎, 𝑎⟩, ∀𝜔 𝑎 ∶ 𝐼𝐴⟨𝑖𝑎⟩, ∀𝑖𝑏 ∶ 𝐴⟨𝑏, 𝑏⟩, ∀𝜔 𝑏 ∶ 𝐼𝐴⟨𝑖𝑏⟩, ∀𝑖𝑐 ∶ 𝐴⟨𝑐, 𝑐⟩, ∀𝜔 𝑐 ∶ 𝐼𝐴⟨𝑖𝑐⟩,
∀𝑢𝑏 ∶ 𝑀⟨𝑏, 𝑏⟩, ∀𝜄𝑏 ∶ 𝐶0⟨𝑖𝑏, 𝑖𝑏, 𝑢𝑏⟩, �̇�⟨𝜔 𝑏, 𝜄𝑏⟩, ∀𝑢𝑐 ∶ 𝑀⟨𝑐, 𝑐⟩, ∀𝜄𝑐 ∶ 𝐶0⟨𝑖𝑐, 𝑖𝑐, 𝑢𝑐⟩, �̇�⟨𝜔 𝑐, 𝜄𝑐⟩,

∀𝑘∗ ∶ 𝑀⟨𝑎, 𝑏⟩, ∀𝑓∗ ∶ 𝑀⟨𝑎, 𝑐⟩, ∀𝑟∗ ∶ 𝑀⟨𝑏, 𝑐⟩,
∀𝜌𝑘 ∶ 𝐶1⟨𝑘, 𝑖𝑏, 𝑘∗, 𝑢𝑏⟩, ∀𝜌𝑓 ∶ 𝐶1⟨𝑓 , 𝑖𝑐, 𝑓∗, 𝑢𝑐⟩, ∀𝜌𝑟 ∶ 𝐶1⟨𝑟, 𝑖𝑐, 𝑟∗, 𝑢𝑐⟩, �̇�⟨𝜌𝑘⟩ ∧ �̇�⟨𝜌𝑓⟩ ∧ �̇�⟨𝜌𝑟⟩,

∀𝜏𝑎 ∶ 𝑇⟨𝑖𝑎, 𝑖𝑎, 𝑖𝑎⟩, ∀𝜏𝑐 ∶ 𝑇⟨𝑖𝑐, 𝑖𝑐, 𝑖𝑐⟩, ∀ id𝑘∗ ∶ 𝐶1⟨𝑖𝑎, 𝑖𝑏, 𝑘∗, 𝑘∗⟩, ̇𝐼𝑐⟨𝜔 𝑎, 𝜔 𝑏, id𝑘∗⟩,
∃𝜈 ∶ 𝐶2⟨𝑖𝑎, 𝑖𝑐, 𝑘∗, 𝑟∗, 𝑓∗⟩, ∀𝑒 ∶ 𝑂, ∀𝑚 ∶ 𝑀⟨𝑏, 𝑒⟩, ∀𝑛 ∶ 𝑀⟨𝑒, 𝑐⟩,

∀𝛼 ∶ 𝐶3⟨𝑖𝑎, 𝑖𝑐, 𝑘∗, 𝑚, 𝑛, 𝑓∗⟩, (∃𝜇 ∶ 𝐶2⟨𝑖𝑏, 𝑖𝑐, 𝑚, 𝑛, 𝑟∗⟩, �̇�1,2⟨𝜏𝑎, 𝜏𝑐, id𝑘∗, 𝜇, 𝜈, 𝛼⟩)∧
(∀𝜁, 𝜉 ∶ 𝐶2⟨𝑖𝑏, 𝑖𝑐, 𝑚, 𝑛, 𝑟∗⟩, �̇�1,2⟨𝜏𝑎, 𝜏𝑐, id𝑘∗, 𝜁, 𝜈, 𝛼⟩ ∧ �̇�1,2⟨𝜏𝑎, 𝜏𝑐, id𝑘∗, 𝜉, 𝜈, 𝛼⟩ → �̇�2⟨𝜁, 𝜉⟩)

asserts the existence of a pointwise right extension 𝜈∶ 𝑟𝑘 ⇒ 𝑓.
Here we have taken advantage of a simplification provided in the virtual equipment of modules.

Recall from Theorem 9.3.3 that a natural transformation 𝜈∶ 𝑟𝑘 ⇒ 𝑓 defines a pointwise right extension
if the corresponding binary cell, also denoted 𝜈 in the formula above, defines a right extension in the
virtual equipment of modules. By Definition 9.1.2, this means that the binary cell 𝜈must enjoy a unique
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factorization property for all cells whose target module is the covariant representation of 𝑓 and whose
source sequence of modules starts from the covariant representation of 𝑘.

In the above formula we do not quantify over a compatible sequence of modules from “𝑏” to “𝑐”
of arbitrary length, instead quantifying over a single intermediate object “𝑒” and a pair of modules
“𝑚 ∶ 𝑀⟨𝑏, 𝑒⟩” and “𝑛 ∶ 𝑀⟨𝑒, 𝑐⟩.” We can make this simplification on account of Remark 8.3.12, which
tells us that any compatible sequence of modules 𝐸1

⨰ ⋯ ⨰ 𝐸ℓ in the source of a cell can be replaced
by a compatible sequence of two modules. Here the object “𝑒” is the summit of the composite two-sided
fibration formed by composing the spans that encode the modules 𝐸1, … , 𝐸ℓ, while the modules “𝑚”
and “𝑛” are, respectively, the contravariant and covariant representable modules associated to the legs
of that composite span.

Special cases of this statement and its dual define limits and colimits of diagrams of∞-categories,
as well as many other concepts.

Exercises.

11.3.i. Exercise. Express the axioms for a virtual equipment in the language of virtual equipments
defined relative to the FOLDS signature ℐ𝒱ℰ. For instance, the axiom that asserts that for every
module and compatible pair of vertical arrows there exists a unary restriction cell is expressed by the
sentence:

∀𝑥, 𝑦, 𝑎, 𝑏, ∶ 𝑂, ∀𝑓 ∶ 𝐴⟨𝑥, 𝑎⟩, ∀𝑔 ∶ 𝐴⟨𝑦, 𝑏⟩, ∀𝑚 ∶ 𝑀⟨𝑎, 𝑏⟩,
∃𝑚(𝑔, 𝑓 ) ∶ 𝑀⟨𝑥, 𝑦⟩, ∃𝜌 ∶ 𝐶1⟨𝑓 , 𝑔, 𝑚(𝑔, 𝑓 ), 𝑚⟩, �̇�⟨𝜌⟩
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CHAPTER 12

Applications of Model Independence

In this chapter, we establish some special properties of a certain class of ∞-cosmoi we call ∞-
cosmoi of (∞, 1)-categories, by which we mean∞-cosmoi that are biequivalent to the∞-cosmos of
quasi-categories. By Proposition 10.2.1 an∞-cosmos𝒦 is an∞-cosmos of (∞, 1)-categories if and only
if its underlying quasi-category functor (−)0 ≔ Fun(1, −) ∶ 𝒦 → 𝒬𝒞𝑎𝑡 is a biequivalence – meaning
that every quasi-category is equivalent to the underlying quasi-category of an∞-category in𝒦 and
that for any 𝐴,𝐵 ∈ 𝒦 the map on functor spaces defined by transposing the composition map in𝒦

Fun(𝐴, 𝐵) Fun(𝐴0, 𝐵0) Fun(𝐴, 𝐵) × Fun(1, 𝐴) Fun(1, 𝐵)∼(−)0 ↭ ∘

is an equivalence of quasi-categories. A few examples of∞-cosmoi of this form are established in §E.2.
A secondary aim is to illustrate how the model independence theorem can be used to combine

synthetic and analytic techniques to prove results concerning any family of biequivalent∞-cosmoi. In
what follows we appeal to the explicit model of (∞, 1)-categories as quasi-categories to supply analytic
proofs of certain key results – for instance, that a functor defines an equivalence of quasi-categories
just when it is fully faithful and essential surjective in a suitable sense. We then explain how the model
independence theorem can be used to transfer these results to biequivalent ∞-cosmoi, even when
we cannot translate the specific proof used in the quasi-categorical case. We then apply some of our
analytically proven theorems to further develop the synthetic theory of∞-cosmoi of (∞, 1)-categories.

Many of the results in this chapter have been alluded to previously in this text and indeed their
proofs could have appeared earlier. The reason for the delay is that in the presence of the results of
Chapters 10 and 11 their conclusions apply more broadly, to all∞-cosmoi of (∞, 1)-categories, not
just in the quasi-categorical case. In particular, we discuss some special features of the ∞-cosmos
of quasi-categories, proving in particular that universal properties in this∞-cosmos are determined
pointwise, again appealing to model independence to generalize this result to other ∞-cosmoi of
(∞, 1)-categories.

To warm up in §12.1, we define opposite (∞, 1)-categories and the∞-groupoid core of an (∞, 1)-
category. In practice, these notions are easily accessible in any model of choice, but our aim is to
illustrate the general procedure for transferring ∞-categorical structures between biequivalent ∞-
cosmoi in a relatively elementary setting. In §12.2, we establish a large suite of results which combine to
express the pointwise generation of various universal properties in an∞-cosmos of (∞, 1)-categories.
Finally, in §12.3, we cite a more sophisticated result from the (∞, 1)-categorical literature concerning
the exponentiability of cartesian and cocartesian fibrations and use this to tie up a lose end from
Chapter 9: namely we reduce the existence of pointwise right and left extensions to the presence of
certain limits or colimits. Since the indexing shapes for these limits and colimits vary with the elements
in the domain of the pointwise extension, this result relies on the pointwise determination of universal
properties established in §12.2. Along the way we also extend the calculus of modules in∞-cosmoi of
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(∞, 1)-categories, showing that the right extensions and right liftings of Definition 9.1.2 always exist,
defining “homs” between modules to complement their “tensor products.”

12.1. Opposite (∞, 1)-Categories and∞-Groupoid Cores

The construction of the co-dual of an∞-cosmos in Definition 1.2.25 makes use of the construction
of the opposite of a simplicial set. Recall that the opposite of a simplicial set𝑋∶ 𝚫op → 𝒮𝑒𝑡 is obtained
by precomposing with the identity-on-objects involution (−)∘ ∶ 𝚫 → 𝚫 that reverses the ordering of
the elements in each ordinal [𝑛] ∈ 𝚫. Precomposition with (−)∘ defines a functor (−)op ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡
which carries a simplicial set𝑋 to its opposite simplicial set 𝑋op. We start by exploring the role played
by this operation in the∞-cosmos of quasi-categories and then investigate a related operation on other
∞-cosmoi of∞-categories.

12.1.1. Lemma. If 𝑋 is a quasi-category, then 𝑋op is a quasi-category.

Proof. The lifting problem below-left is solved by the lifting problem below-right

Λ𝑘[𝑛] 𝑋op Λ𝑛−𝑘[𝑛] 𝑋

Δ[𝑛] Δ[𝑛]
↭ �

12.1.2. Definition. For a quasi-category𝐴, its opposite quasi-category𝐴op is the simplicial set defined
by “reversing the ordering of the vertices in each simplex.”

12.1.3. Lemma. The opposite quasi-category construction defines an involutive cosmological biequivalence
(−)op ∶ 𝒬𝒞𝑎𝑡 ∼ 𝒬𝒞𝑎𝑡co that acts on functor spaces via a natural isomorphism

Fun(𝐴, 𝐵) Fun(𝐴op, 𝐵op)op.≃

Proof. The isomorphism Fun(𝐴, 𝐵) ≅ Fun(𝐴op, 𝐵op)op is best understood at the level of simplices:
the simplicial maps 𝐴 × Δ[𝑛] → 𝐵 that define 𝑛-simplices in the functor space Fun(𝐴, 𝐵) map via
the isomorphism (−)op ∶ 𝑠𝒮𝑒𝑡 ≃ 𝑠𝒮𝑒𝑡 to simplicial maps 𝐴op × Δ[𝑛]op → 𝐵op, and these define the
𝑛-simplices in the functor space Fun(𝐴op, 𝐵op)op.

By an extension of the proof of Lemma 12.1.1, the opposite of an isofibration is an isofibration. The
conical limits in 𝒬𝒞𝑎𝑡, being defined pointwise in 𝒮𝑒𝑡, are preserved by restriction along the functor
(−)∘ ∶ 𝚫 → 𝚫. Simplicial cotensors are also preserved: for a quasi-category 𝐵 and a simplicial set 𝑋,
(𝐵𝑋)op ≅ (𝐵op)𝑋op

, which accords with the general construction of the cotensor of 𝐵op ∈ 𝒬𝒞𝑎𝑡co with
a simplicial set 𝑋 as noted in Definition 1.2.25. This proves that (−)op ∶ 𝒬𝒞𝑎𝑡 → 𝒬𝒞𝑎𝑡co defines a
cosmological functor. �

Lemma 12.1.3 extends the usual construction of the opposite of a 1-category and the corresponding
2-functor (−)op ∶ 𝒞𝑎𝑡 → 𝒞𝑎𝑡co (see Exercise B.2.iii). On account of the explicitness of the construction
given in Definition 12.1.2, the opposite of a quasi-category is defined up to isomorphism. By contrast,
without any additional hypotheses, we are only be able to define the opposite of an∞-category in a
biequivalent ∞-cosmos up to equivalence.¹ While at first this may seem undesirable, it is arguably

¹In every model of (∞, 1)-categories that we are aware of, there is in fact a strictly defined op-involution, and one can
verify that these analytically defined opposite ∞-categories are compatible with the standard change-of-model functors.
However, the benefits of this additional strictness might not be worth the effort in verifying the strict compatibility of
the opposite∞-category construction in each instance.
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morally correct to give the definition in this manner, since from the model independent point of view,
the∞-category itself ought only be considered up to equivalence.

12.1.4. Definition. Let 𝐴 be an ∞-category in an ∞-cosmos 𝒦 of (∞, 1)-categories. Define the
opposite∞-category 𝐴op to be any∞-category in𝒦 whose underlying quasi-category is 𝐴op

0 .

We now argue that Definition 12.1.4 is well-defined up to equivalence:

12.1.5. Proposition. In an∞-cosmos of (∞, 1)-categories𝒦, any choices of opposite∞-categories assemble
into a quasi-pseudofunctor and biequivalence (−)op ∶ 𝒦 ∼ 𝒦co. In particular, for any∞-categories𝐴,𝐵 ∈ 𝒦,
there is an equivalence Fun(𝐴, 𝐵) ≃ Fun(𝐴op, 𝐵op)op that is quasi-pseudonatural in 𝐴 and in 𝐵.

Proof. The quasi-pseudofunctorial biequivalence is defined as the composite of the zigzag of
cosmological biequivalences

𝒦 𝒦co

𝒬𝒞𝑎𝑡 𝒬𝒞𝑎𝑡co

∼(−)0

∼
(−)op

≃ ∼ (−)0

≃
(−)op

We first choose opposite∞-categories for every 𝐴 ∈ 𝒦 together with specified adjoint equivalences
(𝐴op)0 ≃ (𝐴0)op. Composing with these equivalences, the biequivalence (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 provides
local equivalences of quasi-categories:

Fun(𝐴, 𝐵) Fun(𝐴op, 𝐵op)op

Fun(𝐴0, 𝐵0) Fun((𝐴0)op, (𝐵0)op)op ≃ Fun((𝐴op)0, (𝐵op)0)op

∼

∼

≅ ∼

≃

which compose to define the desired equivalence in such a way that the square commutes up to a
homotopy coherent isomorphism. In order for these equivalences to define the action on functor spaces
of a quasi-pseudofunctor, we follow the construction of Corollary 10.4.17 described in the proof of
Proposition 10.4.16 and choose adjoint equivalence inverses to the lower-left-hand horizontal simplicial
natural equivalence, applying Lemma 10.4.15. Lemma 10.4.12 then proves the quasi-pseudonaturality
statement. �

On account of the equivalence Fun(𝐴, 𝐵) ≃ Fun(𝐴op, 𝐵op)op, a functor between (∞, 1)-categories
𝑓 ∶ 𝐴 → 𝐵 has an opposite functor 𝑓 op ∶ 𝐴op → 𝐵op, well-defined up to isomorphism once the domain
and codomain ∞-categories have been fixed. Similarly, a natural transformation between parallel
functors has an opposite

𝐴 𝐵 ⇝ 𝐴op 𝐵op

𝑓

𝑔
⇓𝛼

𝑓 op

𝑔op
⇑𝛼op

obtained by applying the pseudofunctor (−)op ∶ 𝔥𝒦 ∼ 𝔥𝒦op that underlies the quasi-pseudofunctor
of Proposition 12.1.5. Furthermore:

12.1.6. Lemma. Let𝒦 be an∞-cosmos of (∞, 1)-categories.
(i) For any∞-category 𝐴 and simplicial set 𝑈, (𝐴𝑈)op ≃ (𝐴op)𝑈op

.
(ii) For any functors 𝑓 ∶ 𝐵 → 𝐴 and 𝑔∶ 𝐶 → 𝐴, Hom𝐴(𝑓 , 𝑔)op ≃ Hom𝐴op(𝑔op, 𝑓 op) over 𝐵op × 𝐶op.
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Proof. We have a quasi-pseudonatural equivalence:

Fun(𝑋, (𝐴𝑈)op) ≃ Fun(𝑋op, 𝐴𝑈)op by 12.1.5
≅ (Fun(𝑋op, 𝐴)𝑈)op by (1.2.7)

≅ (Fun(𝑋op, 𝐴)op)𝑈op
by 12.1.3

≃ Fun(𝑋,𝐴op)𝑈op
by 12.1.5

≅ Fun(𝑋, (𝐴op)𝑈op) by (1.2.7).

Hence, by Lemma 10.4.14, (𝐴𝑈)op ≃ (𝐴op)𝑈op
.

The second statement is a consequence of a more general result: that any quasi-pseudofunctorial
biequivalence, such as (−)op ∶ 𝒦 ∼ 𝒦co established in Proposition 12.1.5, preserves and reflects comma
∞-categories. Alternatively, since the quasi-pseudofunctorial biequivalence under consideration here
is defined as a zigzag of cosmological biequivalences, the result follows from the fact that cosmologi-
cal biequivalences themselves preserve and reflect comma∞-categories, as observed in Proposition
10.3.6(vi). �

The next result provides another perspective on “appeals to duality” where facts about colimits
of diagrams in an ∞-cosmos 𝒦 were deduced from corresponding proofs about limits in 𝒦co, and
similarly results about cartesian fibrations were interpreted in 𝒦co to conclude the corresponding
results about cocartesian fibrations in𝒦.

12.1.7. Proposition. Let𝒦 be an∞-cosmos of (∞, 1)-categories.
(i) A 𝐽-shaped family of diagrams in 𝐴 has a colimit if and only if the corresponding 𝐽op-shaped family of

diagrams in 𝐴op has a limit.
(ii) A functor 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration if and only if the functor 𝑝op ∶ 𝐸op ↠ 𝐵op defines a

cocartesian fibration.²

Note that if 𝑝∶ 𝐸 ↠ 𝐵 is an isofibration, it is always possible to choose a functor 𝑝op ∶ 𝐸op ↠ 𝐵op

that is again an isofibration, perhaps by changing the choice of total space 𝐸op.

Proof. By Lemma 12.1.6, a 𝐽-shaped family of diagrams 𝑑∶ 𝐷 → 𝐴𝐽 defines a 𝐽op-shaped family of
diagrams 𝑑op ∶ 𝐷op → (𝐴op)𝐽op . By Proposition 4.3.1, 𝑑 admits a colimit in 𝐴 if and only if there is an
equivalence of comma∞-categories

Hom𝐴𝐽(𝑑, Δ) ≃𝐴×𝐷 Hom𝐴(𝑐, 𝐴),
in which case the representing functor 𝑐 ∶ 𝐷 → 𝐴 defines the colimit functor.

By Lemma 12.1.6, such an equivalence exists if and only if there is an equivalence

Hom(𝐴op)𝐽op(Δ, 𝑑
op) ≃𝐷op×𝐴op Hom𝐴op(𝐴op, 𝑐op),

which, by Proposition 4.3.1, characterizes the limit functor 𝑐op ∶ 𝐷op → 𝐴op.
The second statement is proven similarly. By Theorem 5.2.8, 𝑝∶ 𝐸 ↠ 𝐵 defines a cartesian fibration

if and only if the induced functor 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right adjoint right inverse. By
applying the quasi-pseudofunctorial biequivalence (−)op ∶ 𝒦 ∼ 𝒦co, this adjunction exists if and

²As noted in the introduction to Part III, the homotopy coherent diagram encoded by 𝑝op is not the same as the
homotopy coherent diagram encoded by 𝑝 – a classical observation of Bénabou extended to the (∞, 1)-categorical context
by Barwick, Glasman, and Nardin [6].
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only if the opposite functor admits a left adjoint right inverse. This functor need not be isomorphic

to 𝑖0 �⋔ 𝑝op ∶ (𝐸op)𝟚 ↠ Hom𝐵op(𝑝op, 𝐵op), but by Lemma 12.1.6 it is equivalent to it, which by the
equivalence invariance of adjunctions is good enough (see Exercise B.4.i). By the dual of Theorem 5.2.8,
such an adjunction exists if and only if 𝑝op ∶ 𝐸op ↠ 𝐵op is a cocartesian fibration. �

We now turn our attention to the construction of the Kan complex core of a quasi-category and
discuss its analogue in other∞-cosmoi of (∞, 1)-categories.

12.1.8. Definition. The∞-groupoid core of a quasi-category𝐴 is the largest Kan complex core𝐴 ⊂ 𝐴,
which may be constructed as the simplicial subset containing

• all of the vertices of 𝐴,
• only those edges that define isomorphisms in 𝐴 (see Definition 1.1.13),
• every higher simplex whose edges are all isomorphisms.

12.1.9. Lemma. The ∞-groupoid core of a quasi-category is a Kan complex, and indeed is the largest Kan
complex contained in the quasi-category 𝐴.

Proof. The inclusion core𝐴 ⊂ 𝐴 constructed in Definition 12.1.8 is full on simplices of all
dimensions except dimension one. Thus, to see that core𝐴 is a quasi-category, we need only argue
that it admits extensions along the horn Λ1[2] ↪ Δ[2]. By construction, a horn Λ1[2] → core𝐴
picks outs two isomorphisms in 𝐴. The filler Δ[2] → 𝐴 witnesses a composition relation in the
homotopy category h(𝐴); thus the composite edge is also an isomorphism, and by fullness this filler
lifts to Δ[2] → core𝐴.

By construction h(core𝐴) is a groupoid; indeed, it is the maximal subgroupoid contained in h𝐴.
So by Corollary 1.1.15, core𝐴 is a Kan complex.

Finally, an intermediate simplicial subset core𝐴 ⊊ 𝐾 ⊂ 𝐴 would necessarily contain an additional
edge 𝑓 ∶ 𝑥 → 𝑦. If𝐾were a Kan complex, then it would have to admit fillers forΛ0[2]- andΛ2[2]-horns
whose 2nd or 0th faces, respectively, were the 1-simplex 𝑓, and whose remaining face is degenerate.
The fillers would construct left and right inverses to 𝑓 in h(𝐴). Hence, 𝑓 is an isomorphism in 𝐴 and
already lives in core𝐴. �

The inclusion of the∞-cosmos of Kan complexes defines a cosmological embedding𝒦𝑎𝑛 𝒬𝒞𝑎𝑡
by Proposition 6.1.6. Functors of quasi-categories preserve isomorphisms, so a functor 𝑓 ∶ 𝐴 → 𝐵
restricts to 𝑓 ∶ core𝐴 → core𝐵. In this way the∞-groupoid core construction acts functorially on the
underlying category of 𝒬𝒞𝑎𝑡 and, as an unenriched functor, is right adjoint to the inclusion. Note,
however, as discussed in Example 1.3.7, that the core construction is not simplicial, at least not with
respect to the usual quasi-categorical enrichment of 𝒬𝒞𝑎𝑡. Indeed, a natural transformation between
functors of quasi-categories only restricts to∞-groupoid cores if each of its components is invertible.

The∞-groupoid core does, however, define a simplicial functor with respect to a new enrichment
that we now introduce. An ∞-cosmos is a type of (∞, 2)-category since it is a category enriched
over a model of (∞, 1)-categories. We now introduce the (∞, 1)-categorical core of an∞-cosmos. In
the following definition, note that since core(−) ∶ 𝒬𝒞𝑎𝑡 → 𝒦𝑎𝑛 is an (unenriched) right adjoint, it
preserves products, so we may apply it to the functor spaces of a quasi-categorically enriched category
to construct a Kan complex enriched subcategory (see Proposition A.7.3) that we now introduce.

12.1.10. Definition ((∞, 1)-core of an∞-cosmos). For an∞-cosmos𝒦, write core∗𝒦 ⊂ 𝒦 for the
subcategory with the same objects and with homs defined to be the∞-groupoid cores of the functor
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spaces of𝒦. We refer to core∗𝒦 as the (∞, 1)-core of𝒦 and think of it as being the core (∞, 1)-category
inside this (∞, 2)-category.

12.1.11. Remark. The (∞, 1)-categorical core is not an ∞-cosmos in the strict sense axiomatized
in Definition 1.2.1. It inherits its class of isofibrations and the conical limits from the original ∞-
cosmos, but simplicial cotensors exist only weakly: the cotensor of an ∞-category 𝐴 in core∗𝒦 by
a simplicial set 𝑈 is constructed by the cotensor in 𝒦 of 𝐴 by a Kan complex replacement �̃� of 𝑈,
defined by “freely inverting” its edges and adding fillers for horns. This results in an equivalence

core(Fun(𝑋,𝐴))𝑈 ≃ core(Fun(𝑋,𝐴�̃�)) in place of the usual isomorphism. Alternatively, Exercise
12.1.iii suggests an alternate approach to defining the enrichment of an∞-cosmos in such a way that
the (∞, 1)-core remains an∞-cosmos.

12.1.12. Lemma. The natural inclusion 𝒦𝑎𝑛 ↪ 𝒬𝒞𝑎𝑡 factors through the inclusion core∗𝒬𝒞𝑎𝑡 ⊂ 𝒬𝒞𝑎𝑡
and this latter functor admits a simplicially enriched right adjoint left inverse, namely the functor that sends
each quasi-category to its∞-groupoid core.

𝒦𝑎𝑛 core∗𝒬𝒞𝑎𝑡⊥
core

Proof. If 𝐾 and 𝐿 are Kan complexes, then so is Fun(𝐾, 𝐿). Hence the natural inclusion𝒦𝑎𝑛 ↪
𝒬𝒞𝑎𝑡 factors through the (∞, 1)-categorical core.

The right adjoint core ∶ core∗𝒬𝒞𝑎𝑡 → 𝒬𝒞𝑎𝑡 acts on objects by the construction of Definition
12.1.8. To define its action on functor spaces, we must supply a canonical map

core(Fun(𝐴, 𝐵)) → Fun(core𝐴, core𝐵),
for any pair of quasi-categories 𝐴 and 𝐵. By Corollary 1.1.22, the isomorphisms in Fun(𝐴, 𝐵) ≅ 𝐵𝐴

are simplicial maps 𝛼∶ 𝐴 × Δ[1] → 𝐵 whose components 𝛼𝑎 ∶ Δ[1] → 𝐵, indexed by vertices 𝑎 of 𝐴,
define isomorphisms in 𝐵. Combining this observation with Definition 12.1.8, we see that an 𝑛-simplex
in core(Fun(𝐴, 𝐵)) is a simplicial map 𝜙∶ 𝐴 × Δ[𝑛] → 𝐵 with the property that upon restriction to
any vertex of𝐴 and any edge ofΔ[𝑛], the resulting edge in 𝐵 is an isomorphism. When𝐴 is restricted to
its Kan complex core, the edges of core𝐴 are also isomorphisms. It follows that 𝜙∶ core𝐴×Δ[𝑛] → 𝐵
carries every edge of the domain to an isomorphism in 𝐵, and hence factors through core𝐵 ↪ 𝐵, since
this inclusion is full on the invertible edges.³ Thus the 𝑛-simplex 𝜙 restricts to define an 𝑛-simplex
𝜙∶ core𝐴 × Δ[𝑛] → core𝐵. This defines the canonical map.

Now for a Kan complex 𝐾 and quasi-category 𝐴, the simplicial natural isomorphism

core(Fun(𝐾,𝐴)) ≅ Fun(𝐾, core𝐴)
is easily verified. The correspondence on vertices expresses the unenriched adjunction, while the corre-
spondence on higher simplices follows for the reason just discussed and the isomorphism core(𝐾) ≅
𝐾. �

12.1.13. Corollary. If 𝐴 and 𝐵 are equivalent quasi-categories, then core𝐴 and core𝐵 are equivalent Kan
complexes.

³In the language of marked simplicial sets, a map in core(Fun(𝐴, 𝐵)) is a marked map 𝐴♮ × Δ[𝑛]♯ → 𝐵♮. Upon

restriction along core𝐴♯ ↪ 𝐴♮, the domain core𝐴♯×Δ[𝑛]♯ is maximally marked, and hence factors through themaximally

marked core core𝐵♯ ↪ 𝐵♮ (see §D.4).
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Proof. An equivalence of quasi-categories is specified by a pair of 0-arrows together a pair of
invertible 1-arrows. As such it is contained in the (∞, 1)-categorical core core∗𝒬𝒞𝑎𝑡 ↪ 𝒬𝒞𝑎𝑡 and
preserved by the simplicial functor core ∶ core∗𝒬𝒞𝑎𝑡 → 𝒦𝑎𝑛. �

The core of an∞-category in a general∞-cosmos of (∞, 1)-categories can be defined in a similar
manner to Definition 12.1.4, but this notion also has an up-to-equivalence universal property that we
prefer to use as the definition.

12.1.14. Definition. Let𝒦 be an∞-cosmos of (∞, 1)-categories and let 𝐴 be an∞-category in𝒦. Its
∞-groupoid core is an∞-category core𝐴 equipped with a map 𝜄 ∶ core𝐴 → 𝐴 so that

• core𝐴 is a discrete∞-category, meaning that Fun(𝑋,𝐴) is a Kan complex for all 𝑋
• if 𝐺 is a discrete∞-category, then 𝜄 defines an equivalence

Fun(𝐺, core𝐴) core(Fun(𝐺,𝐴))∼𝜄∘−

In practice, an∞-cosmos of (∞, 1)-categories frequently comes with an explicit core functor, but
as in the case of opposites, one can also be defined by transferring the core construction along a suitable
change-of-model functor:

12.1.15. Proposition. In an∞-cosmos of (∞, 1)-categories 𝒦, any choices of∞-groupoid cores assemble
into a quasi-pseudofunctor core ∶ core∗𝒦 → 𝒟𝑖𝑠𝑐(𝒦). In particular, for any∞-categories 𝐴,𝐵 ∈ 𝒦, there
is an map core(Fun(𝐴, 𝐵)) → Fun(core𝐴, core𝐵) that is quasi-pseudonatural in 𝐴 and in 𝐵 as objects of
core∗𝒦.

Proof. The quasi-pseudofunctor is defined as the composite of the zigzag in which the backwards
map is a cosmological biequivalence by Corollary 10.3.7:

core∗𝒦 𝒟𝑖𝑠𝑐(𝒦)

core∗𝒬𝒞𝑎𝑡 𝒦𝑎𝑛 ≅ 𝒟𝑖𝑠𝑐(𝒬𝒞𝑎𝑡)

∼(−)0

core(−)

≃ ∼ (−)0

core(−)

We leave it to Exercise 12.1.iv to verify that 𝒦 ∼ ℒ descends to a simplicially enriched biequiv-
alence core∗𝒦 ∼ core∗ℒ. By Proposition 10.4.16 the inverse to the cosmological biequivalence
(−)0 ∶ 𝒟𝑖𝑠𝑐(𝒦) ∼ 𝒦𝑎𝑛, defines a quasi-pseudofunctor and biequivalence 𝒦𝑎𝑛 ∼ 𝒟𝑖𝑠𝑐(𝒦), which
composes with the simplicial functor core((−)0) ∶ core∗𝒦 → 𝒦𝑎𝑛 to define the quasi-pseudofunctor
core ∶ core∗𝒦 → 𝒟𝑖𝑠𝑐(𝒦). By Lemma 10.4.12, the action on homs of this quasi-pseudofunctor defines
a quasi-pseudonatural transformation.

It remains only to verify that the action on objects of the quasi-pseudofunctor satisfies the conditions
of Definition 12.1.14. By construction, core𝐴 is a discrete ∞-category for any 𝐴 ∈ 𝒦. The map
𝜄 ∶ core𝐴 → 𝐴 is defined by whiskering the corresponding inclusion of the Kan complex core of
quasi-category with the underlying quasi-category functor and its quasi-pseudofunctorial inverse:

core∗𝒦 core∗𝒬𝒞𝑎𝑡 core∗𝒬𝒞𝑎𝑡 core∗𝒦∼(−)0
core

⇓𝜄 ∼
(−)−10

Now if 𝐺 is a discrete ∞-category, then 𝐺0 = Fun(1, 𝐺) is a Kan complex, so by Lemma 12.1.12
𝜄𝐴0 ∘ −∶ Fun(𝐺0, core(𝐴0)) ∼ core(Fun(𝐺0, 𝐴0)) is an equivalence. By construction core𝐴 is defined
so that (core𝐴)0 ≃ core(𝐴0). Note that since (−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 is a biequivalence, this shows that the
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core of an∞-category in an∞-cosmos of (∞, 1)-categories is well-defined up to equivalence. Since
the simplicial functor (−)0 ∶ core∗𝒦 → core∗𝒬𝒞𝑎𝑡 is an equivalence on homs, the functor defined by
post-composition with 𝜄𝐴 is equivalent to this functor

Fun(𝐺, core𝐴) core(Fun(𝐺,𝐴))

Fun(𝐺0, core𝐴0) core(Fun(𝐺0, 𝐴0))

𝜄𝐴∘−

∼(−)0 ≅ ∼ (−)0

∼
𝜄𝐴0∘−

Thus post-composition with 𝜄𝐴 induces the required equivalence Fun(𝐺, core𝐴) ≃ core(Fun(𝐺,𝐴)),
completing the proof. �

Exercises.

12.1.i. Exercise. Prove that the homotopy category of the opposite of an∞-category 𝐴 is equivalent
to the opposite of the homotopy category of 𝐴.

12.1.ii. Exercise. Prove that a functor between∞-categories is an equivalence if and only if its opposite
functor is an equivalence.

12.1.iii. Exercise. In consultation with §D.4 and §D.5:

(i) Redefine the notion of an ∞-cosmos from Definition 1.2.1 to be a category enriched over
marked simplicial sets, whose functor spaces are naturally marked quasi-categories.

(ii) Describe the construction of the∞-groupoid core of a naturally marked quasi-category and of
the (∞, 1)-categorical core of an∞-cosmos with this enrichment.

(iii) Show that (∞, 1)-categorical cores are cotensored over simplicial sets, although these cotensors
are not preserved by the inclusion core∗𝒦 ↪ 𝒦.

(iv) Show that the (∞, 1)-categorical core of an ∞-cosmos is an ∞-cosmos in the new sense,
although the functor core∗𝒦 ↪ 𝒦 is still not cosmological.

12.1.iv. Exercise. Let 𝐹∶ 𝒦 → ℒ be a cosmological functor. Prove that 𝐹 induces a simplicial functor
𝐹∶ core∗𝒦 → core∗ℒ that is a biequivalence if the original functor is.

12.1.v. Exercise.

(i) Prove that any adjunction between quasi-categories

𝐵 𝐴
𝑓

⊥
𝑢

restricts to define an adjoint equivalence between the full sub-quasi-categories spanned by those
elements 𝑏 ∶ 1 → 𝐵 and 𝑎 ∶ 1 → 𝐴 for which the unit and counit components, respectively, are
invertible.

(ii) State and prove an analogous result about adjoint equivalences derived from adjunctions in an
arbitrary∞-cosmos of (∞, 1)-categories.

12.2. Pointwise Universal Properties

In an∞-cosmos of (∞, 1)-categories, the terminal∞-category 1 plays a special role which can be
summarized by the slogan that “universal properties are detected pointwise.” In this section, we collect
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together a number of results that encapsulate this slogan, which are proven through a combination of
synthetic and analytic techniques.

For instance, Corollary 1.1.22 states and Corollary D.4.19 proves that a natural transformation

between functors between quasi-categories 𝑋 𝐴
𝑓

𝑔
⇓𝛼 is a natural isomorphism if and only if

it is a pointwise isomorphism, meaning that each of its components 1 𝑋 𝐴𝑥
𝑓

𝑔
⇓𝛼 is

invertible. Consequently:

12.2.1. Lemma. In an∞-cosmos of (∞, 1)-categories, a natural transformation is a natural isomorphism if
and only if it is a pointwise isomorphism.

Proof. Any natural isomorphism is clearly a pointwise isomorphism. For the converse, we de-
ploy the 2-categorical biequivalence (−)0 ∶ 𝔥𝒦 ∼ 𝔥𝒬𝒞𝑎𝑡 of Propositions 10.2.1 and 10.3.1. Suppose

𝑋 𝐴
𝑓

𝑔
⇓𝛼 is a pointwise natural isomorphism in 𝔥𝒦 and consider the underlying natural trans-

formation between underlying quasi-categories 𝑋0 𝐴0

𝑓0

𝑔0

⇓𝛼0 . By construction, vertices 𝑥 of

𝑋0 ≅ Fun(1, 𝑋) correspond bijectively to elements of 𝑋, and the components

1 𝑋 𝐴 1 𝑋0 𝐴0
𝑥

𝑓

𝑔
⇓𝛼 ↭ 𝑥

𝑓0

𝑔0

⇓𝛼0

define corresponding arrows in h𝐴 ≅ h(𝐴0). Thus, the underlying natural transformation 𝛼0 is a
pointwise natural isomorphism in 𝔥𝒬𝒞𝑎𝑡 as well, and Corollary D.4.19 applies to prove that 𝛼0 admits

an inverse 𝑋0 𝐴0

𝑔0

𝑓0

⇓𝛼−10 . By the full and faithfulness of the local equivalence hFun(𝑋,𝐴) ∼

hFun(𝑋0, 𝐴0) established in Proposition 10.3.1, this 2-cell lifts to define an inverse natural transforma-

tion 𝑋 𝐴
𝑔

𝑓
⇓𝛼−1 witnessing the invertibility of 𝛼. �

It is worth calling attention to a special feature of the cosmological biequivalence (−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡
used in the proof of Lemma 12.2.1.

12.2.2. Observation (on the elements of the underlying quasi-category). By Corollary 10.3.2(ii), a
cosmological biequivalence 𝐹∶ 𝒦 ∼ ℒ induces a bijection between isomorphism classes of elements
of an ∞-category 𝐴 ∈ 𝒦 and isomorphism classes of elements of 𝐹𝐴 ∈ ℒ, and in fact induces an
equivalence of homotopy categories h𝐴 ∼ h𝐹𝐴, the objects of which are exactly these elements
(see Exercise 10.3.i). In particular, any element 𝑥∶ 1 → 𝐹𝐴 is naturally isomorphic to an element
𝐹𝑎∶ 1 → 𝐹𝐴 that is the image of an element 𝑎 ∶ 1 → 𝐴. Since “pointwise” ∞-categorical notions –
invertibility of the components of a natural isomorphism, possession of a terminal element in the fibers

367



of a cocartesian fibration – are invariant under isomorphism, if 𝐴 satisfies some pointwise criterion in
𝒦, then 𝐹𝐴 satisfies the corresponding pointwise criterion inℒ.

But in the case of ∞-cosmoi of (∞, 1)-categories, Proposition 10.2.1 supplies a cosmological bi-
equivalence (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 that acts bijectively on elements of ∞-categories. By construction,
vertices of 𝐴0 ≅ Fun(1, 𝐴) correspond bijectively to elements of 𝐴. Consequently, as illustrated by
the proof of Lemma 12.2.1, “pointwise” properties may be transferred even more readily.

Using Lemma 12.2.1, we can show that an isofibration in an ∞-cosmos of (∞, 1)-categories is a
discrete object of the slice∞-cosmos if and only if its fibers are discrete∞-categories. It follows that
cocartesian, cartesian, or two-sided fibrations of (∞, 1)-categories are discrete if and only if they have
discrete fibers.

12.2.3. Proposition. Let 𝑝∶ 𝐸 ↠ 𝐵 be an isofibration in an∞-cosmos𝒦 of (∞, 1)-categories. Then 𝑝 is
discrete as an object of𝒦/𝐵 if and only if the fibers of 𝑝 are discrete∞-categories in𝒦.

Proof. Any element 𝑏 ∶ 1 → 𝐵 induces a cosmological functor 𝑏∗ ∶ 𝒦/𝐵 → 𝒦 which preserves
discrete ∞-categories by Remark 1.3.3. So for any ∞-cosmos 𝒦, if 𝑝∶ 𝐸 ↠ 𝐵 is a discrete object in
𝒦/𝐵, then its fibers are discrete∞-categories.

For the converse we assume that 𝒦 is an ∞-cosmos of (∞, 1)-categories and appeal to Lemma
12.2.1. To show that 𝑝∶ 𝐸 ↠ 𝐵 is discrete in𝒦/𝐵 we must argue that the quasi-category defined by the
pullback

Fun𝐵(𝑓 ∶ 𝑋 → 𝐵, 𝑝 ∶ 𝐸 ↠ 𝐵) Fun(𝑋, 𝐸)

1 Fun(𝑋, 𝐵)

𝑝∗
𝑓

is a Kan complex. By Corollary 1.1.15, it suffices to show that its homotopy category is a groupoid, and
for this we use the smothering functor

h(Fun𝐵(𝑓 ∶ 𝑋 → 𝐵, 𝑝 ∶ 𝐸 ↠ 𝐵)) → 𝟙 ×
hFun(𝑋,𝐵)

hFun(𝑋, 𝐸)

of Lemma 3.1.5, which, in particular, reflects isomorphisms. The arrows of h(Fun𝐵(𝑓 , 𝑝)) are represented
by 1-simplices 𝛼∶ 𝑒 → 𝑒′ ∈ Fun(𝑋, 𝐸)with the property that the whiskered composite 𝑝𝛼 ∈ Fun(𝑋, 𝐵)
is the degenerate 1-simplex at 𝑓.⁴ By Lemma 12.2.1, the natural transformation 𝛼∶ 𝑒 ⇒ 𝑒′ ∈ hFun(𝑋, 𝐸)
is invertible if and only if its components 𝛼𝑥 are invertible for every 𝑥∶ 1 → 𝑋. Since the 1-simplex
𝑝𝛼 is degenerate in Fun(𝑋, 𝐵), the 1-simplex 𝑝𝛼𝑥 is degenerate at the vertex 𝑓 𝑥 ∈ Fun(1, 𝐵), which
says that 𝛼𝑥 lies in the fiber over 𝑓 𝑥 ∶ 1 → 𝐵. Since the fibers of 𝑝∶ 𝐸 ↠ 𝐵 are discrete, this tells us
that 𝛼𝑥 is invertible, so we conclude by Lemma 12.2.1 that 𝛼 is invertible as claimed. �

Our next series of results shows that universal properties can be detected pointwise in∞-cosmoi
of (∞, 1)-categories. The key technical ingredient is an analytical result about quasi-categories in the
style of Joyal and Lurie.

12.2.4. Proposition. A cocartesian fibration 𝑞 ∶ 𝐸 ↠ 𝐴 of quasi-categories admits a right adjoint right
inverse 𝑡 ∶ 𝐴 → 𝐸 if and only if for each 𝑎 ∶ 1 → 𝐴 the fiber 𝐸𝑎 has a terminal element.

⁴This implies, but is stronger than, the property that the whiskered composite in the homotopy 2-category equals the
2-cell id𝑓 (see §3.6 for a discussion).
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Proof. By Lemma 3.6.9, a right adjoint right inverse to 𝑞 can be interpreted as defining a terminal
element in 𝑞 ∶ 𝐸 ↠ 𝐴, considered as an object in the sliced∞-cosmos 𝒬𝒞𝑎𝑡/𝐴. By Lemma 3.6.6(i), this
fibered adjunction may be pulled back along any element 𝑎 ∶ 1 → 𝐴 to define a terminal element in
the fiber 𝐸𝑎.

For the converse, let 𝑡𝑎 ∶ 1 → 𝐸𝑎 denote a chosen terminal element in the fiber 𝐸𝑎 over 𝑎 ∶ 1 → 𝐴.
Lemma F.3.1 characterizes those isofibrations between quasi-categories that admit a right adjoint right
inverse in terms of a lifting property. In this case, it suffices to show that any lifting problem

1 𝜕Δ[𝑛] 𝐸

Δ[𝑛] 𝐴

{𝑛}

𝑡𝑎

𝑦

𝑞

𝑥

for 𝑛 ≥ 1 has a solution. To that end, consider the simplicial map 𝑘 ∶ Δ[𝑛] × Δ[1] → Δ[𝑛] defined
on vertices by 𝑘(𝑖, 0) ≔ 𝑖 and 𝑘(𝑖, 1) ≔ 𝑛. The composite 𝑥𝑘 ∶ Δ[𝑛] × Δ[1] → 𝐴 restricts to define
a map 𝑥𝑘 ∶ 𝜕Δ[𝑛] × Δ[1] → 𝐴 which represents a 2-cell whose codomain, defined by evaluating at
the vertex {1} of Δ[1], is constant at 𝑎 and whose domain factors through 𝑞 along 𝑦. This yields a new
lifting problem

𝜕Δ[𝑛] 𝐸

𝜕Δ[𝑛] × Δ[1] 𝐴

𝑦

𝑖0 𝑞𝑧

𝑥𝑘
which Lemma F.4.8 enables us to solve. By Lemma F.4.8, the lift 𝑧 represents a 𝑞-cocartesian lift 𝜁 of
the 2-cell 𝜅 represented by the restriction of 𝑥𝑘:

𝜕Δ[𝑛] 𝐸 𝜕Δ[𝑛] 𝐸

1 𝐴 1 𝐴

𝑦

! ⇓𝜅 𝑞 =

𝑦

!

⇓𝜁
𝑢 𝑞

𝑎 𝑎

By construction, the codomain functor of the 𝑞-cocartesian lift displayed above right lands in the fiber
over 𝑎. Now the component of 𝜅 at the final vertex {𝑛} ∶ 1 → 𝜕Δ[𝑛] is id𝑎, so by Lemma 5.1.6(ii), the
component 𝑧{𝑛} representing the 2-cell 𝜁{𝑛} is an isomorphism. In particular, the element 𝑢{𝑛} ∶ 1 → 𝐸
is isomorphic to the terminal element 𝑦{𝑛} = 𝑡𝑎 of 𝐸𝑎, so we may apply the universal property of
Proposition F.1.1(vi) to extend 𝑢 to a simplex:

𝜕Δ[𝑛] 𝐸𝑎

Δ[𝑛]

𝑢

𝑣
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This data defines a new lifting problem

𝜕Δ[𝑛] 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} 𝐸

Δ[𝑛] Δ[𝑛] × Δ[1] 𝐴

𝜄0

𝑦

𝑧∪𝑣

𝑞

𝜄0

𝑥

𝑥𝑘

(12.2.5)

which we solve inductively by choosing lifts of the 𝑛 + 1 (𝑛 + 1)-simplices in Δ[𝑛] × Δ[1] not present
in 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1}, starting from the 𝑛 + 1-simplex that contains the face Δ[𝑛] × {1}. All
but the last of these can be lifted by means of lifting inner horns against the isofibration 𝑞. For the
final simplex, we must solve an outer horn lifting problem

Δ[1] Λ𝑛+1[𝑛 + 1] 𝐸

Δ[𝑛 + 1] 𝐴

{𝑛,𝑛+1}

𝑧{𝑛}

𝑞

but in this case the final edge of the outer horn is the isomorphism 𝑧{𝑛}, so Proposition 1.1.18 permits
its solution as well. Now the lift (12.2.5) restricts to define the sought-for solution to the original lifting
problem, proving that 𝑞 ∶ 𝐸 ↠ 𝐴 admits a right adjoint right inverse. �

Via the cosmological biequivalence (−)op ∶ 𝒬𝒞𝑎𝑡 ≃ 𝒬𝒞𝑎𝑡co of Lemma 12.1.3, the proof of Proposi-
tion 12.2.4 dualizes to prove that a cartesian fibration of quasi-categories admits a left adjoint right
inverse if and only if each fiber has an initial element (see Exercise 12.2.i).

The proof of Proposition 12.2.4 relied heavily on “analytic” techniques. Nevertheless its conclusion
transfers to any∞-cosmos that is biequivalent to the∞-cosmos of quasi-categories.

12.2.6. Proposition. In an∞-cosmos of (∞, 1)-categories a cocartesian fibration 𝑞 ∶ 𝐸 ↠ 𝐴 of admits a
right adjoint right inverse 𝑡 ∶ 𝐴 → 𝐸 if and only if for each 𝑎 ∶ 1 → 𝐴 the fiber 𝐸𝑎 has a terminal element.

Proof. The argument that the fibers of an isofibration with right adjoint right inverse admit
terminal elements is the same as given in the proof of Proposition 12.2.4. For the converse, suppose
𝑞 ∶ 𝐸 ↠ 𝐴 is a cocartesian fibration in an∞-cosmos𝒦 of (∞, 1)-categories with the property that for
each element 𝑎 ∶ 1 → 𝐴 of the base, the fiber 𝐸𝑎 has a terminal element. By Proposition 10.2.1, we may
use the underlying quasi-category biequivalence (−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 to conclude that 𝑞 admits a right
adjoint right inverse once we show that 𝑞0 ∶ 𝐸0 ↠ 𝐴0 satisfies the hypotheses of Proposition 12.2.4.

Cosmological functors preserve cocartesian fibrations, so the underlying map 𝑞0 ∶ 𝐸0 ↠ 𝐴0
defines a cocartesian fibration of quasi-categories. By Observation 12.2.2, elements of the underlying
quasi-category 𝐴0 correspond bijectively to elements of the∞-category 𝐴. By hypothesis, for every
𝑎 ∶ 1 → 𝐴 the ∞-category 𝐸𝑎 admits a terminal element, so by Proposition 10.1.4 the underlying
quasi-category (𝐸𝑎)0 does as well. In this way, we see that every fiber of the cocartesian fibration of
quasi-categories 𝑞0 ∶ 𝐸0 ↠ 𝐴0 admits a terminal element. By Proposition 12.2.4, 𝑞0 admits a right
adjoint right inverse. Now by Proposition 10.3.6, we may conclude that 𝑞 ∶ 𝐸 ↠ 𝐴 admits a right
adjoint right inverse in𝒦, as desired. �
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An important special case of Proposition 12.2.6 proves a result promised in the discussion sur-
rounding Proposition 4.1.6: in an∞-cosmos of (∞, 1)-categories a functor 𝑓 ∶ 𝐵 → 𝐴 admits a right
adjoint just when for each element 𝑎 ∶ 1 → 𝐴, the∞-category Hom𝐴(𝑓 , 𝑎) admits a terminal element:
namely the counit component 𝜖𝑎 ∶ 1 → Hom𝐴(𝑓 , 𝑎). In the terminology used by Mac Lane [81, §III.1],
this universal property exhibits 𝜖𝑎 as a “universal arrow” from the functor 𝑓 to the element 𝑎.
12.2.7. Corollary. In an∞-cosmos of (∞, 1)-categories, a functor 𝑓 ∶ 𝐵 → 𝐴 admits a right adjoint if and
only if for each element 𝑎 ∶ 1 → 𝐴, the comma∞-category Hom𝐴(𝑓 , 𝑎) admits a terminal element.

Proof. Proposition 4.1.6 demonstrates that in any∞-cosmos, 𝑓 ∶ 𝐵 → 𝐴 admits a right adjoint
if and only if Hom𝐴(𝑓 , 𝐴) admits a terminal element over 𝐴, meaning that 𝑝1 ∶ Hom𝐴(𝑓 , 𝐴) ↠ 𝐴
admits a right adjoint right inverse. By Corollary 5.5.13, this functor is a cocartesian fibration, so
Proposition 12.2.6 tells us that 𝑝1 admits a right adjoint right inverse if and only if each fiberHom𝐴(𝑓 , 𝑎)
admits a terminal element. �

Proposition 12.2.6 implies that modules between (∞, 1)-categories admit an analogous “point-
wise” representability condition, characterizing those modules that are covariantly or contravariantly
represented by a functor in the sense of Definition 7.4.7.

12.2.8. Corollary. In an∞-cosmos of (∞, 1)-categories, a module𝐴
𝐸

𝐵 is covariantly represented if and
only if for each 𝑎 ∶ 1 → 𝐴, the module 1

𝐸(1,𝑎)
𝐵 is covariantly represented, which is the case if and only if

each∞-category 𝐸(1, 𝑎) admits a terminal element.

Proof. By Proposition 8.4.10, a module 𝐴
𝐸

𝐵 encoded by (𝑞, 𝑝) ∶ 𝐸 ↠ 𝐴 × 𝐵 is covariantly
represented if and only if its left leg 𝑞 ∶ 𝐸 ↠ 𝐴 admits a right adjoint right inverse 𝑟 ∶ 𝐴 → 𝐸, in
which case 𝐸 ≃ Hom𝐵(𝐵, 𝑝𝑟). By Lemma 7.4.3, the left left 𝑞 ∶ 𝐸 ↠ 𝐴 defines a cocartesian fibration,
so by Proposition 12.2.6, 𝑞 admits a right adjoint right inverse if and only if the fiber 𝐸𝑎 over each

element 𝑎 ∶ 1 → 𝐴 admits a terminal element. For each 𝑎 ∶ 1 → 𝐴, the module 1
𝐸(1,𝑎)

𝐵 is given

by the pullback along 𝑎 × id ∶ 1 × 𝐵 → 𝐴 × 𝐵 and hence is isomorphic to the module 1
𝐸𝑎 𝐵.

Applying Proposition 8.4.10 again, this module is covariantly represented by some element if and
only if ! ∶ 𝐸𝑎 ↠ 1 admits a right adjoint right inverse, which is the case if and only if the∞-category
𝐸𝑎 ≅ 𝐸(1, 𝑎) admits a terminal element. �

Our next result concerns absolute lifting diagrams, used in Definition 2.3.8 to define the limit
or colimit of a family of diagrams. There is a certain elegance in considering families of diagrams,
rather than individual diagrams, when it comes to stating results such as Proposition 2.3.15, but it is
also useful to establish the existence of limits and colimits one diagram at a time. In ∞-cosmoi of
(∞, 1)-categories, this sort of reduction is possible, on account of the following:

12.2.9. Proposition. In an∞-cosmos of (∞, 1)-categories:
(i) A functor 𝑔∶ 𝐶 → 𝐴 admits an absolute right lifting through a functor 𝑓 ∶ 𝐵 → 𝐴 if and only if for

all 𝑐 ∶ 1 → 𝐶, the comma∞-category Hom𝐴(𝑓 , 𝑔𝑐) admits a terminal element.
(ii) A triangle as below-left

𝐵 𝐵

𝐶 𝐴 1 𝐴
⇓𝜌

𝑓
⇓𝜌𝑐

𝑓𝑟

𝑔

𝑟𝑐

𝑔𝑐
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displays 𝑟 as an absolute right lifting of 𝑔 through 𝑓 if and only if for all 𝑐 ∶ 1 → 𝐶, the restricted
triangle as above-right displays 𝑟𝑐 as an absolute right lifting of 𝑔𝑐 through 𝑓.

(iii) A functor 𝑔∶ 𝐶 → 𝐴 admits an absolute right lifting through a functor 𝑓 ∶ 𝐵 → 𝐴 if and only if for
all 𝑐 ∶ 1 → 𝐶 there exists an absolute right lifting of 𝑔𝑐 through 𝑓 as below-left

𝐵 𝐵

1 𝐴 𝐶 𝐴
⇓𝜌𝑐

𝑓
⇓𝜌

𝑓𝑟𝑐

𝑔𝑐

𝑟

𝑔

in which case the components of the above-right absolute right lifting of 𝑔 through 𝑓 are isomorphic to
the corresponding pointwise absolute liftings: 𝑟𝑐 ≅ 𝑟𝑐 and 𝜌𝑐 ≅ 𝜌𝑐.

Proof. Theorems 3.5.8 and 3.5.12 demonstrate that in any∞-cosmos, a functor 𝑔∶ 𝐶 → 𝐴 admits
a right lifting through 𝑓 ∶ 𝐵 → 𝐴 if and only if the codomain projection functor 𝑝1 ∶ Hom𝐴(𝑓 , 𝑔) ↠
𝐶 admits a right adjoint right inverse. By Corollary 5.5.13 this functor is a cocartesian fibration.
Proposition 12.2.6 proves that in an∞-cosmos of (∞, 1)-categories, 𝑝1 ∶ Hom𝐴(𝑓 , 𝑔) ↠ 𝐶 admits a
right adjoint right inverse if and only if each fiber Hom𝐴(𝑓 , 𝑔𝑐) over an element 𝑐 ∶ 1 → 𝐶 admits a
terminal element. This proves the first statement.

Since absolute lifting diagrams are stable under restriction, it is immediately clear that any absolute
right lifting diagram as above-left, restricts to define a pointwise absolute right lifting diagram as
above-right. For the converse, suppose (𝑟𝑐, 𝜌𝑐) defines an absolute right lifting of 𝑔𝑐 through 𝑓 for any
𝑐 ∶ 1 → 𝐶. By Theorem 3.5.12, it follows that each comma ∞-category Hom𝐴(𝑓 , 𝑔𝑐) has a terminal
element and so by (i), 𝑔∶ 𝐶 → 𝐴 must admit an absolute right lifting (𝑠, 𝜎) through 𝑓 ∶ 𝐵 → 𝐴. By its
universal property, the pair (𝑟, 𝜌) factors through (𝑠, 𝜎) via a 2-cell 𝜏∶ 𝑟 ⇒ 𝑠 so that 𝜌 = 𝜎 ⋅ 𝑓 𝜏. Since
(𝑟𝑐, 𝜌𝑐) and (𝑠𝑐, 𝜎𝑐) are both absolute right lifting diagrams, we know that each component 𝜏𝑐 is an
isomorphism. Hence, by Lemma 12.2.1, 𝜏 is an isomorphism, and thus (𝑟, 𝜌) is also an absolute right
lifting diagram, as desired.

The third statement is a convenient summary of the first two. If 𝑔𝑐 admits an absolute right lifting
through 𝑓 then Hom𝐴(𝑓 , 𝑔𝑐) has a terminal element and (i) guarantees the existence of an absolute
right lifting of 𝑔 through 𝑓. The component of (𝑟, 𝜌) at 𝑐 defines a second absolute right lifting of 𝑔𝑐
through 𝑓 inducing the claimed isomorphisms. �

As a corollary, we may justify the claim made in Remark 2.3.9.

12.2.10. Corollary. In an∞-cosmos of (∞, 1)-categories if 𝐴 is an∞-category that admits limits of every
diagram 𝑑∶ 1 → 𝐴𝐽 of shape 𝐽 then 𝐴 admits all limits of shape 𝐽: that is, the constant diagram functor admits
a right adjoint

𝐴𝐽 𝐴⊥
lim

Δ

Proof. By Proposition 12.2.9(iii), the functor id ∶ 𝐴𝐽 → 𝐴𝐽 admits an absolute right lifting
through Δ∶ 𝐴 → 𝐴𝐽 if and only if each diagram 𝑑∶ 1 → 𝐴𝐽 admits an absolute right lifting through
Δ∶ 𝐴 → 𝐴𝐽. By Definition 2.3.8 the latter condition encodes what it means for 𝐴 to admit a limit of
the diagram 𝑑, while by Lemma 2.3.7 the former condition encodes what it means for Δ∶ 𝐴 → 𝐴𝐽 to
admit a right adjoint. �
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Another proof of Proposition 12.2.9(ii) is possible. By Theorem 3.5.8, a 2-cell 𝜌∶ 𝑓 𝑟 ⇒ 𝑔 defines an
absolute right lifting if and only if the induced functor 𝜌∶ Hom𝐵(𝐵, 𝑟) → Hom𝐴(𝑓 , 𝑔) is an equivalence
over 𝐶 × 𝐵. As we shall now discover, equivalences between co/cartesian fibrations or modules can be
detected fiberwise in∞-cosmoi of (∞, 1)-categories. As was our strategy for constructing right adjoint
right inverses to cocartesian fibrations, we first prove this result for quasi-categories, using analytic
techniques. Alternate analytic proofs can be found in [78, 3.3.1.5] and [4, 2.9]. We then use model
independence to conclude that the same result holds true in arbitrary∞-cosmoi of (∞, 1)-categories.

12.2.11. Proposition. A cartesian functor

𝐸 𝐹

𝐵

𝑔

𝑝 𝑞

between cocartesian fibrations of quasi-categories is a fibered equivalence if and only if it is a fiberwise equivalence,
meaning that for each 𝑏 ∶ 1 → 𝐵, the induced functor between fibers 𝑔𝑏 ∶ 𝐸𝑏 → 𝐹𝑏 is an equivalence.

Note the subtle difference in terminology between “fibered equivalences” – equivalences over 𝐵 –
and “fiberwise equivalences” – maps inducing equivalences on fibers over elements of 𝐵. This result
and Proposition 12.2.12 to follow show that in fact these two notions coincide for cartesian functors in
∞-cosmoi of (∞, 1)-categories.

Proof. Fibered equivalences are stable under pullback to fibers, so the content is in the con-
verse implication: that any cartesian functor between cocartesian fibrations that induces a fiberwise
equivalence is necessarily an equivalence.

The cartesian functor 𝑔 can be factored in the slice 𝒬𝒞𝑎𝑡/𝐵 as an equivalence followed by an
isofibration. By Corollary 5.3.1, the intermediate object of that factorization is again a cocartesian
fibration and the isofibration from it to 𝑞 ∶ 𝐹 ↠ 𝐵 is again a cartesian functor. Replacing 𝑝∶ 𝐸 ↠ 𝐵
by the equivalent cocartesian fibration, it therefore suffices to assume that 𝑔∶ 𝐸 ↠ 𝐵 is an isofibration
and a cartesian functor and postulate that each induced map 𝑔𝑏 ∶ 𝐸𝑏 ∼ 𝐹𝑏 is a trivial fibration. Under
these assumptions, we must show that 𝑔 is itself is a trivial fibration.

To that end, suppose that we are given a lifting problem

𝜕Δ[𝑛] 𝐸

Δ[𝑛] 𝐹

𝑒

𝑔

𝑓

over 𝑏 ∶ Δ[𝑛] → 𝐵. Consider the retract diagram

Δ[𝑛] Δ[𝑛] × Δ[1] Δ[𝑛]
𝑖 (𝑖, 0)

(𝑖, 𝑗) �
𝑖 if 𝑗 = 0
𝑛 if 𝑗 = 1

id×{0} 𝑟
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and choose a pointwise 𝑝-cocartesian lift

𝜕Δ[𝑛] × {0} 𝐸

𝜕Δ[𝑛] × Δ[1] 𝐵

𝑒

𝑝
𝜒

𝑏𝑟

as permitted by Lemma F.4.8. Applying 𝑔 we obtain a hollow cylinder

𝜕Δ[𝑛] × Δ[1] 𝐸 𝐹𝜒 𝑔

and since 𝑔 is a cartesian functor and 𝜒 is pointwise 𝑝-cocartesian it follows that 𝑔𝜒 is pointwise 𝑞-
cocartesian. Now by construction the simplex 𝑓 ∶ Δ[𝑛]×{0} → 𝐹 agrees with 𝑔𝜒∶ 𝜕Δ[𝑛]×Δ[1] → 𝐹 on
the subset 𝜕Δ[𝑛] × {0} where they are both defined. It follows that they combine to give a well-defined
simplicial map on the union of their domains and so provide us with a second lifting problem:

Δ[𝑛] × {0} ∪ 𝜕Δ[𝑛] × Δ[1] 𝐹

Δ[𝑛] × Δ[1] 𝐵

𝑓 ∪𝑔𝜒

𝑞

𝑏𝑟

𝜌

which can again be solved to give a pointwise 𝑞-cocartesian lift 𝜌 by Lemma F.4.8. Note now that the
retraction 𝑟 ∶ Δ[𝑛] × Δ[1] → Δ[𝑛] was constructed to map the subset Δ[𝑛] × {1} onto the vertex {𝑛},
from which it follows that the 𝑛-simplex

Δ[𝑛] × {1} Δ[𝑛] × Δ[1] 𝐵𝑏𝑟

is a degenerate image of the final vertex 𝑏𝑛 ≔ 𝑏 ⋅ {𝑛}. Now observe that the cylinders 𝜒 and 𝜌 were
defined to lie over 𝑏𝑟 ∶ Δ[𝑛] × Δ[1] → 𝐵, so it follows that the restricted maps

𝜕Δ[𝑛] × {1} 𝜕Δ[𝑛] × Δ[1] 𝐸 Δ[𝑛] × {1} Δ[𝑛] × Δ[1] 𝐹𝜒 𝜌

land in the fibers 𝐸𝑏𝑛 and 𝐹𝑏𝑛 of 𝑝 and 𝑞, respectively. Thus, 𝜒 and 𝜌 define a lifting problem

𝜕Δ[𝑛] 𝐸𝑏𝑛

Δ[𝑛] 𝐹𝑏𝑛

𝜒|{1}

∼ 𝑔𝑏𝑛
𝛾

𝜌|{1}

which we may solve since the map of fibers on the right is, by assumption, a trivial fibration. Now the
upper left triangle tells us that 𝜒 and 𝛾 agree on the subset 𝜕Δ[𝑛] × {1} where they are both defined.
Thus, these maps combine to give a well-defined simplicial map on the union of their domains depicted
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as the upper-horizontal in the lifting problem on the right of the following diagram:

𝜕Δ[𝑛] × {0} Δ[𝑛] × {1} ∪ 𝜕Δ[𝑛] × Δ[1] 𝐸

Δ[𝑛] × {0} Δ[𝑛] × Δ[1] 𝐹

𝑒

𝛾∪𝜒

𝑔

𝑓

𝜌

A standard argument shows that the lifting problem in the right-hand square can be solved by filling a
sequence of inner horns and a single outer horn of shape Λ𝑛+1[𝑛 + 1] whose final edge is a cocartesian
lift of the degeneracy at 𝑏𝑛. Lemma 5.1.6 observes that cocartesian lifts of degenerate simplices are
isomorphisms, so this last horn is actually a “special outer horn” with first edge invertible. Consequently,
by Theorem D.5.1 it can therefore be lifted against the isofibration 𝑝. This construction fills the sphere
at the domain end of the hollow cylinder, solving the original lifting problem. �

12.2.12. Proposition (fiberwise equivalences of cartesian fibrations). In an∞-cosmos of (∞, 1)-categories,
a cartesian functor

𝐸 𝐹

𝐵

𝑔

𝑝 𝑞

between cocartesian fibrations is a fibered equivalence if and only if it is a fiberwise equivalence, meaning that
for each 𝑏 ∶ 1 → 𝐵, the induced functor between fibers 𝑔𝑏 ∶ 𝐸𝑏 → 𝐹𝑏 is an equivalence.

Proof. An equivalence of cocartesian fibrations is necessarily a fiberwise equivalence, so we need
only prove the converse. By Propositions 10.2.2 and 10.2.1, if𝒦 is an∞-cosmos of (∞, 1)-categories
and 𝐵 is an ∞-category in 𝒦, then the underlying quasi-category functor induces a cosmological
biequivalence (−)0 ∶ 𝒦/𝐵 ∼ 𝒬𝒞𝑎𝑡/𝐵0 . By Corollary 10.3.2, this cosmological biequivalence reflects

equivalences, and by Proposition 10.1.4 (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 preserves cocartesian fibrations and cartesian
functors between them. Hence, to show that a cartesian functor and fiberwise equivalence 𝑔∶ 𝐸 → 𝐹
is an equivalence over 𝐵, it suffices to show that 𝑔0 ∶ 𝐸0 → 𝐹0 is an equivalence over 𝐵0, which we do
by verifying that this functor satisfies the hypotheses of Proposition 12.2.11.

By Observation 12.2.2, elements of the underlying quasi-category 𝐵0 correspond bijectively to
elements of the∞-category 𝐵, and the cosmological functor (−)0 ∶ 𝒦 → 𝒬𝒞𝑎𝑡 preserves both fibers
and equivalences. In this way we see that 𝑔0 ∶ 𝐸0 → 𝐹0 is a fiberwise equivalence for all 𝑏 ∶ 1 → 𝐵0. By
Proposition 12.2.11 this functor defines a fibered equivalence, and hence 𝑔 does as well. �

12.2.13. Corollary. In an∞-cosmos of (∞, 1)-categories, a discrete cartesian fibration is a trivial fibration
if and only if its fibers are contractible.

Proof. If 𝑝∶ 𝐸 ↠ 𝐵 is a discrete cartesian fibration, then 𝑝 defines a cartesian functor

𝐸 𝐵

𝐵

𝑝

𝑝

whose codomain is the identity discrete fibration. The conclusion now arises as a special case of the
result of Proposition 12.2.12. �
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The result of Proposition 12.2.12 can be extended to modules:

12.2.14. Corollary (equivalences of modules are determined fiberwise). In an∞-cosmos of (∞, 1)-cat-
egories, a map

𝐸 𝐹

𝐴 × 𝐵

𝑔

(𝑞,𝑝) (𝑠,𝑟)

between modules 𝐸 and 𝐹 from 𝐴 to 𝐵 is an equivalence if and only if it is a fiberwise equivalence, meaning
that for each 𝑎 ∶ 1 → 𝐴 and 𝑏 ∶ 1 → 𝐵, the induced functor between the fibers 𝑔𝑎,𝑏 ∶ 𝐸(𝑏, 𝑎) → 𝐹(𝑏, 𝑎) is an
equivalence.

Proof. Recall from Lemma 7.4.3 that the left-hand legs 𝑞 ∶ 𝐸 ↠ 𝐴 and 𝑠 ∶ 𝐹 ↠ 𝐴 are cocartesian
fibrations and the functor 𝑔 defines a cartesian functor between them. It follows, by Proposition
12.2.12, that 𝑔 is an equivalence if and only if for each 𝑎 ∶ 1 → 𝐴, the pullback 𝑔𝑎 ∶ 𝐸(1, 𝑎) → 𝐹(1, 𝑎) is
an equivalence. Each of these∞-categories defines a module from 1 to 𝐵, so by Lemma 7.4.3 again, the
pulled back projections 𝑝∶ 𝐸(1, 𝑎) ↠ 𝐵 and 𝑟 ∶ 𝐹(1, 𝑎) ↠ 𝐵 are cartesian fibrations and 𝑔𝑎 defines a
cartesian functor between them. By the dual of Proposition 12.2.12, this functor is an equivalence if
and only if for each 𝑏 ∶ 1 → 𝐵, the induced action 𝑔𝑎,𝑏 ∶ 𝐸(𝑏, 𝑎) → 𝐹(𝑎, 𝑏) on fibers is an equivalence.
This proves the stated result. �

A prototypical special case of this result characterizes units or counits of adjunctions between
(∞, 1)-categories:

12.2.15. Corollary. In an ∞-cosmos of (∞, 1)-categories, a 2-cell 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 defines the counit of
an adjunction 𝑓 ⊣ 𝑢 if and only if the induced functor 𝜖 ⋅ 𝑓 (−) ∶ Hom𝐵(𝐵, 𝑢) → Hom𝐴(𝑓 , 𝐴) over
𝐴 × 𝐵 defines equivalences of mapping spaces Hom𝐵(𝑏, 𝑢𝑎) ≃ Hom𝐴(𝑓 𝑏, 𝑎) for each each 𝑎 ∶ 1 → 𝐴 and
𝑏 ∶ 1 → 𝐵. �

Corollary 12.2.14may also be applied to characterize fully faithful functors and equivalences between
(∞, 1)-categories.

12.2.16. Proposition. In an∞-cosmos of (∞, 1)-categories, a functor 𝑓 ∶ 𝐴 → 𝐵 is fully faithful if and only
if for all elements 𝑎, 𝑎′ ∶ 1 → 𝐴, its action on mapping spaces 𝑓𝑎,𝑎′ ∶ Hom𝐴(𝑎, 𝑎′) → Hom𝐵(𝑓 𝑎, 𝑓 𝑎′) defines
an equivalence of discrete∞-categories.

Proof. Corollary 3.5.6 defines a functor 𝑓 ∶ 𝐴 → 𝐵 to be fully faithful if and only if the induced
functor 𝐴𝟚 → Hom𝐵(𝑓 , 𝑓 ) between modules from 𝐴 to 𝐴 is an equivalence. By Corollary 12.2.14,
this is the case if and only if this map defines a fiberwise equivalence, which means exactly that for all
elements 𝑎, 𝑎′ ∶ 1 → 𝐴, its action on mapping spaces 𝑓𝑎,𝑎′ ∶ Hom𝐴(𝑎, 𝑎′) → Hom𝐵(𝑓 𝑎, 𝑓 𝑎′) defines an
equivalence of discrete∞-categories. �

We now show that equivalences of (∞, 1)-categories are precisely those functors that are pointwise
fully faithful and essentially surjective in a suitable sense. In [102], Rezk refers to this result as “the
fundamental theorem of quasi-category theory.” Our proof mixes synthetic and analytic techniques:

12.2.17. Theorem (fundamental theorem of (∞, 1)-category theory). A functor 𝑓 ∶ 𝐴 → 𝐵 in an∞-
cosmos of (∞, 1)-categories is an equivalence if and only if it is

(i) fully faithful: in the sense that for all elements 𝑎, 𝑎′ ∶ 1 → 𝐴, the induced map
Hom𝐴(𝑎, 𝑎′) → Hom𝐵(𝑓 𝑎, 𝑓 𝑎′)
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is an equivalence and
(ii) essentially surjective in the sense that for all 𝑏 ∶ 1 → 𝐵 there exists 𝑎 ∶ 1 → 𝐴 and an isomorphism

𝑓 𝑎 ≅ 𝑏 in the homotopy category of 𝐵.

Proof. An equivalence of∞-categories 𝑓 ∶ 𝐴 ∼ 𝐵 induces an equivalence of homotopy categories
h𝑓 ∶ h𝐴 ∼ h𝐵 as well as an equivalence 𝐴𝟚 ≃𝐴×𝐴 Hom𝐵(𝑓 , 𝑓 ) between modules from 𝐴 to 𝐴, by
Propositions 3.3.3 and 3.4.5:

𝐴𝟚 Hom𝐵(𝑓 , 𝑓 ) 𝐵𝟚

𝐴 × 𝐴 𝐵 × 𝐵
(𝑝1,𝑝0)

∼

∼𝑓 𝟚

(𝑝1,𝑝0) (𝑝1,𝑝0)

∼
𝑓 ×𝑓

Essential surjectivity is a consequence of the first equivalence, while fully faithfulness follows by pulling
the second equivalence back along a pair of elements of 𝐴.

To prove the converse, we start by factoring 𝑓 as an equivalence followed by an isofibration. Both
factors are easily seen to be pointwise fully faithful and essentially surjective, so it suffices to assume that
𝑓 ∶ 𝐴 ↠ 𝐵 is an isofibration. Our task is now to show that 𝑓 is a trivial fibration. In an∞-cosmos𝒦
of (∞, 1)-categories, the cosmological biequivalence (−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 of Proposition 10.2.1 preserves
isofibrations and reflects equivalences. So to show that an isofibration 𝑓 ∶ 𝐴 ↠ 𝐵 is a trivial fibration,
it suffices to show that the underlying isofibration 𝑓0 ∶ 𝐴0 ↠ 𝐵0 is a trivial fibration, i.e., that we can
solve lifting problems of the form

𝜕Δ[𝑛] Fun(1, 𝐴)

Δ[𝑛] Fun(1, 𝐵)

𝑓0 (12.2.18)

for 𝑛 ≥ 0.
In the case 𝑛 = 0, this lifting property asserts that when 𝑓0 ∶ 𝐴0 ↠ 𝐵0 is an isofibration, the

hypothesis that 𝑓 ∶ 𝐴 ↠ 𝐵 is essentially surjective in fact implies that 𝑓0 ∶ 𝐴0 ↠ 𝐵0 is surjective
on vertices. By essential surjectivity, for any 𝑏 ∶ 1 → 𝐵, there is some 𝑎 ∶ 1 → 𝐴 so that 𝑓 𝑎 ≅ 𝑏 in
h𝐵 ≔ hFun(1, 𝐵) ≔ h(𝐵0). Now Corollary 1.1.16 implies that any isomorphism in the homotopy
category of 𝐵 can be represented by a homotopy coherent isomorphism 𝕀 → Fun(1, 𝐵). A choice of
𝑎 ∶ 1 → 𝐴 and a homotopy coherent isomorphism 𝛽∶ 𝕀 → Fun(1, 𝐵) representing 𝑓 𝑎 ≅ 𝑏 defines a
lifting problem

∅ 𝟙 Fun(1, 𝐴)

𝟙 𝕀 Fun(1, 𝐵)

𝑎

𝑓0

𝑏

𝛽

which can be solved by lifting the isomorphism along the isofibration. This solves the lifting problems
(12.2.18) in the case 𝑛 = 0.
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By applying Proposition 3.4.5 to the commutative diagram below-left, we see that the induced map
between modules is an isofibration.

𝐴 𝐴 𝐴

𝐴 𝐵 𝐴

𝑓

𝑓 𝑓

⇝

𝐴𝟚

𝐴 𝐴

Hom𝐴(𝑓 , 𝑓 )

𝑝1 𝑝0

Hom𝑓(𝐴,𝐴)

𝑝0𝑝1

By Proposition 12.2.16 the hypothesis that 𝑓 is pointwise fully faithful, inducing equivalences be-
tween fibers 𝑓𝑎,𝑎′ ∶ Hom𝐴(𝑎, 𝑎′) ∼ Hom𝐵(𝑓 𝑎, 𝑓 𝑎′), implies that the induced map Hom𝐴(𝑓 , 𝑓 ) ∶ 𝐴𝟚 ∼

Hom𝐵(𝑓 , 𝑓 ) is an equivalence and hence under present hypotheses a trivial fibration. The cosmological
functor (−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 carries this map to a trivial fibration between quasi-categories, which then
enjoys the lifting property below-left for 𝑛 ≥ 0:

𝜕Δ[𝑛] (𝐴0)𝟚 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×𝜕Δ[1]

Δ[𝑛] × 𝜕Δ[1] 𝐴0

Δ[𝑛] Hom𝐵0(𝑓0, 𝑓0) Δ[𝑛] × Δ[1] 𝐵0

∼ Hom𝑓0(𝐴0,𝐴0) ↭ 𝑓0

Via the description of the comma construction as a weighted limit giving in Example A.6.14, the lifting
property above-left transposes across the Leibniz version of the weighted limit two-variable adjunction
of Definition A.6.5 to the lifting property displayed above-right, again for 𝑛 ≥ 0.

We have already shown that 𝑓0 ∶ 𝐴0 ↠ 𝐵0 also possesses the right lifting property with respect to the
inclusion∅ ↪ Δ[0]. Since this map and the Leibniz product inclusions (𝜕Δ[𝑛] ↪ Δ[𝑛]) �× (𝜕Δ[1] ↪
Δ[1]) generate the class of monomorphisms of simplicial sets under transfinite composition, pushout,
and retract, it follows now from the fact that the map Hom𝑓0(𝐴0, 𝐴0) is a trivial fibration that
𝑓0 ∶ 𝐴0 ∼ 𝐵0 is a trivial fibration. Hence 𝑓 ∶ 𝐴 ∼ 𝐵 is a trivial fibration, which is what we wanted to
show. �

Exercises.

12.2.i. Exercise. Use Lemma 12.1.3 to prove the duals of Propositions 12.2.4 and 12.2.11.

12.2.ii. Exercise. Use the duals established in Exercise 12.2.i to state and prove the duals of other
results in this section.

12.2.iii. Exercise. Use Corollary 12.2.14 to give a second proof of Proposition 12.2.9(ii).

12.3. Existence of Pointwise Kan Extensions

The vast and rapidly expanding literature on (∞, 1)-category theory greatly exceeds the scope of
this book. We close with a demonstration that illustrates how results whose proofs are found elsewhere
can be integrated into the “model independent” framework of∞-cosmoi. In this section, we borrow one
result from our colleagues – concerning the “exponentiability” of cartesian and cocartesian fibrations
between quasi-categories – and extract considerable mileage from it.

The category of simplicial sets, as a category of set-valued presheaves, is locally cartesian closed,
meaning that pullback along any map 𝑓 ∶ 𝐴 → 𝐵 of simplicial sets admits a right adjoint, called
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“pushforward,” as well as a left adjoint, defined by composition:

𝑠𝒮𝑒𝑡/𝐵 𝑠𝒮𝑒𝑡/𝐴𝑓 ∗

Π𝑓

⊥

Σ𝑓

⊥
(12.3.1)

For some, but not all, isofibrations 𝑓 ∶ 𝐴 ↠ 𝐵 between quasi-categories, the adjunctions restrict to
isofibration-preserving functors

𝒬𝒞𝑎𝑡/𝐵 𝒬𝒞𝑎𝑡/𝐴𝑓 ∗

Π𝑓

⊥

Σ𝑓

⊥

in which case 𝑓 ∗ andΠ𝑓 are both cosmological. Such isofibration 𝑓 ∶ 𝐴 ↠ 𝐵 are called exponentiable.⁵
A characterization of the exponentiable functors between quasi-categories due to Lurie – who calls

them “flat fibrations” – appears in [80, §B.3]. A model independent characterization is given by Ayala
and Francis in [4, 2.2.8]. For our purposes here, we require only that the cocartesian fibrations and
cartesian fibrations between quasi-categories are among the exponentiable functors, and moreover
preserve cartesian and cocartesian fibrations respectively. In fact, as we note in [114], the resulting
pushforward constructions are well-adapted to the cosmological setting:

12.3.2. Theorem ([114, 6.2.9–10]). For a cocartesian fibration 𝑞 ∶ 𝐸 ↠ 𝐵 or cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵
between quasi-categories, pullback along 𝑞 or 𝑝 admits a right adjoint, which restrict to the cosmologically
embedded∞-cosmoi

𝒬𝒞𝑎𝑡/𝐸 𝒬𝒞𝑎𝑡/𝐵 𝒬𝒞𝑎𝑡/𝐸 𝒬𝒞𝑎𝑡/𝐵

𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵

Π𝑞

⊥
𝑞∗

Π𝑝

⊥
𝑝∗

Π𝑞

⊥
𝑞∗

Π𝑝

⊥

𝑝∗

and moreover all of these functors are cosmological.

Lurie’s proof that cartesian and cocartesian fibrations are exponentiable can be found in [80, B.3.11,
B.4.5]; see also [78, 3.2.2.12] and [80, B.4.2]. A specialization of these results to a setting much closer to
the case under consideration here appears as [115, 2.24].

We now extend these results to arbitrary∞-cosmoi of (∞, 1)-categories.

12.3.3. Theorem. For a cocartesian fibration 𝑞 ∶ 𝐸 ↠ 𝐵 or cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵 in an∞-cosmos of
(∞, 1)-categories𝒦, pullback along 𝑞 or 𝑝 admits a quasi-pseudofunctorial right biadjoint, which restrict to the

⁵A famously nonexponentiable functor appears in Exercise 12.3.i.
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cosmologically embedded∞-cosmoi

𝒦/𝐸 𝒦/𝐵 𝒦/𝐸 𝒦/𝐵

𝒞𝑎𝑟𝑡(𝒦)/𝐸 𝒞𝑎𝑟𝑡(𝒦)/𝐵 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐸 𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵

Π𝑞

⊥
𝑞∗

Π𝑝

⊥
𝑝∗

Π𝑞

⊥
𝑞∗

Π𝑝

⊥
𝑝∗

The “biadjointness” of the statement – again appropriating a term from weak 2-category theory –
refers to a quasi-pseudonatural equivalence:

𝒦/𝐸 𝒦/𝐵
Π𝑝

⊥
𝑝∗

Fun𝐸(𝑝∗(𝑟), 𝑞) ≃ Fun𝐵(𝑟,Π𝑝𝑞)

Proof. For a co/cartesian fibration 𝑝∶ 𝐸 ↠ 𝐵, the pushforward quasi-pseudofunctorΠ𝑝 ∶ 𝒦/𝐸
𝒦/𝐵 is defined as the composite of the pushforward associated to the underlying co/cartesian fibration
𝑝0 ∶ 𝐸0 ↠ 𝐵0 between quasi-categories with the zigzag of cosmological biequivalences

𝒦/𝐸 𝒦/𝐵

𝒬𝒞𝑎𝑡/𝐸0 𝒬𝒞𝑎𝑡/𝐵0

Π𝑝
∼(−)0 ≃ ∼ (−)0

Π𝑝0

(12.3.4)

Note that both pullback and the pushforward commute up to equivalence with the sliced underlying
quasi-category functors (−)0 ∶ 𝒦/𝐵 ∼ 𝒬𝒞𝑎𝑡/𝐵0 .

The composite quasi-pseudofunctor can be understood as a pointwise right biadjoint on account
of the composite equivalences

Fun𝐸(𝑝∗(𝑟), 𝑞) Fun𝐸0((𝑝0)
∗(𝑟0), 𝑞0) ≅ Fun𝐵0(𝑟0, Π𝑝0(𝑞0)) Fun𝐵(𝑟,Π𝑝𝑞)∼(−)0 ∼(−)0

that are quasi-pseudonaturally defined in 𝑞 ∶ 𝐹 ↠ 𝐸 and 𝑟 ∶ 𝐺 ↠ 𝐵. This proves the first statement.
Now let 𝑝∶ 𝐸 ↠ 𝐵 be a cartesian fibration and let 𝑞 ∶ 𝐹 ↠ 𝐸 be a cocartesian fibration in𝒦. Then

by Proposition 10.3.6, Π𝑝𝑞 is a cocartesian fibration in 𝒦 if and only if its underlying functor is a
cocartesian fibration on quasi-categories. By the essential commutativity of (12.3.4), this functor is
equivalent toΠ𝑝0(𝑞0), which is a cocartesian fibration of quasi-categories by Theorem 12.3.2. Since
cocartesian fibrations are replete up to equivalence, the preservation result follows. The proof that
pushforward preserves cartesian functors follows similarly.

Finally, Theorem 12.3.2 proves that cartesian functors between cocartesian fibrations of quasi-
categories transpose to cartesian functors under 𝑝∗ ⊣ Π𝑝. Since cartesian functors are preserved
and reflected by cosmological biequivalences, the same holds in any∞-cosmos of (∞, 1)-categories.
Thus, the quasi-pseudonatural equivalence Fun𝐸(𝑝∗(𝑟), 𝑞) ≃ Fun𝐵(𝑟,Π𝑝𝑞) restricts to define a quasi-

pseudonatural equivalence Funcart
𝐸 (𝑝∗(𝑟), 𝑞) ≃ Funcart

𝐵 (𝑟,Π𝑝𝑞). �
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12.3.5. Lemma (Beck–Chevalley). Consider a pullback diagram in an∞-cosmos of (∞, 1)-categories,

𝐹 𝐸

𝐴 𝐵

𝑞

𝑔

𝑝

𝑓

and suppose that 𝑝 is a cocartesian fibration or cartesian fibration. Then for all 𝑟 ∶ 𝐺 ↠ 𝐸, the maps
𝑓 ∗Π𝑝𝑟 ≃ Π𝑞𝑔∗𝑟 are equivalent over 𝐴.

Proof. Applying the cosmological biequivalence (−)0 ∶ 𝒦 ∼ 𝒬𝒞𝑎𝑡 it suffices to prove this for
quasi-categories, in which case the functors in question have left adjoints:

𝒬𝒞𝑎𝑡/𝐹0 𝒬𝒞𝑎𝑡/𝐸0 𝑠𝒮𝑒𝑡/𝐹0 𝑠𝒮𝑒𝑡/𝐸0

𝒬𝒞𝑎𝑡/𝐴0
𝒬𝒞𝑎𝑡/𝐵0 𝑠𝒮𝑒𝑡/𝐴0 𝑠𝒮𝑒𝑡/𝐵0

Π𝑞0

𝑔∗0

Π𝑝0 Π𝑞0 ⊢
Σ𝑔0

⊤
𝑔∗0

Π𝑝0⊣

𝑓 ∗0

𝑞∗0
Σ𝑓0

⊥
𝑓 ∗0

𝑝∗0

For any map of simplicial sets 𝑎 ∶ 𝑋 → 𝐴0, by examining the pullback rectangle

• 𝐹0 𝐸0

𝑋 𝐴0 𝐵0

𝑞0

𝑔0

𝑝0

𝑎 𝑓0

it is clear that Σ𝑔0𝑞
∗
0𝑎 ≅ 𝑝∗0Σ𝑓0𝑎. Thus, the right adjoints 𝑓 ∗

0Π𝑝0 ≅ Π𝑞0𝑔
∗
0 also commute up to

isomorphism, and conservativity provides the claimed equivalence in𝒦. �

Now we explain our interest in these results. Recall from Definition 9.1.2 that a right extension of

a module𝐴
𝐺

𝐶 along a module𝐴
𝐸

𝐵 consists of a pair given by a module 𝐵
hom𝐴(𝐸,𝐺) 𝐶 together

with a binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

𝐸 hom𝐴(𝐸,𝐹)

⇓𝜖

𝐺
that is universal among the cells in the virtual equipment of modules in a sense detailed there. Dually,

a right lifting of𝐴
𝐺

𝐶 through 𝐵
𝐹
𝐶 consists of a pair given by a module𝐴

hom(𝐹,𝐺)𝐶 𝐵 together
with a universal binary cell

𝐴 𝐵 𝐶

𝐴 𝐶

hom(𝐹,𝐺)𝐶 𝐹

⇓𝜖

𝐺
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Here we introduce different notation for these notions with the aim of rebranding them. We refer to
the module hom𝐴(𝐸, 𝐺) as the left hom from 𝐸 to 𝐹 and refer to hom(𝐹, 𝐺)𝐶 as the right hom from 𝐹
and 𝐺. Extending the “module” metaphor, we think of the left hom as the object of homomorphisms
from 𝐸 to 𝐺 that respect the left 𝐴-actions, while the right hom is the object of homomorphisms
from 𝐹 to 𝐺 that respect the right 𝐶-actions. Our first aim in this section is to demonstrate that the
virtual equipment of modules between quasi-categories has left and right homs for all suitable pairs of
modules. By model independence, this result extends to any∞-cosmos of (∞, 1)-categories.

12.3.6. Theorem. The virtual equipment of modules between quasi-categories is biclosed, admitting left and

right homs that satisfy an enriched universal property: for modules 𝐴
𝐸

𝐵, 𝐵
𝐹
𝐶, and 𝐴

𝐺
𝐶,

Fun𝐴×𝐵(𝐸, hom(𝐹, 𝐺)𝐶) ≅ Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≅ Fun𝐵×𝐶(𝐹, hom𝐴(𝐸, 𝐺)).

Proof. The cases of left and right homs are dual so we focus on the former. Fixing a module

𝐴
𝑞
𝐸

𝑝
𝐵, define hom𝐴(𝐸, 𝐺) to be the image of the module 𝐴

𝐺
𝐶 under the composite right

adjoint functor

𝒬𝒞𝑎𝑡/𝐴×𝐶 𝒬𝒞𝑎𝑡/𝐸×𝐶 𝒬𝒞𝑎𝑡/𝐵×𝐶
(𝑞×𝐶)∗
⊥

Σ𝑞×𝐶

Π𝑝×𝐶

⊥
(𝑝×𝐶)∗

Note that the left adjoint carries a two-sided isofibration 𝐵
𝑠
𝐹

𝑟
𝐶 to the composite two-sided

isofibration:
𝐸 ×

𝐵
𝐹

𝐸 𝐹

𝐴 𝐵 𝐶

𝜋1 𝜋0

𝑞 𝑝 𝑠 𝑟

and simplicially enriched adjointness adjointness provides natural equivalences (or in this case isomor-
phisms) of quasi-categories

Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≅ Fun𝐵×𝐶(𝐹, hom𝐴(𝐸, 𝐺)).
These equivalences induce bijections on the sets of isomorphism classes of objects in these quasi-cate-
gories. By Proposition 8.1.6, this gives rise to the universal property required by the right hom in the
virtual equipment of modules (see Exercise 12.3.ii) – at least once we prove that hom𝐴(𝐸, 𝐺) defines a
module when 𝐸 and 𝐺 are modules.

Thus it remains only to show that when 𝐴
𝐸

𝐵 is a module, then the functor

hom𝐴(𝐸, −) ∶ 𝒬𝒞𝑎𝑡/𝐴×𝐶 𝒬𝒞𝑎𝑡/𝐸×𝐶 𝒬𝒞𝑎𝑡/𝐵×𝐶
(𝑞×𝐶)∗ Π𝑝×𝐶

preserves modules. Proposition 7.4.5 tells us that modules are stable under pullback, so we need only

demonstrate that Π𝑝×𝐶 carries a module 𝐸
𝑣
𝑀

𝑢
𝐶 to a module from 𝐵 to 𝐶. Proposition 7.4.2

characterizes modules from 𝐸 to 𝐶 as those two-sided isofibrations (𝑣, 𝑢) ∶ 𝑀 ↠ 𝐸 × 𝐶 so that

(i) (𝑣, 𝑢) ∶ 𝑀 ↠ 𝐸 × 𝐶 is a cocartesian fibration in 𝒬𝒞𝑎𝑡/𝐶,
(ii) (𝑣, 𝑢) ∶ 𝑀 ↠ 𝐸 × 𝐶 is a cartesian fibration in 𝒬𝒞𝑎𝑡/𝐸,
(iii) (𝑣, 𝑢) ∶ 𝑀 ↠ 𝐸 × 𝐶 is discrete as an object in 𝒬𝒞𝑎𝑡/𝐸×𝐶.
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We will show that Π𝑝×𝐶 preserves each of these properties, thus concluding that Π𝑝×𝐶𝑀 defines a
module from 𝐵 to 𝐶. The preservation of (iii) is automatic: Theorem 12.3.2 demonstrates that the
pushforward is a cosmological functor and Remark 1.3.3 observes that cosmological functors preserve
discrete objects.

For (ii), we must show that Π𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶 is a cartesian fibration in 𝒬𝒞𝑎𝑡/𝐵. To begin,
note by Proposition 10.1.4 that the cosmological functorΠ𝑝 ∶ 𝒬𝒞𝑎𝑡/𝐸 → 𝒬𝒞𝑎𝑡/𝐵 preserves cartesian
fibrations,⁶ so we conclude thatΠ𝑝𝑀 ↠ Π𝑝(𝐵 × 𝐶) is a cartesian fibration in 𝒬𝒞𝑎𝑡/𝐵. However, this
functor does not coincide withΠ𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶. Rather, as demonstrated by Lemma 12.3.7 below,
Π𝑝×𝐶𝑀 ↠ 𝐵×𝐶 is a pullback ofΠ𝑝𝑀 ↠ Π𝑝(𝐵×𝐶) in𝒬𝒞𝑎𝑡/𝐵, so by pullback stability of cartesian
fibrations, this proves (ii).

For the remaining property (i), recall from Lemma 7.1.1 that to say that (𝑣, 𝑢) ∶ 𝑀 ↠ 𝐸 × 𝐶
defines a cocartesian fibration in 𝒬𝒞𝑎𝑡/𝐶 is equivalently to say that (𝑣, 𝑢) ∶ 𝑀 ↠ 𝐸 × 𝐶 defines a mor-
phism in the sub∞-cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 ⊂ 𝒬𝒞𝑎𝑡/𝐸. By Theorem 12.3.2, pushforward restricts to
define a cosmological functor Π𝑝 ∶ 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐸 → 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵, so Π𝑝𝑀 ↠ Π𝑝(𝐸 × 𝐶)
lies in the sub cosmos 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵. Since pullbacks are created by the cosmological embed-
ding 𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵 𝒬𝒞𝑎𝑡/𝐵, by Lemma 12.3.7 Π𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶 also lies in the sub cosmos
𝑐𝑜𝒞𝑎𝑟𝑡(𝒬𝒞𝑎𝑡)/𝐵. Lemma 7.1.1 now tells us thatΠ𝑝×𝐶𝑀 ↠ 𝐵 × 𝐶 is a cocartesian fibration in 𝒬𝒞𝑎𝑡/𝐶
as required. �

12.3.7. Lemma. Let 𝑝∶ 𝐸 ↠ 𝐵 be a cartesian fibration or cocartesian fibration between quasi-categories.
Then the image of an isofibration𝑀 ↠ 𝐸 × 𝐶 under Π𝑝×𝐶 ∶ 𝒬𝒞𝑎𝑡/𝐸×𝐶 → 𝒬𝒞𝑎𝑡/𝐵×𝐶 is the left vertical
isofibration defined by the pullback

Π𝑝×𝐶𝑀 Π𝑝𝑀

𝐵 × 𝐶 Π𝑝(𝐸 × 𝐶)𝜂

whose right-hand vertical morphism is the image of the map𝑀 ↠ 𝐸 × 𝐶 underΠ𝑝 ∶ 𝒬𝒞𝑎𝑡/𝐸 → 𝒬𝒞𝑎𝑡/𝐵.

The conclusion of Lemma 12.3.7 holds, up to equivalence, in any∞-cosmos of (∞, 1)-categories𝒦
(see Exercise 12.3.iii). However, we find it easier to work with the strict adjunction of Theorem 12.3.2
rather than the weaker adjunctions of Theorem 12.3.3.

Proof. To make sense of the statement note that 𝑝∗ carries 𝜋∶ 𝐵 × 𝐶 ↠ 𝐵 to 𝜋∶ 𝐸 × 𝐶 ↠ 𝐸.
Hence the map 𝜂∶ 𝐵 × 𝐶 → Π𝑝(𝐸 × 𝐶) is a component of the unit of the adjunction 𝑝∗ ⊣ Π𝑝. Now
the claim follows directly by verifying that the displayed pullback has the universal property that
definesΠ𝑝×𝐶𝑀 ∈ 𝒬𝒞𝑎𝑡/𝐵×𝐶. A cone over the pullback diagram may be interpreted as a diagram

𝑋 Π𝑝𝑀

𝐵 × 𝐶 Π𝑝(𝐸 × 𝐶)𝜂

⁶This is not an application of Theorem 12.3.3, which in this context would tell us thatΠ𝑝 carries a cocartesian fibration
over 𝐸 to a cocartesian fibration over 𝐵. Rather, we note thatΠ𝑝, simply by virtue of being cosmological, carries cartesian

fibrations between isofibration with codomain 𝐸 to cartesian fibrations between isofibrations with codomain 𝐵.
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in 𝒬𝒞𝑎𝑡/𝐵, which then transposes to define a commutative square

𝑋 ×𝐵 𝐸 𝑀

𝐸 × 𝐶 𝐸 × 𝐶
in 𝒬𝒞𝑎𝑡/𝐸. In fact, this diagram lies in 𝒬𝒞𝑎𝑡/𝐸×𝐶 and the left-hand vertical map 𝑋 ×𝐵 𝐸 → 𝐸 × 𝐶
is isomorphic to (𝑝 × 𝐶)∗(𝑋 → 𝐵 × 𝐶). Hence, this square transposes along (𝑝 × 𝐶)∗ ⊣ Π𝑝×𝐶 to a
commutative square

𝑋 Π𝑝×𝐶𝑀

𝐵 × 𝐶 𝐵 × 𝐶
which proves the claim. �

The result of Theorem 12.3.6 extends to biequivalent∞-cosmoi:

12.3.8. Corollary. In an ∞-cosmos of (∞, 1)-categories, the virtual equipment of modules is biclosed,
admitting left and right homs that satisfy a weak enriched universal property: for modules 𝐴

𝐸
𝐵, 𝐵

𝐹
𝐶,

and 𝐴
𝐺

𝐶,
Fun𝐴×𝐵(𝐸, hom(𝐹, 𝐺)𝐶) ≃ Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≃ Fun𝐵×𝐶(𝐹, hom𝐴(𝐸, 𝐺)).

There are two strategies for proving this. The first is to prove the model independence of the
ingredients used in the proof of Theorem 12.3.6 (see Exercise 12.3.iii). A more expedient, though
ultimately less informative strategy, is to simply make use of the biequivalence of virtual equipments,
which is the approach we take here.

Proof. Consider modules𝐴
𝐸

𝐵 and𝐴
𝐺

𝐶 in an∞-cosmos of (∞, 1)-categories. By Theorem
11.1.6, there exists a module 𝐵

𝑅
𝐶 whose underlying quasi-category is equivalent to the left hom

hom𝐴0(𝐸0, 𝐺0) of Theorem 12.3.6, and binary cell 𝜈∶ 𝐸 ⨰ 𝑅 ⇒ 𝐺 whose image under the underlying
quasi-category functor composes with this equivalence to the binary map of modules between quasi-
categories that defines the left hom from 𝐸0 to 𝐺0. It remains only to argue that this data has the
universal property of a right extension in𝕄od(𝒦), but this follows from the biequivalence of virtual
equipments (−)0 ∶ 𝕄od(𝒦) ∼ 𝕄od(𝒬𝒞𝑎𝑡). �

Left and right homs can be used to define modules that encode hypothetical universal properties in
∞-category theory. When the modules so constructed are covariantly or contravariantly represented
by a functor, as appropriate, then this data “satisfies the universal property,” as we now illustrate.
Proposition 9.4.9 observes that the value of a pointwise right extension of a functor 𝑓 ∶ 𝐴 → 𝐶 along a
functor 𝑘 ∶ 𝐴 → 𝐵 at an element 𝑏 ∶ 1 → 𝐵 is the limit of the composite diagram

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶
𝑝1 𝑓

The dual result expresses the value of a pointwise left extension of 𝑓 along 𝑘 at 𝑏 as the colimit of the
restriction of the functor 𝑓 along 𝑝0 ∶ Hom𝐵(𝑘, 𝑏) ↠ 𝐴.
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We now prove that in an∞-cosmos of (∞, 1)-categories, if an∞-category 𝐶 admits such limits,
then the pointwise right extension of 𝑓 along 𝑘 exists. The dual result reduces the question of the
existence of pointwise left extensions to the existence of certain colimits.

12.3.9. Theorem (existence of pointwise right extensions). Let 𝑘 ∶ 𝐴 → 𝐵 be a functor in an∞-cosmos of
(∞, 1)-categories and let𝐶 be an∞-category that admits Hom𝐵(𝑏, 𝑘)-shaped limits for all elements 𝑏 ∶ 1 → 𝐵.
Then 𝐶 admits pointwise right extensions along 𝑘

𝐴 𝐶

𝐵

𝑓

𝑘
ran𝑘𝑓

⇑𝜈

Proof. Consider the module Hom𝐵(𝐵, 𝑘) from 𝐴 to 𝐵 covariantly represented by the functor
𝑘 ∶ 𝐴 → 𝐵. Corollary 12.3.8 proves that any∞-cosmos of (∞, 1)-categories admits left and right homs,
defining right extensions and right liftings in the virtual equipment of modules. In particular given
any diagram 𝑓 ∶ 𝐴 → 𝐶, there exists a right extension in the virtual equipment of modules

𝐴 𝐵 𝐶

𝐴 𝐶

Hom𝐵(𝐵,𝑘)

⇓

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓 ))

Hom𝐶(𝐶,𝑓 )

Now the ∞-category 𝐶 admits a pointwise right Kan extension of 𝑓 ∶ 𝐴 → 𝐶 along 𝑘 ∶ 𝐴 → 𝐵 just
when the module hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓 )) is covariantly represented by a functor 𝑟 ∶ 𝐵 → 𝐶.
By Corollary 12.2.8, this module is covariantly represented if and only if its pullbacks along each
vertex 𝑏 ∶ 1 → 𝐵 are covariantly represented, which is the case just when the fiber of the module
hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓 )) ↠ 𝐵 × 𝐶 over 𝑏 has a terminal element.

By Lemma 9.1.4 the fiber hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓 ))(1, 𝑏) arises as the the right extension

𝐵 1 𝐶

𝐵 𝐶

Hom𝐵(𝑏,𝐵) hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓 ))(1,𝑏)

⇓𝜌

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓 ))

Since Hom𝐵(𝐵, 𝑘) ⊗ Hom𝐵(𝑏, 𝐵) ≃ Hom𝐵(𝑏, 𝑘) by Proposition 8.4.7, Proposition 9.1.6 allows us to
combine these two right extensions into a single one

𝐴 1 𝐶

𝐴 𝐶

Hom𝐵(𝑏,𝑘)

⇓

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓 ))(1,𝑏)

Hom𝐶(𝐶,𝑓 )
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By exactness of the comma square

Hom𝐵(𝑏, 𝑘)

𝐴 1

𝐵

𝑝1 !
𝜙
⇐

𝑘 𝑏

we also have a composition relation Hom𝐴(𝑝1, 𝐴) ⊗ Hom1(1, !) ≃ Hom𝐵(𝑏, 𝑘). By Lemma 9.1.4, there
is a right extension diagram

𝐴 Hom𝐵(𝑏, 𝑘) 𝐶

𝐴 𝐶

Hom𝐴(𝑝1,𝐴)

⇓

Hom𝐶(𝐶,𝑓 𝑝1)

Hom𝐶(𝐶,𝑓 )

Since Hom𝐶(𝐶, 𝑓 ) admits a right extension along Hom𝐴(𝑝1, 𝐴) ⊗ Hom1(1, !), by Proposition 9.1.6 the
right extension of Hom𝐶(𝐶, 𝑓 𝑝1) along Hom1(1, !) exists and is given by

Hom𝐵(𝑏, 𝑘) 1 𝐶

Hom𝐵(𝑏, 𝑘) 𝐶

Hom1(1,!)

⇓

hom𝐴(Hom𝐵(𝐵,𝑘),Hom𝐶(𝐶,𝑓 ))(1,𝑏)

Hom𝐶(𝐶,𝑓 𝑝1)

In summary, the fiber of the module hom𝐴(Hom𝐵(𝐵, 𝑘),Hom𝐶(𝐶, 𝑓 )) over 𝑏 ∶ 1 → 𝐵 is the module
defined by the right extension of Hom𝐶(𝐶, 𝑓 𝑝1) along Hom1(1, !). Thus, we see that if this module is
represented by an element 𝑐 ∶ 1 → 𝐶, that element defines a pointwise right extension of the diagram

Hom𝐵(𝑏, 𝑘) 𝐴 𝐶

1

𝑝1

!

𝑓

𝑐
⇑

By Definition 9.4.7, this exists if and only if the diagram 𝑓 𝑝1 ∶ Hom𝐵(𝑏, 𝑘) ↠ 𝐶 has a limit in 𝐶. As
we have assumed that this limit exists in 𝐶, so does the pointwise right extension of 𝑓 along 𝑘, as
claimed. �

Recall from Observation 10.3.4 that an ∞-cosmos of (∞, 1)-categories admits weakly defined
exponentials.

12.3.10. Corollary. Let 𝑘 ∶ 𝐴 → 𝐵 be a functor in an ∞-cosmos of (∞, 1)-categories and let 𝐶 be an
∞-category that admits Hom𝐵(𝑏, 𝑘)-shaped limits for all elements 𝑏 ∶ 1 → 𝐵. Then pointwise right extension
defines a right adjoint to the restriction functor:

𝐶𝐴 𝐶𝐵

ran𝑘

⊥
−∘𝑘
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Proof. By Lemma 2.3.7, to define a right adjoint to restriction it suffices to define an absolute
right lifting of the identity through the functor − ∘ 𝑘 ∶ 𝐶𝐵 → 𝐶𝐴. By Proposition 12.2.9, to achieve
this it suffices to define absolute right lifting diagrams

𝐶𝐵

1 𝐶𝐴
⇓𝜈

−∘𝑘ran𝑘𝑓

𝑓

for all elements 𝑓 ∶ 1 → 𝐶𝐴 of 𝐶𝐴. As our notation suggestions, we will demonstrate that the
pointwise right extension 𝜈∶ ran𝑘𝑓 ∘ 𝑘 ⇒ 𝑓 of Theorem 12.3.9 transposes across the equivalence
hFun(𝑋, 𝐶𝐴) ≃ hFun(𝑋 × 𝐴,𝐶) of Observation 10.3.4 to define an absolute right lifting diagram.

The universal property that characterizes the absolute right lifting diagram

𝑋 𝐶𝐵 𝑋 𝐶𝐵

𝐷 𝐶𝐴 1 𝐶𝐴

!

𝑒

⇓𝜒 𝐶𝑘 = !

𝑒

⇓∃!𝜁

⇓𝜈
𝐶𝑘

𝑓 𝑓

𝑟

where we have written 𝑟 ≔ ran𝑘𝑓 transposes to

𝐴 × 𝑋 𝐴 𝐶 𝐴 × 𝑋 𝐴 𝐶

𝐵 × 𝑋 𝐵 × 𝑋 𝐵
𝑘×𝑋

𝜋 𝑓

= 𝑘×𝑋

𝜋

𝑘

𝑓

𝑒

⇑𝜒

𝑒

𝜋
𝑟

⇑𝜈

⇑∃!𝜁

Lemma 9.2.8 proves that the pullback square is exact. Now if 𝜈 is a pointwise right extension, then by
Corollary 9.3.4 so is 𝜈 ⋅ 𝜋. The transposed universal property of this right extension diagram proves
that 𝜈 defines an absolute right lifting. �

The argument just given shows something further. By Corollary 9.3.4, the pasted composite of a
pointwise right extension 𝜈with an exact square𝜙 gives another pointwise right extension as below-left,
which we have just shown transposes to define an absolute right-lifting diagram below-right:

𝐸 𝐴 𝐶

𝐷 𝐵

𝑝

𝑞 ⇓𝜙 𝑘

𝑓

ℎ

𝑟
⇑𝜈 ↭

𝐶𝐵 𝐶𝐷

1 𝐶𝐴 𝐶𝐸
⇓𝜈 𝐶𝑘

𝐶ℎ

⇓𝐶𝜙 𝐶𝑞𝑟

𝑓 𝐶𝑝

Thus, the absolute right lifting diagrams defined by transposing pointwise right extension diagrams
are stable under pasting with exponentiated exact squares. In particular, if 𝐶 admits pointwise right
extensions along 𝑘 ∶ 𝐴 → 𝐵 then for any exact square 𝜙 we have an absolute right lifting diagram

𝐶𝐵 𝐶𝐷

𝐶𝐴 𝐶𝐴 𝐶𝐸
⇓𝜈

𝐶𝑘

𝐶ℎ

⇓𝐶𝜙 𝐶𝑞ran𝑘

𝐶𝑝
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since by Proposition 12.2.9 the universal property of this absolute right lifting diagram can be checked
pointwise at elements 𝑓 ∶ 1 → 𝐶𝐴. Using this, we can establish a derivator-style “Beck–Chevalley”
result as follows:

12.3.11. Lemma (Beck–Chevalley). For any exact square

𝐷

𝐶 𝐵

𝐴

𝑞 𝑝

𝜙
⇐

𝑔 𝑓

in an ∞-cosmos of (∞, 1)-categories and any ∞-category 𝐸, the mates 𝜙! and 𝜙! of the induced natural
transformation 𝜙∗ are both isomorphisms whenever these pointwise right and left extensions exist

𝐸𝐴 𝐸𝐴 𝐸𝐴

𝐸𝐶 𝐸𝐵 𝐸𝐶 𝐸𝐵 𝐸𝐶 𝐸𝐵

𝐸𝐷 𝐸𝐷 𝐸𝐷

𝑓 ∗𝑔∗

𝜙∗
⇐

𝑓 ∗

⇓𝜙!

𝑔∗

⇑𝜙!

𝑞∗ 𝑝∗

ran𝑔

𝑞∗ 𝑝∗

lan𝑓

ran𝑝 lan𝑞

Proof. By Corollary 12.3.10, the pointwise right extensions assemble into adjoint functors ran𝑔
and ran𝑝 which define absolute right lifting diagrams

𝐸𝐴 𝐸𝐵 𝐸𝐵

𝐸𝐶 𝐸𝐶 𝐸𝐷 𝐸𝐶 𝐸𝐷 𝐸𝐷
⇓𝜖

𝑔∗

𝑓 ∗

⇓𝜙∗ 𝑝∗
⇓𝜖

𝑝∗
ran𝑔

𝑞∗ 𝑞∗

ran𝑝

Moreover, the mate 𝜙! of 𝜙∗ defines a factorization of the left-hand diagram through the right-hand
diagram:

𝐸𝐴 𝐸𝐵 𝐸𝐴 𝐸𝐵

𝐸𝐶 𝐸𝐶 𝐸𝐷 𝐸𝐶 𝐸𝐷 𝐸𝐷
⇓𝜖

𝑔∗

𝑓 ∗

⇓𝜙∗ 𝑝∗ = ⇓𝜙!

𝑓 ∗

⇓𝜖
𝑝∗

ran𝑔

𝑞∗ 𝑞∗

ran𝑔 ran𝑝

Immediately from the universal property of the absolute right liftings of 𝑞∗ through 𝑝∗ we have that 𝜙!

is an isomorphism. The proof for 𝜙! is similar using the absolute left lifting diagrams arising from the
pointwise left extensions defining lan𝑓 and lan𝑞 �

Exercises.

12.3.i. Exercise. Conclude from the pullback diagram of simplicial sets

𝟙 + 𝟙 Λ1[2]

𝟚 𝟛

∼

𝑑1

that the functor 𝑑1 ∶ 𝟚 → 𝟛 is not exponentiable.

388



12.3.ii. Exercise. Suppose 𝐴
𝐸

𝐵, 𝐴
𝐺

𝐶, and 𝐵
𝑅

𝐶 are modules equipped with a natural equiva-
lence Fun𝐴×𝐶(𝐸 ×𝐵 𝐹,𝐺) ≃ Fun𝐵×𝐶(𝐹, 𝑅) for all two-sided fibrations 𝐹 from 𝐵 to 𝐶. Extract a binary
cell 𝜈∶ 𝐸 ⨰ 𝑅 ⇒ 𝐺 from this natural equivalence and prove that 𝜈 exhibits 𝑅 as a right extension of 𝐺
along 𝐸.

12.3.iii. Exercise. Adapt Lemma 12.3.7 to a model independent statement that applies in any∞-cosmos
of (∞, 1)-categories and then prove this result. Then use this to adapt the proof of Theorem 12.3.6 to
directly demonstrate that an∞-cosmos of (∞, 1)-categories has all left and right homs.
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Appendix of Abstract Nonsense





APPENDIX A

Basic Concepts of Enriched Category Theory

Enriched category theory exists because enriched categories exist in nature. To explain, consider
the data of a 1-category 𝒞, given by:

• a collection of objects
• for each pair of objects 𝑥, 𝑦 ∈ 𝒞, a set 𝒞(𝑥, 𝑦) of arrows in 𝒞 from 𝑥 to 𝑦
• for each 𝑥 ∈ 𝒞, a specified identity element id𝑥 ∶ 1 → 𝒞(𝑥, 𝑥), and for each 𝑥, 𝑦, 𝑧 ∈ 𝒞, a specified

composition map ∘ ∶ 𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) → 𝒞(𝑥, 𝑧) satisfying the associativity and unit¹ conditions:

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒞(𝑥, 𝑧) × 𝒞(𝑤, 𝑥)

𝒞(𝑦, 𝑧) × 𝒞(𝑤, 𝑦) 𝒞(𝑤, 𝑧)
id×∘

∘×id

∘

∘

𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦) × 𝒞(𝑥, 𝑥)

𝒞(𝑦, 𝑦) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦)

id

id× id𝑥

id𝑦 × id ∘

∘
(A.0.1)

In many mathematical examples of interest, the set 𝒞(𝑥, 𝑦) can be given additional structure, in which
case it would be strange not to take it into account when performing further categorical constructions.

Perhaps there exists a specified zero arrow 0𝑥,𝑦 ∈ 𝒞(𝑥, 𝑦) in each hom-set, defining a two-sided
ideal for composition: 𝑔 ∘ 0 ∘ 𝑓 = 0. Or extending this, perhaps each 𝒞(𝑥, 𝑦) is an abelian group and
composition isℤ-bilinear. Or in another direction, perhaps the set of arrows from 𝑥 to 𝑦 in 𝒞 form the
objects of a 1-category. In this setting, we regard the objects of 𝒞(𝑥, 𝑦) as “1-dimensional” morphisms
from 𝑥 to 𝑦 and the arrows of 𝒞(𝑥, 𝑦) as “2-dimensional” morphisms from 𝑥 to 𝑦 in 𝒞; here, it is natural
to ask that the composition map defines a functor. Or perhaps the set of arrows from 𝑥 to 𝑦 in 𝒞 form
the vertices of a simplicial set, whose higher simplices now provide arrows in each positive dimension;
here, it is natural to ask that composition defines a simplicial map. In all of these contexts, one says
that the 1-category 𝒞 can be enriched over the category𝒱 in which the objects 𝒞(𝑥, 𝑦) and diagrams
(A.0.1) live² – with𝒱 equal to the category of pointed sets, abelian groups, categories, or simplicial
sets in the examples just described.

An alternate point of view on enriched category theory is often emphasized – adopted, for instance,
in the classic textbook [68] from which we stole the title of this chapter. To borrow a distinction used
by Peter May, the term “enriched” can be used as a compound noun – enriched categories – or as an
adjective – enriched categories. In the noun form, an enriched category 𝒞 has no preexisting underlying
ordinary category, although we shall see in Definition A.2.2 that the underlying unenriched 1-category
can always be identified a posteriori. When used as an adjective, an enriched category 𝒞 is perhaps

¹Confusingly, this diagram contains two different sorts of identity arrows: e.g., the top horizontal arrow is the product
of the specified identity element id𝑥 ∶ 1 → 𝒞(𝑥, 𝑥) with the identity arrow associated with the object 𝒞(𝑥, 𝑦).

²To interpret the diagrams (A.0.1) in 𝒱 one needs to specify an interpretation for the monoidal product “×” and its
unit object 1 (which is not displayed in the diagram). In the examples we consider, this product is the cartesian product
and this unit is the terminal object.
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most naturally an ordinary category, whose hom-sets can be given additional structure.³ While the
noun perspective is arguably more elegant when discussing the general theory of enriched categories,
the adjective perspective dominates when discussing examples, so we choose to emphasize the adjective
form and focus on enriching unenriched categories here.

Before giving a precise definition of enriched category and the enriched functors between them in
§A.2, in §A.1 we study the category𝒱 that defines the base for enrichment in which the hom-objects
ultimately live. The primary examples appearing in this text are 𝒱 = 𝒞𝑎𝑡 and 𝒱 = 𝑠𝒮𝑒𝑡 – as well
as the unenriched case𝒱 = 𝒮𝑒𝑡 – each of which has the special property of being a cartesian closed
category. Since there are some simplifications in enriching over a cartesian closed category, we grant
ourselves the luxury of working explicitly with these basis.⁴

We continue in §A.3 with an introduction to enriched natural transformations and the enriched
Yoneda lemma. These notions allow us to correctly state the universal properties, involving an enriched
natural isomorphism, that characterize cotensors and tensors in §A.4 and conical limits and colimits in
§A.5. These are each special cases of weighted limits and colimits, which are introduced in §A.6. We
conclude in §A.7 with a general theory of “change of base” – the one part of the theory of enriched
categories that is not covered in encyclopedic detail in [68], the original reference instead being [41]
– which allows us to be more precise about the procedure by which a 2-category may be regarded as
a simplicial category or by which a simplicial category may be quotiented to define a 2-category, as
alluded to in Digression 1.4.2.

A.1. Cartesian Closed Categories

Throughout this text, the base category for enrichment is always taken to be a complete and
cocomplete cartesian closed category:

A.1.1. Definition. A category𝒱 is cartesian closed when it

• admits finite products, or equivalently, a terminal object 1 ∈ 𝒱 and binary products and
• for each 𝑣 ∈ 𝒱, the functor 𝑣 × −∶ 𝒱 → 𝒱 admits a right adjoint (−)𝑣 ∶ 𝒱 → 𝒱.

A.1.2. Lemma. In a cartesian closed category𝒱, the product bifunctor is the left adjoint of a two-variable
adjunction, this being captured by a commutative triangle of natural isomorphisms

𝒱(𝑎 × 𝑏, 𝑐)

𝒱(𝑎, 𝑐𝑏) 𝒱(𝑏, 𝑐𝑎)
≅≅

≅
(A.1.3)

Proof. The family of functors (−)𝑎 ∶ 𝒱 → 𝒱 extend to bifunctors

(−)− ∶ 𝒱op ×𝒱 → 𝒱
in a unique way so that the isomorphisms defining each adjunction 𝑎 × − ⊣ (−)𝑎

𝒱(𝑎 × 𝑏, 𝑐) ≅ 𝒱(𝑏, 𝑐𝑎)
³To quote [84] “Thinking from the two points of view simultaneously, it is essential that the constructed ordinary cat-

egory be isomorphic to the ordinary category that one started out with. Either way, there is a conflict of notation between
that preferred by category theorists and that in common use by ‘working mathematicians’ (to whom [81] is addressed).”

⁴More generally, a category can be enriched over a monoidal category [68], a bicategory [16], or a virtual double
category [75], each generalizing the preceding bases for enrichment.
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become natural in 𝑎 (as well as 𝑏 and 𝑐). The details are left as Exercise A.1.i or to [104, 4.3.6]. This
defines the natural isomorphism on the right-hand side of (A.1.3). The natural isomorphism on the
left-hand is defined by composing with the symmetry isomorphism 𝑎 × 𝑏 ≅ 𝑏 × 𝑎. The third natural
isomorphism is taken to be the composite of these two. �

A.1.4. Example (cartesian closed categories).

(i) The category of sets is cartesian closed, with 𝐵𝐴 defined to be the set of functions from 𝐴 to 𝐵.
Transposition across the natural isomorphism (A.1.3) is referred to as “currying.”

(ii) The category 𝒞𝑎𝑡 of small⁵ categories is cartesian closed, with 𝐵𝐴 defined to be the category of
functors and natural transformations from 𝐴 to 𝐵.

𝒞𝑎𝑡(𝐴, 𝐶𝐵) ≅ 𝒞𝑎𝑡(𝐴 × 𝐵,𝐶) ≅ 𝒞𝑎𝑡(𝐵, 𝐶𝐴)
identifies natural transformations, which are arrows 𝟚 → 𝐶𝐴 in the category of functors, with
“directed homotopies” 𝐴 × 𝟚 → 𝐶.

(iii) For any small category 𝒞, the category 𝒮𝑒𝑡𝒞
op

is cartesian closed. By the Yoneda lemma for

𝐹,𝐺 ∈ 𝒮𝑒𝑡𝒞
op

, the value of 𝐺𝐹 at 𝑐 ∈ 𝒞 must be defined by

𝐺𝐹(𝑐) ≅ 𝒮𝑒𝑡𝒞
op

(𝒞(−, 𝑐), 𝐺𝐹) ≅ 𝒮𝑒𝑡𝒞
op

(𝐹 × 𝒞(−, 𝑐), 𝐺)
to be the set of natural transformations 𝐹 × 𝒞(−, 𝑐) ⇒ 𝐺. As proscribed by Lemma A.1.2,
the action of 𝐺𝐹 on a morphism 𝑓 ∶ 𝑐 → 𝑐′ ∈ 𝒞 is defined by precomposition with the
corresponding natural transformation 𝑓 ∘ −∶ 𝒞(−, 𝑐) ⇒ 𝒞(−, 𝑐′). This defines the functor 𝐺𝐹.

Since any functor𝐻 ∈ 𝒮𝑒𝑡𝒞
op

is canonically a colimit of representables, this definition extends

to the required natural isomorphism 𝒮𝑒𝑡𝒞
op

(𝐻,𝐺𝐹) ≅ 𝒮𝑒𝑡𝒞
op

(𝐹 × 𝐻,𝐺).
(iv) In particular taking 𝒞 = 𝚫, the category of simplicial sets 𝑠𝒮𝑒𝑡 ≔ 𝒮𝑒𝑡𝚫

op

is cartesian closed.

The exponential 𝑏𝑎 is frequently referred to as an internal hom. As this name suggests, the internal
hom 𝑏𝑎 can be viewed as a lifting of the hom-set𝒱(𝑎, 𝑏) along a functor that we now introduce.

A.1.5. Definition. For any cartesian closed category𝒱, the underlying set functor is the functor

𝒱 𝒮𝑒𝑡(−)0≔𝒱(1,−)

represented by the terminal object 1 ∈ 𝒱.

A.1.6. Lemma. For any pair of objects 𝑎, 𝑏 ∈ 𝒱 in a cartesian closed category, the underlying set of the internal
hom 𝑏𝑎 is𝒱(𝑎, 𝑏), i.e.:

(𝑏𝑎)0 ≅ 𝒱(𝑎, 𝑏).

Proof. Combining Definition A.1.5 with (A.1.3):

(𝑏𝑎)0 ≔ 𝒱(1, 𝑏𝑎) ≅ 𝒱(1 × 𝑎, 𝑏) ≅ 𝒱(𝑎, 𝑏)
since there is a natural isomorphism 1 × 𝑎 ≅ 𝑎. �

It makes sense to ask whether an isomorphism of underlying sets can be “enriched” to lie in 𝒱,
that is, lifted along the underlying set functor (−)0 ∶ 𝒱 → 𝒮𝑒𝑡.

⁵In general, the category of categories whose sets of morphisms are bounded by a fixed inaccessible cardinal is cartesian
closed in that Grothendieck universe.
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A.1.7. Lemma. The natural isomorphisms (A.1.3) characterizing the defining two-variable adjunction of a
cartesian closed category lift to𝒱: for any 𝑎, 𝑏, 𝑐 ∈ 𝒱

𝑐𝑎×𝑏

(𝑐𝑏)𝑎 (𝑐𝑎)𝑏
≅≅

≅
(A.1.8)

Proof. This follows from Lemma A.1.2, the associativity of finite products, and the Yoneda lemma.

To prove (A.1.8), it suffices to show that 𝑐𝑎×𝑏, (𝑐𝑏)𝑎, and (𝑐𝑎)𝑏 represent the same functor. By composing
the sequence of natural isomorphisms

𝒱(𝑥, (𝑐𝑏)𝑎) ≅ 𝒱(𝑥 × 𝑎, 𝑐𝑏) ≅ 𝒱((𝑥 × 𝑎) × 𝑏, 𝑐) ≅ 𝒱(𝑥 × (𝑎 × 𝑏), 𝑐)
≅ 𝒱(𝑥, 𝑐𝑎×𝑏)
≅ 𝒱((𝑎 × 𝑏) × 𝑥, 𝑐) ≅ 𝒱(𝑎 × (𝑏 × 𝑥), 𝑐) ≅ 𝒱(𝑏 × 𝑥, 𝑐𝑎)
≅ 𝒱(𝑥, (𝑐𝑎)𝑏),

we see that
𝒱(𝑥, (𝑐𝑏)𝑎) ≅ 𝒱(𝑥, 𝑐𝑎×𝑏) ≅ 𝒱(𝑥, (𝑐𝑎)𝑏). �

A.1.9. Remark. Note (−)1 ∶ 𝒱 → 𝒱 is naturally isomorphic to the identity functor – i.e., 𝑏1 ≅ 𝑏, –
since it is right adjoint to a functor − × 1∶ 𝒱 → 𝒱 that is naturally isomorphic to the identity.

A complete and cocomplete cartesian closed category is a special case of a complete and cocomplete
closed symmetric monoidal category, this being deemed a cosmos by Jean Bénabou, to signify that
such bases are an ideal setting for enriched category theory. For obvious reasons, we will not use this
term here and instead refer to “complete and cocomplete cartesian closed categories” to highlight some
common features of the categories appearing in Example A.1.4. ⁶

Exercises.

A.1.i. Exercise. Prove that in a cartesian closed category 𝒱, the family of functors (−)𝑎 ∶ 𝒱 → 𝒱
extend to bifunctors

(−)− ∶ 𝒱op ×𝒱 → 𝒱
in a unique way so that the isomorphism defining each adjunction 𝑎 × − ⊣ (−)𝑎

𝒱(𝑎 × 𝑏, 𝑐) ≅ 𝒱(𝑏, 𝑐𝑎)
becomes natural in 𝑎 (as well as 𝑏 and 𝑐).

A.1.ii. Exercise. The data of a closed symmetric monoidal category generalizes Definition A.1.1 by
replacing finite products by an arbitrary bifunctor −⊗−∶ 𝒱×𝒱 → 𝒱, replacing the terminal object
by an object 𝐼 ∈ 𝒱, and requiring the additional specification of natural isomorphisms

𝑎 ⊗ (𝑏 ⊗ 𝑐) ≅
𝛼
(𝑎 ⊗ 𝑏) ⊗ 𝑐 𝐼 ⊗ 𝑎 ≅

𝜆
𝑎 ≅

𝜌
𝑎 ⊗ 𝐼 𝑎 ⊗ 𝑏 ≅

𝛾
𝑏 ⊗ 𝑎

satisfying various coherence axioms [41, 66] (see also [69]). Provide a canonical construction of these
isomorphisms in the special case of a cartesian closed category and explain why the coherence conditions
are automatic.

⁶There is a competing 2-categorical notion of (fibrational) “cosmos” due to Street [117] that is more similar to the
notion we consider here, which was the direct inspiration for the terminology we introduce in Definition 1.2.1.
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A.2. Enriched Categories and Enriched Functors

We now briefly switch perspectives and explain the meaning of the noun phrase “enriched category”
before discussing what is required to “enrich” an ordinary 1-category. From here through §A.6, we fix a
complete and cocomplete cartesian closed category (𝒱,×, 1) to serve as the base for enrichment.

A.2.1. Definition. A𝒱-enriched category or𝒱-category 𝒞 is given by:

• a collection of objects
• for each pair of objects 𝑥, 𝑦 ∈ 𝒞, an hom-object 𝒞(𝑥, 𝑦) ∈ 𝒱
• for each 𝑥 ∈ 𝒞, a specified identity element encoded by a map id𝑥 ∶ 1 → 𝒞(𝑥, 𝑥) ∈ 𝒱, and for

each 𝑥, 𝑦, 𝑧 ∈ 𝒞, a specified composition map ∘ ∶ 𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) → 𝒞(𝑥, 𝑧) ∈ 𝒱 satisfying the
associativity and unit conditions, both commutative diagrams lying in𝒱:⁷

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) × 𝒞(𝑤, 𝑥) 𝒞(𝑥, 𝑧) × 𝒞(𝑤, 𝑥)

𝒞(𝑦, 𝑧) × 𝒞(𝑤, 𝑦) 𝒞(𝑤, 𝑧)
id×∘

∘×id

∘

∘

𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦) × 𝒞(𝑥, 𝑥)

𝒞(𝑦, 𝑦) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑦)

id

id× id𝑥

id𝑦 × id ∘

∘

Evidently from the diagrams of (A.0.1), a locally small 1-category defines a category enriched in
𝒮𝑒𝑡. The underlying set functor of Definition A.1.5 can be used to define the “underlying category” of
an enriched category.

A.2.2. Definition. If 𝒞 is a𝒱-category, its underlying category 𝒞0 is the 1-category with the same
collection of objects and with hom-sets defined by applying the underlying set functor (−)0 ∶ 𝒱 → 𝒮𝑒𝑡
to the hom-objects 𝒞(𝑥, 𝑦) ∈ 𝒱. For the most part, we write “𝒞(𝑥, 𝑦)” for both the hom-object and
the hom-set and use our words to disambiguate, but when necessary “𝒞(𝑥, 𝑦)0” is also commonly used
notation for the hom-set of the underlying category.

Note the identity arrow id𝑥 ∶ 1 → 𝒞(𝑥, 𝑥) of the 𝒱-category is by definition an element of the
hom-set 𝒞(𝑥, 𝑥)0 ≔ 𝒱(1, 𝒞(𝑥, 𝑥)). The composite of two arrows 𝑓 ∶ 1 → 𝒞(𝑥, 𝑦) and 𝑔∶ 1 → 𝒞(𝑦, 𝑧)
in the underlying category is defined to be the arrow constructed as the composite

1 𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑧)
𝑔×𝑓 ∘

In analogy with the discussion around Definition A.1.5, when one speaks of “enriching” an a priori
unenriched category 𝒞 over𝒱, the task is to define a𝒱-enriched category as in Definition A.2.1 whose
underlying category recovers 𝒞. When𝒱 = 𝒞𝑎𝑡, the task is to define a 2-category whose underlying
1-category is the one given. When𝒱 = 𝑠𝒮𝑒𝑡, the task is to define simplicial hom-sets of 𝑛-arrows so
that the 0-arrows are the ones given. When a simplicially enriched category 𝒞 is encoded as a simplicial
object 𝒞• in 𝒞𝑎𝑡 as explained in Digression 1.2.4, its underlying category is the category 𝒞0, further
justifying the notion introduced in Definition A.2.2.

For example, a cartesian closed category 𝒱 as in Definition A.1.1 can be enriched to define a
𝒱-category.

A.2.3. Lemma. A cartesian closed category𝒱 defines a𝒱-category whose:

⁷These diagrams suppress the associativity and unit natural isomorphisms involving the product bifunctors × and its
unit object 1. In a cartesian closed category these are canonical – rather than given by extra data, as is the case in the more
general closed symmetric monoidal category (see Exercise A.1.ii).
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• objects are the objects of𝒱,
• hom-object in𝒱 from 𝑎 to 𝑏 is the internal hom 𝑏𝑎, and
• the identity map id𝑎 ∶ 1 → 𝑎𝑎 and composition map ∘ ∶ 𝑐𝑏 × 𝑏𝑎 → 𝑐𝑎 are defined to be the transposes of

1 × 𝑎 ≃ 𝑎 and 𝑐𝑏 × 𝑏𝑎 × 𝑎
id× ev

𝑐𝑏 × 𝑏
ev

𝑐
the latter defined using the counit ev of the cartesian closure adjunction.

Proof. The task is to verify the commutative diagrams of (A.2.1) in 𝒱 and then observe that
Lemma A.1.6 reveals that the underlying category of the𝒱-category defined by the statement is the
1-category𝒱. We leave the identity conditions to the reader and verify associativity.

The definition of the composition map as an adjoint transpose implies that its adjoint transpose,
the top-right composite below, is given by the left-bottom composite:

𝑐𝑏 × 𝑏𝑎 × 𝑎 𝑐𝑎 × 𝑎

𝑐𝑏 × 𝑏 𝑐

∘×id

id× ev ev

ev

(A.2.4)

The associativity diagram below-left commutes if and only if the transposed diagram appearing as the
outer boundary composite below-right commutes:

𝑑𝑐 × 𝑐𝑏 × 𝑏𝑎 𝑑𝑏 × 𝑏𝑎

𝑑𝑐 × 𝑐𝑎 𝑑𝑎
id×∘

∘×id

∘

∘

↭

𝑑𝑐 × 𝑐𝑏 × 𝑏𝑎 × 𝑎 𝑑𝑏 × 𝑏𝑎 × 𝑎

𝑑𝑐 × 𝑐𝑏 × 𝑏 𝑑𝑏 × 𝑏

𝑑𝑐 × 𝑐𝑎 × 𝑎 𝑑𝑐 × 𝑐 𝑑

∘×id× id

id×∘× id

id× id× ev id× ev

∘×id

id× ev ev

id× ev ev

which follows from bifunctoriality of × and two instances of the commutative square above. �

A.2.5. Definition. The free𝒱-category on a 1-category 𝒞 has the same collection of objects with the
hom-objects defined to be coproducts⨿𝒞(𝑥,𝑦)1 of the terminal object 1 ∈ 𝒱 indexed by the hom-set
𝒞(𝑥, 𝑦). The identity map id𝑥 ∶ 1 → ⨿𝒞(𝑥,𝑥)1 is given by the inclusion of the component indexed
by the identity arrow, the composition map defined by acting by the composition function on the
indexing sets:

⨿𝒞(𝑦,𝑧)1 × ⨿𝒞(𝑥,𝑦)1 ≅ ⨿𝒞(𝑦,𝑧)×𝒞(𝑥,𝑦)1 ⨿𝒞(𝑥,𝑧)1
⨿∘1

For example, free 𝒞𝑎𝑡-enriched categories are those with no nonidentity 2-cells, while free 𝑠𝒮𝑒𝑡-
enriched categories are those with no nondegenerate arrows in positive dimensions. We use the same
notation for the 1-category 𝒞 and the free𝒱-category it generates, using language to disambiguate.

A.2.6. Definition. A𝒱-enriched functor or𝒱-functor 𝐹∶ 𝒞 → 𝒟 is given by

• a mapping on objects that carries each 𝑥 ∈ 𝒞 to some 𝐹𝑥 ∈ 𝒟
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• for each pair of objects 𝑥, 𝑦 ∈ 𝒞, an internal action on the hom-objects given by a morphism
𝐹𝑥,𝑦 ∶ 𝒞(𝑥, 𝑦) → 𝒟(𝐹𝑥, 𝐹𝑦) ∈ 𝒱 so that the𝒱-functoriality diagrams commute:

𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑧) 1 𝒞(𝑥, 𝑥)

𝒟(𝐹𝑦, 𝐹𝑧) × 𝒟(𝐹𝑥, 𝐹𝑦) 𝒟(𝐹𝑥, 𝐹𝑧) 𝒟(𝐹𝑥, 𝐹𝑥)

𝐹𝑦,𝑧×𝐹𝑥,𝑦

∘

𝐹𝑥,𝑧

id𝑥

id𝐹𝑥
𝐹𝑥,𝑥

∘

A prototypical example is given by the representable functors:

A.2.7. Example. For any 𝒱-category 𝒞 and object 𝑐 ∈ 𝒞, the enriched representable 𝒱-functor
𝒞(𝑐, −) ∶ 𝒞 → 𝒱 is defined on objects by the assignment 𝑥 ∈ 𝒞 ↦ 𝒞(𝑐, 𝑥) ∈ 𝒱 and whose internal
action hom-objects is defined to be the adjoint transpose of the internal composition map for 𝒞.

𝒞(𝑥, 𝑦) 𝒞(𝑐, 𝑦)𝒞(𝑐,𝑥) ↭ 𝒞(𝑥, 𝑦) × 𝒞(𝑐, 𝑥) 𝒞(𝑐, 𝑦)
𝒞(𝑐,−)𝑥,𝑦 ∘

The𝒱-functoriality diagrams are transposes of associativity and identity diagrams in 𝒞.
The contravariant enriched representable functors are defined similarly (see Exercise A.2.iii).

A.2.8. Remark. An enriched representable functor can be thought of as a “two-step” enrichment of the
corresponding unenriched representable functor: the first step enriches the hom-sets to hom-objects
in𝒱 and the second step enriches the composition function to an internal composition map in𝒱. To
enrich a 1-category 𝒞 to a𝒱-category with 𝒞 as its underlying 1-category requires more than simply a
lift of the hom bifunctor:

𝒞op × 𝒞 𝒱

𝒮𝑒𝑡
𝒞(−,−)

𝒞(−,−)

≅
(−)0

In addition, the𝒱-valued representable 𝒞(−, −) ∶ 𝒞op × 𝒞 → 𝒱 must be a𝒱-bifunctor in the sense
of Exercise A.2.iv, which tells us that the composition map may be defined internally to 𝒱 and the
identity and associativity laws hold there.

Both of the constructions of underlying unenriched categories and free categories are functorial
(see Exercise A.2.v). The relationship between these constructions is summarized by the following
proposition, whose proof is left as an exercise because it is strengthened by Corollary A.7.6.

A.2.9. Proposition. The free𝒱-category functor defines a fully faithful left adjoint to the underlying category
functor. Consequently, a𝒱-category is free just when it is isomorphic to the free category on its underlying
category via the counit of this adjunction.

Proof. Exercise A.2.vi. �

Exercises.

A.2.i. Exercise. Verify that the underlying category of an enriched category described in Definition
A.2.2 is indeed a category.

A.2.ii. Exercise. Verify the unit condition left to the reader in the proof of Lemma A.2.3.
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A.2.iii. Exercise. Define the opposite of a𝒱-category and dualize Example A.2.7 to define contravari-
ant enriched representable functors.

A.2.iv. Exercise.

(i) Define the cartesian product of two𝒱-categories.
(ii) Define a multivariable𝒱-functor.
(iii) Use these notions to show that any𝒱-category𝒞 comes equipped with a canonical𝒱-bifunctor

𝒞(−, −) ∶ 𝒞op × 𝒞 → 𝒱 that restricts to the co- and contravariant representable functors.

A.2.v. Exercise.

(i) Define the underlying functor of an enriched functor.
(ii) Prove that the passage from enriched functors to underlying unenriched functors is functorial.
(iii) Define the free enriched functor on an unenriched functor.
(iv) Prove the passage from unenriched functors to free enriched functors is functorial.

A.2.vi. Exercise (A.7.6). Prove Proposition A.2.9.

A.3. Enriched Natural Transformations and the Enriched Yoneda Lemma

Recall an (unenriched) natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 between parallel functors 𝐹,𝐺∶ 𝒞 → 𝒟
is given by:

• the data of an arrow 𝛼𝑥 ∈ 𝒟(𝐹𝑥, 𝐺𝑥) for each 𝑥 ∈ 𝒞
• subject to the condition that for each morphism 𝑓 ∈ 𝒞(𝑥, 𝑦), the diagram

𝐹𝑥 𝐺𝑥

𝐹𝑦 𝐺𝑦

𝐹𝑓

𝛼𝑥

𝐺𝑓

𝛼𝑦

(A.3.1)

commutes in𝒟.

This enriches to the notion of a𝒱-natural transformation whose data is exactly the same – a family of
arrows in the underlying category of𝒟 indexed by the objects of 𝒞 – but with a stronger𝒱-naturality
condition expressed by internalizing the naturality condition (A.3.1).

A.3.2. Definition. A 𝒱-enriched natural transformation or 𝒱-natural transformation 𝛼∶ 𝐹 ⇒ 𝐺
between𝒱-enriched functors 𝐹,𝐺∶ 𝒞 → 𝒟 is given by:

• an arrow 𝛼𝑥 ∶ 1 → 𝒟(𝐹𝑥, 𝐺𝑥) for each 𝑥 ∈ 𝒞
• so that for each pair of objects 𝑥, 𝑦 ∈ 𝒞, the following𝒱-naturality square commutes in𝒱:

𝒞(𝑥, 𝑦) 𝒟(𝐹𝑦, 𝐺𝑦) × 𝒟(𝐹𝑥, 𝐹𝑦)

𝒟(𝐺𝑥,𝐺𝑦) × 𝒟(𝐹𝑥, 𝐺𝑥) 𝒟(𝐹𝑥, 𝐺𝑦)

𝛼𝑦×𝐹𝑥,𝑦

𝐺𝑥,𝑦×𝛼𝑥 ∘

∘

(A.3.3)

A.3.4. Example. An arrow 𝑓 ∶ 1 → 𝒞(𝑥, 𝑦) in the underlying category of a 𝒱-category 𝒞 defines a
𝒱-natural transformation − ∘ 𝑓 ∶ 𝒞(𝑦, −) ⇒ 𝒞(𝑥, −) between the enriched representable functors
whose component at 𝑧 ∈ 𝒞 is defined by evaluating the adjoint transpose of the composition map at 𝑓:

1 𝒞(𝑥, 𝑦) 𝒞(𝑥, 𝑧)𝒞(𝑦,𝑧)
𝑓 𝒞(−,𝑧)𝑥,𝑦
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The required𝒱-naturality square is obtained by evaluating one component of the associativity diagram
for 𝒞 at 𝑓.

𝒱-natural transformations compose as unenriched natural transformations do:

A.3.5. Definition. The vertical composite 𝛽⋅𝛼 of𝒱-natural transformations 𝛼∶ 𝐹 ⇒ 𝐺 and 𝛽∶ 𝐺 ⇒
𝐻, both from 𝒞 to𝒟, has component (𝛽 ⋅ 𝛼)𝑥 at 𝑥 ∈ 𝒞 defined by the composite

1 𝒟(𝐺𝑥,𝐻𝑥) × 𝒟(𝐹𝑥, 𝐺𝑥) 𝒟(𝐹𝑥,𝐻𝑥)
𝛽𝑥×𝛼𝑥 ∘

The horizontal composite 𝛾∗𝛼 of 𝛼∶ 𝐹 ⇒ 𝐺 from𝒞 to𝒟 and 𝛾∶ 𝐻 ⇒ 𝐾 from𝒟 toℰ has component
(𝛾 ∗ 𝛼)𝑥 at 𝑥 ∈ 𝒞 defined by the common composite

1 𝒟(𝐹𝑥, 𝐺𝑥) ℰ(𝐾𝐺𝑥,𝐻𝐺𝑥) × ℰ(𝐻𝐹𝑥,𝐻𝐺𝑥)

ℰ(𝐾𝐹𝑥, 𝐾𝐺𝑥) × ℰ(𝐻𝐹𝑥, 𝐾𝐹𝑥) 𝒟(𝐻𝐹𝑥, 𝐾𝐺𝑥)

𝛼𝑥 𝛾𝐺𝑥×𝐻𝐹𝑥,𝐺𝑥

𝐾𝐹𝑥,𝐺𝑥×𝛾𝐹𝑥 ∘

∘

which is well-defined by𝒱-naturality of 𝛾. The𝒱-naturality of these constructions is left to Exercise
A.3.i.

The data of the underlying natural transformation of a 𝒱-natural transformation is given by
the same family of arrows. The unenriched naturality condition (A.3.1) is obtained by evaluating
the enriched naturality condition (A.3.3) at an underlying arrow 𝑓 ∶ 1 → 𝒞(𝑥, 𝑦). In particular, the
middle four interchange rule (see Definition B.1.1) for horizontal and vertical composition of𝒱-natural
transformations follows from the middle four interchange rule for horizontal and vertical composition
of unenriched natural transformations for the data of the latter determines the data of the former.
Consequently, Exercise A.3.i implies that:

A.3.6. Corollary. For any cartesian closed category 𝒱, there is a 2-category 𝒱-𝒞𝑎𝑡 of 𝒱-categories,
𝒱-functors, and𝒱-natural transformations.

We now turn our attention to the𝒱-enriched Yoneda lemma, which we present in several forms.
One role of the Yoneda lemma is to give a representable characterization of isomorphic objects in
𝒞. When 𝒞 is a 𝒱-category, this has several forms. The notion of 𝒱-natural isomorphism referred
to in the following result is defined to be a 𝒱-natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 with an inverse
𝛼−1 ∶ 𝐺 ⇒ 𝐹 for vertical composition.

A.3.7. Lemma. For objects 𝑥, 𝑦 in a𝒱-category 𝒞 the following are equivalent:

(i) 𝑥 and 𝑦 are isomorphic as objects of the underlying category of 𝒞.
(ii) The 𝒮𝑒𝑡-valued unenriched representable functors 𝒞(𝑥, −), 𝒞(𝑦, −) ∶ 𝒞 → 𝒮𝑒𝑡 are naturally isomor-

phic.
(iii) The𝒱-valued unenriched representable functors 𝒞(𝑥, −), 𝒞(𝑦, −) ∶ 𝒞 → 𝒱 are naturally isomorphic.
(iv) The𝒱-valued𝒱-functors 𝒞(𝑥, −), 𝒞(𝑦, −) ∶ 𝒞 → 𝒱 are𝒱-naturally isomorphic.

Proof. Applying the underlying category 2-functor (−)0 ∶ 𝒱-𝒞𝑎𝑡 → 𝒞𝑎𝑡, the fourth statement
implies the third. The third statement implies the second by whiskering with the underlying set functor
(−)0 ∶ 𝒱 → 𝒮𝑒𝑡. The second statement implies the first by the unenriched Yoneda lemma; this is still
the main point. Finally, the first statement implies the last by a direct construction: if 𝑓 ∶ 1 → 𝒞(𝑥, 𝑦)
and 𝑔∶ 1 → 𝒞(𝑦, 𝑥) define an isomorphism in the underlying category of 𝒞, the corresponding
representable𝒱-natural transformations of Example A.3.4 define a𝒱-natural isomorphism. �
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Lemma A.3.7 defines a common notion of isomorphism between two objects of an enriched
category, which turns out to be no different than the usual unenriched notion of isomorphism. This
can be thought of as defining a “cheap” form of the enriched Yoneda lemma. The full form of the
𝒱-Yoneda lemma enriches the usual statement – a natural isomorphism between the set of natural
transformations whose domain is a representable functor to the set defined by evaluating the codomain
at the representing object – to an isomorphism in𝒱. The first step to make this precise is to enrich
the set of𝒱-natural transformations between a parallel pair of𝒱-functors to an object of𝒱.

A.3.8. Definition. Let𝒱 be a complete cartesian closed category and consider a parallel pair of𝒱-
functors 𝐹,𝐺∶ 𝒞 → 𝒟, with𝒞 a small𝒱-category. Then the𝒱-object of𝒱-natural transformations
is defined by the equalizer diagram

𝒟𝒞(𝐹, 𝐺) ∏
𝑧∈𝒞

𝒟(𝐹𝑧, 𝐺𝑧) ∏
𝑥,𝑦∈𝒞

𝒟(𝐹𝑥,𝐺𝑦)𝒞(𝑥,𝑦)

where one map to 𝒟(𝐹𝑥,𝐺𝑦)𝒞(𝑥,𝑦) in the equalizer diagram is defined by projecting to 𝒟(𝐹𝑥,𝐺𝑥),
applying the internal action of 𝐺 on arrows, and then composing, while the other is defined by
projecting to𝒟(𝐹𝑦,𝐺𝑦), applying the internal action of 𝐹 on arrows, and then composing:

𝒟(𝐹𝑥,𝐺𝑥) 𝒟(𝐹𝑥, 𝐺𝑦)𝒟(𝐺𝑥,𝐺𝑦)

∏
𝑧∈𝒞

𝒟(𝐹𝑧, 𝐺𝑧) 𝒟(𝐹𝑥, 𝐺𝑦)𝒞(𝑥,𝑦)

𝒟(𝐹𝑦,𝐺𝑦) 𝒟(𝐹𝑥, 𝐺𝑦)𝒟(𝐹𝑥,𝐹𝑦)

∘
−∘𝐺𝑥,𝑦𝜋

𝜋
∘

−∘𝐹𝑥,𝑦

A.3.9. Lemma. The underlying set of the 𝒱-object of 𝒱-natural transformations 𝒱𝒞(𝐹, 𝐺) is the set of
𝒱-natural transformations from 𝐹 to 𝐺.

Proof. By its defining universal property, elements of the underlying set of𝒱𝒞(𝐹, 𝐺) correspond
to maps 𝛼∶ 1 → ∏

𝑧∈𝒞𝒱(𝐹𝑧, 𝐺𝑧) that equalize the parallel pair of maps described in Definition A.3.8.

The map 𝛼 defines the components of a𝒱-natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 and the commutativity
condition transposes to (A.3.3). �

The Yoneda lemma can be expressed by the slogan “evaluation at the identity is an isomorphism,”
but since in the enriched context the enriched object of natural transformations is defined via a limit,
it is easier to define the map that induces a natural transformation instead. Given an object 𝑎 ∈ 𝒜 in a
small𝒱-category𝒜 and a𝒱-functor 𝐹∶ 𝒜 → 𝒱, the internal action of 𝐹 on arrows transposes to
define a map that equalizes the parallel pair

𝐹𝑎 ∏
𝑧∈𝒜

𝐹𝑧𝒜(𝑎,𝑧) ∏
𝑥,𝑦∈𝒜

𝐹𝑦𝒜(𝑎,𝑥)×𝒜(𝑥,𝑦)𝐹𝑎,−
(A.3.10)

and thus induces a canonical map 𝐹𝑎 → 𝒱𝒜(𝒜(𝑎, −), 𝐹) in𝒱.

A.3.11. Theorem (enriched Yoneda lemma). For any small𝒱-category𝒜, object 𝑎 ∈ 𝒜, and𝒱-functor
𝐹∶ 𝒜 → 𝒱, the canonical map defines an isomorphism in𝒱

𝐹𝑎 𝒱𝒜(𝒜(𝑎, −), 𝐹)≃

that is𝒱-natural in both 𝑎 and 𝐹.
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Proof. To prove the isomorphism, it suffices to verify that (A.3.10) is a limit cone. To that end
consider another cone over the parallel pair

𝑣 ∏
𝑧∈𝒜

𝐹𝑧𝒜(𝑎,𝑧) ∏
𝑥,𝑦∈𝒜

𝐹𝑦𝒜(𝑎,𝑥)×𝒜(𝑥,𝑦)𝜆

and define a candidate factorization by evaluating the transpose of the component 𝜆𝑎 at id𝑎:

𝜆𝑎(id𝑎) ≔ 𝑣 𝒜(𝑎, 𝑎) × 𝑣 𝐹𝑎id𝑎 ×𝑣 𝜆𝑎

To see that 𝜆𝑎(id𝑎) ∶ 𝑣 → 𝐹𝑎 indeed defines a factorization of 𝜆 through the limit cone, it suffices to
show commutativity at each component 𝐹𝑧𝒜(𝑎,𝑧) of the product, which we verify in transposed form:

𝒜(𝑎, 𝑧) × 𝑣

𝒜(𝑎, 𝑧) × 𝒜(𝑎, 𝑎) × 𝑣 𝒜(𝑎, 𝑧) × 𝑣

𝒜(𝑎, 𝑧) × 𝐹𝑎 𝐹𝑧

id× id𝑎 ×𝑣

id×𝜆𝑎

∘×𝑣

𝜆𝑧

𝐹𝑎,𝑧

The upper triangle commutes by the identity law for𝒜 while the bottom square commutes because 𝜆
defines a cone over the parallel pair. Uniqueness of the factorization 𝜆𝑎(id𝑎) follows from the same
diagram by taking 𝑧 = 𝑎 and evaluating at id𝑎.

The verification of the 𝒱-naturality of 𝐹𝑎 ≅ 𝒱𝒜(𝒜(𝑎, −), 𝐹) is left to the reader or to [68,
§2.4]. �

Passing to underlying sets:

A.3.12. Corollary. For any small𝒱-category𝒜, object 𝑎 ∈ 𝒜, and𝒱-functor 𝐹∶ 𝒜 → 𝒱, there is
a natural bijection between𝒱-natural transformations 𝛼∶ 𝒜(𝑎, −) ⇒ 𝐹 and elements 𝑢∶ 1 → 𝐹𝑎 in the
underlying set of 𝐹𝑎 implemented by evaluating the component at 𝑎 ∈ 𝒜 at the identity id𝑎. �

This gives a criterion for establishing the representability of a𝒱-functor by presenting the minimal
data required to establish the defining𝒱-natural isomorphism.

A.3.13. Corollary. For a𝒱-functor 𝐹∶ 𝒜op → 𝒱 and an object 𝑎 ∈ 𝒜 the following are equivalent and
define what it means for 𝑎 to represent 𝐹:

(i) There exists an isomorphism𝒜(𝑥, 𝑎) ≅ 𝐹𝑥 in𝒱 that is𝒱-natural in 𝑥 ∈ 𝒜.
(ii) There exists an element 𝑢∶ 1 → 𝐹𝑎 in the underlying set of 𝐹𝑎 so that the composite map

𝒜(𝑥, 𝑎) 𝒱(𝐹𝑎, 𝐹𝑥) 𝒱(1, 𝐹𝑥) ≅ 𝐹𝑥
𝐹𝑥,𝑎 −∘𝑢

defines an isomorphism in𝒱 for all 𝑥 ∈ 𝒜.

Proof. By Corollary A.3.12 the element 𝑢∶ 1 → 𝐹𝑎 in the underlying set of 𝐹𝑎 determines a unique
𝒱-natural transformation𝒜(−, 𝑎) ⇒ 𝐹 whose component at 𝑥 ∈ 𝒜 is the map of the statement. Thus,
the universal element 𝑢 defines a𝒱-natural isomorphism and not just a𝒱-natural transformation
just when the map of the statement is an isomorphism. �
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Since we have assumed our bases for enrichment to be cartesian closed, the 2-category 𝒱-𝒞𝑎𝑡
admits finite products, allowing us to define multivariable 𝒱-functors (see Exercise A.2.iv). The
following result implies that the structures characterized by𝒱-natural isomorphisms in §A.4 and §A.5
assemble into𝒱-functors.

A.3.14. Proposition. Let 𝑀∶ ℬop × 𝒜 → 𝒱 be a 𝒱-functor so that for each 𝑎 ∈ 𝒜, the 𝒱-functor
𝑀(−, 𝑎) ∶ ℬop → 𝒱 is represented by some 𝐹𝑎 ∈ ℬ, meaning there exists a𝒱-natural isomorphism

ℬ(𝑏, 𝐹𝑎) ≅ 𝑀(𝑏, 𝑎).
Then there is a unique way of extending the mapping 𝑎 ∈ 𝒜 ↦ 𝐹𝑎 ∈ ℬ to a𝒱-functor 𝐹∶ 𝒜 → ℬ so that
the isomorphisms are𝒱-natural in 𝑎 ∈ 𝒜 as well as 𝑏 ∈ ℬ.

Proof. By the Yoneda lemma in the form of Corollary A.3.12, to define a family of isomorphisms
𝛼𝑏,𝑎 ∶ ℬ(𝑏, 𝐹𝑎) ≅ 𝑀(𝑏, 𝑎) for each 𝑎 ∈ 𝒜 that are𝒱-natural in 𝑏 ∈ ℬ is to define a family of elements
𝜂𝑎 ∶ 1 → 𝑀(𝐹𝑎, 𝑎) for each 𝑎 ∈ 𝒜 that satisfy the condition of Corollary A.3.13(ii). By the𝒱-naturality
statement in the Yoneda lemma, for the isomorphism 𝛼𝑏,𝑎 to be 𝒱-natural in 𝑎 is equivalent to the
family of elements 𝜂𝑎 ∶ 1 → 𝑀(𝐹𝑎, 𝑎) being “extraordinarily”𝒱-natural in 𝑎. What this means is that
for any pair of objects 𝑎, 𝑎′ ∈ 𝒜, the outer square commutes:

𝒜(𝑎′, 𝑎) 𝑀(𝐹𝑎′, 𝑎)𝑀(𝐹𝑎,𝑎)

ℬ(𝐹𝑎′, 𝐹𝑎)

𝑀(𝐹𝑎′, 𝑎)𝑀(𝐹𝑎′,𝑎′) 𝑀(𝐹𝑎′, 𝑎)

𝑀(𝐹𝑎′,−)𝑎′,𝑎

𝐹

𝑀(𝐹−,𝑎)𝑎,𝑎′

−∘𝜂𝑎

≃

𝛼𝐹𝑎′,𝑎

𝑀(−,𝑎)

−∘𝜂𝑎′

As exhibited by the top triangle, the top-horizontal map 𝑀(𝐹−, 𝑎)𝑎′,𝑎 factors through the internal
action of 𝐹 on arrows, which we seek to define, but note that the composite of the other factor with
the right vertical map is the natural isomorphism 𝛼𝐹𝑎′,𝑎, as exhibited by the right triangle. Thus, there
is a unique way to define 𝐹𝑎′,𝑎 making the extraordinary 𝒱-naturality square commute, namely, by
ensuring that the lower left quadrilateral commutes, which is exactly the claim. 𝒱-functoriality of
these internal action maps for 𝐹 follows from𝒱-functoriality of𝑀 in the𝒜 variable. �

We close this section with some applications of the enriched Yoneda lemma. The correct notions of
𝒱-enriched equivalence or𝒱-enriched adjunction are given by interpreting the standard 2-categorical
notions of equivalence and adjunction in the 2-category𝒱-𝒞𝑎𝑡. For sake of contrast, we present both
notions in an alternate form here and leave it to the reader to apply Theorem A.3.11 to relate these to
the 2-categorical notions.

A.3.15. Definition. A pair of 𝒱-categories 𝒞 and 𝒟 are 𝒱-equivalent if there exists a 𝒱-functor
𝐹∶ 𝒞 → 𝒟 that is

• 𝒱-fully faithful: each 𝐹𝑥,𝑦 ∶ 𝒞(𝑥, 𝑦) → 𝒟(𝐹𝑥, 𝐹𝑦) is an isomorphism in𝒱 and
• essentially surjective on objects: each 𝑑 ∈ 𝒟 is isomorphic to 𝐹𝑐 for some 𝑐 ∈ 𝒞.

A.3.16. Definition. A𝒱-adjunction is given by a pair of𝒱-functors 𝐹∶ ℬ → 𝒜 and 𝑈∶ 𝒜 → ℬ
together with isomorphisms

𝒜(𝐹𝑏, 𝑎) ≅ ℬ(𝑏,𝑈𝑎)
that are𝒱-natural in both 𝑎 ∈ 𝒜 and 𝑏 ∈ ℬ.
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A.3.17. Remark. By Proposition A.3.14, a 𝒱-functor 𝑈∶ 𝒜 → ℬ admits a 𝒱-left adjoint if and
only if each ℬ(𝑏,𝑈−) ∶ 𝒜 → 𝒱 is represented by some object 𝐹𝑏 ∈ 𝒜, in which case the data of
the𝒱-natural isomorphism𝒜(𝐹𝑏, −) ≅ ℬ(𝑏,𝑈−) equips 𝑏 ∈ ℬ ↦ 𝐹𝑏 ∈ 𝒜 with the structure of a
𝒱-functor. Dual remarks construct enriched right adjoints to a given𝒱-functor.

Exercises.

A.3.i. Exercise. Verify that the vertical and horizontal composites of Definition A.3.5 are𝒱-natural.

A.3.ii. Exercise. Suppose 𝐹∶ 𝒞 → 𝒟 is a𝒱-functor. Prove that the map

𝒞(𝑥, 𝑦) 𝒟(𝐹𝑥, 𝐹𝑦)
𝐹𝑥,𝑦

is𝒱-natural in both 𝑥 and 𝑦.

A.3.iii. Exercise. When 𝒱 is complete, show for any pair of 𝒱-categories 𝒞 and 𝒟, with 𝒞 small,
that Definition A.3.8 makes𝒟𝒞 into a𝒱-category.

A.3.iv. Exercise. Verify the𝒱-naturality statement in Theorem A.3.11.

A.3.v. Exercise. Use Corollary A.3.12 to show that the notions of𝒱-equivalence and𝒱-adjunction
given in Definitions A.3.15 and A.3.16 are equivalent to the 2-categorical notions in𝒱-𝒞𝑎𝑡.

A.4. Tensors and Cotensors

A 𝒱-category 𝒞 admits tensors just when for all 𝑐 ∈ 𝒞, the covariant representable functor
𝒞(𝑐, −) ∶ 𝒞 → 𝒱 admits a left𝒱-adjoint −⊗ 𝑐∶ 𝒱 → 𝒞. Dually, a𝒱-category 𝒞 admits cotensors just
when the contravariant representable functor 𝒞(−, 𝑐) ∶ 𝒞op → 𝒱 admits a mutual right 𝒱-adjoint
𝑐− ∶ 𝒱op → 𝒞. The aim in this section is to introduce both constructions formally. As we shall
discover, the presence of tensors or cotensors is useful when enriching functors between the underlying
categories of enriched categories.

A.4.1. Definition. A 𝒱-category 𝒞 is cotensored if, for all 𝑣 ∈ 𝒱 and 𝑐 ∈ 𝒞, the 𝒱-functor
𝒞(−, 𝑐)𝑣 ∶ 𝒞op → 𝒱 is represented by an object 𝑐𝑣 ∈ 𝒞, i.e., there exists an isomorphism

𝒞(𝑥, 𝑐𝑣) ≅ 𝒞(𝑥, 𝑐)𝑣

in𝒱 that is𝒱-natural in 𝑥. By Proposition A.3.14, the cotensor product defines a unique𝒱-functor

𝒞 ×𝒱op (−)−
𝒞

making the defining isomorphism𝒱-natural in all three variables.

A.4.2. Definition. Dually, a 𝒱-category 𝒞 is tensored if, for all 𝑣 ∈ 𝒱 and 𝑐 ∈ 𝒞, the 𝒱-functor
𝒞(𝑐, −)𝑣 ∶ 𝒞 → 𝒱 is represented by an object 𝑣 ⊗ 𝑐 ∈ 𝒞, i.e., there exists an isomorphism

𝒞(𝑣 ⊗ 𝑐, 𝑥) ≅ 𝒞(𝑐, 𝑥)𝑣

in𝒱 that is𝒱-natural in 𝑥. By Proposition A.3.14, the tensor product defines a unique𝒱-functor

𝒱×𝒞
−⊗−

𝒞
making the defining isomorphism𝒱-natural in all three variables.

Immediately from these definitions:
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A.4.3. Lemma. A𝒱-category 𝒞 is tensored and cotensored if and only if the𝒱-functor 𝒞(−, −) ∶ 𝒞op×𝒞 →
𝒱 is part of a two-variable𝒱-adjunction

𝒞(𝑣 × 𝑎, 𝑏)

𝒞(𝑎, 𝑏𝑣) 𝒞(𝑎, 𝑏)𝑣
≅≅

≅

as expressed by the commutative triangle of𝒱-natural isomorphisms. �

The𝒱-naturality of the defining natural isomorphisms has the following consequence:

A.4.4. Lemma. In any category 𝒞 that is enriched and cotensored over𝒱, there are𝒱-natural isomorphisms

𝑐1 ≅ 𝑐 and
𝑐𝑢×𝑣

(𝑐𝑣)𝑢 (𝑐𝑢)𝑣
≅≅

≅

for 𝑢, 𝑣 ∈ 𝒱 and 𝑐 ∈ 𝒞.
Dually if 𝒞 is enriched and tensored over𝒱, there are𝒱-natural isomorphisms

1 ⊗ 𝑐 ≅ 𝑐 and
(𝑢 × 𝑣) ⊗ 𝑐

𝑢 ⊗ (𝑣 ⊗ 𝑐) 𝑣 ⊗ (𝑢 ⊗ 𝑐)
≅≅

≅

for 𝑢, 𝑣 ∈ 𝒱 and 𝑐 ∈ 𝒞.

There are various coherence relations between these𝒱-natural isomorphisms that derive from the
coherences of the cartesian closed category𝒱.

Proof. By Lemma A.3.7, to define the displayed isomorphisms, it suffices to prove that these
objects represent the same𝒱-functors 𝒞op → 𝒱. By the defining universal property of the cotensor,
for any 𝑥 ∈ 𝒞, there are𝒱-natural isomorphisms

𝒞(𝑥, 𝑐1) ≅ 𝒞(𝑥, 𝑐)1 ≅ 𝒞(𝑥, 𝑐),
the last isomorphism by Remark A.1.9. Since these isomorphisms are𝒱-natural in 𝑐 as well as 𝑥, the
isomorphism 𝑐1 ≅ 𝑐 is𝒱-natural as well.

Similarly, there are𝒱-natural isomorphisms in each of the three vertices of the triangle below

𝒞(𝑥, 𝑐𝑢×𝑣) ≅ 𝒞(𝑥, 𝑐)𝑢×𝑣

𝒞(𝑥, (𝑐𝑣)𝑢) ≅ (𝒞(𝑥, 𝑐)𝑣)𝑢 (𝒞(𝑥, 𝑐)𝑢)𝑣 ≅ 𝒞(𝑥, (𝑐𝑢)𝑣)
≅≅

≅

with the connecting𝒱-natural isomorphisms given by Lemma A.1.7. Again the𝒱-naturality of these
isomorphisms in 𝑢, 𝑣, and 𝑐 gives the𝒱-naturality of the statement. �

Extending Lemma A.2.3:

A.4.5. Lemma. A cartesian closed category (𝒱,×, 1) is enriched, tensored, and cotensored over itself, with
tensors defined by the cartesian product and cotensors defined by the internal hom⁸:

𝑣 ⊗ 𝑤 ≔ 𝑣 × 𝑤 and 𝑤𝑣 ≔ 𝑤𝑣.
⁸This excuses the abuse of exponential notation for both internal homs and cotensors.
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Proof. Lemma A.1.7 establishes the required isomorphisms (A.1.8) in 𝒱. The proof of their
𝒱-naturality is left to the reader or to [68, §1.8]. �

Now consider a𝒱-functor 𝐹∶ 𝒞 → 𝒟. If 𝒞 and𝒟 are tensored over𝒱, then the composite map

𝑣 𝒞(𝑐, 𝑣 ⊗ 𝑐) 𝒟(𝐹𝑐, 𝐹(𝑣 ⊗ 𝑐))
𝜂𝑣 𝐹𝑐,𝑣⊗𝑐

transposes to define a canonical𝒱-natural transformation 𝜏𝑣,𝑐 ∶ 𝑣 ⊗ 𝐹𝑐 → 𝐹(𝑣 ⊗ 𝑐). The𝒱-functor 𝐹
preserves tensors if this map is an isomorphism in𝒟.

The presence of tensors and cotensors provides a convenient mechanism for testing whether an a
priori unenriched adjunction may be enriched to a𝒱-adjunction.

A.4.6. Proposition. Suppose𝒜 and ℬ are𝒱-categories.

(i) If𝒜 and ℬ are tensored over𝒱 then a𝒱-functor 𝐹∶ ℬ → 𝒜 is a left𝒱-adjoint if and only if 𝐹
admits an unenriched right adjoint and preserves tensors.

(ii) If𝒜 and ℬ are cotensored over𝒱 then a𝒱-functor 𝑈∶ 𝒜 → ℬ is a right𝒱-adjoint if and only if
𝑈 admits an unenriched left adjoint and preserves cotensors.

Proof. We prove the sufficiency of the conditions in the first of the dual pair of statements and
leave their necessity to Exercise A.4.i. Suppose 𝐹 admits an unenriched right adjoint 𝑈 with counit 𝜖.
By Example A.3.4 and Exercise A.3.ii, the composite map of hom-objects in𝒱

ℬ(𝑏,𝑈𝑎) 𝒜(𝐹𝑏, 𝐹𝑈𝑎) 𝒜(𝐹𝑏, 𝑎)
𝐹𝑏,𝑈𝑎 𝜖𝑎∘−

(A.4.7)

which lifts the hom-set bijection of the unenriched adjunction, is𝒱-natural in 𝑏. Our task is to show
that (A.4.7) is an isomorphism in𝒱. Then by Proposition A.3.14, there is a unique way to enrich the
right adjoint 𝑈 so that this map is𝒱-natural in 𝑎 as well as 𝑏.

After applying the unenriched representable functor𝒱(𝑣, −) ∶ 𝒱 → 𝒮𝑒𝑡, we claim that this map
fits into a commutative diagram

𝒱(𝑣,ℬ(𝑏,𝑈𝑎)) 𝒱(𝑣,𝒜(𝐹𝑏, 𝐹𝑈𝑎)) 𝒱(𝑣,𝒜(𝐹𝑏, 𝑎))

ℬ(𝑣 ⊗ 𝑏,𝑈𝑎) 𝒜(𝐹(𝑣 ⊗ 𝑏), 𝑎) 𝒜(𝑣 ⊗ 𝐹𝑏, 𝑎)

𝐹𝑏,𝑈𝑎∘−

≃

(𝜖𝑎∘−)∘−

≃

≃ −∘𝜏𝑣,𝑏

where the three isomorphisms are defined by transposing across the unenriched adjunctions. Since this
is a diagram of functions between sets, to verify its commutativity, it suffices to consider an element
𝑓 ∶ 𝑣 → ℬ(𝑏,𝑈𝑎); the image under both composites is the composite map

𝑣 ⊗ 𝐹𝑏 𝐵(𝑏, 𝑢𝑎) ⊗ 𝐹𝑏 𝐴(𝐹𝑏, 𝐹𝑈𝑎) ⊗ 𝐹𝑏 𝐹𝑈𝑎 𝑎
𝑓 ⊗𝐹𝑏 𝐹𝑏,𝑢𝑎⊗𝐹𝑏 ev 𝜖𝑎

in the underlying category of𝒜. Since 𝐹 preserves tensors, the map 𝜏𝑣,𝑏 is an isomorphism, and thus,
by the unenriched Yoneda lemma, (A.4.7) is an isomorphism as well. �

Exercises.

A.4.i. Exercise. Prove that enriched left adjoints preserve tensors and define unenriched left adjoints.

A.4.ii. Exercise. Let𝒥 be a small unenriched category and let 𝒞 be a𝒱-category. Prove that if 𝒞 is
tensored or cotensored then so is 𝒞𝒥.
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A.5. Conical Limits and Colimits

Consider a diagram 𝐹∶ 𝒥 → 𝒞 indexed by a 1-category𝒥 and valued in a𝒱-category 𝒞. A cone
𝜆 over the diagram 𝐹 with summit ℓ ∈ 𝒞 is a limit cone if composition with 𝜆 induces a bijection of
hom-sets

𝒞(𝑥, ℓ)0 lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗)0≃𝜆∘−

for all 𝑥 ∈ 𝒞. If𝒱 admits𝒥-shaped limits, then the composition map lifts to𝒱, and it is natural to
assert a stronger version of the usual universal property of a limit cone, demanding that composition
with 𝜆 induces an isomorphism of𝒱-objects and not just of hom-sets. This gives the notion of a conical
limit of a diagram valued in an enriched category. Conical colimits are defined dually (see Definition
A.5.2).

The underlying set functor (−)0 ≔ 𝒱(1, −) ∶ 𝒱 → 𝒮𝑒𝑡 preserves limits and carries isomorphisms
in𝒱 to bijections between sets. Thus, conical limits necessarily define 1-categorical limits, so we pay
particular attention to what is required to enrich a 1-categorical limit to a conical limit. Our first
observation along these lines is that limits and colimits of diagrams valued in a cartesian closed category
𝒱 always enrich to define conical limits and conical colimits.

A.5.1. Lemma. If 𝒱 is a cartesian closed category, then any 1-categorical limit cone 𝜆∶ Δ lim 𝐹 ⇒ 𝐹 or
1-categorical colimit cone 𝛾∶ 𝐹 ⇒ Δ colim 𝐹 over or under a diagram 𝐹∶ 𝒥 → 𝒱 give rise to isomorphisms

(lim 𝐹)𝑣 ≅ lim
𝑗∈𝒥

(𝐹𝑗𝑣) and 𝑣colim 𝐹 ≅ lim
𝑗∈𝒥op

𝑣𝐹𝑗

in𝒱 that are𝒱-natural in 𝑣 ∈ 𝒱.

Proof. For any 𝑣 ∈ 𝒱, the exponential (−)𝑣 ∶ 𝒱 → 𝒱 is right adjoint to the product functor
− × 𝑣∶ 𝒱 → 𝒱; as such it preserves limits, giving rise to the first isomorphism of the statement, while
𝑣− ∶ 𝒱op → 𝒱, as a mutual right adjoint, carries colimits to limits, establishing the second. �

For the remainder of this section, suppose that𝒱 is a complete cartesian closed category, so that
the limits in𝒱 that encode the universal properties of conical limits and colimits are assumed to exist.

A.5.2. Definition. Let 𝒞 be a 𝒱-category and let 𝒥 be a small 1-category. The conical limit of an
unenriched diagram 𝐹∶ 𝒥 → 𝒞 is given by an object ℓ ∈ 𝒞 and a cone 𝜆∶ Δℓ ⇒ 𝐹 inducing a
𝒱-natural⁹ isomorphism of hom-objects in𝒱

𝒞(𝑥, ℓ) lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗) ∈ 𝒱≃𝜆∘−

for all 𝑥 ∈ 𝒞. Dually, the conical colimit is given by an object 𝑐 ∈ 𝒞 and a cone 𝛾∶ 𝐹 ⇒ Δ𝑐 inducing a
𝒱-natural isomorphism

𝒞(𝑐, 𝑥) lim𝑗∈𝒥op 𝒞(𝐹𝑗, 𝑥) ∈ 𝒱≃𝛾∗

for all 𝑥 ∈ 𝒞.
⁹For any cone 𝜆∶ Δℓ ⇒ 𝐹, not necessarily a limit cone, composition defines a map 𝜆 ∘ −∶ 𝒞(𝑥, ℓ) → lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗)

that is𝒱-natural in 𝑥 (see Exercise A.5.i). This follows by essentially the same argument used in Example A.3.4 to demon-
strate that arrows in the underlying category of an enriched category induce enriched natural transformations between
representable functors. So the content of the universal property that characterizes conical limits is that this 𝒱-natural
map is invertible.
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The isomorphisms that characterize conical limits and colimits closely resemble the usual isomor-
phisms that characterize 1-categorical limits and colimits except for one very important difference:
they postulate isomorphisms in 𝒱 rather than isomorphisms in 𝒮𝑒𝑡. In the case where 𝒱 = 𝑠𝒮𝑒𝑡,
the isomorphism of vertices that underlies this isomorphism of simplicial sets describes the usual
1-categorical universal property. To say that the limit is conical and not merely 1-categorical is to assert
that this universal property extends to all positive dimensions.

Inspecting Definition A.5.2, we see immediately that:

A.5.3. Proposition. A 1-categorical limit cone is conical just when it is preserved by all𝒱-valued representable
functors𝒞(𝑥, −) ∶ 𝒞 → 𝒱, while a 1-categorical colimit cone is conical just when it is preserved by all𝒱-valued
representable functors 𝒞(−, 𝑥) ∶ 𝒞op → 𝒱. �

The proof of Lemma A.5.1 generalizes to show:

A.5.4. Proposition. In an enriched category with tensors all 1-categorical limits in 𝒞 are conical, while in an
enriched category with cotensors all 1-categorical colimits are conical.

Proof. By Proposition A.5.3, to show that a 1-categorical limit in a 𝒱-category 𝒞 is conical, it
suffices to show that it is preserved by the𝒱-valued representable functors 𝒞(𝑥, −) ∶ 𝒞 → 𝒱 for all
𝑥 ∈ 𝒞. If 𝒞 admits tensors, then each of these functors admits a left adjoint; as right adjoints, they
necessarily preserve the 1-categorical limits of the statement. �

In analogy with Proposition A.5.3, we have:

A.5.5. Proposition. Let 𝒞 be enriched and cotensored over𝒱. A limit of an unenriched diagram 𝐹∶ 𝒥 → 𝒞
is a conical limit if and only if it is preserved by cotensors with all objects 𝑣 ∈ 𝒱.

Proof. Cotensors are𝒱-enriched right adjoints, which preserve conical limits. The content is
that preservation by cotensors suffices to enrich a 1-categorical limit to a𝒱-categorical one.

By Proposition A.5.3, a 1-categorical limit cone 𝜆∶ Δℓ ⇒ 𝐹 is conical just when it is preserved by
all𝒱-valued representable functors 𝒞(𝑥, −) ∶ 𝒞 → 𝒱. To see that the natural map

𝒞(𝑥, ℓ) lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗)𝜆∘−

is an isomorphism in𝒱 we appeal to the unenriched Yoneda lemma and argue that this map induces an
isomorphism upon applying an unenriched representable functor𝒱(𝑣, −) ∶ 𝒱 → 𝒮𝑒𝑡 for any 𝑣 ∈ 𝒱.
To see this invertibility, note that the induced map of hom-sets fits into a commutative diagram

𝒱(𝑣, 𝒞(𝑥, ℓ)) 𝒞(𝑥, ℓ𝑣)

𝒱(𝑣, lim
𝑗∈𝒥

𝒞(𝑥, 𝐹𝑗)) lim
𝑗∈𝒥

𝒱(𝑣, 𝒞(𝑥, 𝐹𝑗)) lim
𝑗∈𝒥

𝒞(𝑥, 𝐹𝑗𝑣) 𝒞(𝑥, lim
𝑗∈𝒥

(𝐹𝑗𝑣))

(𝜆∘−)∘−

≃

𝜆𝑣∘−

≃ ≃ ≃

where the horizontal isomorphisms express the unenriched universal property of cotensors and the
fact that unenriched representable functors preserve limits. To say that cotensors preserve the limit
ℓ ≅ lim𝑗∈𝒥 𝐹𝑗means that ℓ𝑣 ≅ (lim𝑗∈𝒥 𝐹𝑗)𝑣 ≅ lim𝑗∈𝒥(𝐹𝑗𝑣) , so by the Yoneda lemma, the right-vertical
map is an isomorphism, and thus the left-vertical map is as well. �
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Exercises.

A.5.i. Exercise. Consider a diagram 𝐹∶ 𝒥 → 𝒞 indexed by a 1-category and valued in a𝒱-category
and a cone 𝜆∶ Δℓ ⇒ 𝐹. Assuming𝒱 has𝒥-shaped limits, define a canonical map 𝜆 ∘ −∶ 𝒞(𝑥, ℓ) →
lim𝑗∈𝒥 𝒞(𝑥, 𝐹𝑗) and show, by arguing along the lines of Example A.3.4, that it is𝒱-natural.

A.5.ii. Exercise ([67, p. 306]). Specialize the result of Proposition A.5.4 to prove the following: in any
2-category 𝒞 that admits tensors with the walking-arrow category 𝟚, any 1-categorical limits that 𝒞
admits are automatically conical.¹⁰

A.6. Weighted Limits and Colimits

The cotensors of §A.4 and conical limits of §A.5 are both instances of a more general notion
of weighted limit that we now introduce. We continue in the context of a complete and cocomplete
cartesian closed category (𝒱,×, 1). The examples we have in mind are (𝑠𝒮𝑒𝑡, ×, 1), its cartesian closed
subcategory (𝒞𝑎𝑡, ×, 𝟙), or its further cartesian closed subcategory (𝒮𝑒𝑡, ×, 1).

Ordinary limits and colimits are objects representing the functor of cones with a given apex over or
under a fixed diagram. Weighted limits and colimits are defined analogously, except that the cones over
or under a diagram might have exotic “shapes,” which are allowed to vary with the objects indexing the
diagram. More formally, in the𝒱-enriched context, the weight, defining the “shape” of a cone over a
diagram indexed by𝒜 or under a diagram indexed by𝒜op, takes the form of a functor in𝒱𝒜; note
the indexing category𝒜 may be𝒱-enriched, unlike the diagrams considered in §A.5.

We develop the general notions of weighted limit and weighted colimit from three different
viewpoints that we introduce in the reverse of the logical order, because we find this route to be the
most intuitive. We first describe the axioms that characterize the weighted limit and colimit bifunctors,
whenever they exist. We then explain how weighted limits and colimits can be constructed, assuming
certain other limits and colimits exist. We then finally introduce the general universal property that
defines a particular weighted limit or colimit, which stipulates exactly what is required for the notions
just introduced to in fact exist.

A.6.1. Definition (weighted limits and colimits, axiomatically). For a small𝒱-enriched category𝒜
and a large𝒱-enriched category 𝒞, the weighted limit and weighted colimit bifunctors

lim− −∶ (𝒱𝒜)op × 𝒞𝒜 → 𝒞 and colim− −∶ 𝒱𝒜 × 𝒞𝒜op → 𝒞
are characterized by the following pair of axioms whenever they exist:

(i) Weighted co/limits with representable weights evaluate at the representing object:

lim𝒜(𝑎,−) 𝐹 ≅ 𝐹𝑎 and colim𝒜(−,𝑎)𝐺 ≅ 𝐺𝑎.

(ii) The weighted co/limit bifunctors are cocontinuous in the weight: for any diagrams 𝐹 ∈ 𝒞𝒜 and
𝐺 ∈ 𝒞𝒜op

, the functor colim−𝐺 preserves colimits, while the functor lim− 𝐹 carries colimits
to limits.¹¹

We interpret axiom (ii) to mean that weights can be “made-to-order”: a weight constructed as a colimit
of representables – as all𝒱-valued functors are – will stipulate the expected universal property.

¹⁰The statement asserts that the presence of tensors with 𝟚 implies that the universal property of 1-dimensional limits
automatically has an additional 2-dimensional aspect, such as illustrated by the discussion around Proposition 1.4.5.

¹¹More precisely, as proven in Proposition A.6.10, the weighted colimit functor colim−𝐺 preserves weighted colimits,
while the weighted limit functor lim− 𝐹 carries weighted colimits to weighted limits.
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A.6.2. Definition (weighted limits and colimits, constructively). The limit of 𝐹 ∈ 𝒞𝒜 weighted by
𝑊 ∈ 𝒱𝒜 is computed by the functor cotensor product:

lim𝑊 𝐹 ≔ ∫
𝑎∈𝒜

𝐹𝑎𝑊𝑎 ≔ eq
⎛
⎜
⎝

∏
𝑎∈𝒜

𝐹𝑎𝑊𝑎 ∏
𝑎,𝑏∈𝒜

𝐹𝑏𝒜(𝑎,𝑏)×𝑊𝑎 ⎞
⎟
⎠
, (A.6.3)

where the product and equalizer should be interpreted as conical limits in the sense of Definition A.5.2.

The maps in the equalizer diagram are induced by the actions𝒜(𝑎, 𝑏)×𝑊𝑎 → 𝑊𝑏 and 𝐹𝑎 → 𝐹𝑏𝒜(𝑎,𝑏)

of the hom-object𝒜(𝑎, 𝑏) on the𝒱-functors𝑊 and 𝐹.
Dually, the colimit of𝐺 ∈ 𝒞𝒜op

weighted by𝑊 ∈ 𝒱𝒜 is computed by the functor tensor product:

colim𝑊𝐺 ≔ ∫𝑎∈𝒜
𝑊𝑎 ⊗ 𝐺𝑎 ≔ coeq

⎛
⎜
⎝

∐
𝑎,𝑏∈𝒜

(𝑊𝑎 ×𝒜(𝑎, 𝑏)) ⊗ 𝐺𝑏 ∐
𝑎∈𝒜

𝑊𝑎 ⊗ 𝐺𝑎
⎞
⎟
⎠
, (A.6.4)

where the coproduct and coequalizer should be interpreted as conical colimits. One of the maps in
the coequalizer diagram is induced by the action𝒜(𝑎, 𝑏) ⊗ 𝐺𝑏 → 𝐺𝑎 of𝒜(𝑎, 𝑏) on the contravariant
𝒱-functor 𝐺, while the other uses the covariant action of𝒜(𝑎, 𝑏) on𝑊 as before.

A.6.5. Definition (weighed limits and colimits, the universal property). The limit lim𝑊 𝐹 of the
diagram 𝐹 ∈ 𝒞𝒜 weighted by𝑊 ∈ 𝒱𝒜 and the colimit colim𝑊𝐺 of𝐺 ∈ 𝒞𝒜op

weighted by𝑊 ∈ 𝒱𝒜

are characterized by the universal properties:

𝒞(𝑥, lim𝑊 𝐹) ≅ 𝒱𝒜(𝑊,𝒞(𝑥, 𝐹)) and 𝒞(colim𝑊𝐺, 𝑥) ≅ 𝒱𝒜(𝑊,𝒞(𝐺, 𝑥)), (A.6.6)

each of these defining an isomorphism between objects of𝒱 that is𝒱-natural in 𝑥.

When the indexing category is not clear from context, we may add it as a superscript to the notation
for the weighted limit and weighted colimit. Proposition A.6.10 shows that these three definitions
characterize the same objects. Along the way to proving it, we obtain results of interest in their own
right, that we record separately.

A.6.7. Lemma. A complete cartesian closed category𝒱 admits all weighted limits, as defined by the formula
of (A.6.3) satisfying the natural isomorphism of (A.6.6) and the axioms of Definition A.6.1. Explicitly, for a
weight𝑊∶ 𝒜 → 𝒱 and a diagram 𝐹∶ 𝒜 → 𝒱, the weighted limit

lim𝑊 𝐹 ≔ 𝒱𝒜(𝑊, 𝐹),
is the𝒱-object of𝒱-natural transformations from𝑊 to 𝑉.

Proof. The𝒱-functor𝒱(1, −) ∶ 𝒱 → 𝒱 represented by the terminal object is naturally isomor-
phic to the identity functor. So taking 𝑥 = 1 in the universal property of (A.6.6) in the case where the
diagram 𝐹 ∈ 𝒱𝒜 is valued in the𝒱-category𝒱, we have

lim𝑊 𝐹 ≅ 𝒱𝒜(𝑊, 𝐹).
Simultaneously, the formula (A.6.3) computes the𝒱-object𝒱𝒜(𝑊, 𝐹) of𝒱-natural transformations
from𝑊 to 𝐹 introduced in Definition A.3.8. The enriched Yoneda lemma of Theorem A.3.11 proves
the first axiom, while the second axiom follows from the universal property of (A.6.6). �

The𝒱-object of𝒱-natural transformations satisfies the natural isomorphism

𝒱(𝑣,𝒱𝒜(𝑊, 𝐹)) ≅ 𝒱𝒜(𝑊,𝒱(𝑣, 𝐹))

411



for any 𝑣 ∈ 𝒱. By applying the observation that 𝑊-weighted limits of 𝒱-valued functors are 𝒱-
objects of natural transformations to the functors𝒞(𝑥, 𝐹−) and𝒞(𝐺−, 𝑥), we may re-express the natural
isomorphism (A.6.6) as:

A.6.8. Corollary. The weighted limits and weighted colimits of (A.6.6) are representably defined as weighted
limits in𝒱: for𝑊 ∈ 𝒱𝒜 and 𝐹 ∈ 𝒞𝒜 and 𝐺 ∈ 𝒞𝒜op

the weighted limit and colimit are characterized by
𝒱-natural isomorphisms in 𝑥:

𝒞(𝑥, lim𝑊 𝐹) ≅ lim𝑊 𝒞(𝑥, 𝐹) and 𝒞(colim𝑊𝐺, 𝑥) ≅ lim𝑊 𝒞(𝐺, 𝑥) (A.6.9)
�

We now unify the Definitions A.6.1, A.6.2, and A.6.5.

A.6.10. Proposition. When the limits and colimits of (A.6.3) and (A.6.4) exist they define objects satisfying
the universal properties (A.6.6) or equivalently (A.6.9). The𝒱-bifunctors defined by these universal properties
satisfy the axioms of Definition A.6.1.

Proof. The equivalence of Definitions A.6.2 and A.6.5 – for either weighted limits or weighted
colimits – is a direct consequence of the special case of this implication for weighted limits valued
in 𝒞 = 𝒱 proven as Lemma A.6.7 and Corollary A.6.8. The limits of (A.6.3) in 𝒞 are also defined
representably in terms of the analogous limits in𝒱. So the objected defined by (A.6.3) represents the
𝒱-functor lim𝑊 𝒞(−, 𝐹) that defines the weighted limit lim𝑊 𝐹.

It remains to prove that the weighted limits of Definitions A.6.2 and A.6.5 satisfy the axioms
of Definition A.6.1. In the case of a 𝒱-valued diagram 𝐹 ∈ 𝒱𝒜, axiom (i) is the 𝒱-Yoneda lemma:
𝒱𝒜(𝒜(𝑎, −), 𝐹) ≅ 𝐹𝑎 proven in Theorem A.3.11. Once again, the general case for 𝐹 ∈ 𝒞𝒜 follows
from the special case for𝒱-valued diagrams. To demonstrate an isomorphism lim𝒜(𝑎,−) 𝐹 ≅ 𝐹𝑎 in 𝒞 it
suffices to produce an isomorphism𝒞(𝑥, lim𝒜(𝑎,−) 𝐹) ≅ 𝒞(𝑥, 𝐹𝑎) in𝒱 for all 𝑥 ∈ 𝒞, and we have such a

natural isomorphism by applying (A.6.9) and the observation just made to the functor 𝒞(𝑥, 𝐹−) ∈ 𝒱𝒜.
For the axiom (ii), consider a diagram𝑊∶ 𝒥op → 𝒱𝒜 of weights and a weight 𝑉 ∈ 𝒱𝒥 so that

colim𝒥
𝑉 𝑊 is an object in𝒱𝒜. For any 𝐹 ∈ 𝒞𝒜, we will show that the𝒱-functor lim𝒜

− 𝐹∶ (𝒱𝒜)op → 𝒞
carries the 𝑉-weighted colimit of the diagram of weights𝑊 to the 𝑉-weighted limit of the composite

diagram lim𝒜
𝑊− 𝐹∶ 𝒥 → 𝒞.

The universal property (A.6.6), applied first to the colim𝒥
𝑉 𝑊-weighted limit of the diagram 𝐹 and

the object 𝑥, and then to the 𝑉-weighted colimit of the diagram𝑊 and the object 𝒞(𝑥, 𝐹), supplies
isomorphisms:

𝒞(𝑥, lim𝒜
colim

𝒥
𝑉 𝑊 𝐹) ≅ 𝒱𝒜(colim𝒥

𝑉 𝑊,𝒞(𝑥, 𝐹)) ≅ 𝒱𝒥(𝑉,𝒱𝒜(𝑊,𝒞(𝑥, 𝐹))).

Applying (A.6.6) twice more, first for the weights𝑊𝑗 for each 𝑗 ∈ 𝒥 and then for the weight 𝑉 and

the diagram lim𝒜
𝑊 𝐹∶ 𝒥 → 𝒞, we have

≅ 𝒱𝒥(𝑉, 𝒞(𝑥, lim𝒜
𝑊 𝐹)) ≅ 𝒞(𝑥, lim𝒥

𝑉 lim𝒜
𝑊 𝐹).

By the Yoneda lemma, this proves that

lim𝒜
colim

𝒥
𝑉 𝑊 𝐹 ≅ lim𝒥

𝑉 lim𝒜
𝑊 𝐹,

i.e., that the weighted limit functor lim𝒜
− 𝐹 is carries a weighted colimit of weights to the analogous

weighted limit of weights. �
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A.6.11. Remark (for unenriched indexing categories). When the indexing category is unenriched, the
limit and colimit formulas from Definition A.6.2 simplify as follows

lim𝑊 𝐹 ≅ eq

⎛
⎜
⎜
⎝

∏
𝑎∈𝒜

𝐹𝑎𝑊𝑎 ∏
𝒜(𝑎,𝑏)

𝐹𝑏𝑊𝑎
⎞
⎟
⎟
⎠

colim𝑊𝐺 ≅ coeq

⎛
⎜
⎜
⎝

∐
𝒜(𝑎,𝑏)

𝑊𝑎 ⊗ 𝐺𝑏 ∐
𝑎∈𝒜

𝑊𝑎 ⊗ 𝐺𝑎
⎞
⎟
⎟
⎠

and in fact, it suffices to consider only nonidentity arrows or even just atomic arrows.

A.6.12. Example (conical limits and colimits). For any small𝒱-category𝒜, the constant diagram at
the terminal object of𝒱 defines the terminal weight 1 ∈ 𝒱𝒜. For diagrams 𝐹 ∈ 𝒞𝒜 and 𝐺 ∈ 𝒞𝒜op

,
respectively, limits and colimits weighted by this weight satisfy the defining universal properties

𝒞(𝑥, lim1 𝐹) ≅ 𝒱𝒜(1, 𝒞(𝑥, 𝐹)) ≅ lim1 𝒞(𝑥, 𝐹) and

𝒞(colim1𝐺, 𝑥) ≅ 𝒱𝒜(1, 𝒞(𝐺, 𝑥)) ≅ lim1 𝒞(𝐺, 𝑥),
which say that lim 𝐹 and colim𝐺 represent the functors of𝒱-enriched conical cones over 𝐹 or under
𝐺, respectively.

When 𝒜 is an unenriched category, this recovers the universal property that characterized the
conical limits and conical colimits of Definition A.5.2, so we extend those terms to refer to general
limits and colimits weighted by the terminal weight; it is common to use the simplified notation
lim 𝐹 ≔ lim1 𝐹 and colim𝐺 ≔ colim1𝐺 for conical limits and colimits. This explains the name
“conical”: among the weighted limits, the conical limits are the ones with ordinary cone shapes,
involving a single arrow in the underlying category pointing from the summit to each object in the
diagram. Thus, conical limits and colimits arise as special cases of weighted limits and colimits whose
weights are terminal.

A.6.13. Example (tensors and cotensors). A diagram indexed by the terminal category 𝟙 and valued in
a𝒱-enriched category 𝒞 is just an object 𝑐 ∈ 𝒞. A weight for such diagrams is just given by another
object 𝑣 ∈ 𝒱. The 𝑣-weighted limit of the diagram 𝑐 is defined by the universal property

𝒞(𝑥, lim𝟙
𝑣 𝑐) ≅ 𝒞(𝑥, 𝑐)𝑣

that characterizes the cotensor 𝑐𝑣, while the 𝑣-weighted colimit of the diagram 𝑐 is defined by the
universal property

𝒞(colim𝟙
𝑣 𝑐, 𝑥) ≅ 𝒞(𝑐, 𝑥)𝑣

that characterizes the tensor 𝑣 ⊗ 𝑐. Thus, cotensors and tensors arise as special cases of weighted limits
and colimits whose indexing categories are terminal.

A.6.14. Example (commas). An∞-cosmos𝒦 is, in particular, a category enriched over simplicial sets.
The comma∞-category is the limit in the∞-cosmos𝒦 of the diagram → 𝒦 given by the cospan

𝐶 𝐴 𝐵
𝑔 𝑓

weighted by the diagram → 𝑠𝒮𝑒𝑡 given by the cospan

𝟙 𝟚 𝟙1 0
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Under the simplification of Remark A.6.11, the formula for the weighted limit reduces to the equalizer
of the pair of maps

𝐴𝟚

𝐶 × 𝐴𝟚 × 𝐵 𝐴 × 𝐴
𝐶 × 𝐵

(𝑝1,𝑝0)𝜋

𝜋 𝑔×𝑓

which computes the pullback of (3.4.2). The universal property (A.6.6) provides a correspondence
between functors 𝛼∶ 𝑋 → Hom𝐴(𝑓 , 𝑔) in𝒦 and simplicial natural transformations, the data of which
is given by the three dashed vertical maps that fit into two commutative squares:

𝟙 𝟚 𝟙

Fun(𝑋, 𝐶) Fun(𝑋,𝐴) Fun(𝑋, 𝐵)

1

𝑐 𝛼

0

𝑏

𝑔∘− 𝑓 ∘−

A.6.15. Example (Kan extensions as weighted co/limits). The usual colimit or limit formula that
computes the value of a pointwise left or right Kan extension of an unenriched functor 𝐹∶ 𝐶 → 𝐸
along 𝐾∶ 𝐶 → 𝐷 at an object 𝑑 ∈ 𝐷 can be succinctly expressed by the weighted colimit or weighted
limit

lan𝐾𝐹(𝑑) ∶= colim𝐷(𝐾−,𝑑) 𝐹 and ran𝐾𝐹(𝑑) ∶= lim𝐷(𝑑,𝐾−) 𝐹.

The formulae of Definition A.6.2 give criteria under which weighted limits or colimits are guaran-
teed to exist.

A.6.16. Corollary. A𝒱-category that admits cotensors and conical limits of all small unenriched diagram
shapes then admits all small weighted limits. Dually, a𝒱-category that admits tensors and conical colimits of
all small unenriched diagram shapes then admits all small weighted colimits. �

A.6.17. Definition. A𝒱-category is𝒱-complete if it admits small𝒱-weighted limits, or equivalently,
by Corollary A.6.16, if it admits cotensors by objects in𝒱 and small conical limits. Dually, a𝒱-category
is 𝒱-cocomplete if it admits small 𝒱-weighted colimits, or equivalently, by Corollary A.6.16, if it
admits tensors by objects in𝒱 and small conical colimits.

A.6.18. Remark (on proving enriched completeness). In practice one often shows that a𝒱-category
is complete by demonstrating that its underlying category is complete and that the𝒱-category has
both cotensors and tensors, the latter being an instance of a weighted colimit. Then Proposition A.5.4
applies to establish that the unenriched limits are in fact conical limits.

We conclude with a few results from the general theory of weighted limits and colimits. Immediately
from their defining universal properties, it can be verified that:

A.6.19. Lemma (weighted limits of restricted diagrams). Consider a𝒱-functor 𝐾∶ 𝒜 → ℬ, a weight
𝑊∶ 𝒜 → 𝒱, and diagrams 𝐹∶ ℬ → 𝒞 and 𝐺∶ ℬop → 𝒞. Then the𝑊-weighted limit or colimit of the
restricted diagram is isomorphic to the lan𝐾𝑊-weighted limit or colimit of the original diagram:

lim𝒜
𝑊 (𝐹 ∘ 𝐾) ≅ limℬ

lan𝐾𝑊 𝐹 and colim𝒜
𝑊 (𝐺 ∘ 𝐾) ≅ colimℬ

lan𝐾𝑊𝐺.

Proof. Exercise A.6.ii. �

414



Recall from Definition A.3.16 that an enriched adjunction is comprised of a pair of𝒱-functors
𝐹∶ ℬ → 𝒜 and 𝑈∶ 𝒜 → ℬ together with a family of isomorphisms 𝒜(𝐹𝑏, 𝑎) ≅ ℬ(𝑏,𝑈𝑎) that are
𝒱-natural in both variables. The usual Yoneda-style argument enriches to show:

A.6.20. Proposition. Enriched right adjoints preserve weighted limits and enriched left adjoints preserve
weighted colimits.

Proof. Exercise A.6.iii. �

Exercises.

A.6.i. Exercise. Taking the base for enrichment𝒱 to be 𝒮𝑒𝑡, compute the following weighted limits

of a simplicial set 𝑋, regarded as a diagram in 𝒮𝑒𝑡𝚫
op

, weighted by:

(i) the standard 𝑛-simplex Δ[𝑛] ∈ 𝒮𝑒𝑡𝚫
op

,
(ii) the spine of the 𝑛-simplex, the simplicial subset of Δ[𝑛] obtained by gluing together the 𝑛

edges from 𝑖 to 𝑖 + 1 into a composable path,

(iii) the 𝑛-simplex boundary 𝜕Δ[𝑛] ∈ 𝒮𝑒𝑡𝚫
op

.¹²

A.6.ii. Exercise. Prove Lemma A.6.19.

A.6.iii. Exercise. Prove Proposition A.6.20.

A.6.iv. Exercise.

(i) Extend the definitions of weighted limit and colimit to allow the weight𝑊 to be an enriched
profunctor – i.e., a𝒱-functor𝑊∶ ℬop ×𝒜 → 𝒱 for small𝒱-categories𝒜 and ℬ – in such
a way that the weighted limit and colimit functors have the form

(𝒱ℬop×𝒜)op × 𝒞𝒜 𝒞ℬ and 𝒱ℬop×𝒜 × 𝒞ℬ 𝒞𝒜lim− − colim− −

(ii) Show that the weighted limit and weighted colimit bifunctors from (i) form two thirds of a
two-variable adjunction, with a𝒱-natural isomorphism

𝒞𝒜(colim𝑊𝐺, 𝐹) ≅ 𝒞ℬ(𝐺, lim𝑊 𝐹)
for𝑊 ∈ 𝒱ℬop×𝒜, 𝐹 ∈ 𝒞𝒜, and 𝐺 ∈ 𝒞ℬ.

(iii) What is the third bifunctor of the two-variable adjunction of (ii)?

A.7. Change of Base

“Change of base,” first considered by Eilenberg and Kelly in [41], refers to a systematic procedure
by which enrichment over one category𝒱 is converted into enrichment over another category 𝒲.
CorollaryA.3.6 notes that for a cartesian closed category𝒱, there is a 2-category𝒱-𝒞𝑎𝑡 of𝒱-categories,
𝒱-functors, and 𝒱-natural transformations. The first main result, appearing as Proposition A.7.3,
gives conditions under which a functor 𝑇∶ 𝒱 → 𝒲 between cartesian closed categories induces a
change-of-base 2-functor 𝑇∗ ∶ 𝒱-𝒞𝑎𝑡 → 𝒲-𝒞𝑎𝑡.

As the context we are working in here is less general than the one considered by Eilenberg and
Kelly – our base categories are cartesian closed while theirs are closed symmetric monoidal – we take
a shortcut which covers all of our examples and is easier to explain. In general, all that is needed to
produce a change of base 2-functor is a lax monoidal functor between symmetric monoidal categories,

¹²The limit of a simplicial object weighted by 𝜕Δ[𝑛] is called the 𝑛th-matching object (see Definition C.4.14).
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but the lax monoidal functors we encounter between cartesian closed categories are in fact finite-
product-preserving, so we content ourselves with explicating the results in that case instead.

Recall that a functor 𝑇∶ 𝒱 → 𝒲 between cartesian closed categories preserves finite products
just when the natural maps defined for any 𝑢, 𝑣 ∈ 𝒱

𝑇(𝑢 × 𝑣) ≃ 𝑇𝑢 × 𝑇𝑣 and 𝑇1 ≃ 1
are isomorphisms. For example:

A.7.1. Example. Since representable functors preserve products, for any cartesian closed category𝒱,
the underlying set functor (−)0 ∶ 𝒱 → 𝒮𝑒𝑡 is product-preserving

A.7.2. Example. In a cartesian closed category𝒱, finite products distribute over arbitrary coproducts.
In particular, for any sets 𝑋 and 𝑌 there is an isomorphism

⨿𝑋×𝑌1 ≅ (⨿𝑋1) × (⨿𝑌1)
between coproducts of the terminal object 1, which proves that the functor

𝒮𝑒𝑡 𝒱⨿−1

is finite-product-preserving.

A finite-product-preserving functor may be used to change the base as follows

A.7.3. Proposition. A finite-product-preserving functor 𝑇∶ 𝒱 → 𝒲 between cartesian closed categories
induces a change-of-base 2-functor

𝒱-𝒞𝑎𝑡 𝒲-𝒞𝑎𝑡 .𝑇∗

An early observation along these lines was first stated as [41, II.6.3], with the proof left to the reader.
We adopt the same tactic and leave the diagram chases to the reader or to [31, 4.2.4] and instead just
give the construction of the change-of-base 2-functor, which is the important thing.

Proof. Let 𝒞 be a 𝒱-category and define a 𝒲-category 𝑇∗𝒞 to have the same objects and to
have mapping objects 𝑇∗𝒞(𝑥, 𝑦) ≔ 𝑇𝒞(𝑥, 𝑦). The composition and identity maps are given by the
composites

𝑇𝒞(𝑦, 𝑧) × 𝑇𝒞(𝑥, 𝑦) 𝑇(𝒞(𝑦, 𝑧) × 𝒞(𝑥, 𝑦)) 𝑇𝒞(𝑥, 𝑧) 1 𝑇1 𝑇𝒞(𝑥, 𝑥)≃ 𝑇∘ ≃ 𝑇 id𝑥

which make use of the inverses of the natural maps that arise when a finite-product-preserving functor
is applied to a finite product. A straightforward diagram chase verifies that 𝑇∗𝒞 is a𝒲-category.

If 𝐹∶ 𝒞 → 𝒟 is a𝒱-functor, then we define a𝒲-functor 𝑇∗𝐹∶ 𝑇∗𝒞 → 𝑇∗𝒟 to act on objects by
𝑐 ∈ 𝒞 ↦ 𝐹𝑐 ∈ 𝒟 and with internal action on arrows defined by

𝑇𝒞(𝑥, 𝑦) 𝑇𝒟(𝐹𝑥, 𝐹𝑦)
𝑇𝐹𝑥,𝑦

Again, a straightforward diagram chase verifies that 𝑇∗𝐹 is 𝒲-functorial. It is evident from this
definition that 𝑇∗(𝐺𝐹) = 𝑇∗𝐺 ⋅ 𝑇∗𝐹.

Finally, let 𝛼∶ 𝐹 ⇒ 𝐺 be a 𝒱-natural transformation between 𝒱-functors 𝐹,𝐺∶ 𝒞 → 𝒟 and
define a𝒲-natural transformation 𝑇∗𝛼∶ 𝑇∗𝐹 ⇒ 𝑇∗𝐺 to have components

1 𝑇1 𝑇𝒟(𝐹𝑐, 𝐺𝑐)≃ 𝑇𝛼𝑐
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Another straightforward diagram chase verifies that 𝑇∗𝛼 is𝒲-natural.
It remains to verify this assignment is functorial for both horizontal and vertical composition of

enriched natural transformations. Consulting Definition A.3.5, we see that the component of 𝑇∗(𝛽 ⋅ 𝛼)
is defined by the top-horizontal composite below while the component of the vertical composite of
𝑇∗𝛼 with 𝑇∗𝛽∶ 𝑇∗𝐺 ⇒ 𝑇∗𝐻 is defined by the bottom composite:

1 𝑇1 𝑇(𝒟(𝐺𝑐,𝐻𝑐) × 𝒟(𝐹𝑐, 𝐺𝑐)) 𝑇𝒟(𝐹𝑐,𝐻𝑐)

𝑇1 × 𝑇1 𝑇𝒟(𝐺𝑐,𝐻𝑐) × 𝑇𝒟(𝐹𝑐, 𝐺𝑐)

≃

≃

𝑇(𝛽𝑐×𝛼𝑐) 𝑇∘

≃

𝑇𝛽𝑐×𝑇𝛼𝑐

≃

The square commutates by the naturality of the isomorphism 𝑇(𝑢 × 𝑣) ≅ 𝑇𝑢 × 𝑇𝑣, while the triangle
commutes because 1 is terminal, so the inverses of the displayed isomorphisms form a commutative
triangle. The argument for functoriality of horizontal composites is similar. �

A.7.4. Remark. In fact, the “change of base” procedure𝒱 ↦ 𝒱-𝒞𝑎𝑡 is itself a 2-functor from the 2-
category of cartesian closed categories, finite-product-preserving functors, and natural transformations
to the 2-category of 2-categories, 2-functors, and 2-natural transformations. See [31, §4.3] for a discussion
and proof.

As an immediate consequence of the 2-functoriality of Remark A.7.4:

A.7.5. Proposition. Any adjunction between cartesian closed categories whose left adjoint preserves finite
products induces a change-of-base 2-adjunction

𝒱 𝒲 𝒱-𝒞𝑎𝑡 𝒲-𝒞𝑎𝑡
𝐹
⊥
𝑈

⇝
𝐹∗
⊥
𝑈∗

Proof. Of course right adjoints always preserve products, so the adjoint pair of functors 𝐹 ⊣ 𝑈
defines an adjunction in the 2-category of cartesian closed categories and finite-product-preserving
functors described in Remark A.7.4. The 2-functor𝒱 ↦ 𝒱-𝒞𝑎𝑡 then carries the adjunction displayed
on the left to the adjunction displayed on the right. �

As a special case:

A.7.6. Corollary. For any cartesian closed category𝒱 with coproducts, the underlying category construction
and free category construction define adjoint 2-functors

𝒞𝑎𝑡 𝒱-𝒞𝑎𝑡⊥
(−)0

�

In light of Proposition A.7.5 and results to follow, an adjunction between cartesian closed categories
whose left adjoint preserves finite products provides a change-of-base adjunction. While Proposition
A.7.5 permits the change of base along either adjoint of a finite-product-preserving adjunction, the
next series of results reveal that change of base along the right adjoint is somewhat better behaved.

A.7.7. Lemma. Any adjunction comprised of finite-product-preserving functors between cartesian closed cate-
gories

𝒱 𝒲 𝒱 𝑈∗𝒲
𝐹
⊥
𝑈

⇝
𝐹
⊥
𝑈
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defines a 𝒱-enriched adjunction between the 𝒱-categories 𝒱 and 𝑈∗𝒲; i.e., there exists a 𝒱-natural
isomorphism 𝑈𝒲(𝐹𝑣,𝑤) ≅ 𝒱(𝑣,𝑈𝑤).

Proof. The internal action𝑈𝑎,𝑏 ∶ 𝑈𝒲(𝑎, 𝑏) → 𝒱(𝑈𝑎,𝑈𝑏) of the𝒱-functor𝑈∶ 𝑈∗𝒲 → 𝒱 is
defined by the transpose of the map𝑈 ev ∶ 𝑈𝒲(𝑎, 𝑏)×𝑈𝑎 → 𝑈𝑏 defined by applying𝑈 to the counit
of the cartesian closure adjunction of𝒲. The commutative square (A.2.4) provides the𝒱-functoriality
of this map.

By the𝒱-functoriality of 𝑈∶ 𝑈∗𝒲 → 𝒱, the map

𝑈𝒲(𝐹𝑣,𝑤) 𝒱(𝑈𝐹𝑣,𝑈𝑤) 𝒱(𝑣,𝑈𝑤)
𝑈𝐹𝑣,𝑤 −∘𝜂𝑣

is𝒱-natural in 𝑤 ∈ 𝑈∗𝒲 for all 𝑣 ∈ 𝒱. By Remark A.3.17, to construct a compatible𝒱-enrichment
of 𝐹, we need only demonstrate that this map in an isomorphism in𝒱.

We do this by constructing an explicit inverse, namely

𝒱(𝑣,𝑈𝑤) 𝑈𝐹𝒱(𝑣,𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝐹𝑈𝑤) 𝑈𝒲(𝐹𝑣,𝑤)
𝜂 𝑈(𝐹𝑣,𝑈𝑤) 𝜖𝑤∘−

where the middle map is defined by applying the unenriched functor 𝑈 to the action map from the
𝒲-functor 𝐹∶ 𝐹∗𝒱 → 𝒲, which is defined similarly to the𝒱-functor 𝑈∶ 𝑈∗𝒲 → 𝒱.

The proof that these maps are inverses involves a pair of diagram chases, the first of which demon-
strates that the top-right composite reduces to the left-bottom composite, which is the identity:

𝒱(𝑣,𝑈𝑤) 𝑈𝐹𝒱(𝑣,𝑈𝑤) 𝑈𝒲(𝐹𝑣, 𝐹𝑈𝑤) 𝑈𝒲(𝐹𝑣,𝑤)

𝒱(𝑈𝐹𝑣,𝑈𝐹𝑈𝑤) 𝒱(𝑈𝐹𝑣,𝑈𝑤)

𝒱(𝑣,𝑈𝐹𝑈𝑤) 𝒱(𝑣,𝑈𝑤)

𝜂

𝜂𝑈𝑤∘−

𝑈(𝐹𝑣,𝑈𝑤)

𝑈𝐹𝑣,𝑈𝑤

𝜖𝑤∘−

𝑈𝐹𝑣,𝐹𝑈𝑤 𝑈𝐹𝑣,𝑤
𝑈𝜖𝑤∘−

−∘𝜂𝑣 −∘𝜂𝑣
𝑈𝜖𝑤∘−

The only subtle point is the commutativity of the trapezoidal region, which expresses the fact that
𝜂∶ id𝒱 ⇒ 𝑈𝐹 is a closed natural transformation between product-preserving functors between cartesian
closed categories. This region commutes because the transposed diagram does:

𝒱(𝑣,𝑈𝑤) × 𝑣 𝒱(𝑣,𝑈𝑤) × 𝑣 𝑈𝑤

𝑈𝐹𝒱(𝑣,𝑈𝑤) × 𝑈𝐹𝑣 𝑈𝐹(𝒱(𝑣,𝑈𝑊) × 𝑣) 𝑈𝐹𝑈𝑤

𝜂×𝜂𝑣 𝜂

ev

𝜂𝑈𝑤

≃ 𝑈𝐹 ev

the right-hand square by naturality, and the left-hand square because any naturally transformation
between product-preserving functors is automatically a monoidal natural transformation (see Exercise
A.7.i). The other diagram chase is similar. �

A.7.8. Proposition. Given an adjunction between cartesian closed categories

𝒱 𝒲
𝐹
⊥
𝑈
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whose left adjoint preserves finite products then if 𝒞 is co/tensored as a𝒲-category, 𝑈∗𝒞 is co/tensored as
𝒱-category with the co/tensor of 𝑐 ∈ 𝒞 by 𝑣 ∈ 𝒱 defined by

𝑣 ⊗ 𝑐 ≔ 𝐹𝑣 ⊗ 𝑐 and 𝑐𝑣 ≔ 𝑐𝐹𝑣.

Proof. Suppose 𝒞 admits cotensors as a𝒲-category. To verify that 𝑈∗𝒞 admits cotensors as a
𝒱-category we must supply an isomorphism

𝑈𝒞(𝑥, 𝑐𝐹𝑣) ≅ (𝑈𝒞(𝑥, 𝑐))𝑣

in𝒱 that is𝒱-natural in 𝑥. By the enriched Yoneda lemma, we can extract this isomorphism from an
isomorphism

𝒱(𝑢,𝑈𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝒱(𝑢, (𝑈𝒞(𝑥, 𝑐))𝑣)
that is𝒱-natural in 𝑢 ∈ 𝒱. To that end, by composing the𝒱-natural isomorphisms of Lemma A.7.7,
the enriched natural isomorphisms arising from the cartesian closed structure on 𝒱 and on 𝑈∗𝒲,
and the isomorphisms that characterize the cotensor on 𝒞 and express the fact that 𝐹 preserves binary
products, we have:

𝒱(𝑢,𝑈𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝑈𝒲(𝐹𝑢, 𝒞(𝑥, 𝑐𝐹𝑣)) ≅ 𝑈𝒲(𝐹𝑢, 𝒞(𝑥, 𝑐)𝐹𝑣)
≅ 𝑈𝒲(𝐹𝑢 × 𝐹𝑣, 𝒞(𝑥, 𝑐)) ≅ 𝑈𝒲(𝐹(𝑢 × 𝑣), 𝒞(𝑥, 𝑐))
≅ 𝒱(𝑢 × 𝑣,𝑈𝒞(𝑥, 𝑐)) ≅ 𝒱(𝑢, (𝑈𝒞(𝑥, 𝑐))𝑣). �

This theory of change of base is all well and good from the compound noun perspective on
enriched categories, but an additional concern arises from the adjectival point of view. If the finite-
product-preserving functor 𝑇∶ 𝒱 → 𝒲 commutes with the underlying set functors for𝒱 and𝒲
up to natural isomorphism, then by the 2-functoriality of Remark A.7.4, the change-of-base 2-functor
𝑇∗ ∶ 𝒱-𝒞𝑎𝑡 → 𝒲-𝒞𝑎𝑡 also preserves the underlying categories up to natural isomorphism. This
happens in particular in the following setting.

A.7.9. Lemma. Consider a finite-product-preserving adjunction between cartesian closed categories:

𝒱 𝒲
𝐹
⊥
𝑈

Then change of base along the right adjoint respects the underlying categories:

𝒲-𝒞𝑎𝑡 𝒱-𝒞𝑎𝑡

𝒞𝑎𝑡

𝑈∗

(−)0 (−)0

Proof. Let 𝒞 be a𝒲 category. Then the hom-set in the underlying category of 𝑈∗𝒞 from 𝑥 to 𝑦
is isomorphic to the corresponding hom-set

𝑈∗𝒞(𝑥, 𝑦)0 ≅ 𝒱(1,𝑈𝒞(𝑥, 𝑦))0 ≅ 𝒲(𝐹1, 𝒞(𝑥, 𝑦))0 ≅ 𝒲(1, 𝒞(𝑥, 𝑦))0 ≅ 𝒞(𝑥, 𝑦)0
in the underlying category of𝒞 and moreover this isomorphism respects the composition and identities
in the underlying categories. Thus 𝒞0 ≅ 𝑈𝒞0. A similar argument shows that change of base along 𝑈
respects underlying functors and natural transformations. �

We close this chapter by returning to an example previewed in Digression 1.4.2.
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A.7.10. Example. Both adjoints of the adjunction

𝑠𝒮𝑒𝑡 𝒞𝑎𝑡
h
⊥

of Proposition 1.1.11 preserve finite products. Hence, Proposition A.7.5 induces a change-of-base
adjunction defined by the 2-functors

𝑠𝒮𝑒𝑡-𝒞𝑎𝑡 2-𝒞𝑎𝑡
h∗
⊥

that act identically on objects and act by applying the homotopy category functor or nerve functor,
respectively, on homs. By Lemma A.7.9, the right adjoint, which builds a simplicially enriched category
from a 2-category, respects the underlying category: the underlying category of objects and 1-cells is
identified with the underlying category of objects and 0-arrows. In this case, the functor h ∶ 𝑠𝒮𝑒𝑡 → 𝒞𝑎𝑡
commutes with the underlying set functors, so in fact both adjoints preserve underlying categories, as
is evident from direct computation. In particular, the homotopy 2-category of an∞-cosmos has the
same underlying 1-category.

Exercises.

A.7.i. Exercise. Look up the definition of monoidal functor and monoidal transformation – sometimes
referred to as a lax monoidal functor and a lax monoidal transformation – and show that

(i) any product-preserving functor between categories with finite products is monoidal, and
(ii) any natural transformation between such functors is a monoidal natural transformation.

A.7.ii. Exercise. Let𝒱 be a cartesian closed category and suppose 𝒞 is a tensored and cotensored𝒱-
category. By Proposition A.7.8, the underlying category 𝒞0 is tensored and cotensored as an unenriched
category. Describe these tensors and cotensors.
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APPENDIX B

An Introduction to 2-Category Theory

An important special case of enriched category theory arises when the base for enrichment is
the cartesian closed category of categories themselves. Categories enriched in 𝒞𝑎𝑡 – 2-categories – and
categories defined internally to 𝒞𝑎𝑡 – double categories – were first introduced by Charles Ehresmann. A
notable early expository account appeared in [70], while comprehensive modern treatments include [73]
and [59]. The basic definitions are given in §B.1, which pays particular attention to the composition of
2-cells in a 2-category by means of pasting diagrams.

In §B.2, we briefly answer the question: what do 2-categories form? We define three dimensions
of morphisms between 2-categories – the 2-functors, 2-natural transformations, and modifications –
and observe that these collectively assemble into a 3-category, this being a category enriched over the
cartesian closed category of 2-categories.

There are many aspects of the theory of 2-categories that fall outside the purview of enriched
category theory. We meet some of these in §B.3, where we develop the calculus of adjunctions and
mates in any 2-category, complementing the results of §2.1, and in §B.4, where we study the special
case of right adjoint right inverse adjunctions. In §B.5, we prove a lemma that produces absolute
lifting diagrams that are preserved by any 2-functor. Finally, in §B.6 we consider the representability
of various 2-categorical structures and comment briefly on the bicategorical Yoneda lemma.

B.1. 2-Categories and the Calculus of Pasting Diagrams

The category 𝒞𝑎𝑡 of small categories is cartesian closed with the exponential 𝐵𝐴 defined to be
the category of functors and natural transformations from 𝐴 to 𝐵 and a terminal object given by the
terminal category 𝟙. Exploiting the work in Appendix A, we can concisely define a 2-category to be a
category enriched over this cartesian closed category. Lemma A.2.3 then provides our first example:
since any cartesian closed category is enriched over itself, 𝒞𝑎𝑡 defines an example of 2-category – the
prototypical example.

Unpacking Definition A.2.1, we see that a 2-category contains a considerable amount of structure:

B.1.1. Definition (2-category). A 2-category 𝒞 is a category enriched in 𝒞𝑎𝑡. Explicitly it has:
• a collection of objects;
• for each pair of objects 𝑎, 𝑏 ∈ 𝒞, a collection of arrows 𝑓 ∶ 𝑎 → 𝑏, also known as 1-cells, these being

the objects of the hom-category 𝒞(𝑎, 𝑏); and

• for each p air of 1-cells 𝑓 , 𝑔 ∶ 𝑎 → 𝑏, a collection of arrows between arrows 𝑎 𝑏
𝑓

𝑔
⇓𝛼 , called

2-cells,¹ these being the morphisms 𝛼∶ 𝑓 ⇒ 𝑔 of the hom-category 𝒞(𝑎, 𝑏) from 𝑓 to 𝑔
so that:

¹Implicit in this graphical representation is the requirement that a 2-cell 𝛼 has a domain 1-cell 𝑓 and a codomain 1-cell
𝑔, and these 1-cells have a common domain object 𝑎 and codomain object 𝑏, the 0-cell source and 0-cell target of 𝛼.
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(i) For each fixed pair of objects 𝑎, 𝑏 ∈ 𝒞, the 1-cells and 2-cells form a category. In particular:
• A pair of 2-cells as below-left admits a vertical composite as below-right:

𝑎 𝑏 𝑎 𝑏

𝑓
⇓𝛼
𝑔

ℎ
⇓𝛽

≕
𝑓

ℎ

⇓𝛽⋅𝛼

• Each 1-cell 𝑓 ∶ 𝑎 → 𝑏 has an identity 2-cell 𝑎 𝑏
𝑓

𝑓
⇓id𝑓 .

(ii) The objects and 1-cells define a category in the ordinary sense; in particular, each object has an
identity arrow id𝑎 ∶ 𝑎 → 𝑎.

(iii) The objects and 2-cells form a category. In particular:
• A pair of 2-cells as below-left admits a horizontal composite as below-right:

𝑎 𝑏 𝑐 𝑎 𝑐
𝑓

𝑔
⇓𝛼

𝑗

𝑘
⇓𝛾 ≕

𝑗𝑓

𝑘𝑔

⇓𝛾∗𝛼

• The identity 2-cells on identity 1-cells

𝑎 𝑎
id𝑎

id𝑎

⇓idid𝑎

define identities for horizontal composition.
(iv) Finally, the horizontal composition is functorial with respect to the vertical composition:

• The horizontal composite of identity 2-cells is an identity 2-cell:

𝑎 𝑏 𝑐 𝑎 𝑐
𝑔

𝑔
⇓id𝑔

𝑘

𝑘
⇓id𝑘 =

𝑘𝑔

𝑘𝑔
⇓id𝑘𝑔

• In the situation below, the horizontal composite of the vertical composites coincides with
the vertical composite of the horizontal composites, a property referred to as middle-four
interchange:

𝑎 𝑏 𝑐

𝑓
⇓𝛼
𝑔

ℎ
⇓𝛽

𝑗
⇓𝛾
𝑘

ℓ
⇓𝛿

(𝛿 ∗ 𝛽) ⋅ (𝛾 ∗ 𝛼) = (𝛿 ⋅ 𝛾) ∗ (𝛽 ⋅ 𝛼)

A degenerate special case of horizontal composition, in which all but one of the 2-cells is an identity
id𝑓 on its boundary 1-cell 𝑓, is called “whiskering.”
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B.1.2. Definition (whiskering). The whiskered composite ℎ𝛼𝑘 of a 2-cell 𝑎 𝑏
𝑓

𝑔
⇓𝛼 with a pair of

1-cells 𝑘 ∶ 𝑥 → 𝑎 and ℎ∶ 𝑏 → 𝑦 is defined by the horizontal composite:

𝑥 𝑦
ℎ𝑓 𝑘

ℎ𝑔𝑘
⇓ℎ𝛼𝑘 ≔ 𝑥 𝑎 𝑏 𝑦𝑘

𝑓

𝑔
⇓𝛼 ℎ ≔ 𝑥 𝑎 𝑏 𝑦

𝑘

𝑘
⇓id𝑘

𝑓

𝑔
⇓𝛼

ℎ

ℎ
⇓idℎ

As the following lemma reveals, horizontal composition can be recovered from vertical composition
and whiskering. Our primary interest in this result, however, has to with a rather prosaic consequence
appearing as the final part of the statement, which is surprisingly frequently apposite

B.1.3. Lemma (naturality of whiskering). For any horizontally composable pair of 2-cells in a 2-category
there is a commutative square in the hom-category from the domain object to the codomain object formed by the
whiskered cells whose diagonal defines the horizontal composite:

𝒞 ∋ 𝑎 𝑏 𝑐
𝑓

𝑔
⇓𝛼

ℎ

𝑘
⇓𝛽 ⇝

ℎ𝑓 𝑘𝑓

ℎ𝑔 𝑘𝑔
ℎ𝛼

𝛽𝑓

𝛽∗𝛼 𝑘𝛼

𝛽𝑔

∈ 𝒞(𝑎, 𝑐)

In particular, if any three of the four whiskered 2-cells ℎ𝛼, 𝑘𝛼, 𝛽𝑓, and 𝛽𝑔 are invertible, so is the fourth.

Proof. By middle-four interchange:

𝛽𝑔⋅ℎ𝛼 = (𝛽∗id𝑔)⋅(idℎ ∗𝛼) = (𝛽⋅idℎ)∗(id𝑔 ⋅𝛼) = 𝛽∗𝛼 = (id𝑘 ⋅𝛽)∗(𝛼⋅id𝑓) = (id𝑘 ∗𝛼)⋅(𝛽∗id𝑓) = 𝑘𝛼⋅𝛽𝑓 .
�

The operations of horizontal and vertical composition are special cases of composition by pasting,
an operation first introduced by Bénabou [8]. The main result, proven in the 2-categorical context by
Power [91] is that a well-formed pasting diagram such as

𝑏 𝑤

𝑎 𝑐 𝑒 𝑦 𝑧

𝑑 𝑥

𝑖

𝑔

⇓𝛾 ⇓𝛼 ℓ

ℎ

⇓𝛽
𝑓

𝑛

𝑝 ⇓𝛿

𝑗

𝑘

⇓𝜖 𝑚

𝑞

𝑟

𝑠

𝑡
⇓𝜁

(B.1.4)

has a unique 2-cell composite.² We leave the formal statement and proof of this result to the literature
and instead describe informally how such pasting composites should be interpreted.

B.1.5. Digression (how to read a pasting diagram). A pasting diagram in a 2-category 𝒞 represents a
unique composite 2-cell, defining a morphism in one of the hom-categories between a pair of objects.
To identify these objects, look at the underlying directed graph of objects and 1-cells in the pasting
diagram. If the pasting diagram is well-formed, that graph will have a unique source object 𝑎 and a

²This result was generalized to the bicategorical context by Verity [130], in which case the composite 2-cell is well-
defined once its source and target 1-cells are specified (see also [58]).
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unique target object 𝑧. This indicates that the pasting diagram defines a 2-cell in the hom-category
𝒞(𝑎, 𝑧). The object 𝑎 is its source 0-cell and the object 𝑧 is its target 0-cell.

The next step is to identify the source 1-cell and the target 1-cell of the pasting diagram. These will
both be objects of 𝒞(𝑎, 𝑧), i.e., 1-cells in the 2-category from 𝑎 to 𝑧. Again if the pasting diagram is
well-formed, the source 1-cell will be the unique composable path of 1-cells none of which occur as part
of the codomain of any 2-cell in the pasting diagram. In the diagram (B.1.4), these are the 1-cells whose
labels appear above the arrow, and their composite is ℎ𝑔𝑓. Dually, the target 1-cell will be the unique
composable path of 1-cells, none of which occur as part of the domain of any 2-cell in the pasting
diagram. In (B.1.4), these are the 1-cells whose labels appear below the diagram, and their composite is
𝑡𝑟𝑝.

The final step is to represent the pasting diagram as a vertical composite of 2-cells from 𝑎 to 𝑧, each
of which is a whiskered composite of one of the displayed “atomic” 2-cells. The source and target of the
whiskered atomic 2-cells trace composable paths from 𝑎 to 𝑧 through the directed graph underlying
the pasting diagram that differ only by substituting the source of the atomic 2-cell for its target. Each
2-cell in the pasting diagram will label precisely one of the 2-cells of this composite. The expressions of
these vertical 2-cell composites are not necessarily unique and may not necessarily pass through every
possible composable path of 1-cells, though there will be some vertical composite of 2-cells that does
pass through each path of 1-cells.

To start, pick any 2-cell in the pasting diagram whose 1-cell source can be found as a subsequence
of the source 1-cell; in the (B.1.4), either 𝛼 or 𝛽 can be chosen first. Whisker it so that it defines a
2-cell from the source 1-cell ℎ𝑔𝑓 to another path of composable 1-cells from 𝑎 to 𝑧 through the pasting
diagram. Then this whiskered composite forms the first step in the sequence of composable 2-cells.
Remove this part of the pasting diagram and repeat until you arrive at the target 1-cell. In the example
above, there are four possible ways to express the composite pasted cell (B.1.4) as vertical composites of
whiskered 2-cells, represented by the four paths through the following commutative diagram in the
category 𝒞(𝑎, 𝑧):

ℎ𝑔𝑓 ℎ𝑘𝑗𝑖𝑓 ℎ𝑘𝑗𝑛 ℎ𝑘𝑞𝑝

𝑚ℓ𝑔𝑓 𝑚ℓ𝑘𝑗𝑖𝑓 𝑚ℓ𝑘𝑗𝑛 𝑚ℓ𝑘𝑞𝑝 𝑚𝑠𝑟𝑝 𝑡𝑟𝑝

ℎ𝛼𝑓

𝛽𝑔𝑓

ℎ𝑘𝑗𝛾

𝛽𝑘𝑗𝑖𝑓 𝛽𝑘𝑗𝑛

ℎ𝑘𝛿

𝛽𝑘𝑞𝑝

𝑚ℓ𝛼𝑓 𝑚ℓ𝑘𝑗𝛾 𝑚ℓ𝑘𝛿
𝑚𝜖𝑝 𝜁𝑟𝑝

∈ 𝒞(𝑎, 𝑧)

A 2-category has four duals, including itself, each of which have the same objects, 1-cells, and 2-cells,
but swapping the domains and codomains in some dimension.

B.1.6. Definition (op and co duals). Let 𝒞 be a 2-category.

• Its op-dual 𝒞op is the 2-category with 𝒞op(𝑎, 𝑏) ≔ 𝒞(𝑏, 𝑎). This reverses the direction of the 1-cells
but not the 2-cells.

• Its co-dual 𝒞co is the 2-category with 𝒞co(𝑎, 𝑏) ≔ 𝒞(𝑎, 𝑏)op. This reverses the direction of the
2-cells but not the 1-cells.

• Its coop-dual 𝒞coop is the 2-category with 𝒞coop(𝑎, 𝑏) ≔ 𝒞(𝑏, 𝑎)op. This reverses the direction of
both the 2-cells and the 1-cells.

Recall from Definition 1.4.6 that an equivalence in a 2-category is given by

• a pair of objects 𝑎 and 𝑏
• a pair of 1-cells 𝑓 ∶ 𝑎 → 𝑏 and 𝑔∶ 𝑏 → 𝑎
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• a pair of invertible 2-cells³

𝑎 𝑎 and 𝑏 𝑏
𝑔𝑓

≅⇓𝛼

𝑓 𝑔

≅⇓𝛽

B.1.7. Digression (notions of sameness inside a 2-category). From the point of view of 2-category
theory, the most natural notion of “sameness” for two objects of a 2-category is equivalence: 𝑎 and 𝑏 are
to be regarded as the same if there exists an equivalence between them.

The most natural notion of “sameness” for a parallel pair of morphisms in a 2-category is isomorphism:
ℎ, 𝑘 ∶ 𝑎 → 𝑏 are to be regarded as the same if there exists an invertible 2-cell 𝛾∶ ℎ ≅ 𝑘.

The most natural notion of “sameness” for a pair of 2-cells with common boundary is equality.
Because a 2-category lacks any higher dimensional morphisms to mediate between 2-cells, there is no
weaker notion available.

In Digression 1.2.4, we saw that the data of a simplicial category could be expressed as a diagram of
a particular type valued in 𝒞𝑎𝑡. A small 2-category can be similarly encoded – in fact in two different
ways – as a category defined internally to the category of categories.

B.1.8. Definition (internal category). Let ℰ be any category with pullbacks. An internal category in
ℰ is given by the data

𝐶1 ×𝐶0
𝐶1

𝐶1 𝐶1

𝐶0

𝜋ℓ 𝜋𝑟

𝑑 𝑐

𝐶1 ×𝐶0
𝐶1 𝐶1 𝐶0∘

𝑑

𝑐
𝑖

subject to commutative diagrams that define the domains and codomains of composites and identities

𝐶1 𝐶1 ×𝐶0
𝐶1 𝐶1 𝐶0

𝐶0 𝐶1 𝐶0 𝐶0 𝐶1 𝐶0

𝑐 ∘

𝜋ℓ 𝜋𝑟

𝑑 𝑖

𝑐 𝑑 𝑐 𝑑

and encode the fact that composition is associative and unital.

𝐶1 ×𝐶0
𝐶1 ×𝐶0

𝐶1 𝐶1 ×𝐶0
𝐶1 𝐶1 𝐶1 ×𝐶0

𝐶1 𝐶1

𝐶1 ×𝐶0
𝐶1 𝐶1 𝐶1

∘×id

id×∘ ∘

(id,𝑖)

∘

(𝑖,id)

∘

An internal category in 𝒮𝑒𝑡 is an ordinary small category. An internal category in 𝒞𝑎𝑡 defines a
double category:

³The default meaning of “invertibility” for 2-cells is invertibility for vertical composition. Note the boundary 1-cells
of an invertible 2-cell need not be invertible.
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B.1.9. Definition (double category). A double category 𝒞 is an internal category

𝐶ℎ,𝑠 ×
𝐶𝑜,𝑣

𝐶ℎ,𝑠 𝐶ℎ,𝑠 𝐶𝑜,𝑣∘
𝑑

𝑐
𝑖

in 𝒞𝑎𝑡. Explicitly it has:
• a category 𝐶𝑜,𝑣 of objects and vertical arrows;
• a category 𝐶ℎ,𝑠 of horizontal arrows and squares;
• functors 𝑐, 𝑑 ∶ 𝐶ℎ,𝑠 → 𝐶𝑜,𝑣 that assign a co/domain object to each horizontal arrow and a co/domain
vertical arrow to each square;

• a functor 𝑖 ∶ 𝐶𝑜,𝑣 → 𝐶ℎ,𝑠 that assigns a horizontal identity arrow to each object and an identity
square to each vertical arrow; and

• a composition functor ∘ ∶ 𝐶ℎ,𝑠 ×𝐶𝑜,𝑣 𝐶ℎ,𝑠 → 𝐶ℎ,𝑠 that defines horizontal composition of horizontal

arrows and squares that is functorial with respect to vertical composition in each variable

satisfying the axioms imposed by the commutative diagrams of an internal category.

A 2-category can be realized as a special case of this construction in the following two ways.

B.1.10. Digression (2-categories as category objects). A 2-category may be defined to be an internal
category in 𝒞𝑎𝑡

𝐶1,2 ×𝐶0
𝐶1,2 𝐶1,2 𝐶0∘

𝑑

𝑐
𝑖

in which the category 𝐶0 is a set, namely the set of objects of the 2-category. The 1- and 2-cells occur as
the objects and arrows of the category 𝐶1,2. The functors 𝑑, 𝑐 ∶ 𝐶1,2 → 𝐶0 send 1- and 2-cells to their
domain and codomain 0-cells. The functor 𝑖 ∶ 𝐶0 → 𝐶1,2 sends each object to its identity 1-cell. The
action of the functor ∘ ∶ 𝐶1,2 ×𝐶0 𝐶1,2 → 𝐶1,2 on objects defines composition of 1-cells and the action
on morphisms defines the horizontal composition on 2-cells. Vertical composition on 2-cells is the
composition inside the category 𝐶1,2. Functoriality of this map encodes middle-four interchange.⁴

Dually, a 2-category may be defined to be an internal category in 𝒞𝑎𝑡

𝐶0,2 ×
𝐶0,1

𝐶0,2 𝐶0,2 𝐶0,1∘
𝑑

𝑐
𝑖

in which the categories 𝐶0,1 and 𝐶0,2 have the same set of objects and all four functors are identity-
on-objects. Here the common set of objects defines the objects of the 2-category and the arrows
of 𝐶0,1 and 𝐶0,2 define the 1- and 2-cells, respectively. The functors 𝑑, 𝑐 ∶ 𝐶0,2 → 𝐶0,1 define the
domain and codomain 1-cells for a 2-cell, which the functor ∘ ∶ 𝐶0,2 ×𝐶0,1 𝐶0,2 → 𝐶0,2 encodes vertical

composition of 2-cells. The composition inside the category 𝐶0,2 defines horizontal composition of
2-cells. Functoriality of this map encodes middle-four interchange.

Exercises.

B.1.i. Exercise. Relate the structures itemized in Definition B.1.1 to the structures itemized in Defini-
tion A.2.1 in the case where the base for enrichment is 𝒞𝑎𝑡.
B.1.ii. Exercise. Define a duality involution on double categories that exchanges the two expressions
of a 2-category as an internal category appearing in Digression B.1.10.

⁴This definition motivates the Segal category model of (∞, 1)-categories described in Definition E.2.4.
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B.2. The 3-Category of 2-Categories

Ordinary 1-categories form the objects of a 2-category of categories, functors, and natural transfor-
mations. Similarly, 2-categories form the objects of a 3-category of 2-categories, 2-functors, 2-natural
transformations, and modifications. In this section, we briefly introduce all of these notions.

Recall from Definition B.1.1, that a 2-category is a category enriched in 𝒞𝑎𝑡. Similarly, 2-functors
and 2-natural transformations are precisely the 𝒞𝑎𝑡-enriched functors and 𝒞𝑎𝑡-enriched natural trans-
formations of Appendix A. By Corollary A.3.6, 2-categories, 2-functors, and 2-natural transformations
assemble into a 2-category. The 3-dimensional cells between 2-categories – the modifications – are
defined using the 2-cells of a 2-category, like the 2-dimensional cells between 1-categories – the natural
transformations – are defined using the 1-cells in a 1-category.

B.2.1. Definition. A 2-functor 𝐹∶ 𝒞 → 𝒟 between 2-categories is given by:

• a mapping on objects 𝒞 ∋ 𝑥 ↦ 𝐹𝑥 ∈ 𝒟;
• a functorial mapping on 1-cells 𝒞 ∋ 𝑓∶ 𝑥 → 𝑦 ↦ 𝐹𝑓∶ 𝐹𝑥 → 𝐹𝑦 ∈ 𝒟 respecting domains and

codomains; and
• a mapping on 2-cells

𝒞 ∋ 𝑥 𝑦 𝐹𝑥 𝐹𝑦
𝑓

𝑔
⇓𝛼 ↦

𝐹𝑓

𝐹𝑔
⇓𝐹𝛼 ∈ 𝒟

that respects 0- and 1-cell sources and targets that is functorial for both horizontal and vertical
composition and horizontal and vertical identities.

B.2.2. Definition. A 2-natural transformation 𝒞 𝒟
𝐹

𝐺
⇓𝜙 between a parallel pair of 2-functors

𝐹 and 𝐺 is given by a family of 1-cells (𝜙𝑐 ∶ 𝐹𝑐 → 𝐺𝑐)𝑐∈𝒞 in 𝒟 indexed by the objects of 𝒞 that are
natural with respect to the 1-cells 𝑓 ∶ 𝑥 → 𝑦 in 𝒞, in the sense that the square

𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦

𝜙𝑥

𝐹𝑓

𝜙𝑦

𝐺𝑓

commutes in𝒟, and also natural with respect to the 2-cells 𝑥 𝑦
𝑓

𝑔
⇓𝛼 in 𝒞, in the sense that the

whiskered composites 𝜙𝑦 ⋅ 𝐹𝛼 and 𝐺𝛼 ⋅ 𝜙𝑥 are equal:

𝐹𝑥 𝐹𝑥 𝐹𝑦

𝐺𝑥 𝐺𝑦 𝐺𝑦

𝜙𝑥

𝐹𝑓

𝐹𝑔
⇓𝐹𝛼

𝜙𝑦𝐺𝑓

𝐺𝑔

⇓𝐺𝛼

=

The 3-dimensional morphisms between 2-categories are outside the purview of 𝒞𝑎𝑡-enriched
category theory:
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B.2.3. Definition. A modification Ξ∶ 𝜙 ⇛ 𝜓

𝒞 𝒟Ξ
⇛

𝐹

𝐺

𝜙 𝜓

between parallel 2-natural transformations is given by a family of 2-cells in𝒟

𝐹𝑐 𝐺𝑐
𝜙𝑐

𝜓𝑐

⇓Ξ𝑐

indexed by the objects 𝑐 ∈ 𝒞 with the property that for any 1-cell 𝑓 ∶ 𝑥 → 𝑦 in 𝒞, the whiskered
composites Ξ𝑦 ⋅ 𝐹𝑓 = 𝐺𝑓 ⋅ Ξ𝑥 are equal in 𝒟 and for any 2-cell 𝛼∶ 𝑓 ⇒ 𝑔 in 𝒟, the horizontal
composites are equal in𝒟:

𝐹𝑥 𝐹𝑦 𝐺𝑦
𝐹𝑓

𝐹𝑔
⇓𝐹𝛼

𝜙𝑦

𝜓𝑦

⇓Ξ𝑦 = 𝐹𝑥 𝐺𝑥 𝐺𝑦
𝜙𝑥

𝜓𝑥

⇓Ξ𝑥

𝐺𝑓

𝐺𝑔

⇓𝐺𝛼

The category of 2-categories is cartesian closed, with internal homℬ𝒜 defined to be the 2-category
of 2-functors, 2-natural transformations, and modifications. So now we can define a 3-category to be a
category enriched in 2-categories.

B.2.4. Corollary. There is a 3-category 2-𝒞𝑎𝑡 of 2-categories, 2-functors, 2-natural transformations, and
modifications.

Proof. Lemma A.2.3 proves that any cartesian closed category is enriched over itself. Thus 2-𝒞𝑎𝑡
defines a 3-category. �

Exercises.

B.2.i. Exercise. Relate the structures itemized in Definitions B.2.1 and B.2.2 to the structures itemized
in Definition A.2.6 and A.3.2 in the case where the base for enrichment is 𝒞𝑎𝑡.

B.2.ii. Exercise. For the reader who has a large writing surface, unpack the definition of a 3-category
just given.

B.2.iii. Exercise.

(i) Show that the functor that sends a 1-category to its opposite defines an involutive 2-functor
(−)op ∶ 𝒞𝑎𝑡co → 𝒞𝑎𝑡 on the 2-category of categories, functors, and natural transformations.

(ii) Similarly the functors that send a 2-category to one of its three duals can be understood
as involutions of the 3-category of 2-categories, 2-functors, 2-natural transformations, and
modifications. What is the variance of each of these mappings?
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B.3. Adjunctions and Mates

As discussed in Chapter 2, any 2-category has an internally defined notion of adjunction, comprised
of:

• a pair of objects 𝑎 and 𝑏,
• a pair of 1-cells 𝑢∶ 𝑎 → 𝑏 and 𝑓 ∶ 𝑏 → 𝑎,
• and a pair of 2-cells 𝜂∶ 1𝑏 ⇒ 𝑢𝑓 and 𝜖 ∶ 𝑓 𝑢 ⇒ 1𝑎, called the unit and counit respectively,

so that the triangle equalities hold:

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
⇓𝜖 𝑓 ⇓𝜂 = =

𝑓
⇓𝜂 ⇓𝜖

𝑓 = = 𝑓𝑓𝑢
𝑢 𝑢 𝑢 𝑢

The 1-cell 𝑓 is called the left adjoint and 𝑢 is called the right adjoint, a relationship that is denoted
symbolically in text by writing 𝑓 ⊣ 𝑢 or in a displayed diagram such as

𝑎 𝑏
𝑢
⊥
𝑓

(B.3.1)

The basic 2-category theory of adjunctions is developed in §2.1, whose results specialize to prove
theorems about adjunctions between∞-categories. Here we extend that theory in a complementary
direction by developing the calculus of mates, which generalize the more familiar adjoint transposes.

In the presence of an adjunction as in (B.3.1), certain 2-cells with codomain 𝑎 “transpose” into
2-cells with codomain 𝑏; op-dually, certain 2-cells with domain 𝑎 “transpose” into 2-cells with domain

𝑏: for any 1-cells 𝑤
𝑥
𝑏, 𝑤

𝑦
𝑎, 𝑏

ℎ
𝑧, and 𝑎

𝑘
𝑧

𝑓 𝑥 𝑦𝛼 ↭ 𝑥 𝑢𝑦
𝛽

ℎ𝑓 𝑘
𝛾

↭ ℎ 𝑘𝑢𝛿
(B.3.2)

Both of these transposition operations admit a common generalization due to Kelly and Street [70]
referred to as the “mates correspondence” which describes a duality between 2-cells induced by a pair
of adjunctions.

B.3.3. Definition (mates). Given any pair of adjunctions and functors

𝑏 𝑏′

𝑎 𝑎′

𝑘

𝑓 ⊣ 𝑓 ′ ⊣𝑢

ℎ

𝑢′

there is a bijection between 2-cells as below-left and 2-cells as below-right

𝑏 𝑏′ 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′
𝑓

𝑘

⇙𝛼 𝑓 ′ ↭

𝑘

⇘𝛽

ℎ ℎ

𝑢 𝑢′ (B.3.4)
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implemented by pasting with the units and counits of the adjunctions:

𝑏 𝑏′ 𝑏 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′ 𝑎′
𝑓

𝑘

⇙𝛼 𝑓 ′ ≔ 𝑓

𝑘

⇘𝛽
𝑓 ′

⇘𝜖′

ℎ

⇘𝜂

ℎ

𝑢 𝑢′

𝑏 𝑏′ 𝑏 𝑏′ 𝑏′

𝑎 𝑎′ 𝑎 𝑎 𝑎′

𝑘

⇘𝛽 ≔ ⇙𝜖
𝑓

𝑘

⇙𝛼 𝑓 ′

ℎ

𝑢 𝑢′ 𝑢

ℎ

𝑢′
⇙𝜂′

Corresponding 2-cells (B.3.4) under this bijection are referred to as mates.

B.3.5. Example. The mates correspondence specializes to define a bijection between 2-cells between a
parallel pair of left adjoints and 2-cells pointing in the opposite direction between their right adjoints
that Mac Lane refers to as conjugates [81, §IV.7]:

𝑏 𝑏 𝑏 𝑏

𝑎 𝑎 𝑎 𝑎
𝑓 ⇙𝛼 𝑓 ′ ↭ ⇘𝛽𝑢 𝑢′

The mates correspondence is respected by horizontal and vertical composition of squares (B.3.4) in
the sense made precise by the following result:

B.3.6. Theorem (double-functoriality of the mates correspondence). For any 2-category, there is a double
isomorphism 𝕃adj ≅ ℝadj between the double categories whose
• objects and horizontal morphisms are the objects and 1-cells
• vertical morphisms are fully specified adjunctions (𝑓 , 𝑢, 𝜂, 𝜖) pointing in the direction of the left adjoint⁵
• cells in𝕃adj are 2-cells of the form displayed below-left, while cells inℝadj are 2-cells of the form displayed
below-right:

𝑏 𝑏′ 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′
𝑓

𝑘

⇙𝛼 𝑓 ′

𝑘

⇘𝛽

ℎ ℎ

𝑢 𝑢′

that acts as the identity on objects and on horizontal and vertical morphisms and acts on cells by taking mates.⁶

Proof. The horizontal and vertical functoriality of the mates correspondence can be verified by a
pasting diagram chase (or see [70, 2.2]). �

B.3.7. Warning (mates of isomorphisms need not be isomorphisms). In general it is possible for one of
the 2-cells in a mate pair (B.3.4) to be invertible without the other being so. For instance, the unit and
counit of an adjunction 𝑓 ⊣ 𝑢 are each mates with both the identity cells id𝑓 and id𝑢, depending on
which way these 2-cells are arranged to fit in squares (see Exercise B.3.i). However if both horizontal

⁵The composition of vertical morphisms makes use of the construction given in the proof of Proposition 2.1.9.
⁶The isomorphism of double categories can be regarded as defining a component of a 2-natural isomorphism between

2-functors 𝕃adj, ℝadj ∶ 2-𝒞𝑎𝑡 → 𝐷𝑏𝑙-𝒞𝑎𝑡 from 2-𝒞𝑎𝑡 to the 2-category of double categories, double functors, and hori-
zontal natural transformations.

430



1-cells ℎ and 𝑘 are equivalences, or if both adjunctions 𝑓 ⊣ 𝑢 and 𝑓 ′ ⊣ 𝑢′ are adjoint equivalences,
then 𝛼∶ 𝑓 ′𝑘 ⇒ ℎ𝑓 is invertible if and only if its mate 𝛽∶ 𝑘𝑢 ⇒ 𝑢′ℎ is invertible.

Elaborating upon Warning B.3.7 we have:

B.3.8. Proposition (equivalence invariance of adjointness). Suppose given an essentially commutative
square whose horizontal arrows are equivalences:

𝑏 𝑏′ 𝑏 𝑏′

𝑎 𝑎′ 𝑎 𝑎′

∼𝑘

𝑓 ≅⇙𝛼 𝑓 ′ ⇝

∼𝑘

≅⇘𝑢′ℎ𝜖⋅𝑢′𝛼𝑢⋅𝜂′𝑢 ⊢

∼
ℎ

𝑢′⊣ 𝑢

∼
ℎ

𝑢′

Then 𝑓 admits a right adjoint 𝑢 if and only 𝑓 ′ admits a right adjoint 𝑢′, in which case the mate of the isomorphism
𝛼 is an isomorphism.

Proof. Proposition 2.1.12 may be used to choose inverse adjoint equivalences 𝑘′ ⊣ 𝑘 and ℎ ⊣ ℎ′.
If 𝑓 is a left adjoint, then by Proposition 2.1.9, 𝑓 ′ ≅ ℎ𝑓 𝑘′ is isomorphic to a left adjoint, and so by
Proposition 2.1.10, 𝑓 ′ is left adjoint to 𝑘𝑢ℎ′. If 𝑓 ′ ⊣ 𝑢′ is defined to be the composite adjunction as in
the previous paragraph, the mate of 𝛼 works out to be the whiskered composite of ℎ′ℎ ≅ id𝑎 with 𝑘𝑢.
By Proposition 2.1.10, any other choice of right adjoint to 𝑓 ′ is isomorphic to this one, so the mate of
𝛼 is still an isomorphism. �

Exercise B.3.ii suggests a new proof that any pair of left adjoints 𝑓 ′ ⊣ 𝑢 and 𝑓 ⊣ 𝑢 to a common
1-cell are isomorphic (see Proposition 2.1.10) by applying the double isomorphism 𝕃adj ≅ ℝadj. A
more complicated argument along the same lines can be used to prove:

B.3.9. Lemma. Suppose given a triple of adjoint functors ℓ ⊣ 𝑖 ⊣ 𝑟. Then the counit of ℓ ⊣ 𝑖 is invertible if
and only if the unit of 𝑖 ⊣ 𝑟 is invertible.

Proof. Let 𝑖 ∶ 𝑎 → 𝑏 and write 𝜖 ∶ ℓ𝑖 ⇒ id𝑎 for the counit of ℓ ⊣ 𝑖 and 𝜂∶ id𝑎 ⇒ 𝑟𝑖 for the unit of
𝑖 ⊣ 𝑟. If 𝜖 admits an inverse isomorphism 𝜖−1 ∶ ℓ𝑖 ⇒ id𝑎, then the vertical composite in𝕃adj displayed
below-left admits an inverse cell for horizontal composition in 𝕃adj displayed below-right:

𝑎 𝑎

𝑎 𝑏

𝑎 𝑎

⇙id𝑖 𝑖
𝑖

⇙𝜖 ℓ

𝑎 𝑎

𝑎 𝑎
ℓ𝑖 ⇙𝜖−1

Applying the horizontal functoriality of the double isomorphism 𝕃adj ≅ ℝadj, the mates of these
cells must also compose horizontally inℝadj to identities.⁷ Applying the vertical functoriality of the

⁷Since the horizontal morphisms in the cells in question are all identities, the concern raised in Warning B.3.7 does
not apply.
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double isomorphism 𝕃adj ≅ ℝadj, the mate of the vertical composite equals the composite

𝑎 𝑎

𝑎 𝑏

𝑎 𝑎

𝑖

𝑟⇘𝜂

𝑖⇘id𝑖

inℝadj, and thus the mate of 𝜖−1 must define the inverse of 𝜂 . In summary, we see that the counit of
ℓ ⊣ 𝑖 is an isomorphism if and only if the unit of 𝑖 ⊣ 𝑟 is an isomorphism, in which case its inverse
isomorphism 𝜂−1 ∶ 𝑟𝑖 ⇒ id𝑎 is the conjugate of 𝜖−1 ∶ id𝑎 ⇒ ℓ𝑖 via the composite adjunction ℓ𝑖 ⊣ 𝑟𝑖:

𝑎 𝑎

𝑎 𝑎
ℓ𝑖 ⇙𝜖−1 ↭

𝑎 𝑎

𝑎 𝑎
⇘𝜂−1𝑟𝑖 �

Exercises.

B.3.i. Exercise.

(i) Explain how the bijections (B.3.2) may be realized as special cases of the mates correspondence.
(ii) By choosing a suitable pair of adjunctions and functors, explain how the unit of an adjunction

𝑓 ⊣ 𝑢 is mates with id𝑢.
(iii) By choosing a suitable pair of adjunctions and functors, explain how the unit of an adjunction

𝑓 ⊣ 𝑢 is mates with id𝑓.

B.3.ii. Exercise. Consider two adjunctions 𝑓 ⊣ 𝑢 and 𝑓 ′ ⊣ 𝑢 as vertical morphisms in 𝕃adj ≅ ℝadj
and apply the double functoriality of the mates correspondence to prove that 𝑓 ≅ 𝑓 ′.

B.3.iii. Exercise. Consider a 2-cell
𝑏 𝑏′

𝑎 𝑎′

𝑟

𝑓 ⇙𝛼 𝑓 ′

𝑟′

in which the vertical 1-cells admit right adjoints 𝑓 ⊣ 𝑢 and 𝑓 ′ ⊣ 𝑢′ and the horizontal 1-cells admit
left adjoints ℓ ⊣ 𝑟 and ℓ ′ ⊣ 𝑟′. Show that the mate of 𝛼 with respect to the vertical adjunctions defines
an isomorphism 𝑟𝑢 ≅ 𝑢′𝑟′ if and only if the mate of 𝛼 with respect to the horizontal adjunctions
defines an isomorphism ℓ ′𝑓 ′ ≅ 𝑓 ℓ – and these isomorphisms are themselves mates in the sense of
Example B.3.5 with respect to the composite adjunctions.

B.3.iv. Exercise. Show that any 2-functor 𝐹∶ 𝒞 → 𝒟 preserves equivalences, adjunctions, and mates.

B.4. Right Adjoint Right Inverse Adjunctions

An important class of adjunctions are those whose counits are invertible.

B.4.1. Definition. A 1-cell 𝑓 ∶ 𝑏 → 𝑎 in a 2-category admits a right adjoint right inverse if it admits a
right adjoint 𝑢∶ 𝑎 → 𝑏 so that the counit of the adjunction 𝑓 ⊣ 𝑢 is an isomorphism. In this situation,
𝑓 is left adjoint left inverse to 𝑢.
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The co-dual defines the class left adjoint right inverse or right adjoint left inverse adjunctions
with invertible unit.

When the counit of 𝑓 ⊣ 𝑢 is an isomorphism, the whiskered composites 𝑓 𝜂 and 𝜂𝑢 of the unit
must also be isomorphisms. Indeed, to construct an adjunction of this form it suffices to give 2-cells
with these properties, as demonstrated by the following 2-categorical lemma.

B.4.2. Lemma. Suppose we are given a pair of 1-cells 𝑢∶ 𝑎 → 𝑏 and 𝑓 ∶ 𝑏 → 𝑎 and a 2-isomorphism 𝑓 𝑢 ≅ id𝑎
in a 2-category. If there exists a 2-cell 𝜂′ ∶ id𝑏 ⇒ 𝑢𝑓 with the property that 𝑓 𝜂′ and 𝜂′𝑢 are 2-isomorphisms,
then 𝑓 is left adjoint to 𝑢. Furthermore, in the special case where 𝑢 is a section of 𝑓, then 𝑓 is left adjoint to 𝑢
with the counit of the adjunction an identity.

Since 𝑓 𝜂′ and 𝜂′𝑢 are isomorphisms and 𝑓 𝑢 ≅ id𝑎, the “triangle equality composites” of Lemma
2.1.11 are invertible, so from that result we can conclude that 𝑓 ⊣ 𝑢. Indeed, from the construction
given in that proof, we see that we can take the specified isomorphism 𝑓 𝑢 ≅ id𝑎 to be the counit of the
adjunction, so in particular when 𝑢 is a section of 𝑓 this counit may be taken to be the identity. The
direct proof given below compiles out the argument just sketched.

Proof. Let 𝜖 ∶ 𝑓 𝑢 ⇒ id𝑎 be the isomorphism, taken to be the identity in the case where 𝑢 is a
section of 𝑓. We will define an adjunction 𝑓 ⊣ 𝑢 with counit 𝜖 by modifying 𝜂′ ∶ id𝑏 ⇒ 𝑢𝑓. The
“triangle identity composite” 𝜃 ≔ 𝑢𝜖 ⋅ 𝜂′𝑢∶ 𝑢 ⇒ 𝑢 defines an automorphism of 𝑢. Define

𝜂 ≔ id𝑏 𝑢𝑓 𝑢𝑓 ≔ id𝑏 𝑢𝑓 𝑢𝑓 𝑢𝑓 𝑢𝑓 .
𝜂′ 𝜃−1𝑓 𝜂′ (𝑢𝜖𝑓 )−1 (𝜂′𝑢𝑓 )−1

Immediately, 𝑢𝜖 ⋅ 𝜂𝑢 = id𝑢, as is verified by the calculation:

𝑢 𝑢𝑓 𝑢 𝑢𝑓 𝑢

𝑢 𝑢

𝜂𝑢

𝜃

𝜂′𝑢 𝜃−1𝑓 𝑢
𝑢𝜖 𝑢𝜖

𝜃−1

The other triangle identity composite 𝜙 ≔ 𝜖𝑓 ⋅ 𝑓 𝜂 is an isomorphism, as a composite of isomor-
phisms, and also an idempotent:

𝑓 𝑓 𝑢𝑓 𝑓

𝑓 𝑢𝑓 𝑓 𝑢𝑓 𝑢𝑓 𝑓 𝑢𝑓

𝑓 𝑢𝑓 𝑓

𝑓 𝜂

𝑓 𝜂 𝑓 𝑢𝑓 𝜂

𝜖𝑓

𝑓 𝜂
𝑓 𝜂𝑢𝑓 𝜖𝑓 𝑢𝑓

𝑓 𝑢𝜖𝑓 𝜖𝑓

𝜖𝑓

By cancelation, any idempotent isomorphism is the identity, proving that 𝜖𝑓 ⋅ 𝑓 𝜂 = id𝑓. �

A generalized element 𝑦∶ 𝑧 → 𝑏 is said to be in the essential image of a 1-cell 𝑢∶ 𝑎 → 𝑏 if there
exists a generalized element 𝑥∶ 𝑧 → 𝑎 and an invertible 2-cell 𝛽∶ 𝑦 ≅ 𝑢𝑥. When the functor 𝑢 is right
adjoint right inverse to 𝑓, there is a convenient characterization of its essential image:
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B.4.3. Lemma. A generalized element 𝑦∶ 𝑧 → 𝑏 is in the essential image of the right adjoint right inverse
𝑢∶ 𝑎 → 𝑏 if and only if the unit component 𝜂𝑦∶ 𝑦 ⇒ 𝑢𝑓 𝑦 is an isomorphism.

Proof. It remains only to argue that if given an invertible 2-cell 𝛽∶ 𝑦 ≅ 𝑢𝑥, the unit component
𝜂𝑦 is also an isomorphism. This follows from the banal final statement of Lemma B.1.3. From the
horizontally composable pair below-left, naturality of whiskering defines the commutative diagram
below-right:

𝑧 𝑏 𝑏

𝑎 𝑎

𝑦

𝑥 ≅⇓𝛽
𝑓

⇓𝜂𝑢 𝑢
↭

𝑦 𝑢𝑓 𝑦

𝑢𝑥 𝑢𝑓 𝑢𝑥

𝜂𝑦

𝛽 ≅ 𝛽≅

𝜂𝑢𝑥
≅

Since 𝑢 is a right adjoint right inverse, 𝜂𝑢 is invertible. Thus, if 𝛽 is invertible so is 𝜂𝑦. �

Sometimes it is more convenient to make use of a stricter notion of right adjoint right inverse
adjunction in which the counit 𝜖 is required to be the identity 𝑓 𝑢 = id𝑎. In this case it follows from
the triangle equalities that 𝑓 𝜂 = id𝑓, so that the unit is fibered over 𝑎. When the left adjoint is an
isofibration in the following 2-categorical sense, a right adjoint right inverse up to isomorphism can
always be replaced by a right adjoint right inverse up to identity (see Lemma 3.6.9).

B.4.4. Definition (isofibration). A 1-cell 𝑓 ∶ 𝑏 → 𝑎 in a 2-category defines an isofibration – in which
case the arrow is typically denoted by “↠” – if given any invertible 2-cell 𝛼∶ 𝑓 𝑦 ≅ 𝑥 abutting to 𝑎
with a specified lift of one of its boundary 1-cells through 𝑓, there exists an invertible 2-cell 𝛽∶ 𝑦 ≅ �̄�
abutting to 𝑏 with this boundary 1-cell that whiskers with 𝑓 to the original 2-cell:

𝑧 𝑏 𝑧 𝑏

𝑎 𝑎

𝑦

𝑥
𝑓≅⇓𝛼 =

𝑦

�̄�
≅⇓𝛽

𝑓

B.4.5. Lemma. Let 𝑓 ∶ 𝑏 ↠ 𝑎 be any isofibration in a 2-category 𝒞 that admits a right adjoint 𝑢′ ∶ 𝑎 → 𝑏
with counit 𝜖 ∶ 𝑓 𝑢′ ≅ id𝑎 an isomorphism. Then 𝑢′ is isomorphic to a functor 𝑢 that lies strictly over 𝑎 and
defines a strict right adjoint right inverse to 𝑓, in which case 𝑓 ⊣ 𝑢 defines an adjunction in the 2-category 𝒞/𝑎
of isofibrations with codomain 𝑎, commutative triangles over 𝑎, and 2-cells that whisker to identities abutting to
𝑎.

𝑏 ⊥ 𝑎

𝑎
𝑓

𝑓

𝑢

Proof. Define the 1-cell 𝑢∶ 𝑎 → 𝑏 by lifting the counit isomorphism through the isofibration
𝑓 ∶ 𝑏 ↠ 𝑎

𝑎 𝑏 𝑎 𝑏

𝑎 𝑎

𝑢′

𝑓≅⇓𝜖 =

𝑢′

𝑢
≅⇓𝛽

𝑓
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Note by construction that 𝑓 𝑢 = id𝑎, so 𝑢 defines a 1-cell in 𝒞/𝑎. By the triangle equalities for the
adjunction 𝑓 ⊣ 𝑢′, the unit defines a 2-cell 𝜂∶ id𝑏 ⇒ 𝑢′𝑓 with 𝜂𝑢′ and 𝑓 𝜂 both invertible. The
composite 2-cell

𝜂′ ≔ id𝑏 𝑢′𝑓 𝑢𝑓
𝜂 𝛽𝑓

≅

lies in 𝒞/𝑎 has the properties that 𝜂′𝑢 and 𝑓 𝜂 are both invertible. Applying Lemma B.4.2 in the
2-category 𝒞/𝑎, this 2-cell may then be modified to define the unit of an adjunction 𝑓 ⊣ 𝑢 with counit
𝑓 𝑢 = id𝑎. �

Exercises.

B.4.i. Exercise. Consider a pair of equivalent adjunctions, satisfying the condition of Proposition
B.3.8. Show that if either of these is a right adjoint right inverse adjunction then both are.

B.5. Absolute Absolute Lifting Diagrams

Recall from Definition 2.3.5 that for any cospan 𝑐
𝑔

𝑎
𝑓

𝑏 in a 2-category, an absolute right
lifting of 𝑔 through 𝑓 is given by a 1-cell 𝑟 and 2-cell 𝜌 as displayed below-left

𝑏 𝑧 𝑏 𝑧 𝑏

𝑐 𝑎 𝑐 𝑎 𝑐 𝑎
⇓𝜌

𝑓 ⇓𝜒

𝑥

𝑦 𝑓 =
∃!⇓𝜁

⇓𝜌

𝑥

𝑦 𝑓

𝑔

𝑟

𝑔

𝑟

𝑔

so that any 2-cell as displayed above-center factors uniquely through (𝑟, 𝜌) as displayed above-right.
The adjective “absolute” refers to the property that absolute right lifting diagrams are stable under
restriction along any 1-cell 𝑘 ∶ 𝑑 → 𝑐.

The following lemma yields absolute right lifting diagrams which are absolute in a second sense:
namely, they are preserved by any 2-functor.

B.5.1. Lemma. Suppose (𝑓 ⊣ 𝑢, 𝜂 ∶ id𝑎 ⇒ 𝑢𝑓 , 𝜖 ∶ 𝑓 𝑢 ⇒ id𝑐) is an adjunction under 𝑏 in the sense that
• the solid-arrow triangles involving both adjoints commute

𝑏

𝑐 𝑎

𝑘
ℓ

⊤
𝑢
⊤

𝑟

𝑓

• and 𝜂𝑘 = id𝑘 and 𝜖ℓ = idℓ.

Then if ℓ admits a right adjoint 𝑟 with unit 𝜄 ∶ id𝑏 ⇒ 𝑟ℓ and counit 𝜈∶ ℓ𝑟 ⇒ id𝑐, then 𝑢𝜈 exhibits 𝑟 as an
absolute right lifting of 𝑢 through 𝑘.

𝑏

𝑐 𝑎
⇓𝑢𝜈 𝑘

𝑢

𝑟

Moreover, such absolute right lifting diagrams are preserved by any 2-functor.
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Proof. The argument is purely diagrammatic. Any 2-cell as below-left factors through 𝑢𝜈 as
below-right:

𝑧 𝑏 𝑧 𝑏 𝑧 𝑏 𝑧 𝑏 𝑏

𝑐 𝑎 𝑐 𝑎 𝑐 𝑎 𝑐 𝑎 𝑐 𝑐

𝑐 𝑎 𝑐 𝑎 𝑎

𝑥

⇓𝜒𝑦 𝑘 =

𝑥

⇓𝜒𝑦 𝑘 =

𝑥

⇓𝜒𝑦 𝑘

ℓ

=

𝑥

⇓𝜒𝑦 𝑘
ℓ ⇓𝜄

⇓𝜈
ℓ

𝑘𝑢 𝑢
𝑓 ⇓𝜂

𝑢
𝑓

𝑢
⇓𝜖

𝑓

𝑟

𝑢⇓𝜖

𝑢

⇓𝜖

𝑢

Conversely, if 𝜁 defines a factorization of 𝜒 through 𝑢𝜈, then

𝑧 𝑏 𝑧 𝑏 𝑏 𝑧 𝑏 𝑏

𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐

𝑥

𝑦
⇓𝜁 =

𝑥

𝑦
⇓𝜁

⇓𝜈
ℓ
⇓𝜄 =

𝑥

𝑦
⇓𝜁

⇓𝜈
ℓ 𝑘 ℓ

𝑟 𝑟 𝑟 𝑟
𝑢

⇓𝜖

⇓𝜄

𝑓

𝑟

𝑧 𝑏 𝑏 𝑧 𝑏 𝑏

𝑐 𝑎 𝑐 𝑐 𝑎 𝑐
= 𝑦

𝑥
⇓𝜁

⇓𝑢𝜈
𝑘 ℓ

= 𝑦

𝑥

⇓𝜒 𝑘 ℓ
𝑢

𝑟

⇓𝜖
𝑓

⇓𝜄
𝑟

𝑢
⇓𝜖

𝑓

⇓𝜄
𝑟

proving that the factorization constructed above is unique.
Finally, because the universal property of the absolute right lifting diagram is “equationally wit-

nessed” by the presence of the adjunctions, it is preserved by any 2-functor. �

B.5.2. Example. For example, there is a diagram of adjoint functors

𝚫 𝚫+ 𝚫⊥

𝟙
! !

⊥

⊤

[−1]

involving the categories introduced in Definition 2.3.13. The inclusion 𝚫 ↪ 𝚫+ ↪ 𝚫⊥ freely adjoins a
bottom element to each ordinal, while its right adjoint can be identified with the inclusion 𝚫⊥ ↪ 𝚫 of
the wide subcategory whose morphisms are bottom element preserving maps. The adjunction [−1] ⊣ !
witnesses the fact that [−1] ∈ 𝚫⊥ defines an initial object with the counit 𝜈 defining the canonical
natural transformation from the initial object to the identity functor.

This diagram satisfies the premises of Lemma B.5.1 in 𝒞𝑎𝑡op. Let 𝑎 be an object of any 2-category 𝒞
that is cotensored over 𝒞𝑎𝑡. Then the 2-functor 𝑎(−) ∶ 𝒞𝑎𝑡op → 𝒞 carries the given data to a diagram
of adjoint functors in 𝒞 as below-left and hence the triangle below-right is absolute right lifting:

𝑎 𝑎

𝑎𝚫⊥ 𝑎𝚫 𝑎𝚫⊥ 𝑎𝚫

Δ
Δ

⊥
⇓𝑎𝜈

Δ

res
⊤

ev−1

res

ev−1

This proves Proposition 2.3.15.
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B.5.3. Example. There is a similar diagram of adjoint functors

𝚫 𝚫+ 𝚫⊤

𝟙
! !

⊥

⊤

[−1]

again involving the categories introduced in Definition 2.3.13. The inclusion 𝚫 ↪ 𝚫+ ↪ 𝚫⊤ freely
adjoins a top element and its right adjoint can be identified with the inclusion 𝚫⊤ ↪ 𝚫 of the wide
subcategory whose morphisms are top element preserving maps. The adjunction [−1] ⊣ ! witnesses
the fact that [−1] ∈ 𝚫⊤ defines an initial object with the counit 𝜈 defining the canonical natural
transformation from the initial object to the identity functor. This proves another version of Proposition
2.3.15 where the “splittings” occur on the other side of the co/simplicial objects.

Exercises.

B.5.i. Exercise. Search for other diagrams of categories satisfying the premises of Lemma B.5.1, such
as the example implicit in Exercise 2.3.iv.

B.6. Representable Characterizations of 2-Categorical Notions

In the cartesian closed category of 2-categories, the hom 2-functor 𝒞(−, −) ∶ 𝒞op × 𝒞 → 𝒞𝑎𝑡
associated to any 2-category 𝒞 transposes to define a Yoneda embedding 2-functorよ ∶ 𝒞 ↪ 𝒞𝑎𝑡𝒞

op

whose codomain is the 2-category of 2-functors, 2-natural transformations, and modifications from𝒞 to
𝒞𝑎𝑡. By the enriched Yoneda lemma, this 2-functor is fully faithful in an enriched sense: the 2-category
𝒞 is isomorphic to the full sub 2-category spanned by the representable 2-functors𝒞(−, 𝑥) ∶ 𝒞op → 𝒞𝑎𝑡.
On account of this enriched fully faithfulness, structures such as equivalences or adjunctions that are
defined internally to the 2-category 𝒞 are both preserved and reflected by the Yoneda embedding.

This result is less useful than onemight expect. Indeed, none of the “representable characterizations”
of equivalences, adjunctions, and absolute lifting diagrams proven in this section are consequences of

it. The main point is that the 1-cells in 𝒞𝑎𝑡𝒞 are 2-natural transformations, but as our proofs reveal,
weaker naturality conditions suffice to detect 2-categorical structures that exist in 𝒞. We say more
about the Yoneda perspective in Remark B.6.7 at the close of this section.

By analogy with Theorem 1.4.7, we have the following result which tells us that equivalences in a
2-category represent equivalences of categories.

B.6.1. Proposition (equivalences are representably defined). A 1-cell 𝑓 ∶ 𝑎 → 𝑏 in a 2-category 𝒞 defines
an equivalence if and only if for all 𝑥 ∈ 𝒞 the induced functor

𝒞(𝑥, 𝑎) 𝒞(𝑥, 𝑏)
𝑓∗

defines an equivalence of categories.

Proof. Each 𝑥 ∈ 𝒞 defines a 2-functor 𝒞(𝑥, −) ∶ 𝒞 → 𝒞𝑎𝑡, so if 𝑓 ∶ 𝑎 ∼ 𝑏 is an equivalence in 𝒞,
then 𝑓∗ ∶ 𝒞(𝑥, 𝑎) ∼ 𝒞(𝑥, 𝑏) is an equivalence in 𝒞𝑎𝑡.

Conversely, by essential surjectivity of 𝑓∗ ∶ 𝒞(𝑏, 𝑎) ∼ 𝒞(𝑏, 𝑏), there exists some 𝑔∶ 𝑏 → 𝑎 and
isomorphism 𝛽∶ 𝑓 𝑔 ≅ id𝑏. By fully faithfulness of 𝑓∗ ∶ 𝒞(𝑎, 𝑎) ∼ 𝒞(𝑎, 𝑏) the isomorphism 𝛽−1𝑓 ∶ 𝑓 ≅
𝑓 𝑔𝑓 lifts to an isomorphism 𝛼∶ id𝑎 ≅ 𝑔𝑓. �
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Similarly, an adjoint functor in a 2-category induces pointwise defined adjunctions between the
hom-categories, but in this case, a further “exactness” condition is required to convert a representably
defined adjunction into an adjunction in the 2-category.

B.6.2. Proposition (adjunctions are representably defined). A 1-cell 𝑢∶ 𝑎 → 𝑏 in a 2-category 𝒞 admits
a left adjoint if and only if:

(i) For all 𝑥 ∈ 𝒞, the induced functor admits a left adjoint

𝒞(𝑥, 𝑎) 𝒞(𝑥, 𝑏)
𝑢∗
⊥
𝑓 𝑥

(ii) For all 𝑘 ∶ 𝑦 → 𝑥 ∈ 𝒞, the mate of the identity 2-cell is an isomorphism:

𝒞(𝑥, 𝑎) 𝒞(𝑦, 𝑎) 𝒞(𝑥, 𝑎) 𝒞(𝑦, 𝑎)

𝒞(𝑥, 𝑏) 𝒞(𝑦, 𝑏) 𝒞(𝑥, 𝑏) 𝒞(𝑦, 𝑏)

𝑢∗

𝑘∗

⇗id 𝑢∗ ↭

𝑘∗

𝑘∗

𝑓 𝑥

𝑘∗

≅⇖𝜖𝑦𝑘∗𝑓 𝑥⋅𝑓 𝑦𝑘∗𝜂𝑥 𝑓 𝑦

Proof. The Yoneda embedding 2-functorよ ∶ 𝒞 ↪ 𝒞𝑎𝑡𝒞
op
preserves adjunctions, carrying an

adjoint pair 𝑓 ⊣ 𝑢 in 𝒞 to an adjunction between the representable 2-functors 𝒞(−, 𝑎) and 𝒞(−, 𝑏)

𝒞(−, 𝑎) 𝒞(−, 𝑏)
𝑢∗
⊥
𝑓∗

whose left and right adjoints are the 2-natural transformations 𝑓∗ ⊣ 𝑢∗ and whose unit and counit are
modifications. Evaluating at 𝑥 ∈ 𝒞, this defines a family of adjunction as in (i) and strict adjunction
morphisms, i.e., so that any 𝑘 ∶ 𝑦 → 𝑥 induces a strictly commutative square with respect to the left
and right adjoints inhabited by a mate pair of identity 2-cells.

The real content is in the converse. Assuming (i), define a candidate left inverse by 𝑓 ≔ 𝑓 𝑏(id𝑏).
By construction 𝑢𝑓 ≔ 𝑢∗𝑓 𝑏(id𝑏) so we may define a candidate unit to be the component of the unit

𝜂𝑏 of 𝑓 𝑏 ⊣ 𝑢∗ at id𝑏:

𝜂 ≔ id𝑏 𝑢𝑓 ∈ 𝒞(𝑏, 𝑏).
𝜂𝑏id𝑏

Note that these definitions do not a priori give any information about the other composite 𝑓 𝑢 ∈
𝒞(𝑎, 𝑎), but condition (ii) defines a natural isomorphism 𝛼∶ 𝑓 𝑎𝑢∗ ≅ 𝑢∗𝑓 𝑏

𝒞(𝑏, 𝑎) 𝒞(𝑎, 𝑎)

𝒞(𝑏, 𝑏) 𝒞(𝑎, 𝑏)

𝑢∗

𝑓 𝑏

𝑢∗

≅⇖𝜖𝑎𝑢∗𝑓 𝑏⋅𝑓 𝑎𝑢∗𝜂𝑏 𝑓 𝑎

whose component at id𝑏 defines an isomorphism

𝛼id𝑏 ≔ 𝑓 𝑎(𝑢) 𝑓 𝑎(𝑢𝑓 𝑢) = 𝑓 𝑎𝑢∗(𝑓 𝑢) 𝑓 𝑢 ∈ 𝒞(𝑎, 𝑎).
𝑓 𝑎(𝜂𝑢) 𝜖𝑎(𝑓 𝑢)
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Using this, we define the counit to be the composite of the inverse of this isomorphism with the
component of the counit 𝜖𝑎 of 𝑓 𝑎 ⊣ 𝑢∗ at id𝑎:

𝜖 ≔ 𝑓 𝑢 𝑓 𝑎(𝑢) id𝑎 ∈ 𝒞(𝑎, 𝑎).≅

𝛼−1id𝑏 𝜖𝑎id𝑎

The commutative diagram

𝑢 𝑢𝑓 𝑢

𝑢𝑓 𝑎(𝑢) 𝑢𝑓 𝑎(𝑢𝑓 𝑢) 𝑢𝑓 𝑢

𝜂𝑎(𝑢)

𝜂𝑢

𝜂𝑎(𝑢𝑓 𝑢)
𝑢𝑓 𝑎(𝜂𝑢)

𝑢𝛼id𝑏

𝑢𝜖𝑎(𝑓 𝑢)

reveals that 𝑢𝛼id𝑏 ⋅ 𝜂
𝑎𝑢 = 𝜂𝑢, so

𝑢𝜖 ⋅ 𝜂𝑢 = (𝑢𝜖𝑎id𝑎 ⋅ 𝑢𝛼
−1
id𝑏
) ⋅ (𝑢𝛼id𝑏 ⋅ 𝜂

𝑎𝑢) = 𝑢𝜖𝑎id𝑎 ⋅ 𝑢𝛼id𝑏 = id𝑢,
which verifies one of the two triangle equalities.

It is somewhat delicate to prove that the other triangle equality composite

𝑓 𝑓 𝑢𝑓 𝑓 ∈ 𝒞(𝑏, 𝑎)
𝑓 𝜂 𝜖𝑓

is the identity because we do not have any way to understand the arrow 𝑓 𝜂. Note, however, that this

arrow defines an endomorphism of the object 𝑓 𝑏(id𝑏) ∈ 𝒞(𝑏, 𝑎), so if we verify that its transpose under

the adjunction 𝑓 𝑏 ⊣ 𝑢∗ is the unit component 𝜂𝑏id𝑏 , then by uniqueness of adjoint transposition, we

must have 𝜖𝑓 ⋅ 𝑓 𝜂 = id𝑓 as desired. This can be verified by direct calculation: the adjoint transpose

is computed by applying the functor 𝑢∗ and then precomposing with 𝜂𝑏id𝑏 = 𝜂, which yields the

left-bottom composite below.

1 𝑢𝑓

𝑢𝑓 𝑢𝑓 𝑢𝑓 𝑢𝑓

𝜂

𝜂

𝜂𝑢𝑓

𝑢𝑓 𝜂 𝑢𝜖𝑓

An easy diagram chase making use of the previously verified triangle equality completes the proof. �

Condition (ii) of Proposition B.6.2 is referred to as a “Beck–Chevalley” or exactness condition.
Another exactness condition appears in a representable characterization of absolute lifting diagrams.

B.6.3. Definition. A trio of functors (𝑢, 𝑣, 𝑤) between a pair of absolute right lifting diagrams (𝑟, 𝜌)
and (𝑟′, 𝜌′) as below defines a right exact transformation if and only if the 2-cell 𝜏 induced by the
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universal property of the absolute right lifting is invertible:

𝑏

𝑐 𝑎 𝑏′

𝑐′ 𝑎′

⇓𝜌
𝑓 𝑣𝑟

𝑔

𝑤
𝑢 𝑓 ′

𝑔′

=

𝑏

𝑐 𝑏′

𝑐′ 𝑎′

𝑣𝑟

𝑤

∃!⇓𝜏

⇓𝜌′
𝑓 ′

𝑔′

𝑟′
(B.6.4)

This right exactness condition holds if and only if, in the diagram on the left of (B.6.4), the whiskered
2-cell 𝑢𝜌 displays 𝑣𝑟 as the absolute right lifting of 𝑔′𝑤 through 𝑓 ′, which is to say that the right exact
transformations are those that preserve absolute right lifting diagrams.

B.6.5. Lemma. The mate of a commutative square between left adjoints as below

𝑏 𝑏′

𝑎 𝑎′
𝑓⊢

𝑘

𝑓 ′ ⊣

ℎ

𝑢
𝑢′

is invertible if and only if (ℎ, 𝑘, ℎ) defines a right exact transformation between the absolute right lifting diagrams
(𝑢, 𝜖) and (𝑢′, 𝜖′) of id𝑎 through 𝑓 and id𝑎′ through 𝑓 ′.

Proof. The unique 2-cell 𝜏 satisfying the pasting diagram below is the mate of id ∶ 𝑓 ′𝑘 ⇒ ℎ𝑓.

𝑏

𝑎 𝑎 𝑏′

𝑎′ 𝑎′

⇓𝜖
𝑓 𝑘𝑢

ℎ
ℎ 𝑓 ′

=

𝑏

𝑎 𝑏′

𝑎′ 𝑎′

𝑘𝑢

ℎ

∃!⇓𝜏

⇓𝜖′
𝑓 ′𝑢′

�

B.6.6. Proposition. Consider a 2-cell in a 2-category 𝒞

𝑏

𝑐 𝑎
⇓𝜌

𝑓𝑟

𝑔

(i) If (𝑟, 𝜌) defines an absolute right lifting diagram in 𝒞, then
(a) For all 𝑥 ∈ 𝒞,

𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎)
⇓𝜌∗

𝑓∗
𝑟∗

𝑔∗
defines an absolute right lifting diagram in 𝒞𝑎𝑡.

440



(b) For all 𝑘 ∶ 𝑤 → 𝑥 ∈ 𝒞, the induced transformation is right exact.

𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎) 𝒞(𝑤, 𝑏)

𝒞(𝑤, 𝑐) 𝒞(𝑤, 𝑎)

𝑓∗
𝑘∗

𝑔∗

𝑘∗
𝑘∗ 𝑓∗

𝑔∗

(ii) Conversely if ((i)a) holds for each 𝑥 ∈ 𝒞, then (𝑟, 𝜌) defines an absolute right lifting diagram in 𝒞.
(iii) Moreover, if 𝑔∶ 𝑐 → 𝑎 and 𝑓 ∶ 𝑏 → 𝑎 are so that for all 𝑥 ∈ 𝒞, the functor 𝑔∗ ∶ 𝒞(𝑥, 𝑐) → 𝒞(𝑥, 𝑎)

admits an absolute right lifting through 𝑓∗ ∶ 𝒞(𝑥, 𝑏) → 𝒞(𝑥, 𝑎) for which condition ((i)b) holds, then
𝑔 admits an absolute right lifting through 𝑓 in 𝒞.

Proof. We leave the proof of the first statement, which is the most straightforward, to the reader
with the hint that to verify the universal property of an absolute lifting diagram in 𝒞𝑎𝑡, it suffices to
consider cones over the cospan (𝑔∗, 𝑓∗) whose summit is the terminal category 𝟙.

For the second assertion, consider a cone

𝑥 𝑏

𝑐 𝑎

𝑦

𝑧 ⇓𝜒 𝑓

𝑔

over the cospan (𝑔, 𝑓 ) in 𝒞. This data defines a diagram of categories as below-left, which factors
uniquely as below-right:

𝟙 𝒞(𝑥, 𝑏) 𝟙 𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎) 𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎)

𝑦

𝑧 ⇓𝜒 𝑓∗ =

𝑦

𝑧
∃!⇓𝜁

⇓𝜌∗
𝑓∗

𝑔∗

𝑟∗

𝑔∗

defining the desired unique factorization

𝑥 𝑏 𝑥 𝑏

𝑐 𝑎 𝑐 𝑎

𝑦

𝑧 ⇓𝜒 𝑓 =

𝑦

𝑧
⇓𝜁

⇓𝜌
𝑓

𝑔 𝑔

𝑟

For the final statement, we define the pair (𝑟, 𝜌) by evaluating the functor and natural transforma-
tion of the postulated absolute right lifting (𝑟𝑐, 𝜌𝑐) in the case 𝑥 = 𝑐 at id𝑐 ∈ 𝒞(𝑐, 𝑐). To verify that
𝜌∶ 𝑓 𝑟 ⇒ 𝑔 defines an absolute right lifting of 𝑔 through 𝑓, consider a 1-cell 𝑧 ∶ 𝑥 → 𝑐. The hypothesis
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of right exactness tells us that the composite transformation

𝒞(𝑐, 𝑏)

𝟙 𝒞(𝑐, 𝑐) 𝒞(𝑐, 𝑎) 𝒞(𝑥, 𝑏)

𝒞(𝑥, 𝑐) 𝒞(𝑥, 𝑎)

⇓𝜌𝑐
𝑓∗

𝑧∗

id𝑐
𝑔∗

𝑟𝑐

𝑧∗
𝑧∗ 𝑓∗

𝑔∗

is absolute right lifting. By the proof of the second statement above, this tells us that (𝑟𝑐, 𝜌𝑐) is an
absolute right lifting of 𝑔𝑐 through 𝑓, which proves that (𝑟, 𝜌) is an absolute right lifting as required. �

B.6.7. Remark. The results of Propositions B.6.2 and B.6.6 can be viewed as applications of the bicate-
gorical Yoneda lemma, which defines a 2-fully faithful embedding of a bicategory 𝒞 into the 2-category
[𝒞op, 𝒞𝑎𝑡] of pseudofunctors, pseudonatural transformations, and modifications (see Definitions 10.4.1,
10.4.2, and B.2.3). If a 1-cell 𝑢∶ 𝑎 → 𝑏 in 𝒞 satisfies condition (i) of Proposition B.6.2, then by Theorem
B.3.6, the left adjoints 𝑓 𝑥 ∶ 𝒞(𝑥, 𝑏) → 𝒞(𝑥, 𝑎) define the components of an oplax natural transformation.
Condition (ii) demands that this oplax natural transformation is a pseudonatural transformation. Now
2-fully faithfulness allows us to lift this to an arrow 𝑓 ∶ 𝑏 → 𝑎 in 𝒞, which is left adjoint to 𝑢.

In the case of Proposition B.6.1, where 𝑢∶ 𝑎 → 𝑏 induces equivalences 𝒞(𝑥, 𝑎) ∼ 𝒞(𝑥, 𝑏), the
inverses can be chosen to define adjoint equivalences, which automatically assemble into a pseudonatural
transformation (see Lemma 10.4.15). This is why no additional hypothesis was required.

Exercises.

B.6.i. Exercise. Confirm the assertion made in the proof of Lemma B.6.5.

B.6.ii. Exercise. Prove Proposition B.6.6(i).
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APPENDIX C

Abstract Homotopy Theory

The underlying 1-category of an∞-cosmos, together with its classes of isofibrations, equivalences,
and trivial fibrations, defines a category of fibrant objects, a categorical setting for abstract homotopy
theory first studied by Brown [22]. In §C.1, we develop some of the general theory of categories of
fibrant objects in order to present some classical proofs that are omitted in the main text.

The remainder of this chapter develops material that is applied in later appendices. In Appendix E,
we discover that examples of∞-cosmoi can be found “in the wild” as model categories that are enriched
as such over Joyal’s model structure on the category of simplicial sets. To explain the notions that
feature in the statements and proofs of these results, model categories, enriched model categories, and
the various functors between them are introduced in §C.3.

A model category is an axiomatic framework for abstract homotopy theory developed by Quillen
[93].¹ In the introduction to “ Chapter I. Axiomatic Homotopy Theory” where the definition first
appears, Quillen highlights the factorization and lifting axioms as being the most important. These are
most clearly encapsulated in the categorical notion of a weak factorization system discussed in §C.2, the
axioms for which were enumerated later.

Finally, some of the technical combinatorial proofs of Appendix D require inductive arguments
involving the Reedy category 𝚫. Thus, we conclude in §C.4 and §C.5 with a brief introduction to Reedy
category theory and the Reedy model structure following the presentation of [107].

C.1. Abstract Homotopy Theory in a Category of Fibrant Objects

In this section, we work in an (unenriched) category of fibrant objects, a notion first introduced
by Brown [22]. Examples include the underlying category of an∞-cosmos or the full subcategory of
fibrant objects in a Quillen model category (hence the name).

C.1.1. Definition (category of fibrant objects). A category of fibrant objects consists of a category
ℳ together with two subcategories of morphisms 𝚆 and 𝙵 satisfying the following axioms:

(i) ℳ has products and in particular a terminal object 1. Moreover, the classes 𝙵 and 𝙵 ∩ 𝚆 are
each closed under products.

(ii) 𝚆 has the 2-of-3 property: for any composable pair of morphisms, if any two of 𝑓, 𝑔, and 𝑔𝑓 is
in 𝚆 then so is the third.

(iii) Pullbacks of maps in 𝙵 exist and lie in 𝙵, and the class 𝙵 ∩ 𝚆 is also stable under pullback.
(iv) Limits of countable towers² of maps in 𝙵 exist and also lie in 𝙵, and the class 𝙵∩𝚆 is also closed

under forming limits of towers.

¹Similarly, an ∞-cosmos is an axiomatic framework for abstract ∞-category theory, which may productively be
thought of as a categorification of a Quillen model category.

²A (countable) tower is a diagram of shape 𝝎op. Closure under limits of towers asserts that if the images of each of
the atomic arrows in the tower lie in 𝙵, then the map from the limit object to the terminal object in the diagram is also
in 𝙵. The dual notion, a map from the initial object in an 𝝎-shaped diagram to its colimit, is commonly referred to as a
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(v) For every object 𝐵, there exists a path object 𝑃𝐵 together with a factorization of the diagonal
into a map in 𝚆 followed by a map in 𝙵:

𝑃𝐵

𝐵 𝐵 × 𝐵
∼

Δ

(vi) All objects are fibrant: for every 𝐵 ∈ ℳ, the map 𝐵 → 1 lies in 𝙵.

C.1.2. Remark. The original definition only requires the existence finite products in axiom (i) and
omits axiom (iv). The closure of the classes 𝙵 and 𝙵 ∩ 𝚆 under finite products follows, by induction,
from the closure under pullback assumed in axiom (iii) (see Corollary C.1.14). Here, we ask for these
infinite limits to parallel the limit axiom 1.2.1(i) in our definition of an ∞-cosmos. In practice, the
classes 𝙵 and 𝙵 ∩ 𝚆 are frequently characterized by a right lifting property, in which case the closure
axioms (i), (iii), and (iv) are automatic (see Lemma C.2.3).

In general, it is customary to refer to the maps in 𝚆 as “weak equivalences,” the maps in 𝙵 as
“fibrations,” and the maps in 𝙵 ∩ 𝚆 as “trivial fibrations” – unless the specific context dictates alternate
names – and depict these classes by the decorated arrows, ∼ ,↠, and ∼ , respectively. Our primary
interest in categories of fibrant objects is on account of the following two examples.

C.1.3. Example. The underlying category of an∞-cosmos defines a category of fibrant objects with 𝚆
the class of equivalences and 𝙵 the class of isofibrations. Most of the axioms of Definition C.1.1 are
subsumed by the limit and isofibration axioms of Definition 1.2.1. The remaining pieces are established
in Lemmas 1.2.14, 1.2.17, and 1.2.19.

C.1.4. Example. The full subcategory of fibrant objects in a model category defines a category of
fibrant objects with 𝚆 the class of weak equivalences and 𝙵 the class of fibrations between fibrant
objects (see Definition C.3.2 and Exercise C.3.i).

C.1.5. Remark. Both of the examples just discussed have the additional property of being right proper,
satisfying an additional axiom:

(vii) Pullbacks of maps in 𝚆 along maps in 𝙵 define maps in 𝚆:

𝐹 𝐸

𝐴 𝐵

𝑞

∼𝑔

𝑝

∼
𝑓

For∞-cosmoi, this is proven in Proposition 3.3.3 and for fibrant objects in model categories, this was
first observed by Reedy in [99, Theorem B] (see also [84, 15.4.2]).

The factorization axiom in a category of fibrant objects can be generalized to construct factoriza-
tions of any map (see Lemma 1.2.19).

“countable composite” or a “transfinite composite” in the case of larger limit ordinals. More general towers, indexed by
other limit ordinals, are considered in Lemma C.2.3 and beyond.
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C.1.6. Lemma (Brown factorization lemma). Any map 𝑓 ∶ 𝐴 → 𝐵 in a category of fibrant objects may be
factored as a weak equivalence followed by a fibration, where the weak equivalence is constructed as a section of
a trivial fibration.

𝑃𝑓

𝐴 𝐵

𝑝

∼𝑞

𝑓

∼ 𝑠

Moreover, 𝑓 is a weak equivalence if and only if the fibration 𝑝 is a trivial fibration.
Proof. The displayed factorization is constructed by the pullback of the path object factorization

𝐵 ∼ 𝑃𝐵 ↠ 𝐵 × 𝐵 of (v):

𝐴 𝐵

𝑃𝑓 𝑃𝐵

𝐴 × 𝐵 𝐵 × 𝐵

∼
𝑠

𝑓

(𝐴,𝑓 )

∼

Δ(𝑞,𝑝)

𝑓 ×𝐵

By the 2-of-3 property for the weak equivalences, both projections 𝑃𝐵 ∼ 𝐵 are trivial fibrations. Since
the map 𝑞 is a pullback of one of these projections along 𝑓 ∶ 𝐴 → 𝐵, it follows from axiom (iii) that
𝑞 is a trivial fibration. Its section 𝑠, constructed by applying the universal property of the pullback
to the displayed cone with summit 𝐴, is thus a weak equivalence. Finally, if either 𝑓 or 𝑝 are weak
equivalences, the other must be as well by the 2-of-3 property. �

In analogy with Proposition 1.2.22:

C.1.7. Corollary. Ifℳ is a category of fibrant objects and 𝐵 ∈ ℳ, then the categoryℳ/𝐵 of fibrations
inℳ with codomain 𝐵 and maps over 𝐵 becomes a category of fibrant objects with weak equivalences and
fibrations created by the forgetful functorℳ/𝐵 → ℳ.

Proof. The construction of limits in the slice categoryℳ/𝐵 is described in the proof of Proposition
1.2.22; note in particular, that id𝐵 is the terminal object, so all objects inℳ/𝐵, being fibrations inℳ,
are fibrant. Path objects for a fibration 𝑓 ∶ 𝐴 ↠ 𝐵 are constructed by applying Lemma C.1.6 to the
“diagonal” map (𝑓 , 𝑓 ) ∶ 𝐴 → 𝐴 ×𝐵 𝐴 from 𝐴 to the pullback of 𝑓 along itself. �

The dual of a result of Blumberg and Mandell [19, 6.4] demonstrates that the equivalences in any
∞-cosmos satisfy the 2-of-6 property. The proof reveals that this holds in any category of fibrant
objects in which the class 𝚆 is closed under retracts.³

C.1.8. Proposition. Letℳ be a category with classes of maps 𝚆 and 𝙵 so that:
• 𝚆 satisfies the 2-of-3 property, and is closed under retracts.

³An arrow 𝑓 ∶ 𝐴 → 𝐵 is a retract of an arrow 𝑔∶ 𝐶 → 𝐷 if there exists a diagram:

𝐴 𝐶 𝐴

𝐵 𝐷 𝐵
𝑓

𝑠
𝑔

𝑟
𝑓

𝑢 𝑣
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• The pullback of a map in 𝙵 ∩ 𝚆 is in 𝙵 ∩ 𝚆 and these pullbacks always exist.
• Every map in 𝚆 factors as a section of a map in 𝙵 ∩ 𝚆 followed by a map in 𝙵 ∩ 𝚆.

Then the class 𝚆 satisfies the 2-of-6 property: for any composable triple of morphisms

𝐵

𝐴 𝐷

𝐶

∼

ℎ𝑔𝑓

∼
𝑔𝑓

ℎ𝑔𝑓

𝑔
ℎ

if 𝑔𝑓 and ℎ𝑔 are in a class 𝚆 then 𝑓, 𝑔, ℎ, and ℎ𝑔𝑓 are too.

Proof. Form the factorization of the weak equivalence ℎ𝑔 displayed below-left, and form the
pullback of 𝑝 along ℎ and the induced map 𝑡:

𝐷′

𝐵 𝐷

∼𝑝

∼𝑟
∼
𝑗

∼
ℎ𝑔

𝐴 𝐵

𝐶′ 𝐷′ 𝐵

𝐶 𝐷

𝑓

∼
𝑔𝑓

𝑔

∼𝑗𝑡

𝑢

∼𝑞

∼
𝑟

∼ 𝑝

ℎ

By pullback stability of the trivial fibrations, the map 𝑞 is in 𝚆, so by the 2-of-3 property and the
assumption that 𝑔𝑓 is in 𝚆, the composite 𝑡𝑓 ∶ 𝐴 → 𝐶′ must be in 𝚆. The map 𝑓 is a retract of this
composite

𝐴 𝐴 𝐴

𝐵 𝐶′ 𝐵

𝑓 ∼ 𝑡𝑓 𝑓

𝑡 𝑟𝑢

so by retract closure of the class 𝚆, 𝑓 is in 𝚆. Now it follows from the 2-of-3 property that 𝑔, ℎ, and ℎ𝑔𝑓
lie in 𝚆 as well. �

C.1.9. Corollary. The equivalences in an∞-cosmos satisfy the 2-of-6 property.

Proof. It remains only to argue that the premises of Proposition C.1.8 hold for the classes of
equivalences, isofibrations, and trivial fibrations in any∞-cosmos.

Lemma 1.2.17 proves that the equivalences in an∞-cosmos are also closed under retracts and have
the 2-of-3 property. Lemma 1.2.14 proves that the class of trivial fibrations is stable under pullbacks,
which exist in any∞-cosmos. Lemma 1.2.19 constructed the desired factorization, which by the 2-of-3
property factors an equivalence as a section of a trivial fibration followed by a trivial fibration. Now
Proposition C.1.8 applies to prove that the equivalences in any∞-cosmos satisfy the stronger 2-of-6
property. �

The following consequence of Lemma C.1.6, traditionally referred to as “Ken Brown’s lemma,” is
the key to proving the invariance of various limit constructions in a category of fibrant objects under
pointwise weak equivalence.
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C.1.10. Lemma (Ken Brown’s lemma). Consider a functor 𝐹∶ ℳ → 𝒩 whose domain is a category of
fibrant objects and whose codomain is a category with a subcategory of “weak equivalences” satisfying the 2-of-3
property. If 𝐹 carries trivial fibrations to weak equivalences, then 𝐹 carries weak equivalences inℳ to weak
equivalences in𝒩.

Proof. By Lemma C.1.6, any weak equivalence in a category of fibrant objects may be factored as
a section of a trivial fibration followed by a trivial fibration.

𝑃𝑓

𝐴 𝐵

∼𝑝

∼𝑞

∼
𝑓

∼ 𝑠

By hypothesis, the images of the maps 𝑞 and 𝑝 under 𝐹 are weak equivalences. By the 2-of-3 property
of the weak equivalences in 𝒩, it follows that the image of 𝑠 and thus also the image of 𝑓 are weak
equivalences. �

The rest of this section is devoted to applications of Lemma C.1.10 to establish the weak equivalence
invariance of limits in a category of fibrant objects.

C.1.11. Lemma. In a category of fibrant objects, a weak equivalence between fibrations pulls back to a weak
equivalence between fibrations:

𝑃 𝐸

𝑄 𝐹

𝐴 𝐵
∼𝑢

𝑟
𝑝 ∼𝑒

𝑠 𝑞

𝑓

Proof. By Corollary C.1.7, slices of a categoryℳ of fibrant objects define categories of fibrant
objects and pullback along 𝑓 defines a functor 𝑓 ∗ ∶ ℳ/𝐵 → ℳ/𝐴. Note that the map 𝑢 in the displayed
diagram is the pullback of the map 𝑒, so it follows directly from axiom (iii) of Definition C.1.1 that
pullback preserves trivial fibrations. Now Lemma C.1.10 implies that it also preserves equivalences. �

Other results in a similar vein require somewhat more delicate arguments. The proofs appearing
below are originally due to Reedy in an unpublished manuscript [99] that implicitly gave birth to the
notion of a “Reedy category” that we introduce in §C.4.

C.1.12. Proposition. Consider a diagram in a category of fibrant objects:

𝐶 𝐴 𝐵

�̄� �̄� �̄�

𝑟

𝑔

𝑝 𝑞

𝑓

�̄� ̄𝑓

If the map 𝑟 and the map 𝑧 ∶ 𝐵 → 𝐴 ×�̄� �̄� are both fibrations or both trivial fibrations then the induced map
from the pullback of 𝑓 along 𝑔 to the pullback of ̄𝑓 along �̄� again a fibration or trivial fibration, respectively.
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Proof. By pullback composition and cancelation, the induced map 𝑡 factors as a pullback of 𝑧
followed by a pullback of 𝑟 as displayed below

𝐶 ×
𝐴
𝐵 𝐵

𝐶 𝐴
• •

�̄� ×̄
𝐴
�̄� �̄�

�̄� �̄�

𝑡 𝑞

𝑧

𝑝𝑟

and is thus an fibration or trivial fibration if both of these maps are. �

Similarly, we have the following result whose dual form is sometimes called the “gluing lemma.”

C.1.13. Proposition. In a category of fibrant objects, the induced map between the pullbacks of the horizontal
rows of a diagram of the following form is again a weak equivalence:

𝐶 𝐴 𝐵

�̄� �̄� �̄�
∼𝑟

𝑔
∼ 𝑝 ∼ 𝑞

𝑓

�̄� ̄𝑓

The proof of Proposition 3.3.4 applies equally in any right proper category of fibrant objects, but
as we shall discover, the hypothesis of right properness is not actually necessary.

Proof. By Exercise C.1.i, for any category of fibrant objectsℳ there is a category of fibrant objects
ℳ whose

• objects are cospans 𝐶
𝑔
𝐴

𝑓
𝐵 whose right leg is a fibration inℳ,

• weak equivalences are pointwise weak equivalences, and
• fibrations are diagrams

𝐶 𝐴 𝐵

•

�̄� �̄� �̄�

𝑔

𝑟 𝑝

𝑓

𝑞

𝑧

�̄� ̄𝑓

in which the maps 𝑟, 𝑝, and 𝑞 are fibrations, as is the induced map 𝑧 ∶ 𝐵 → 𝐴 ×�̄� �̄�.
with the requisite limits inherited pointwise from ℳ. By Proposition C.1.12, the pullback functor
lim ∶ ℳ → ℳ carries trivial fibrations to trivial fibrations, so by Lemma C.1.10, it also preserves
weak equivalences. �

C.1.14. Corollary. In a category of fibrant objects, finite products of fibrations, trivial fibrations, or weak
equivalences are again fibrations, trivial fibrations, or weak equivalences.
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Proof. The product of a finite family of maps {𝑓𝑖 ∶ 𝐴𝑖 → �̄�𝑖}𝑖=1,…,𝑛 can be formed inductively as
a pullback over the terminal object 1

∏𝑛−1
𝑖=1 𝐴𝑖 1 𝐴𝑛

∏𝑛−1
𝑖=1 �̄�𝑖 1 �̄�𝑛

∏𝑓𝑖 𝑓𝑛

When each map 𝑓𝑖 is a fibration or trivial fibration, by Proposition C.1.12 and an induction starting
from the case of binary products, the same is true of the product of these maps. When each map 𝑓𝑖 is a
weak equivalence, the same conclusion follows from Proposition C.1.13. �

Similarly, limits of towers of fibrations are invariant under pointwise weak equivalence:

C.1.15. Proposition. Consider a natural transformation between countable towers of fibrations in a category
of fibrant objects

𝑋𝝎 ≔ lim𝑛𝑋𝑛 ⋯ 𝑋2 𝑋1 𝑋0

𝑌𝝎 ≔ lim𝑛 𝑌𝑛 ⋯ 𝑌2 𝑌1 𝑌0

𝛼𝝎 𝛼2

𝑓2 𝑓1

𝛼1 𝛼0

𝑔2 𝑔1

(i) If for each 𝑛 ≥ 0, the map ⟨𝛼𝑛, 𝑓𝑛⟩ ∶ 𝑋𝑛 → 𝑌𝑛 ×𝑌𝑛−1 𝑋𝑛−1 is a fibration or trivial fibration,⁴ then
the induced map 𝛼𝝎 between the limits is as well.

(ii) If for each 𝑛 ≥ 0, the map 𝛼𝑛 is a weak equivalence, then the induced map 𝛼𝝎 between the limits is as
well.

Proof. When the hypotheses of (i) hold in a category of fibrant objects ℳ, the induced map
𝛼𝝎 ∶ 𝑋𝝎 → 𝑌𝝎 between the limits of the towers of fibrations is itself the limit composite of a tower
of fibrations or trivial fibrations, respectively

𝑋𝝎 ⋯ 𝑃𝑛 𝑃𝑛−1 ⋯ 𝑃1 𝑃0 𝑌𝝎

𝛼𝝎

where each layer is a pullback of the map

𝑃𝑛 𝑃𝑛−1

𝑋𝑛 𝑌𝑛 ×
𝑌𝑛−1

𝑋𝑛−1⟨𝛼𝑛,𝑓𝑛⟩

assumed to be either a fibration or a trivial fibration. Starting from the bottom 𝑃0 is defined to be the
pullback of 𝛼0 along the leg of the limit cone for 𝑌𝝎:

𝑃0 𝑌𝝎

𝑋0 𝑌0𝛼0

⁴To make sense of the case 𝑛 = 0, declare 𝑋−1 and 𝑌−1 to be terminal so that the map under consideration is 𝛼0.
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By construction, 𝑃0 admits a canonical map to the pullback 𝑌1 ×𝑌0 𝑋0, and 𝑃1 is defined to be the
pullback:

𝑃1 𝑃0

𝑋1 𝑌1 ×𝑌0
𝑋0⟨𝛼1,𝑓1⟩

Continuing inductively, the limit of the tower of fibrations 𝑃𝑛 ↠ 𝑃𝑛−1 can be seen to coincide with
the limit of the 𝝎op × 𝟚 shaped diagram formed by the maps 𝑓𝑛, 𝑔𝑛, and 𝛼𝑛. Since the inclusion
𝝎op ↪ 𝝎op × 𝟚 of the top row of this diagram is initial, this limit recovers 𝑋𝝎 and the composite
of the tower of fibrations recovers the map 𝛼𝝎. Thus, by axioms (iii) and (iv) of Definition C.1.1, the
induced map 𝛼𝝎 is again a fibration or trivial fibration, respectively.

The second statement now follows by applying LemmaC.1.10 to the limit functor lim ∶ ℳ𝝎op → ℳ
whose domain is the category of towers of fibrations (see Exercise C.1.ii). �

Again in this proof we have made use of the fact that the category of diagrams valued in a category
of fibrant objects may itself be equipped with the structure of a category of fibrant objects, at least for
certain types of diagrams and certain diagram shapes. We now establish this result more systematically
for a particularly useful family of diagrams, namely those indexed by inverse categories.

C.1.16. Definition. A category ℐ is a inverse category if there exists a functor deg ∶ ℐ → 𝝎op that
reflects identities.⁵

The degree functor assigns a natural number degree to each object of ℐ in such a way that all
nonidentity morphisms “lower degree,” in the sense that the degree of their domain object is strictly
greater than the degree of their codomain object. The utility of the degree functor for an inverse
category is that it allows us to define the data of an ℐ-indexed diagram or natural transformation by
inductively specifying diagrams indexed by the full subcategories

ℐ≤0 ⋯ ℐ≤𝑛−1 ℐ≤𝑛 ⋯ colim𝑛∈𝝎 ℐ≤𝑛 ≅ ℐ

of objects with bounded degree. To extend 𝑋 ∈ ℳℐ≤𝑛−1 toℳℐ≤𝑛 requires the specification, for each
object 𝑖 with degree 𝑛 of an object 𝑋 𝑖 ∈ ℳ together with a map 𝑋 𝑖 → 𝜕𝑖𝑋 from 𝑋 𝑖 to the limit

𝜕𝑖𝑋 ≔ lim
𝑖
≠
→𝑗

𝑋𝑗 ≔ lim � 𝑖/ℐ≤𝑛−1 ℐ≤𝑛−1 ℳcod 𝑋 � (C.1.17)

indexed by the nonidentity maps 𝑖 → 𝑗 in ℐ.

C.1.18. Observation (boundary data as a weighted limit). As the notation suggests, the object 𝜕𝑖𝑋
should be thought of as the object of “boundary data” associated to 𝑋 𝑖. This intuition can be made
precise through the formalism of weighted limits, illustrating their utility even in unenriched contexts.

Recall from Definition A.6.1(i) that the limit of a diagram 𝑋 ∈ ℳℐ weighted by the representable

functor ℐ(𝑖, −) ∈ 𝒮𝑒𝑡ℐ at an object 𝑖 ∈ ℐ is the object 𝑋 𝑖. Define the boundary 𝜕ℐ(𝑖, −) ∈ 𝒮𝑒𝑡ℐ of

⁵The mathematics does not change in any substantial way if𝝎 is replaced by the category of ordinals. The reason we
restrict to finite degrees is because Definition C.1.1 only asks for limits of𝝎op-indexed towers (see Proposition C.1.21(i)).
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the representable functor to be the functor defined by

𝜕ℐ(𝑖, 𝑗) ≔ �
ℐ(𝑖, 𝑗) deg(𝑗) < deg(𝑖)
∅ deg(𝑗) ≥ deg(𝑖)

By comparing (C.1.17) with the formula of Remark A.6.11, we observe that lim𝜕ℐ(𝑖,−)𝑋 ≅ 𝜕𝑖𝑋.
Recall from Definition A.6.1, that weighted limits are contravariantly functorial in the weight.

Thus, the natural inclusion 𝜕ℐ(𝑖, −) ↪ ℐ(𝑖, −) induces a canonical map

𝑋 𝑖 ≅ limℐ(𝑖,−)𝑋 lim𝜕ℐ(𝑖,−)𝑋 ≅ 𝜕𝑖𝑋𝑚𝑖

between the weighted limits. Anticipating the terminology of Definition C.4.14 we refer to 𝜕𝑖𝑋 as the
𝑖th matching object of the diagram 𝑋 and call 𝑚𝑖 ∶ 𝑋 𝑖 → 𝜕𝑖𝑋 the 𝑖th matching map.

For reasons that will momentarily become clear we define:

C.1.19. Definition. Letℳ be a category of fibrant objects and let ℐ be an inverse category.

• A fibrant diagram is a diagram 𝑋 ∈ ℳℐ with the property that for each 𝑖 ∈ ℐ, the matching map
𝑚𝑖 ∶ 𝑋 𝑖 ↠ 𝜕𝑖𝑋 is a fibration.

• A fibrant natural transformation is a natural transformation 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ between fibrant
diagrams so that for each 𝑖 ∈ ℐ the relative matching map �̂�𝑖 defined by the pullback in the square
formed by the matching maps is a fibration:

𝑋 𝑖 𝑌 𝑖

•

𝜕𝑖𝑋 𝜕𝑖𝑌

𝑚𝑖

𝛼𝑖

�̂�𝑖

𝑚𝑖

𝜕𝑖𝛼

(C.1.20)

For example, a fibrant diagram of shape𝝎 is a tower of fibrations, as in Proposition C.1.15. The
maps referenced in the first statement of that result are exactly the relative matching maps associated
to a natural transformation 𝛼 between fibrant diagrams, so the first hypothesis asserts exactly that 𝛼 is
a fibrant natural transformation. The following generalization of Proposition C.1.15 is an unenriched
version of Proposition 6.2.8.

C.1.21. Proposition.

(i) A category of fibrant objectsℳ admits limits of any fibrant diagram 𝑋 ∈ ℳℐ indexed by an inverse
category ℐ, with limℐ 𝐹 ∈ ℳ constructed as the limit of a tower⁶

lim
ℐ

𝑋 ≔ lim
𝝎op

� ⋯ limℐ≤𝑛 𝑋 limℐ≤𝑛−1 𝑋 ⋯ limℐ≤0 𝑋 �

⁶The objects are the limits of the restricted diagrams, with the subscript indicating the indexing category.
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each layer of which is a pullback

limℐ≤𝑛 𝑋 limℐ≤𝑛−1 𝑋

∏
deg(𝑖)=𝑛

𝑋 𝑖 ∏
deg(𝑖)=𝑛

𝜕𝑖𝑋

In particular, each leg of the limit cone limℐ𝑋 ↠ 𝑋 𝑖 is a fibration as is each map in the image of the
fibrant diagram 𝑋.

(ii) For any fibrant natural transformation 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ between fibrant diagrams, the induced
map limℐ𝑋 → limℐ 𝑌 is the limit composite of a tower whose 𝑛th layer is a pullback of the map 𝑝𝑛
constructed as a pullback in the diagram below:

limℐ≤𝑛 𝑋
𝑖 ∏

deg(𝑖)=𝑛
𝑋 𝑖

limℐ≤𝑛−1 𝑋
𝑖 ∏

deg(𝑖)=𝑛
𝜕𝑖𝑋

• •

limℐ≤𝑛 𝑌
𝑖 ∏

deg(𝑖)=𝑛
𝑌 𝑖

limℐ≤𝑛−1 𝑌
𝑖 ∏

deg(𝑖)=𝑛
𝜕𝑖𝑌

𝑝𝑛

(C.1.22)

Moreover, each component map 𝛼𝑖 ∶ 𝑋 𝑖 ↠ 𝑌 𝑖 is a fibration.

Proof. Note that the slice category 𝑖/ℐ𝑛−1 is again an inverse category with degree functor

𝑖/ℐ𝑛−1
cod

ℐ𝑛−1
deg

𝝎op

in which every object has degree at most 𝑛 − 1. In the case where 𝑖 has degree 1, this category has only
identity arrows, so by induction we may assume that the limit 𝜕𝑖𝑋 defined by (C.1.17) exists. Now the
result of (i) follows by direct inspection of the universal property of this construction, as in the proof
of Proposition C.1.15. The final assertion follows from this construction and is left to Exercise C.1.iii.

By (i), it follows that the induced map between the inverse limits is defined as the limit of an
𝝎op-indexed diagram in the arrow categoryℳ𝟚:

limℐ𝑋 ≔ lim𝑛∈𝝎op limℐ≤𝑛 𝑋 ⋯ limℐ≤2 𝑋 limℐ≤1 𝑋 limℐ≤0 𝑋

limℐ 𝑌 ≔ lim𝑛∈𝝎op limℐ≤𝑛 𝑌 ⋯ limℐ≤2 𝑌 limℐ≤1 𝑌 limℐ≤0 𝑌

limℐ 𝛼 𝑝0

Under the hypothesis of (ii), it follows by the proof of Proposition C.1.15(i), the map limℐ 𝛼 then
factors as the limit composite of a tower whose bottom layer is the pullback of the map 𝑝0 along the
lower-horizontal composite above, whose next layer is the pullback of the map 𝑝1 appearing in the
right-most square, whose next layer is the pullback of the map 𝑝2 appearing in the second right-most
square, and so on, where in each square 𝑝𝑛 is the map from the upper left-hand corner to the pullback
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of the lower-right cospan. The map 𝑝0 is a product of the relative matching maps indexed by objects
of degree zero, and is thus a fibration. By applying pullback composition and cancelation in the cube
(C.1.22), it follows from (i) that the top and bottom faces are pullbacks, and consequently the map 𝑝𝑛
from the initial vertex to the pullback in the left face is a pullback of the corresponding map from
∏

deg(𝑖)=𝑛𝑋
𝑖 to the pullback in the right face. This map is the product of the relative matching maps

indexed by objects of degree 𝑛, and in thus a fibration, so 𝑝𝑛 is a fibration as well. Thus, by Proposition
C.1.15(i), the induced map limℐ 𝛼∶ limℐ𝑋 → limℐ 𝑌 is a fibration as well. This proves all but the
final clause of (ii), which is also left to Exercise C.1.iii. �

We would like to conclude also that for any pointwise weak equivalence 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ

between fibrant diagrams indexed by inverse categories, the induced map limℐ𝑋 → limℐ 𝑌 is a weak
equivalence. As in the proof of Proposition C.1.15(ii) this requires an intermediate result of independent
interest, closely related to Exercise 6.1.iii.

C.1.23. Proposition. Letℳ be a category of fibrant objects with fibrations 𝙵 and weak equivalences 𝚆 and
let ℐ be an inverse category. The categoryℳℐ of fibrant diagrams and all natural transformations between
them inherits the structure of a category of fibrant objects in which:

• the weak equivalences are those natural transformations whose components lie in 𝚆
• the fibrations are the fibrant natural transformations, those 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ so that for each 𝑖 ∈ ℐ the

relative matching map 𝑋 𝑖 𝑌 𝑖 ×
𝜕𝑖𝑌

𝜕𝑖𝑋�̂�𝑖
is in 𝙵.

• the trivial fibrations are those natural transformations 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ so that for each 𝑖 ∈ ℐ the

relative matching map 𝑋 𝑖 𝑌 𝑖 ×
𝜕𝑖𝑌

𝜕𝑖𝑋∼�̂�𝑖
is in 𝙵 ∩ 𝚆.

Proof. The proof is a very lengthy exercise for the reader, which only entails specializing the
corresponding arguments from §C.4 to this “one-sided” case. A proof of a similar result using a mildly
different axiomatization can be found in [94, 9.2.4]. �

The payoff for all this work is the following result.

C.1.24. Proposition. Letℳ be a category of fibrant objects and let ℐ be an inverse category. Then for any

pointwise weak equivalence 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ between fibrant diagrams, the induced map limℐ𝑋 → limℐ 𝑌
between the limits is a weak equivalence.

Proof. We make use of Proposition C.1.23, which gives the category ℳℐ of fibrant diagrams

the structure of a category of fibrant objects. Consider a map 𝛼∶ 𝑋 → 𝑌 ∈ ℳℐ in 𝙵 or 𝙵 ∩ 𝚆. By
Proposition C.1.21(ii), this map is the limit composite of a tower of maps, each layer of which is the
pullback of a product of the maps that we have assumed lies in 𝙵 or 𝙵∩ 𝚆. Since the classes 𝙵 and 𝙵∩ 𝚆
are closed under product, pullback, and limits of towers, it is now clear that the limit functor preserves
these classes. The fact that it also proves the class 𝚆 then follows from Lemma C.1.10. �

Exercises.

C.1.i. Exercise. Show that for any category of fibrant objectsℳ there is a category of fibrant objects
ℳ whose

• objects are cospans 𝐶
𝑔
𝐴

𝑓
𝐵 whose right leg is a fibration inℳ,
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• weak equivalences are pointwise weak equivalences, and
• fibrations are diagrams

𝐶 𝐴 𝐵

•

�̄� �̄� �̄�

𝑔

𝑟 𝑝

𝑓

𝑞

𝑧

�̄� ̄𝑓

in which the maps 𝑟, 𝑝, and 𝑞 are fibrations, as is the induced map 𝑧 ∶ 𝐵 → 𝐴 ×�̄� �̄�.
with the requisite limits inherited pointwise fromℳ.

C.1.ii. Exercise. Specialize Proposition C.1.23 to describe the category of fibrant objects structure on
the categoryℳ𝝎op

of towers of fibrations in a category of fibrant objectsℳ, and use this to complete
the proof of Proposition C.1.15(ii).

C.1.iii. Exercise (C.5.10).

(i) Verify that each leg of the limit cone constructed in Proposition C.1.21(i) is a fibration.
(ii) Conclude that each morphism in the image of a fibrant diagram is a fibration.
(iii) Arguing along the same lines, verify that each component of a fibrant natural transformation

is a fibration.

C.1.iv. Exercise. Prove Proposition C.1.23 and determine whether Exercises C.1.i and C.1.ii are special
cases of this result.

C.2. Lifting Properties, Weak Factorization Systems, and Leibniz Closure

Fixing two arrows 𝑗 and 𝑝 in a categoryℳ, we regard any commutative square of the form

• •

• •

𝑢

𝑗 𝑝ℓ

𝑣

as presenting a lifting problem between 𝑗 and 𝑝, which is solved by constructing a lift: a diagonal
morphism ℓ making both triangles commute. If every lifting problem between 𝑗 and 𝑝 has a solution,
we say that 𝑗 has the left lifting property with respect to 𝑝 and, equivalently, that 𝑝 has the right lifting
property with respect to 𝑗. When this is the case, we use the suggestive symbol 𝑗 ⧄ 𝑝 to assert this lifting
property.

Frequently in abstract homotopy theory a class of maps of interest is characterized by a left or right
lifting property with respect to another class or set of maps.

C.2.1. Definition. Let 𝙹 be a class of maps in a categoryℳ.

• Write 𝙹⧄ for the class of maps in ℳ that have the right lifting property with respect to every
morphism in 𝙹.

• Write ⧄𝙹 for the class of maps in ℳ that have the left lifting property with respect to every
morphism in 𝙹.
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C.2.2. Example. Definitions 1.1.17 and 1.1.25 characterize the isofibrations and trivial fibrations
between quasi-categories by right lifting properties against the sets of maps

{Λ𝑘[𝑛] ↪ Δ[𝑛]}𝑛≥2,0<𝑘<𝑛 ∪ {𝟙 ↪ 𝕀} and {𝜕Δ[𝑛] ↪ Δ[𝑛]}𝑛≥0 ,
respectively.

Maps characterized by a right lifting property automatically satisfy various closure properties that
may now be familiar.

C.2.3. Lemma. Any class of maps 𝙹⧄ characterized by a right lifting property contains the isomorphisms and is
closed under composition, product, pullback, retract, and limits of towers.

In the statement, “products” and “retracts” refer to limits formed in the category of arrows, while
the “pullbacks” are of a map in 𝙹⧄ along an arbitrary map. A “tower” refers to a diagram of shape 𝛼op,
where 𝛼 is a limit ordinal (most likely𝝎).

Proof. All of the arguments are similar. For instance, suppose 𝑞 is a pullback of 𝑝 ∈ 𝙹⧄. By
juxtaposing a lifting problem as below-left with the pullback square as below-right, we may solve the
composite lifting problem of 𝑗 against 𝑝 to obtain the dashed diagonal morphism ℓ, and then induce a
solution 𝑠 to the lifting problem of 𝑗 against 𝑞 via the cone formed by (𝑣, ℓ) over the pullback diagram

• • •

• • •

𝙹∋𝑗

𝑢

𝑞

𝑎

𝑝

𝑣

ℓ𝑠

𝑏

So 𝑞 lifts against 𝙹 and is therefore in 𝙹⧄. �

On account of the dual of Lemma C.2.3, any set of maps in a cocomplete category “cellularly
generates” a larger class of maps with the same left lifting property.

C.2.4. Definition. Let 𝙹 be a set of maps that we think of as “basic cells.” A 𝙹-cell complex is a map
built as a transfinite composite of pushouts of coproducts of maps in 𝙹:

• • • •

• • • • •

• •

∐𝑗∈𝙹 ∐ 𝑗∈𝙹

∈𝙹-cell

∐𝑗∈𝙹

The class 𝙹-cell of 𝙹-cell complexes is said to be cellularly generated by a set of maps 𝙹. The class 𝙹-cof
of maps cofibrantly generated by a set of maps 𝙹 is comprised of those maps obtained as retracts of
sequential composites of pushouts of coproducts of those maps.

C.2.5. Definition. A weak factorization system (𝙻, 𝚁) on a categoryℳ is comprised of two classes of
morphisms 𝙻 and 𝚁 so that
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(i) Every morphism inℳ may be factored as a morphism in 𝙻 followed by a morphism in 𝚁.

• •
•

𝑓

𝙻∋ℓ 𝑟∈𝚁

(ii) The classes 𝙻 and 𝚁, respectively, have the left and right lifting properties 𝙻 ⧄ 𝚁 with respect to
each other: that is, any commutative square from a mall in 𝙻 to a map in 𝚁 admits a diagonal
filler:

• •

• •
𝙻∋ℓ 𝑟∈𝚁

(iii) Moreover 𝙻 = ⧄𝚁 and 𝚁 = 𝙻⧄.

As a consequence of axiom (iii), the right class of a weak factorization system enjoys the closure
properties of Lemma C.2.3, while the left class is closed under the dual constructions.

In the presence of a pair of adjoint functors, lifting properties transpose.

C.2.6. Lemma. In the presence of an adjunction:

ℳ 𝒩
𝐹
⟂
𝑈

(i) A solution to the lifting problem in 𝒩 displayed below-left transposes to define a solution for the
transposed lifting problem inℳ displayed below-right:

𝐹𝐴 𝑋 𝐴 𝑈𝑋

𝐹𝐵 𝑌 𝐵 𝑈𝑌
𝐹ℓ

𝑓 ♯

𝑟

𝑓 ♭

ℓ 𝑈𝑟

𝑔♯

𝑘♯ 𝑘♭

𝑔♭

(ii) Ifℳ has a weak factorization system (𝙻, 𝚁) and𝒩 has a weak factorization system (𝙻′, 𝚁′) then 𝐹
preserves the left classes if and only if 𝑈 preserves the right classes:

𝐹𝙻 ⊂ 𝙻′ ↭ 𝚁 ⊃ 𝑈𝚁′.

The factorizations of Definition C.2.5 are completely irrelevant to (ii) but we have stated this result
for weak factorization systems because that is the context in which it is typically applied.

Proof. Exercise C.2.iii. �

Lemma C.2.6(ii) defines the notion of adjunction of weak factorization systems, this being an
adjoint pair of functors between categories equipped with weak factorization systems so that the left
adjoint preserves the left classes and the right adjoint preserves the right classes. Our aim is now to
extend this notion to two-variable adjunctions,⁷ which are given by a triple of bifunctors,

𝒱×ℳ
⊗

𝒩 , 𝒱op ×𝒩
{,}

ℳ , ℳop ×𝒩
hom

𝒱 (C.2.7)

⁷There is an analogous generalization to 𝑛-variable adjunctions that can be found in [26, §4].
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written using notation that suggests the most common examples, equipped with a natural isomorphism

𝒩(𝑉 ⊗𝑀,𝑁) ≅ ℳ(𝑀, {𝑉,𝑁}) ≅ 𝒱(𝑉, hom(𝑀,𝑁)).
The “pushout product” of a bifunctor ⊗∶ 𝒱 ×ℳ → 𝒩 defines a bifunctor �⊗∶ 𝒱𝟚 ×ℳ𝟚 → 𝒩𝟚

that we refer to as the “Leibniz tensor” (when the bifunctor ⊗ is called a “tensor”). The “Leibniz
cotensor” and “Leibniz hom”

�{, } ∶ (𝒱𝟚)op ×𝒩𝟚 → ℳ𝟚 and �hom ∶ (ℳ𝟚)op ×𝒩𝟚 → 𝒱𝟚

are defined dually, using pullbacks inℳ and𝒱, respectively.

C.2.8. Definition (Leibniz tensors and cotensors). Given a bifunctor ⊗∶ 𝒱 ×ℳ → 𝒩 valued in a
category with pushouts, the Leibniz tensor of a map 𝑘 ∶ 𝐼 → 𝐽 in𝒱 and a map ℓ ∶ 𝐴 → 𝐵 inℳ is the

map 𝑘 �⊗ ℓ in𝒩 induced by the pushout diagram below-left:

𝐼 ⊗ 𝐴 𝐼 ⊗ 𝐵 {𝐽, 𝑋}

𝐽 ⊗ 𝐴 • • {𝐼, 𝑋}

𝐽 ⊗ 𝐵 {𝐽, 𝑌} {𝐼, 𝑌}

𝐼⊗ℓ

𝑘⊗𝐴
𝑘⊗𝐵

{𝑘,𝑋}

{𝐽,𝑚}

�{𝑘,𝑚}

𝐽⊗ℓ

𝑘�⊗ℓ {𝐼,𝑚}

{𝑘,𝑌}

In the case of a bifunctor {, } ∶ 𝒱op ×𝒩 → ℳ contravariant in one of its variables valued in a category
with pullbacks, the Leibniz cotensor of a map 𝑘 ∶ 𝐼 → 𝐽 in𝒱 and a map 𝑚∶ 𝑋 → 𝑌 in𝒩 is the map
�{𝑘,𝑚} induced by the pullback diagram above right.

C.2.9. Proposition. The Leibniz construction preserves:

(i) structural isomorphisms: a natural isomorphism

𝑋 ∗ (𝑌 ⊗ 𝑍) ≅ (𝑋 × 𝑌) 𝑍
between suitably composable bifunctors extends to a natural isomorphism

𝑓 ∗̂ (𝑔 �⊗ ℎ) ≅ (𝑓 �× 𝑔) ̂ℎ
between the corresponding Leibniz products;

(ii) adjointness: if (⊗, {, }, hom) define a two-variable adjunction, then the Leibniz functors (�⊗,�{, }, �hom)
define a two-variable adjunction between the corresponding arrow categories;

(iii) retracts: if 𝑓 is a retract of ℎ and 𝑔 is a retract of 𝑘 then 𝑓 �⊗ 𝑔 is a retract of ℎ �⊗ 𝑘;
(iv) colimits in the arrow category: if ⊗∶ 𝒱 × ℳ → 𝒩 is cocontinuous in either variable, then so is

�⊗∶ 𝒱𝟚 ×ℳ𝟚 → 𝒩𝟚;
(v) pushouts: if ⊗∶ 𝒱 ×ℳ → 𝒩 is cocontinuous in its second variable, and if 𝑔′ is a pushout of 𝑔, then

𝑓 �⊗ 𝑔′ is a pushout of 𝑓 �⊗ 𝑔;
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(vi) composition, in a sense: the Leibniz tensor 𝑓 �⊗ (ℎ ⋅ 𝑔) factors as a composite of a pushout of 𝑓 �⊗ 𝑔
followed by 𝑓 �⊗ ℎ

𝐼 ⊗ 𝐴 𝐼 ⊗ 𝐵 𝐼 ⊗ 𝐶

𝐽 ⊗ 𝐴 • •

𝐽 ⊗ 𝐵 •

𝐽 ⊗ 𝐶

𝑓 ⊗𝐴

𝐼⊗𝑔 𝐼⊗ℎ

𝑓 ⊗𝐶

𝐽⊗𝑔
𝑓�⊗𝑔 𝑓�⊗(ℎ⋅𝑔)

𝐽⊗ℎ
𝑓�⊗ℎ

(vii) cell complex structures: if 𝑓 and 𝑔 may be presented as cell complexes with cells 𝑓𝛼 and 𝑔𝛽, respectively,
and if ⊗ is cocontinuous in both variables, then 𝑓 �⊗ 𝑔 may be presented as a cell complex with cells
𝑓𝛼 �⊗ 𝑔𝛽.

Proof. The components of the induced structural isomorphism between Leibniz products are
instances of the given structural isomorphism and hence invertible, proving (i). For (ii), by naturality of
the isomorphisms defining a two-variable adjunction (⊗, {, }, hom), each of the squares below commutes
if and only if the other two do, under the hypothesis that the horizontal arrows given the same names
in each diagram are transposes:

𝐽 ⊗ 𝐴 ∪
𝐼⊗𝐴

𝐼 ⊗ 𝐵 𝑋 𝐴 {𝐽, 𝑋} 𝐼 hom(𝐵, 𝑋)

𝐽 ⊗ 𝐵 𝑌 𝐵 {𝐽, 𝑌} ×
{𝐼,𝑌}

{𝐼, 𝑋} 𝐽 hom(𝐴,𝑋) ×
hom(𝐴,𝑌)

hom(𝐵, 𝑌)
𝑘�⊗ℓ

⟨𝑢,𝑣⟩

𝑚

𝑢

ℓ �{𝑘,𝑚} 𝑘

𝑣

�hom(ℓ,𝑚)

𝑤

𝑥

⟨𝑤,𝑣⟩

𝑥 𝑥

⟨𝑢,𝑤⟩

This transposition correspondence extends to solutions to the lifting problems presented by these
squares (see Exercise C.2.v).

Property (iii) is a consequence of the bifunctoriality of �⊗ in the arrow categories: any bifunctor
preserves retracts. Property (iv) is nearly as immediate, since limits or colimits in arrow categories are
computed pointwise. For (v), consider the commutative cube:

𝐼 ⊗ 𝐴 𝐼 ⊗ 𝐶

𝐼 ⊗ 𝐵 𝐼 ⊗ 𝐷

• •

𝐽 ⊗ 𝐴 𝐽 ⊗ 𝐶

𝐽 ⊗ 𝐵 𝐽 ⊗ 𝐷

𝐼⊗𝑔

𝑓 ⊗𝐴

𝐼⊗𝑔′

𝑓�⊗𝑔′

𝐽⊗𝑔

𝑓�⊗𝑔

Since 𝐼 ⊗ − and 𝐽 ⊗ − preserve the pushout defining 𝑔′ as a pushout of 𝑔, the top and bottom faces
of the cube are pushouts. The squares defining the domains of the Leibniz tensors define pushouts
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inside the left and right-hand faces. It follows by pushout composition and cancelation that 𝑓 �⊗ 𝑔′ is a
pushout of 𝑓 �⊗ 𝑔 as claimed.

The displayed diagram in (vi) proves the assertion made there, so it remains only to prove (vii). First
note that pushouts of transfinite composites of pushouts are again transfinite composites of pushouts
and transfinite composites of transfinite composites are transfinite composites, so it suffices to work

one variable at a time and prove that 𝑓 �⊗ − preserves cell complex presentations for 𝑔. To that end,
suppose 𝑔 is a 𝛼-composite of maps 𝑔𝑖 each of which are pushouts of a coproduct of maps 𝑔′𝑖 = ∐

𝑗 𝑔
′
𝑖,𝑗.

We may promote this colimit to the arrow category to regard 𝑔 = 𝑔0,𝛼 as the colimit of the diagram

𝑔−,𝛼 ∶ 𝛼 → ℳ𝟚 with one-step maps

• •

• •

𝑔𝑖

𝑔𝑖,𝛼 𝑔𝑖+1,𝛼

Similarly, the pushout square defining 𝑔𝑖 from 𝑔′𝑖 can be promoted to a pushout square in the arrow
category:

• •

• •

• •

• •

𝑔′𝑖

𝑔′𝑖

𝑢𝑖 𝑣𝑖

𝑔𝑖

𝑔𝑖+1,𝛼

𝑔𝑖+1,𝛼𝑣𝑖
𝑔𝑖+1,𝛼𝑣𝑖

𝑔𝑖,𝛼

We interpret this cube as presenting the square in the front face as a pushout of the square in the back
face, which decomposes as a coproduct of similar squares, one for each component of 𝑔′𝑖 = ∐

𝑗 𝑔
′
𝑖,𝑗. In

this way we see that 𝑔 = 𝑔0,𝛼 is the domain component of the colimit of a diagram 𝛼 → ℳ𝟚, each

step of which is a pushout of a coproduct of maps in the arrow category. Now 𝑓 �⊗ −∶ ℳ𝟚 → 𝒩𝟚

preserves colimits in the arrow category, and the domain functor dom ∶ 𝒩𝟚 → 𝒩 preserves colimits as

well. Thus, 𝑓 �⊗ 𝑔 is a colimit of an 𝛼-sequence of pushouts of coproducts of the maps 𝑓 �⊗ 𝑔𝑖,𝑗. �

More details establishing these assertions are given in [107, §4–§5].

C.2.10. Definition. Let𝒱,ℳ, and𝒩 be cocomplete categories each equipped with weak factorization
systems (𝙻, 𝚁), (𝙻′, 𝚁′), and (𝙻″, 𝚁″), respectively. A left Leibniz bifunctor is a bifunctor⊗∶ 𝒱×ℳ →
𝒩 that is

(i) cocontinuous in each variable separately, and
(ii) has the Leibniz property: ⊗-pushout products of a map in 𝙻 with a map in 𝙻′ are in 𝙻″.
Dually, a bifunctor between complete categories equipped with weak factorization systems is a

right Leibniz bifunctor if it is continuous in each variable separately and if pullback cotensors of maps
in the right classes land in the right class. We most frequently apply this definition in the case of a
bifunctor

{, } ∶ 𝒱op ×𝒩 → ℳ
that is contravariant in one of its variables, in which we case the relevant hypotheses are that 𝒱 is
cocomplete and colimits in the first variable are carried to limits inℳ, and furthermore the Leibniz
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cotensor of a map inℒ with a map inℛ″ defines a map inℛ ′. The nature of the duality between left
and right Leibniz bifunctors is somewhat subtle to articulate, and left this as a puzzle for the reader (or
see [26]).

C.2.11. Lemma. If the bifunctors

𝒱×ℳ
⊗

𝒩, 𝒱op ×𝒩
{,}

ℳ, and ℳop ×𝒩
hom

𝒱
define a two-variable adjunction, and (𝙻, 𝚁), (𝙻′, 𝚁′), and (𝙻″, 𝚁″) are three weak factorization systems on𝒱,
ℳ, and𝒩, respectively, then the following are equivalent

(i) ⊗∶ 𝒱 ×ℳ → 𝒩 defines a left Leibniz bifunctor.
(ii) {, } ∶ 𝒱op ×𝒩 → ℳ defines a right Leibniz bifunctor.
(iii) hom ∶ ℳop ×𝒩 → 𝒱 defines a right Leibniz bifunctor.

When these conditions are satisfied, we say that (⊗, {, }, hom) defines a Leibniz two-variable adjunction.

Proof. The presence of the adjoints ensures that each of the bifunctors satisfy the required

(co)continuity hypotheses. Note that, for instance, 𝙻 �⊗ 𝙻′ ⊂ 𝙻″ if and only if 𝙻 �⊗ 𝙻′ ⧄ 𝚁″. Now
the equivalence of the three statements follows from the equivalence of the following three lifting
properties:

𝙻 �⊗ 𝙻′ ⧄ 𝚁″ ↭ 𝙻′ ⧄ �{𝙻, 𝚁″} ↭ 𝙻 ⧄ �hom(𝙻′, 𝚁″),
the proof of which is left to Exercise C.2.v. �

C.2.12. Remark. By Proposition C.2.9(vii), to show that a cocontinuous bifunctor ⊗ satisfies the
Leibniz property, it suffices to show that ⊗-Leibniz products of generating morphisms are in the left
class of the codomain weak factorization system.

C.2.13. Lemma. For any categoryℳ with products and coproducts that is equipped with a weak factorization
system (𝙻, 𝚁) the set-tensor, set-cotensor, and hom

∗ ∶ 𝒮𝑒𝑡 ×ℳ → ℳ, {, } ∶ 𝒮𝑒𝑡op ×ℳ → ℳ, and hom ∶ ℳop ×ℳ → 𝒮𝑒𝑡
respectively define a Leibniz two-variable adjunction relative to the (monomorphism, epimorphism) weak
factorization system on 𝒮𝑒𝑡.

Proof. By Lemma C.2.11, it suffices to prove any one of these bifunctors is Leibniz. When𝐴 ↪ 𝐵
is a monomorphism in 𝒮𝑒𝑡, the Leibniz tensor with 𝑓 ∶ 𝑋 → 𝑌 decomposes as a coproduct of maps
that are manifestly in 𝙻.

𝐴 ∗ 𝑋 𝐵 ∗ 𝑋 ≅ 𝐴 ∗ 𝑋 ⨿ 𝐵\𝐴 ∗ 𝑋

𝐴 ∗ 𝑌 𝐴 ∗ 𝑌 ⨿ 𝐵\𝐴 ∗ 𝑋

𝐵 ∗ 𝑌 ≅ 𝐴 ∗ 𝑌 ⨿ 𝐵\𝐴 ∗ 𝑌

𝐴∗𝑓 𝐴∗𝑓 ⨿id
𝐵∗𝑓

id⨿𝐵\𝐴∗𝑓

(C.2.14)

A slicker proof is also possible. Because every monomorphism may be presented as a cell complex
built from a single cell ∅ ↪ 1, it suffices, by Proposition C.2.9(vii), to consider Leibniz tensor with
the generating monomorphism ∅ ↪ 1. But note that the functor

ℳ𝟚 (∅↪1)∗̂−
ℳ2
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is naturally isomorphic to the identity, which certainly preserves the left class 𝙻. �

C.2.15. Remark. By Lemma C.2.13, hom ∶ ℳop ×ℳ → 𝒮𝑒𝑡 is right Leibniz, meaning that for any
ℓ ∈ 𝙻 and 𝑟 ∈ 𝚁, the morphism

ℳ(cod ℓ, dom 𝑟)
𝑟∘−∘ℓ

ℳ(dom ℓ, dom 𝑟) ×
ℳ(dom ℓ,cod 𝑟)

ℳ(cod ℓ, cod 𝑟)

is an epimorphism. The target of this map is the set of commutative squares inℳ from ℓ to 𝑟, while
the fiber over any element is the set of solutions to the lifting problem so-presented. The fact that this
is an epimorphism re-expresses the lifting property 𝙻 ⧄ 𝚁.

Exercises.

C.2.i. Exercise. Finish the proof of Lemma C.2.3.

C.2.ii. Exercise.

(i) Prove the “retract argument”: Suppose 𝑓 = 𝑟 ∘ ℓ and 𝑓 has the left lifting property with respect
to its right factor 𝑟. Then 𝑓 is a retract of its left factor ℓ.

(ii) Conclude that in the presence of axioms (i) and (ii) of Definition C.2.5, that axiom (iii) may be
replaced by the hypothesis that the classes 𝙻 and 𝚁 are closed under retracts.

C.2.iii. Exercise. Prove Lemma C.2.6

C.2.iv. Exercise.

(i) Supposeℳ is a category with products, pullbacks, and limits of towers equipped with a weak

factorization system (𝙻, 𝚁). Prove that for any inverse categoryℐ, the category of diagramsℳℐ

has a weak factorization system whose left class is comprised of those maps whose components
are in 𝙻 and whose right class is comprised of those maps 𝛼∶ 𝑋 → 𝑌 so that for each 𝑖 ∈ 𝐼, the
relative matching map �̂�𝑖 ∶ 𝑋𝑖 → 𝜕𝑖𝑋 ×𝜕𝑖𝑌 𝑌𝑖 lies in 𝚁.

(ii) Give a new proof that lim ∶ ℳℐ → ℳ preserves fibrations and trivial fibrations under the
additional hypothesis that the classes 𝙵 and 𝙵∩𝚆 ofℳ are the right classes of weak factorization
systems.

C.2.v. Exercise. Given a two variable adjunction (C.2.7) and classes of maps 𝙰, 𝙱, 𝙲 in 𝒱,ℳ,𝒩,
respectively, prove that the following lifting properties are equivalent

𝙰⊗̂𝙱 ⧄ 𝙲 ⇔ 𝙱 ⧄ �{𝙰, 𝙲} ⇔ 𝙰 ⧄ �hom(𝙱, 𝙲).

C.3. Model Categories and Quillen Functors

The following reformulation of Quillen’s definition of a “closed model category” [93, I.5.1] was
given by Joyal and Tierney [64, 7.7], who prove that a category (ℳ, 𝚆) with weak equivalences satisfying
the 2-of-3 property admits a model structure just when there exist classes 𝙲 and 𝙵 that define a pair of
weak factorization systems as follows:

C.3.1. Definition (model category). A model structure on a complete and cocomplete categoryℳ
consists of three classes of maps – the weak equivalences 𝚆 denoted “∼ ” which must satisfy the 2-of-3
property, the cofibrations 𝙲 denoted “↣,” and the fibrations 𝙵 denoted “↠” – so that (𝙲, 𝙵 ∩ 𝚆) and
(𝙲 ∩ 𝚆, 𝙵) each define weak factorization systems onℳ.⁸

⁸There is one axiom in standard definition of a model category – the closure of weak equivalences under retracts –
that is not obviously packaged into these hypotheses, but this is a consequence of the axioms given here [64, 7.8].
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A model category is a complete and cocomplete category equipped with a model structure. The
better-behaved objects in a model category are either “fibrant” or “cofibrant” or both:

C.3.2. Definition. In a model categoryℳ an object 𝑋 is fibrant just when the unique map 𝑋 → 1
to the terminal object is a fibration and cofibrant just when the unique map ∅ → 𝑋 from the initial
object is a cofibration. By factoring the unique maps, any object 𝑋 has a cofibrant replacement 𝑄𝑋
and a fibrant replacement 𝑅𝑋 constructed as follows:

𝑅𝑋

∅ 𝑋 ∗

𝑄𝑋

! ∼

!∼

Note that Definitions C.2.5 and C.3.1 are self-dual: if (𝙻, 𝚁) defines a weak factorization system
onℳ then (𝚁, 𝙻) defines a weak factorization system onℳop. Thus all general theorems about the
right classes 𝙵 of fibrations and 𝙵 ∩ 𝚆 of trivial fibrations “∼ ,” imply the dual results involving the left
classes 𝙲 of cofibrations and 𝙲∩𝚆 of trivial cofibrations “ ∼ .” In particular, by Example C.1.4, all of the
results proven in §C.1 about a category of fibrant objects hold for the fibrations, trivial fibrations, and
weak equivalence between the eponymous fibrant objects in a model category, and the duals of these
results hold for the cofibrations, trivial cofibrations, and weak equivalences between cofibrant objects.

Note also that since either class of a weak factorization system determines the other, the trivial
cofibrations can be defined without reference to either the cofibrations or weak equivalences as those
maps that have the left lifting property with respect to the fibrations, and dually the trivial fibrations
are precisely those maps that have the right lifting property with respect to the cofibrations.

C.3.3. Definition. A functor between model categories is

• left Quillen if it preserves cofibrations, trivial cofibrations, and cofibrant objects, and
• right Quillen if it preserves fibrations, trivial fibrations, and fibrant objects.

Left Quillen functors admit left derived functors while right Quillen functors admit right derived
functors. We leave a full account of this to other authors [103, §2.1–2] so as to avoid defining these terms,
but an important component of the “derivability” of Quillen functors is captured by the following
result:

C.3.4. Lemma. Any left Quillen functor between model categories preserves weak equivalences between cofibrant
objects, while any right Quillen functor preserves weak equivalences between fibrant objects.

Proof. For right Quillen functors this follows directly from Lemma C.1.10 and Example C.1.4.
The result for left Quillen functors is dual. �

Most left Quillen functors are “cocontinuous,” preserving all colimits, while most right Quillen
functors are “continuous,” preserving all limits; when this is the case there is no need to separately
assume that cofibrant or fibrant objects are preserved. In fact, Quillen functors commonly occur as an
adjoint pair:

C.3.5. Definition. Consider an adjunction between a pair of model categories.

ℳ 𝒩
𝐹
⟂
𝑈

By Lemma C.2.6 the following are equivalent, defining a Quillen adjunction.

462



(i) The left adjoint 𝐹 is left Quillen.
(ii) The right 𝑈 is right Quillen.
(iii) The left adjoint preserves cofibrations and the right adjoint preserves fibrations.
(iv) The left adjoint preserves trivial cofibrations and the right adjoint preserves trivial fibrations.

C.3.6. Lemma. For a Quillen adjunction

ℳ 𝒩
𝐹
⟂
𝑈

the following are equivalent and characterize those Quillen adjunctions that define Quillen equivalences:

(i) For every cofibrant object𝑀 ∈ ℳ and every fibrant object 𝑁 ∈ 𝒩, a map 𝑓 ♯ ∶ 𝐹𝑀 → 𝑁 is a weak
equivalence in𝒩 if and only if its transpose 𝑓 ♭ ∶ 𝑀 → 𝑈𝑁 is a weak equivalence inℳ.

(ii) For every cofibrant object𝑀 ∈ ℳ, the derived unit

𝑀 𝑈𝐹𝑀 𝑈𝑅𝐹𝑀
𝜂

defined by composing the unit with fibrant replacement is a weak equivalence, and for every fibrant
object 𝑁 ∈ 𝒩, the derived counit

𝐹𝑄𝑈𝑁 𝐹𝑈𝑁 𝑁𝜖

defined by composing the counit with cofibrant replacement is a weak equivalence.

Proof. Assume (i) and consider a cofibrant object𝑀 ∈ ℳ and a fibrant object𝑁 ∈ 𝒩. The de-
rived unit and counit are, respectively, transposes of the fibrant replacement and cofibrant replacement
maps

𝐹𝑀 𝑅𝐹𝑀 𝑄𝑈𝑁 𝑈𝑁∼ ∼

By Definition C.3.2 these maps are weak equivalences, and since 𝑀 and 𝑄𝑈𝑁 are cofibrant while
𝑅𝐹𝑀 and 𝑁 are fibrant, (i) tells us that the derived unit and counit must be weak equivalences as well.

Now assume that the derived unit is a weak equivalence and consider a weak equivalence 𝑓 ♯ ∶ 𝐹𝑀 ∼

𝑁 where 𝑀 is cofibrant and 𝑁 is fibrant. Applying the right adjoint and fibrant replacement, we
obtain a commutative diagram

𝑀 𝑈𝐹𝑀 𝑈𝑅𝐹𝑀

𝑈𝑁 𝑈𝑅𝑁

𝜂

𝑓 ♭

∼

𝑈𝑓 ♯ ∼ 𝑈𝑅𝑓 ♯

∼

By Lemma C.3.4, the right and bottom maps are weak equivalences and by hypothesis the derived unit
appearing as the top composite is as well. By the 2-of-3 property, the transpose 𝑓 ♭ ∶ 𝑀 ∼ 𝑈𝑁 is a
weak equivalence as well. Dually, if the derived counit is a weak equivalence then weak equivalences

𝑓 ♭ ∶ 𝑀 ∼ 𝑈𝑁 transpose to weak equivalences 𝑓 ♯ ∶ 𝐹𝑀 ∼ 𝑁. �

We now introduce a pair of model structures on diagram categories that are designed to ensure
that the diagonal functor Δ∶ ℳ → ℳ𝒥 is, respectively, right or left Quillen, so that the colimit and
limit functors, respectively, are left or right Quillen. The corresponding left and right derived functors
then define the homotopy colimit and homotopy limit functors.
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C.3.7. Definition. Letℳ be a model category and let𝒥 be a small category.

(i) The projective model structure onℳ𝒥 has weak equivalences and fibrations defined pointwise
inℳ.

(ii) The injectivemodel structure onℳ𝒥 hasweak equivalences and cofibrations defined pointwise
inℳ.

When the model categoryℳ is combinatorial or more generally accessible, the projective and injective
model structures always exist [54]. Of course, the projective and injective model structures might
happen to exist onℳ𝒥, perhaps for particular diagram shapes𝒥, in the absence of these hypotheses.

A Quillen two-variable adjunction is a two-variable adjunction in which the left adjoint is a left
Quillen bifunctor while the right adjoints are both right Quillen bifunctors. By Exercise C.2.v, any one
of these conditions implies the other two:

C.3.8. Definition. A two-variable adjunction

𝒱×ℳ
⊗

𝒩, 𝒱op ×𝒩
{,}

ℳ, ℳop ×𝒩
hom

𝒱
between model categories𝒱,ℳ, and𝒩 defines a Quillen two-variable adjunction if any, and hence
all, of the following equivalent conditions are satisfied:

(i) The functor ⊗̂ ∶ 𝒱𝟚 × ℳ𝟚 → 𝒩𝟚 carries a cofibration in 𝒱 and a cofibration in ℳ to a
cofibration in𝒩 and furthermore this cofibration is a weak equivalence if either of the domain
cofibrations are.

(ii) The functor �{, } ∶ (𝒱𝟚)op × 𝒩𝟚 → ℳ𝟚 carries a cofibration in 𝒱 and a fibration in 𝒩 to a
fibration in 𝒩 and furthermore this fibration is a weak equivalence if either of the domain
maps are.

(iii) The functor �hom ∶ (ℳ𝟚)op ×𝒩𝟚 → 𝒱𝟚 carries a cofibration inℳ and a fibration in𝒩 to a
fibration in 𝒱 and furthermore this fibration is a weak equivalence if either of the domain
maps are.

C.3.9. Remark. By Definition C.3.8, a two-variable adjunction is Quillen if and only if its left adjoint
⊗∶ 𝒱 × ℳ → 𝒩 is a left Quillen bifunctor: a bifunctor that is left Leibniz with respect to seven
of the eight possible choices of constituent weak factorization systems, the exception the choice of
(𝙲, 𝙵 ∩ 𝚆) for both𝒱 andℳ and (𝙲 ∩ 𝚆, 𝙵) for𝒩.

Quillen’s axiomatization of the additional properties enjoyed by his model structure on the category
of simplicial sets has been generalized by Hovey [57, §4.2] to define the notions of monoidal model
category and enriched model category. We specialize the former to the cartesian closed categories of
§A.1 as those are the only cases needed here. If𝒱 has a model structure and also is a cartesian closed
category it is natural to ask that these structures be compatible in the following sense:

C.3.10. Definition. A cartesian closed model category is a cartesian closed category (𝒱,×, 1) with a
model structure so that

(i) the cartesian product and internal hom define a Quillen two-variable adjunction and
(ii) the map 𝑄1 × 𝑣 → 1 × 𝑣 ≅ 𝑣 defined by the cofibrant replacement of the terminal object is a

weak equivalence whenever 𝑣 is cofibrant.

C.3.11. Definition. If𝒱 is a cartesian closed model category a𝒱-model category is a model category
ℳ that is tensored, cotensored, and𝒱-enriched and so that
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(i) (⊗, {, }, hom) is a Quillen two-variable adjunction and
(ii) the map 𝑄1 ⊗ 𝑚 → 1 ⊗ 𝑚 ≅ 𝑚 defined by the cofibrant replacement of the terminal object

is a weak equivalence whenever 𝑚 is cofibrant.

If 1 ∈ 𝒱 is cofibrant, the second condition in both Definition C.3.10 and C.3.11 follows from the
first one (see Exercise C.3.iii).

C.3.12. Lemma. Ifℳ is a𝒱-model category, then for any cofibrant object𝑀 and fibrant object 𝑁 inℳ,
hom(𝑀,𝑁) is a fibrant object in𝒱. More generally, for any cofibrant object𝑀 and fibration 𝑝∶ 𝑁 ↠ 𝑃,
the induced map 𝑝∗ ∶ hom(𝑀,𝑁) → hom(𝑀, 𝑃) is a fibration in𝒱.

Proof. By Proposition A.5.4 – which implies, for the terminal object 1 ∈ ℳ and any 𝑀 ∈ 𝒱,
that hom(𝑀, 1) ≅ 1 is terminal in 𝒱 – the second statement subsumes the first. By Exercise C.2.v,
the lifting problem below-left for any trivial cofibration 𝑖 in 𝒱 transposes to the lifting problem
below-right

𝑈 hom(𝑀,𝑁) 𝑈 ⊗𝑀 𝑁

𝑉 hom(𝑀, 𝑃) 𝑉 ⊗𝑀 𝑃

∼

𝑖 𝑝∗

∼𝑖⊗𝑀 𝑝

By Exercise C.3.iii, since𝑀 is cofibrant, −⊗𝑀∶ 𝒱 → ℳ is left Quillen, so 𝑖⊗𝑀 is a trivial cofibration
inℳ and since 𝑝∶ 𝑁 ↠ 𝑃 is a fibration, a solution to the lifting problem exists. �

The next result was formulated by Gambino [45] in the context of a model category enriched over
Quillen’s cartesian closed model structure on simplicial sets, but its proof applies in greater generality.

C.3.13. Theorem. Ifℳ is a𝒱-model category and𝒥 is a small category, then the weighted colimit functor

colim− −∶ 𝒱𝒥 ×ℳ𝒥op → ℳ
is left Quillen if the domain categories have the (injective, projective) or (projective, injective) model structure.
Similarly, the weighted limit functor

lim− −∶ (𝒱𝒥)op ×ℳ𝒥 → ℳ
is right Quillen if the domain categories have the (projective, projective) or (injective, injective) model structure.

Proof. By Definition C.3.8 we can prove both statements in adjoint form. The weighted colimit
bifunctor of Definition A.6.5 has a right adjoint (used to express the defining universal property of the
weighted colimit)

hom ∶ (ℳ𝒥op)op ×ℳ → 𝒱𝒥

which sends 𝐹 ∈ ℳ𝒥op
and 𝑚 ∈ ℳ to hom(𝐹−,𝑚) ∈ 𝒱𝒥.

To prove the statement when𝒱𝒥 has the projective andℳ𝒥op
has the injective model structure,

we must show that this is a right Quillen bifunctor with respect to the pointwise (trivial) cofibrations in
ℳ𝒥op

, (trivial) fibrations inℳ, and pointwise (trivial) fibrations in𝒱𝒥. Because the limits involved
in the definition of right Quillen bifunctors are also formed pointwise, this follows immediately from
the corresponding property of the enriched hom bifunctor, which was part of the definition of an
enriched model category. The other cases are similar. �
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C.3.14. Digression (on the construction of homotopy colimits). In a model category, the terms
homotopy colimit and homotopy limit refer to the derived functors of the colimit and limit functors.
The upshot of Theorem C.3.13 is that there are two approaches to constructing a homotopy colimit:
“fattening up the diagram” – for instance, by requiring that its objects are cofibrant and its morphisms
are cofibrations – or “fattening up the weight” – typically by taking a cofibrant replacement of the
terminal weight [103, §11.5]. Lemmas 6.2.14 and 6.2.18 can be understood as examples of the general
equivalence between these two approaches.

We single out one of many consequences of Theorem C.3.13, of interest because the flexible weights
of Definition 6.2.1 are precisely the cofibrant objects in the projective model structure on the category
of weights defines relative to the Joyal model structure on simplicial sets.

C.3.15. Corollary. Ifℳ is a𝒱-model category, then for any diagram 𝐹 ∈ ℳ𝒥 whose objects are all
fibrant and any projective cofibrant weight𝑊 ∈ 𝒱𝒥, the weighted limit is a fibrant object.

Proof. By Theorem C.3.13, the weighted limit bifunctor lim− −∶ (𝒱𝒥)op ×ℳ𝒥 → ℳ is right
Quillen with respect to the projective model structure on the category of weights and the projective
model structure on the category of diagrams. Since right Quillen bifunctors preserve fibrant objects,
it follows that the limit of a pointwise fibrant diagram weighted by a projective cofibrant weight is
fibrant. �

Finally, we make use of the following theorem which enables the change of base of enrichment for
model categories extending the results of §A.7. The premises of Theorem C.3.16 are the obvious exten-
sion of the premises of Proposition A.7.5 to the enriched model category context, but the conclusion
only allows us to transfer enrichments in the direction of the right adjoint because an enriched model
category must also be tensored and cotensored and these properties only transfer in that direction.

The result below is a specialization of a more general theorem proven in [50, 3.8] to cartesian closed
bases for enrichment.

C.3.16. Theorem. Consider a Quillen adjunction between cartesian closed model categories in which the left
adjoint preserves finite products:

𝒱 𝒲
𝐹
⟂
𝑈

Then any𝒲-model category admits the structure of a𝒱-model category with the same underlying unenriched
model category with enriched homs, cotensors, and tensors defined by:

hom𝒱(𝑀,𝑁) ≔ 𝑈 hom𝒲(𝑀,𝑁) , 𝑉 ⊗𝑀 ≔ 𝐹𝑉 ⊗𝑀 , and 𝑀𝑉 ≔ 𝑀𝐹𝑉.

Proof. By Proposition A.7.8 these definitions make 𝒲 into a tensored and cotensored 𝒱-en-
riched category. Lemma A.7.9 observes that change of base along the right adjoint of a finite-product-
preserving adjunction preserves underlying 1-categories. It remains only to verify that the functors
underlying the𝒱-enriched hom, tensor, and cotensor define a Quillen two-variable adjunction, but
this follows easily from the cartesian closure of the model categories𝒱 and𝒲 and the fact that 𝐹 ⊣ 𝑈
is Quillen. �

Exercises.
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C.3.i. Exercise. Verify that the full subcategory of fibrant objects in a model category defines a category
of fibrant objects with 𝚆 the class of weak equivalences and 𝙵 the class of fibrations between fibrant
objects.

C.3.ii. Exercise. Verify that a model structure onℳ, if it exists, is uniquely determined by any of the
following data:

(i) the cofibrations and weak equivalences,
(ii) the fibrations and weak equivalences,
(iii) the cofibrations and fibrations, or
(iv) the trivial cofibrations and trivial fibrations.⁹

C.3.iii. Exercise.

(i) Prove that if ⊗∶ 𝒱 × ℳ → 𝒩 is a left Quillen bifunctor and 𝑉 ∈ 𝒱 is cofibrant then
𝑉 ⊗ −∶ ℳ → 𝒩 is a left Quillen functor.

(ii) Conclude that the second conditions of Definitions C.3.10 and C.3.11 are unnecessary if 1 ∈ 𝒱
is cofibrant.

C.3.iv. Exercise. In a locally small categoryℳ with products and coproducts the hom bifunctor is
part of a two-variable adjunction:

∗ ∶ 𝒮𝑒𝑡 ×ℳ → ℳ, {, } ∶ 𝒮𝑒𝑡op ×ℳ → ℳ, hom ∶ ℳop ×ℳ → 𝒮𝑒𝑡.
Equipping 𝒮𝑒𝑡 with the model structure whose weak equivalences are all maps, whose cofibrations are
the monomorphisms, and whose fibrations are the epimorphisms, prove that

(i) 𝒮𝑒𝑡 is a cartesian closed model category.
(ii) Any model categoryℳ is a 𝒮𝑒𝑡-model category.

C.4. Reedy Categories as Cell Complexes

In this section, we describe a structure borne by certain small categories𝒜 first exploited by Reedy
to prove homotopical results about the category of𝒜-indexed diagrams [99]. Our primary examples
– the ordinal category 𝚫+, inverse categories, their opposites, and products of these – are all (strict)
Reedy categories as defined by Daniel Kan,¹⁰ so we confine our attention to this special case.¹¹ Our
presentation follows [107].

C.4.1. Definition. A Reedy structure on a small category𝒜 consists of a degree function

deg ∶ obj𝒜 → 𝝎

together with a pair of wide subcategories �𝒜 and �𝒜 of degree-increasing and degree-decreasing arrows,
respectively, so that

⁹By a more delicate observation of Joyal [63, E.1.10], a model structure is also uniquely determined by (v) the cofibra-
tions and fibrant objects, or (vi) the fibrations and cofibrant objects.

¹⁰The original written reference for this definition, as cited by the canonical model category texts [55] and [57], was
an early draft of the book that became [39], though by the time this manuscript appeared in print, it in turn referenced
those sources in order to “review the notion of a Reedy category.”

¹¹This theory has been usefully extended by Berger and Moerdijk in such a way as to encompass “generalized Reedy
categories” in which objects are permitted to have nonidentity automorphisms [11].
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(i) For each nonidentity morphism in �𝒜, the degree of its domain is strictly less than the degree

of its codomain, and for each nonidentity morphism in �𝒜, the degree of its domain is strictly
greater than the degree of its domain.

(ii) Every morphism 𝑓 in𝒜 may be uniquely factored as

• •

•

𝑓

�𝒜∋𝑓 𝑓 ∈�𝒜
(C.4.2)

Axiom (i) implies that �𝒜∩ �𝒜 = obj(𝒜), while both conditions together imply that𝒜 contains
no nonidentity automorphisms (see Exercise C.4.i).

C.4.3. Example. Any inverse category ℐ (see Definition C.1.16) is a Reedy category, with ℐ⃖ = ℐ and

ℐ⃗ = objℐ. Conversely, any Reedy category𝒜 with𝒜 = �𝒜 is an inverse category, in which case its
degree function extends to a degree functor that reflects identity arrows.

C.4.4. Example. The category𝚫+ is a Reedy category with �⃗�+ the subcategory of monomorphisms and

�⃖�+ the subcategory of epimorphisms. Here it is convenient to take advantage of the order isomorphism
𝟙 + 𝝎 ≅ 𝝎 to define deg[𝑛] ≔ 𝑛. The subcategories 𝚫, 𝚫⊤, and 𝚫⊥ all inherit analogous Reedy
category structures.

C.4.5. Remark. If 𝒜 is a Reedy category, then so is 𝒜op: its Reedy structure has the same degree
function but has the degree-increasing and degree-decreasing arrows interchanged. In particular,
the Reedy categories of Example C.4.3 dualize to define direct categories, with an identity-reflecting
functor deg ∶ 𝒜 → 𝝎.

C.4.6. Example. If𝒜 and ℬ are Reedy categories, so is𝒜×ℬ, with deg(𝑎, 𝑏) ≔ deg(𝑎) + deg(𝑏) (see
Exercise C.4.ii).

For the remainder of this section, we fix a Reedy category𝒜. We refer to the unique factorization

(C.4.2) as the Reedy factorization of the map 𝑓 and the degree of the object cod 𝑓 = dom 𝑓 as the
degree of 𝑓. Our next aim is to show that:

(i) The degree of 𝑓 is the minimal degree of an object through which 𝑓 factors.
(ii) The only factorization of 𝑓 through an object with this degree is the Reedy factorization.

To prove these assertions, consider the category ℱ𝑎𝑐𝑡𝑓 ≔ (𝑎/𝒜)/𝑓 ≅ 𝑓 /(𝒜/𝑏) whose objects are

factorizations 𝑎
𝑔
𝑐

ℎ
𝑏 of 𝑓 and whose morphisms ℎ ⋅ 𝑔 → ℎ′ ⋅ 𝑔′ are maps 𝑘 ∶ 𝑐 → 𝑐′ so that the

front triangles
𝑐

𝑎 𝑏

𝑐′

ℎ𝑔

𝑔′

𝑓

ℎ′
𝑘

commute. Write ℱ𝑎𝑐𝑡≤𝑛𝑓 ⊂ ℱ𝑎𝑐𝑡𝑓 for the full subcategory of factorizations through an object of
degree at most 𝑛.
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C.4.7. Lemma. The categoryℱ𝑎𝑐𝑡𝑓 is connected, and each full subcategoryℱ𝑎𝑐𝑡≤𝑛𝑓 is either empty or connected.
The minimal 𝑛 with ℱ𝑎𝑐𝑡≤𝑛𝑓 nonempty is the degree of 𝑓, and ℱ𝑎𝑐𝑡≤deg(𝑓 )𝑓 ≅ 𝟙.

Proof. Consider ℎ ⋅ 𝑔 ∈ ℱ𝑎𝑐𝑡𝑓 and their Reedy factorizations:

• • •

• •

•

𝑔

�⃖�

ℎ

ℎ⃖�⃗�

�⃖�

𝑘=ℎ⃖⋅⃗𝑔

ℎ⃗

�⃗�

(C.4.8)

In this way, we define a zigzag of morphisms in ℱ𝑎𝑐𝑡𝑓 connecting ℎ ⋅ 𝑔 to ℎ⃗�⃗� ⋅ �⃖��⃖�, which by axiom (ii)
must be the Reedy factorization of 𝑓. This shows that ℱ𝑎𝑐𝑡𝑓 is connected.

Moreover, axiom (i) implies that the degree of cod(𝑔) = dom(ℎ) is at least the degree of 𝑓. In
particular, if ℎ ⋅ 𝑔 ∈ ℱ𝑎𝑐𝑡≤𝑛𝑓, then each of the factorizations in (C.4.8) is as well, proving that ℱ𝑎𝑐𝑡≤𝑛𝑓
is connected if it is nonempty. This diagram also shows that each nonempty category ℱ𝑎𝑐𝑡≤𝑛𝑓 contains
the Reedy factorization. Hence, the minimal such 𝑛 is the degree of 𝑓.

Finally, if the degree of cod(𝑔) = dom(ℎ) equals the degree of 𝑓, then �⃗� and ℎ⃖ (and �⃗� and �⃖�) must

be identities, from which we deduce that 𝑔 ∈ �𝒜 and ℎ ∈ �𝒜: i.e., that ℎ ⋅ 𝑔 is the Reedy factorization.
Hence ℱ𝑎𝑐𝑡≤deg(𝑓 )𝑓 ≅ 𝟙 is the terminal category as claimed. �

Lemma C.4.7 is used to establish a “cellular decomposition” for the hom bifunctor, elsewhere

denoted by𝒜(−, −) but here abbreviated by𝒜 ∈ 𝒮𝑒𝑡𝒜
op×𝒜

. The Reedy structure allows us to present
the bifunctor𝒜 as a cell complex in the sense of Definition C.2.4: a sequential composite of pushouts
of coproducts of basic “cells” that have a particular form. Lemma C.4.7 implies that the subset of arrows
of degree at most 𝑛 assembles into a subfunctor of the hom-bifunctor.

C.4.9. Definition (𝑛-skeleton of the hom bifunctor). For any Reedy category𝒜, the 𝑛-skeleton is the
subfunctor of arrows of degree at most 𝑛.

sk𝑛𝒜 ↪ 𝒜 ∈ 𝒮𝑒𝑡𝒜
op×𝒜

There are obvious inclusions sk𝑛−1𝒜 ↪ sk𝑛𝒜. The colimit of the sequence

∅ sk0𝒜 ⋯ sk𝑛−1𝒜 sk𝑛𝒜 ⋯ colim sk𝑛𝒜 ≅ 𝒜

is the hom bifunctor𝒜. The morphisms of degree 𝑛 first appear in sk𝑛𝒜. It remains to express each
inclusion sk𝑛−1𝒜 ↪ sk𝑛𝒜 as a pushout of a coproduct of basic “cells” we now describe.

The external (pointwise) product defines a bifunctor ∶ 𝒮𝑒𝑡𝒜 × 𝒮𝑒𝑡𝒜
op

→ 𝒮𝑒𝑡𝒜
op×𝒜

. For any
𝑎 ∈ 𝒜, there is a natural “composition” map ∘ ∶ 𝒜𝑎𝒜𝑎 → 𝒜 whose domain is the external product of
the contravariant𝒜𝑎 and covariant𝒜𝑎 representables; here we write𝒜𝑎 to abbreviate𝒜(−, 𝑎) and
𝒜𝑎 to abbreviate𝒜(𝑎, −). By Lemma C.4.7, the composite of any pair of maps that factor through an
object 𝑎 of degree 𝑛 lies in sk𝑛𝒜, defining a map:

∐
deg(𝑎)=𝑛

𝒜𝑎𝒜𝑎 sk𝑛𝒜
∘

Our next task is to describe the subfunctor of the domain that factors through sk𝑛−1𝒜 ↪ sk𝑛𝒜, for
which we require some new notation.
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C.4.10. Definition (boundaries of representable functors). If 𝑎 ∈ 𝒜 has degree 𝑛, write

𝜕𝒜𝑎 ≔ sk𝑛−1𝒜𝑎 ∈ 𝒮𝑒𝑡𝒜 and

𝜕𝒜𝑎 ≔ sk𝑛−1𝒜𝑎 ∈ 𝒮𝑒𝑡𝒜
op

.

By Lemma C.4.7, 𝜕𝒜𝑎 ↪ 𝒜𝑎 is the subfunctor of arrows in 𝒜 with domain 𝑎 that do not lie in �𝒜,

while 𝜕𝒜𝑎 ↪ 𝒜𝑎 is the subfunctor of arrows with codomain 𝑎 that do not lie in �𝒜.

In particular, the exterior Leibniz product

𝒜𝑎𝜕𝒜𝑎 ∪
𝜕𝒜𝑎𝜕𝒜𝑎

𝜕𝒜𝑎𝒜𝑎 𝒜𝑎𝒜𝑎(𝜕𝒜𝑎↪𝒜𝑎)(̂𝜕𝒜𝑎↪𝒜𝑎)

defines the subfunctor of pairs of morphisms ℎ ⋅ 𝑔 with dom ℎ = cod 𝑔 = 𝑎 in which at least one of the
morphisms 𝑔 and ℎ has degree less than the degree of 𝑎.

C.4.11. Proposition. The displayed commutative square is both a pullback and a pushout in 𝒮𝑒𝑡𝒜
op×𝒜

.

∐
deg(𝑎)=𝑛

𝜕𝒜𝑎𝒜𝑎 ∪𝒜𝑎𝜕𝒜𝑎 ∐
deg(𝑎)=𝑛

𝒜𝑎𝒜𝑎

sk𝑛−1𝒜 sk𝑛𝒜

∘ ∘
(C.4.12)

The fact that (C.4.12) is a pullback is used to facilitate the proof that it is also a pushout.

Proof. An element of the pullback consists of 𝑓 ∈ sk𝑛−1𝒜 together with a factorization 𝑓 = ℎ ⋅ 𝑔
through an object 𝑎 of degree 𝑛. If both ℎ and 𝑔 have degree 𝑛, then Lemma C.4.7 tells us that ℎ ⋅ 𝑔 is a
Reedy factorization, contradicting the fact that 𝑓 has degree at most 𝑛 − 1. So we must have either
ℎ ∈ 𝜕𝒜𝑎 or 𝑔 ∈ 𝜕𝒜𝑎, which tells us that the map from the upper left corner of (C.4.12) surjects onto
the pullback. Because the top-horizontal map is monic, the comparison is therefore an isomorphism;
i.e., (C.4.12) is a pullback square.

To see that it is a pushout, it suffices now to show that the right-hand vertical is one-to-one
on the complement of sk𝑛−1𝒜 ↪ sk𝑛𝒜. This follows from Lemma C.4.7, which argued that any
morphism of degree 𝑛 has a unique factorization through an object of that degree: namely its Reedy
factorization. �

As a corollary of Proposition C.4.11, the hom bifunctor𝒜 has a canonical presentation as a cell
complex.

C.4.13. Theorem. The inclusion ∅ ↪ 𝒜 ∈ 𝒮𝑒𝑡𝒜
op×𝒜

has a canonical presentation as a cell complex:

∐
deg(𝑎)=𝑛

𝜕𝒜𝑎𝒜𝑎 ∪𝒜𝑎𝜕𝒜𝑎 ∐
deg(𝑎)=𝑛

𝒜𝑎𝒜𝑎

∅ sk0𝒜 sk𝑛−1𝒜 sk𝑛𝒜 colim𝑛 sk𝑛𝒜 ≅ 𝒜

∘ ∘

i.e., is a sequential composite of pushouts of coproducts of cells defined as exterior Leibniz products

(𝜕𝒜𝑎 ↪ 𝒜𝑎) ̂(𝜕𝒜𝑎 ↪ 𝒜𝑎),
where the cell for each 𝑎 ∈ 𝒜 of degree 𝑛 is attached at stage 𝑛. �
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As a corollary of Theorem C.4.13, any morphism 𝑓 ∈ ℳ𝒜 is itself a cell complex: the cellular
decomposition of𝒜 is translated into a cellular decomposition for 𝑓 by takingweighted colimits. Taking
weighted limits instead transforms the cellular decomposition of𝒜 into a “Postnikov presentation” for
𝑓 as the limit of a countable tower of pullbacks of products of particular maps. This sort of result is
exemplary of the slogan of [107] that “it is all in the weights.” Before proving this corollary, we require
notation for the maps appearing as the basic cells and basic layers.

C.4.14. Definition (latching and matching objects). Let 𝑎 ∈ 𝒜. The latching andmatching objects of
diagram𝑋 ∈ ℳ𝒜 at 𝑎 are defined to be the colimits and limits, respectively, weighted by the boundary
representables of appropriate variance:

𝐿𝑎𝑋 ∶= colim𝜕𝒜𝑎 𝑋 𝑀𝑎𝑋 ∶= lim𝜕𝒜𝑎 𝑋.
The boundary inclusions 𝜕𝒜𝑎 ↪ 𝒜𝑎 and 𝜕𝒜𝑎 ↪ 𝒜𝑎 induce the latching and matching maps
ℓ 𝑎 ∶ 𝐿𝑎𝑋 → 𝑋𝑎 and 𝑚𝑎 ∶ 𝑋𝑎 → 𝑀𝑎𝑋, on account of the isomorphisms colim𝒜𝑎 𝑋 ≅ 𝑋𝑎 ≅ lim𝒜𝑎 𝑋
of Definition A.6.1(i).

C.4.15. Definition (relative latching and matching maps). The relative latching and relative matching
maps of a natural transformation 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 are defined to be the Leibniz weighted colimits
and limits

�ℓ 𝑎𝑓 ∶= �colim𝜕𝒜𝑎↪𝒜𝑎𝑓 �𝑚𝑎𝑓 ∶= �lim𝜕𝒜𝑎↪𝒜𝑎𝑓,
i.e., by the pullbacks and pushouts:

𝐿𝑎𝑋 𝑋𝑎 𝑋𝑎

𝐿𝑎𝑌 • • 𝑀𝑎𝑋

𝑌𝑎 𝑌𝑎 𝑀𝑎𝑌

𝐿𝑎𝑓

ℓ𝑎

𝑓 𝑎
�𝑚𝑎𝑓

𝑚𝑎

𝑓 𝑎

ℓ𝑎

�ℓ𝑎𝑓 𝑀𝑎𝑓

𝑚𝑎

of the maps 𝐿𝑎𝑓 ∶= colim𝜕𝒜𝑎 𝑓 and𝑀𝑎𝑓 ∶= lim𝜕𝒜𝑎 𝑓.

C.4.16. Notation. For any diagram 𝑋 ∈ ℳ𝒜 let

sk𝑛𝑋 ≔ colimsk𝑛𝒜𝑋 and cosk𝑛𝑋 ≔ limsk𝑛𝒜𝑋
denote the results of applying the weighted colimit and weighted limit bifunctors

colim− −∶ 𝒮𝑒𝑡
𝒜op×𝒜 ×ℳ𝒜 → ℳ𝒜 and lim− −∶ (𝒮𝑒𝑡

𝒜op×𝒜)op ×ℳ𝒜 → ℳ𝒜

of Exercise A.6.iv to the diagram 𝑋 with weight sk𝑛𝒜.

Recall the set-tensor ∗ ∶ 𝒮𝑒𝑡×ℳ → ℳ and set-cotensor {, } ∶ 𝒮𝑒𝑡op×ℳ → ℳ bifunctors defined
for category with coproducts and products.

C.4.17. Corollary. Let 𝒜 be a Reedy category and let ℳ be complete and cocomplete. Any morphism
𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 is a cell complex

𝑋 → 𝑋 ∪
sk0𝑋

sk0 𝑌 → ⋯ → 𝑋 ∪
sk𝑛−1𝑋

sk𝑛−1 𝑌 → 𝑋 ∪
sk𝑛𝑋

sk𝑛 𝑌 → ⋯ → colim ≅ 𝑌
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whose 𝑛th stage attaches the coproduct of the cells

(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ �ℓ 𝑎𝑓
indexed by objects 𝑎 of degree 𝑛, and also a “Postnikov tower”

𝑋 ≅ lim → ⋯ → cosk𝑛𝑋 ×
cosk𝑛 𝑌

𝑌 → cosk𝑛−1𝑋 ×
cosk𝑛−1 𝑌

𝑌 → ⋯ → cosk0𝑋 ×
cosk0 𝑌

𝑌 → 𝑌

whose 𝑛th layer is the product of the maps
�{𝜕𝒜𝑎 ↪ 𝒜𝑎, �𝑚𝑎𝑓 }

indexed by the objects 𝑎 of degree 𝑛.

Proof. These dual results follow immediately by applying the weighted colimit and weighted
limit bifunctors of Exercise A.6.iv

colim− −∶ 𝒮𝑒𝑡
𝒜op×𝒜 ×ℳ𝒜 → ℳ𝒜 and lim− −∶ (𝒮𝑒𝑡

𝒜op×𝒜)op ×ℳ𝒜 → ℳ𝒜

to the cell complex presentations of TheoremC.4.13; recall fromDefinitionA.6.1(ii) that both bifunctors
are cocontinuous in the weight.

To see that the cell complex presentation for 𝑓 has the asserted form, note that for any diagram

𝑋 ∈ ℳ𝒜 and weight defined by an exterior product of 𝑈 ∈ 𝒮𝑒𝑡𝒜 and 𝑉 ∈ 𝒮𝑒𝑡𝒜
op

, there is a natural
isomorphism colim𝑈𝑉𝑋 ≅ 𝑈 ∗ colim𝑉𝑋, which extends to a natural isomorphism between Leibniz
products (Proposition C.2.9(i)).

By the coYoneda lemma, 𝑓 ≅ colim𝒜 𝑓 ≅ �colim∅↪𝒜𝑓. By Proposition C.2.9(vii), the Leibniz

weighted colimit functor �colim−𝑓 preserves cell structures. It follows that 𝑓 admits a canonical presen-
tation as a cell complex with cells

�colim(𝜕𝒜𝑎↪𝒜𝑎)(̂𝜕𝒜𝑎↪𝒜𝑎)𝑓 ≅ (𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ �colim𝜕𝒜𝑎↪𝒜𝑎𝑓 ≅ (𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ �ℓ 𝑎𝑓 . �

This presentation is most familiar for the Reedy category 𝚫op. Here we write 𝚫𝑛 for the standard
𝑛-simplex Δ[𝑛] and 𝜕𝚫𝑛 for its boundary, common notational conventions in the literature that are
consistent with the notation of Definition C.4.10.

C.4.18. Example. A simplicial object 𝑌 taking values in any cocomplete category admits a skeletal
filtration

∅ → sk0 𝑌 → ⋯ → sk𝑛−1 𝑌 → sk𝑛 𝑌 → ⋯ → colim
𝑛

sk𝑛 𝑌 ≅ 𝑌
in which the step from stage 𝑛 − 1 to stage 𝑛 is given by a pushout

𝚫𝑛 ∗ 𝐿𝑛𝑌 ∪ 𝜕𝚫𝑛 ∗ 𝑌𝑛 𝚫𝑛 ∗ 𝑌𝑛

sk𝑛−1 𝑌 sk𝑛 𝑌

where 𝐿𝑛𝑌 → 𝑌𝑛 is the object of “degenerate 𝑛-simplices.”
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Considering the Yoneda embedding as a simplicial object 𝚫 ∈ (𝒮𝑒𝑡𝚫)𝚫op
, this specializes to the

“canonical cell complex presentation” of the hom bifunctor of Theorem C.4.13

𝚫𝑛 × 𝜕𝚫𝑛 ∪ 𝜕𝚫𝑛 × 𝚫𝑛 𝚫𝑛 × 𝚫𝑛

∅ ⋯ sk𝑛−1 𝚫 sk𝑛 𝚫 ⋯ 𝚫

In summary, Corollary C.4.17 tells us that we may express a generic natural transformation between
diagrams of shape𝒜 valued in a complete and cocomplete category as

(i) a cell complex whose cells are Leibniz tensors built from boundary inclusions of covariant
representables and relative latching maps, and dually

(ii) as a Postnikov tower whose layers are Leibniz cotensors built from boundary inclusions of
contravariant representables and relative matching maps.

This explains the importance of these maps to Reedy category theory, as we shall discover in the next
section.

Exercises.

C.4.i. Exercise. Show that any isomorphism in a (strict) Reedy category is an identity.

C.4.ii. Exercise. Show that the product of two Reedy categories is a Reedy category, with the degree
of an object defined to be the sum of the degrees.

C.5. The Reedy Model Structure

Our aim in this section is to explain how any weak factorization system onℳ gives rise to a Reedy
weak factorization system onℳ𝒜, and moreover that the Reedy weak factorization systems associated to
a model structure onℳ define the Reedy model structure onℳ𝒜. Both results derive from an analysis
of what is required to inductively define functors and natural transformations indexed by a Reedy
category. Finally, we prove that the weighted limit and weighted colimit bifunctors define Quillen
bifunctors – an important special case of a more general algebraic result – and discuss the implications
of this result for the theory of homotopy limits and homotopy colimits indexed by Reedy categories.

This work requires one preliminary: a discussion of how the skeleta and coskeleta introduced in the
previous section feature in the inductive definition of Reedy-shaped diagrams. For a Reedy category
𝒜, write

𝒜≤0 ⊂ 𝒜≤1 ⊂ ⋯ ⊂ 𝒜≤𝑛−1 ⊂ 𝒜≤𝑛 ⊂ ⋯ ⊂ 𝒜
for the full subcategories of objects with degree at most the ordinal appearing in the subscript. These
categories give us a new way to understand the skeleton and coskeleton functors of C.4.16.

C.5.1. Lemma. For any complete and cocomplete categoryℳ, restriction and left and right Kan extension
define an adjoint triple of functors

ℳ𝒜 ℳ𝒜≤𝑛res𝑛

ran𝑛
⊥

lan𝑛
⊥
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with induced comonad sk𝑛 ≔ lan𝑛 ∘ res𝑛 and monad cosk𝑛 ≔ ran𝑛 ∘ res𝑛 that are adjoint sk𝑛 ⊣ cosk𝑛 and
naturally isomorphic to the functors defined by weighted colimit and weighted limit

lan𝑛 res𝑛(−) ≅ colimsk𝑛𝒜 − and ran𝑛 res𝑛(−) ≅ limsk𝑛𝒜 −.

Proof. Exercise C.5.i. �

For example:

C.5.2. Definition. Specializing the notation above, write 𝚫≤𝑛 ⊂ 𝚫 for the full subcategory of the
simplex category of 1.1.1 spanned by the ordinals [0], … , [𝑛]. Restriction and left and right Kan
extension define adjunctions

𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚫
op
≤𝑛res𝑛

ran𝑛
⊥

lan𝑛
⊥

inducing an idempotent comonad sk𝑛 ≔ lan𝑛 ∘ res𝑛 and an idempotent monad cosk𝑛 ≔ ran𝑛 ∘ res𝑛 on
𝑠𝒮𝑒𝑡 that are adjoint sk𝑛 ⊣ cosk𝑛. The counit and unit of this comonad and monad define canonical
maps

sk𝑛𝑋 𝑋 cosk𝑛𝑋
𝜖 𝜂

relating a simplicial set 𝑋 with its 𝑛-skeleton and 𝑛-coskeleton. We say 𝑋 is 𝑛-skeletal or 𝑛-coskeletal
if the former or latter of these maps, respectively, is an isomorphism.

The following lemma records special properties of an adjoint triple of functors lan𝑛 ⊣ res𝑛 ⊣ ran𝑛
arising from a fully faithful inclusion sk𝑛𝒜 ↪ 𝒜. In particular, the canonical map from the 𝑛-skeleton
of a simplicial set to its 𝑛-coskeleton can be defined more generally, not just for diagrams defined as
restrictions:

C.5.3. Lemma. For any fully faithful inclusion ℬ ↪ 𝒜 and complete and cocomplete categoryℳ, consider
the associated adjoint triple:

ℳ𝒜 ℳℬres

ran
⊥

lan
⊥

(i) The functors lan, ran ∶ ℳℬ → ℳ𝒜 are fully faithful; that is, the unit of lan ⊣ res and the counit of
res ⊣ ran are isomorphisms.

(ii) The common composite in the commutative square below defines a canonical natural transformation

lan ran res lan

lan res ran ran

𝜂∘lan

lan∘𝜖−1
𝜏

ran∘𝜂−1

𝜖∘ran

While we find the commutative square in (ii) amusing, since the inclusion ℬ ↪ 𝒜 is fully faithful,
that 𝜏 can be defined more simply using the universal properties of left and right Kan extensions as the
initial and terminal functors that extend a given diagram.
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Proof. It is well-known that a right adjoint functor is fully faithful if and only if the counit is an
isomorphism and that the counit of a pointwise right Kan extension along a fully faithful functor is an
isomorphism; for proofs, specialize the results of Lemma 9.4.4 and Proposition 9.4.5 to the∞-cosmos
𝒞𝑎𝑡. These statements and their duals prove (i).

In (ii), 𝜏 is defined to be the adjoint transpose of 𝜂−1 ∶ res lan ⇒ id under res ⊣ ran and also to
be the adjoint transpose of 𝜖−1 ∶ id ⇒ res ran under lan ⊣ res. To see that these definitions agree,
observe that the former asserts that the composite of the right two morphisms below is the unique
right inverse of the left morphism, while the latter asserts that the composite of the left two morphisms
below is the unique left inverse of the right morphism:

id res lan res ran id
𝜂
≅

res 𝜏 𝜖
≅

In other words, both definitions assert exactly that the displayed triple composite is the identity. �

In this way, we obtain a natural transformation 𝜏𝑛 ∶ sk𝑛 ⇒ cosk𝑛 between the comonad and
monad introduced in Lemma C.5.1. These structures allow us to inductively define Reedy diagrams:

C.5.4. Proposition (inductive definition of diagrams).

(i) A diagram 𝑋 ∈ ℳ𝒜≤𝑛−1 together with a family of factorizations for each object 𝑎 ∈ 𝒜 of degree 𝑛

sk𝑛−1𝑋𝑎 cosk𝑛−1𝑋𝑎

𝑋𝑎

𝜏𝑛−1𝑋𝑎

𝑖𝑎 𝑝𝑎

uniquely determines an extension of 𝑋 to a diagram 𝑋 ∈ ℳ𝒜≤𝑛 .
(ii) A natural transformation 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜≤𝑛−1 together with a family of factorizations for each

object 𝑎 ∈ 𝒜 of degree 𝑛

sk𝑛−1𝑋𝑎 𝑋𝑎 cosk𝑛−1𝑋𝑎

sk𝑛−1 𝑌𝑎 𝑌𝑎 cosk𝑛−1 𝑌𝑎

𝜏𝑛−1𝑋𝑎

𝑖𝑎

sk𝑛−1 𝑓 𝑎
𝑝𝑎

𝑓 𝑎 cosk𝑛−1 𝑓 𝑎

𝜏𝑛−1𝑌𝑎

𝑖𝑎 𝑝𝑎

uniquely determines an extension of 𝑓 to a natural transformation 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜≤𝑛 .

Proof. For (i), it remains to define the action of 𝑋 on nonidentity morphisms whose domain or
codomain has degree 𝑛. The Reedy factorization of any such morphism 𝑘 ∶ 𝑎 → 𝑎′ is through an object
𝑏 of degree less than 𝑛. By composing the maps in the upper-right or lower-left square, there exist
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unique dotted-arrow maps making the following diagram commute

sk𝑛−1𝑋𝑎 𝑋𝑎 cosk𝑛−1𝑋𝑎

sk𝑛−1𝑋𝑏 𝑋𝑏 cosk𝑛−1𝑋𝑏

sk𝑛−1𝑋𝑎′ 𝑋𝑎′ cosk𝑛−1𝑋𝑎′

𝑖𝑎

sk𝑛−1𝑋 �⃖�

𝑝𝑎

𝑋 �⃖� cosk𝑛−1𝑋 �⃖�

𝑖𝑏

sk𝑛−1𝑋𝑓 𝑋 �⃗�

𝑝𝑏

cosk𝑛−1𝑋 �⃗�

𝑖𝑎′ 𝑝𝑎′

and these compose to define the action of𝑋 on 𝑘. The functoriality of this construction in a composable
pair of morphisms 𝑘 ⋅ ℎ follows from connectedness of the category ℱ𝑎𝑐𝑡≤𝑛−1(𝑘 ⋅ ℎ).

For (ii), apply (i) to the diagram 𝑎 ↦ 𝑓 𝑎 ∶ 𝒜≤𝑛−1 → ℳ𝟚. �

Now we turn our attention to the main subject of this section. Letℳ be a category with a weak
factorization system (𝙻, 𝚁) and let𝒜 be a Reedy category.

C.5.5. Definition. The Reedy weak factorization system (𝙻[𝒜], 𝚁[𝒜]) on ℳ𝒜 defined relative to
the weak factorization system (𝙻, 𝚁) onℳ has:

• as left class 𝙻[𝒜] those maps 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 whose relative latching maps �ℓ 𝑎𝑓 ∶ ℓ 𝑎𝑓 → 𝑌𝑎 ∈
ℳ are in 𝙻, and

• as right class 𝚁[𝒜] those maps 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 whose relative matching maps �𝑚𝑎𝑓 ∶ 𝑋𝑎 →
𝑚𝑎𝑓 ∈ ℳ are in 𝚁.

We say a map 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 isReedy in 𝙻 orReedy in 𝚁 if its relative latching or relative matching
maps are in 𝙻 or 𝚁, respectively.

The classes 𝙻[𝒜] and 𝚁[𝒜] are lifts, respectively, of the classes 𝙻 and 𝚁 along the𝒜-indexed family

of functors �ℓ 𝑎 ∶ (ℳ𝒜)𝟚 → ℳ𝟚 or �𝑚𝑎 ∶ (ℳ𝒜)𝟚 → ℳ𝟚. By functoriality, we see that these classes are
closed under retracts. Now Exercise C.2.ii combines with the following pair of lemmas to imply that
these two classes indeed define a weak factorization system on the categoryℳ𝒜.

C.5.6. Lemma. The maps 𝑖 ∈ 𝙻[𝒜] have the left lifting property with respect to the maps 𝑝 ∈ 𝚁[𝒜].

𝐴 𝐾

𝐵 𝐿
𝑖 𝑝

Proof. By Lemma C.2.3 and Corollary C.4.17, to show that 𝑖 ⧄ 𝑝 for any pair of morphisms
𝑖, 𝑝 ∈ ℳ𝒜, it suffices to solve the lifting problems below-left

• • • •

• • • •
(𝜕𝒜𝑎↪𝒜𝑎)∗̂�ℓ𝑎𝑖 𝑝 ↭ �ℓ𝑎𝑖 �lim𝜕𝒜𝑎↪𝒜𝑎𝑝≅�𝑚

𝑎𝑝

in ℳ𝒜 for each 𝑎 ∈ 𝒜. By adjunction, it suffices to solve the transposed lifting problem in ℳ
above-right (see Lemma C.2.6). If 𝑖 ∈ 𝙻[𝒜] and 𝑝 ∈ 𝚁[𝒜], then by definition �ℓ 𝑎𝑖 ∈ 𝙻 and �𝑚𝑎𝑝 ∈ 𝚁, so
a solution exists. �
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C.5.7. Lemma. Every map 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 can be factored as a map in 𝙻[𝒜] followed by a map in 𝚁[𝒜].

Proof. We define the components of the factorization of 𝑓 𝑎 ∶ 𝑋𝑎 → 𝑌𝑎 inductively in the degree
of 𝑎. To start, we use the factorization of (𝙻, 𝚁) to factor all components indexed by objects at degree
zero. Since the full subcategory𝒜≤0 spanned by these objects has only identity arrows, this defines a
factorization of the subdiagram 𝑓 ∈ ℳ𝒜≤0 .

Continuing inductively, suppose we have factored the restriction 𝑓 ∈ ℳ𝒜<𝑛 as

𝑋 𝑌

𝑍

𝑓

𝑔 ℎ
∈ ℳ𝒜<𝑛

with the relative latching maps �ℓ 𝑎𝑔 ∈ 𝙻 and �𝑚𝑎ℎ ∈ 𝚁 for all objects 𝑎 of degree less than 𝑛. By
Proposition C.5.4, to define the attendant factorization of 𝑓 𝑎, it suffices to define an object 𝑍𝑎 ofℳ
together with the dotted arrow maps.

𝐿𝑎𝑋 𝐿𝑎𝑍 𝐿𝑎𝑌

𝑋𝑎 ∪
𝐿𝑎𝑋

𝐿𝑎𝑍

𝑋𝑎 𝑍𝑎 𝑌𝑎

𝑀𝑎𝑍 ×
𝑀𝑎𝑌

𝑌𝑎

𝑀𝑎𝑋 𝑀𝑎𝑍 𝑀𝑎𝑌

�ℓ𝑎𝑔

𝑔𝑎
�𝑚𝑎ℎ

ℎ𝑎

We factor the dashed diagonal map from the pushout to the pullback using (𝙻, 𝚁) to define the object
𝑍𝑎. The left and right factors become the 𝑎th relative latching map and matching map of the composite
morphisms 𝑔𝑎 and ℎ𝑎 so-defined. Note by construction that these maps lie in the classes 𝙻 and 𝚁,
respectively. It follows from the universal properties of the pushout and the pullback that 𝑓 𝑎 = ℎ𝑎 ⋅ 𝑔𝑎.
By Proposition C.5.4 these definitions extend the natural transformations 𝑔 and ℎ to degree 𝑛. �

It follows from Proposition C.2.9 and Corollary C.4.17 that if the left class of a weak factorization
system (𝙻, 𝚁) onℳ is cofibrantly or cellularly generated, as in Definition C.2.4, then the left class of
the Reedy weak factorization system is too:

C.5.8. Proposition. If (𝙻, 𝚁) is a weak factorization system onℳ that is cellularly or cofibrantly generated
by a set of maps 𝙹, then the Reedy weak factorization system (𝙻[𝒜], 𝚁[𝒜]) onℳ𝒜 is cellularly or cofibrantly
generated, respectively, by the set

{(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ 𝑗}𝑎∈𝒜,𝑗∈𝒥.

Proof. By Corollary C.4.17, any morphism 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 may be presented as a cell complex
built from cells

{(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ �ℓ 𝑎𝑓 }𝑎∈𝒜.
If 𝑓 ∈ 𝙻[𝒜], then �ℓ 𝑎𝑓 ∈ 𝙻 for each 𝑎, and by hypothesis these relative latching maps may be presented
as cell complexes or retracts of cell complexes built from themaps in the generating set 𝙹. By Proposition
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C.2.9(vii), the Leibniz tensors (𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ �ℓ 𝑎𝑓may then be presented as (retracts of) cell complexes
built from the Leibniz tensors of the boundary inclusions and the maps in 𝙹, exactly as claimed in the
statement. �

For example, the monomorphisms of simplicial sets are cellularly generated by the simplex boundary
inclusions 𝜕Δ[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 0.

C.5.9. Lemma. The Reedy weak factorization system (mono[𝚫op], epi[𝚫op]) on 𝑠𝒮𝑒𝑡 = 𝒮𝑒𝑡𝚫
op

defined rela-
tive to the (monomorphism, epimorphism) weak factorization system on 𝒮𝑒𝑡 coincides with the (monomorphism,
trivial fibration) weak factorization system. Consequently, any monomorphism of simplicial sets decomposes
canonically as a sequential composite of pushouts of coproducts of the maps 𝜕Δ[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 0.

Proof. Monomorphisms of sets are cellularly generated by a single map, the inclusion ! ∶ ∅ ↪ ∗.
Consequently, by Proposition C.5.8, the Reedy weak factorization system is cellularly generated as well.

In this case, the pushout product functor −∗̂! ∶ 𝒮𝑒𝑡𝚫
op

→ 𝒮𝑒𝑡𝚫
op

is the identity, so the set of generating
maps are the familiar simplex boundary inclusions {𝜕Δ[𝑛] ↪ Δ[𝑛]}[𝑛]∈𝚫, the right lifting property
against which characterizes the trivial fibrations (see Definition 1.1.25). �

C.5.10. Proposition.

(i) If 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 is Reedy in 𝙻, that is, if the relative latching maps �ℓ 𝑎𝑓 are in 𝙻, then each of the
components 𝑓 𝑎 ∶ 𝑋𝑎 → 𝑌𝑎 and each of the latching maps 𝐿𝑎𝑓 ∶ 𝐿𝑎𝑋 → 𝐿𝑎𝑌 are also in 𝙻.

(ii) If 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜 is Reedy in 𝚁, that is, if the relative matching maps �𝑚𝑎𝑓 are in 𝚁, then each of
the components 𝑓 𝑎 ∶ 𝑋𝑎 → 𝑌𝑎 and each of the matching maps𝑀𝑎𝑓 ∶ 𝑀𝑎𝑋 → 𝑀𝑎𝑌 are also in 𝚁.

Proof. The maps 𝑓 𝑎 and 𝐿𝑎𝑓 are the Leibniz weighted colimits of 𝑓 with the maps ∅ ↪ 𝒜𝑎 and
∅ ↪ 𝜕𝒜𝑎, respectively. Evaluating the covariant variable of the cell complex presentation of Theorem
C.4.13 at 𝑎 ∈ 𝒜, we see that ∅ ↪ 𝒜𝑎 is a cell complex whose cells have the form

((𝜕𝒜𝑥)𝑎 ↪ 𝒜𝑎
𝑥) ̂(𝜕𝒜𝑥 ↪ 𝒜𝑥), (C.5.11)

indexed by the objects 𝑥 ∈ 𝒜. In fact, it suffices to consider those objects with deg(𝑥) ≤ deg(𝑎) because
when deg(𝑥) > deg(𝑎) the inclusion (𝜕𝒜𝑥)𝑎 ↪ 𝒜𝑎

𝑥, and hence the cell (C.5.11), is an isomorphism.
Similarly, since 𝜕𝒜𝑎 = skdeg(𝑎)−1𝒜𝑎, Theorem C.4.13 implies that ∅ ↪ 𝜕𝒜𝑎 is a cell complex whose
cells have the form (C.5.11) with deg(𝑥) < deg(𝑎).

By Proposition C.2.9(vii), the maps 𝑓 𝑎 and 𝐿𝑎𝑓 are then cell complexes whose cells, indexed by the
objects 𝑥 ∈ 𝒜 with the deg(𝑥) ≤ deg(𝑎) and deg(𝑥) < deg(𝑎), respectively, have the form

�colim((𝜕𝒜𝑥)𝑎↪𝒜𝑎𝑥)(̂𝜕𝒜𝑥↪𝒜𝑥)𝑓 ≅ ((𝜕𝒜𝑥)𝑎 ↪ 𝒜𝑎
𝑥) ∗̂ �ℓ𝑥𝑓 , (C.5.12)

the isomorphism arising from Proposition C.2.9(i). By Lemma C.2.13, the Leibniz tensor of a mono-
morphism with a map in the left class of a weak factorization system is again in the left class. Thus,

since (𝜕𝒜𝑥)𝑎 ↪ 𝒜𝑎
𝑥 is a monomorphism and �ℓ𝑥𝑓 is in 𝙻, these cells, and thus the maps 𝑓 𝑎 and 𝐿𝑎𝑓 are

in 𝙻 as well. �

Recall from Definition C.3.1 that a model structure on a categoryℳ with a class of weak equiva-
lences 𝚆 satisfying the 2-of-3 property is given by two classes of maps 𝙲 and 𝙵 so that (𝙲 ∩ 𝚆, 𝙵) and
(𝙲, 𝙵 ∩ 𝚆) define weak factorization systems. To show that the Reedy weak factorization systems on
ℳ𝒜 relative to a model structure onℳ define a model structure onℳ𝒜 with the weak equivalences
defined pointwise, one lemma is needed.
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C.5.13. Lemma. Let the classes (𝚆, 𝙲, 𝙵) define a model structure onℳ. Then a map 𝑓 ∶ 𝑋 → 𝑌 ∈ ℳ𝒜

(i) is Reedy in 𝙲 ∩ 𝚆 if and only if 𝑓 is Reedy in 𝙲 and a pointwise weak equivalence, and
(ii) is Reedy in 𝙵 ∩ 𝚆 if and only if 𝑓 is Reedy in 𝙵 and a pointwise weak equivalence.

Proof. We prove the first of these dual statements. If 𝑓 is Reedy in 𝙲∩𝚆, then it is obviously Reedy
in 𝙲, and Proposition C.5.10 implies that its components 𝑓 𝑎 are also in 𝙲 ∩ 𝚆. Thus 𝑓 is a pointwise
weak equivalence.

For the converse, we make use of the diagram

𝐿𝑎𝑋 𝐿𝑎𝑌

𝑋𝑎 •

𝑌𝑎

ℓ𝑎

𝐿𝑎𝑓

ℓ𝑎

𝑓 𝑎

�ℓ𝑎𝑓

which relates the maps 𝐿𝑎𝑓, �ℓ 𝑎𝑓, and 𝑓 𝑎 for any 𝑎 ∈ 𝒜; this is an instance of Proposition C.2.9(vi)
applied to (∅ ↪ 𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂𝒜 𝑓. Suppose that 𝑓 is Reedy in 𝙲 and a pointwise weak equivalence. By
Proposition C.5.10, it follows that 𝐿𝑎𝑓 is in 𝙲. We will show that 𝐿𝑎𝑓 is in fact in 𝙲 ∩ 𝚆 and then apply
pushout stability of the left class of a weak factorization system and the 2-of-3 property, to conclude

that �ℓ 𝑎𝑓 ∈ 𝚆 and hence that 𝑓 is Reedy in 𝙲 ∩ 𝚆. We argue by induction. If 𝑎 has degree zero, then 𝐿𝑎𝑓
is the identity at the initial object, which is certainly a weak equivalence, and �ℓ 𝑎𝑓 = 𝑓 𝑎 is in 𝙲 ∩ 𝚆. If
𝑎 has degree 𝑛, we may now assume that �ℓ𝑥𝑓 ∈ 𝙲 ∩ 𝚆 for any 𝑥 with degree less than the degree of
𝑎. By the proof of Proposition C.5.10, 𝐿𝑎𝑓 may be presented as a cell complex whose cells (C.5.12) are
Leibniz tensors of monomorphisms with maps in 𝙲 ∩ 𝚆, and thus lie in 𝙲 ∩ 𝚆. Thus, we conclude that
𝐿𝑎𝑓 ∈ 𝙲 ∩ 𝚆, completing the proof. �

Lemmas C.5.6, C.5.7, and C.5.13 assemble to prove:

C.5.14. Theorem (the Reedy model structure). If 𝒜 is a Reedy category and (𝚆, 𝙲, 𝙵) define a model
structure onℳ, then the Reedy weak factorization systems (𝙲 ∩ 𝚆[𝒜], 𝙵[𝒜]) and (𝙲[𝒜], 𝙵 ∩ 𝚆[𝒜]) define
a model structure onℳ𝒜 with pointwise weak equivalences. �

One reason the Reedy model structure is important is because it is equipped with convenient
Quillen bifunctors arising in the following manner.

C.5.15. Theorem. Let𝒜 be a Reedy category and let ⊗∶ 𝒱 ×ℳ → 𝒩 be a left Leibniz bifunctor with
respect to weak factorization systems (𝙻, 𝚁), (𝙻′, 𝚁′), and (𝙻″, 𝚁″). Then the functor tensor product

⊗𝒜 ∶ 𝒱𝒜op ×ℳ𝒜 → 𝒩
is left Leibniz with respect to the Reedy weak factorization systems (𝙻[𝒜op], 𝚁[𝒜op]) and (𝙻′[𝒜], 𝚁′[𝒜])
and (𝙻″, 𝚁″).

The functor tensor product of 𝐹 ∈ 𝒱𝒜op
and 𝐺 ∈ ℳ𝒜 is defined by the coend

𝐹 ⊗𝒜 𝐺 ≔ ∫𝑎∈𝒜
𝐹𝑎 ⊗ 𝐺𝑎 ≔ coeq

⎛
⎜
⎜
⎝

∐
𝑎,𝑏∈𝒜

∐
𝒜(𝑎,𝑏)

𝐹𝑎 ⊗ 𝐺𝑏 ∐
𝑎∈𝒜

𝐹𝑎 ⊗ 𝐺𝑎
⎞
⎟
⎟
⎠
.
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Proof. As a construction built from a cocontinuous functor and colimits, the functor tensor
product is cocontinuous in both variables. We argue that ⊗𝒜 has the Leibniz property. Corollary
C.4.17 asserts that the maps 𝑓 ∈ 𝒱𝒜op

can be built as cell complexes whose cells are Leibniz products

(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ �ℓ𝑎𝑓 ,
and the maps 𝑔 ∈ ℳ𝒜 can be built as cell complexes whose cells are Leibniz products

(𝜕𝒜𝑏 ↪ 𝒜𝑏) ∗̂ �ℓ𝑏𝑔.
By Proposition C.2.9(vii), 𝑓 �⊗𝒜 𝑔 is then a cell complex whose cells have the form

�(𝜕𝒜𝑎 ↪ 𝒜𝑎) ∗̂ �ℓ𝑎𝑓� �⊗𝒜 �(𝜕𝒜𝑏 ↪ 𝒜𝑏) ∗̂ �ℓ𝑏𝑔�

≅ �(𝜕𝒜𝑎 ↪ 𝒜𝑎) �×𝒜 (𝜕𝒜𝑏 ↪ 𝒜𝑏)� ∗̂ (�ℓ𝑎𝑓 �⊗ �ℓ𝑏𝑔)

To say that 𝑓 is Reedy in 𝙻 and 𝑔 is Reedy in 𝙻′ means that �ℓ𝑎𝑓 ∈ 𝙻 and �ℓ𝑏𝑔 ∈ 𝙻′. Since ⊗ is left

Leibniz, it follows that �ℓ𝑎𝑓 �⊗ �ℓ𝑏𝑔 ∈ 𝙻″. The Leibniz functor tensor product
(𝜕𝒜𝑏 ↪ 𝒜𝑏) �×𝒜 (𝜕𝒜𝑎 ↪ 𝒜𝑎)

of the maps in 𝒮𝑒𝑡𝒜
op

and in 𝒮𝑒𝑡𝒜 amounts to the inclusion into the hom-set 𝒜𝑎
𝑏 = 𝒜(𝑏, 𝑎) of

the subset of morphisms from 𝑏 to 𝑎 that factor through an object of degree strictly less than 𝑎 or
strictly less than 𝑏; in particular, this map is a monomorphism. Now Lemma C.2.13 applies to the
weak factorization system (𝙻″, 𝚁″) on𝒩 to prove that the Leibniz tensor of this monomorphism with
�ℓ𝑎𝑓 �⊗ �ℓ𝑏𝑔 remains in 𝙻″, completing the proof. �

For example, by (A.6.4), the weighted colimit bifunctor is the functor tensor product defined
from the set-tensor bifunctor of Lemma C.2.13. Applying Theorem C.5.15 with (monomorphism,
epimorphism) taken as the default weak factorization system on 𝒮𝑒𝑡, we conclude:

C.5.16. Corollary. For any complete and cocomplete categoryℳ with a weak factorization system (𝙻, 𝚁)
and any Reedy category, the weighted colimit and weighted limit

colim− −∶ 𝒮𝑒𝑡
𝒜 ×ℳ𝒜op → ℳ and lim− −∶ (𝒮𝑒𝑡

𝒜)op ×ℳ𝒜 → ℳ
define left and right Leibniz bifunctors relative to the Reedy weak factorization systems. �

In the setting of a model category, a cartesian closed model category, or a𝒱-model category (which
subsumes the previous two cases by taking𝒱 to be 𝒮𝑒𝑡 with the model structure of Exercise C.3.iv or
taking𝒱 to be the model category itself), Corollary C.5.16 specializes to the following result, which
helps us understand homotopy limits and colimits of diagrams of Reedy shape.

C.5.17. Corollary. Letℳ be a𝒱-model category and let𝒜 be a Reedy category. Then for any weight𝑊
in𝒱𝒜 that is Reedy cofibrant,¹² the weighted colimit and weighted limit functors

colim𝑊 −∶ ℳ𝒜op → ℳ and lim𝑊 −∶ ℳ𝒜 → ℳ
are respectively left and right Quillen with respect to the Reedy model structure onℳ𝒜.

Proof. By Exercise C.3.iii, the Quillen bifunctors give rise to Quillen functors when plugging a
cofibrant object into the appropriate variable. �

¹²In the case of𝒱 = 𝒮𝑒𝑡, “Reedy cofibrant” should be read as “Reedy monomorphic.”
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C.5.18. Example (homotopy limits and colimits). Taking the terminal weight 1 in 𝒮𝑒𝑡𝒜, the weighted

limit reduces to the ordinary limit functor. The functor 1 ∈ 𝒮𝑒𝑡𝒜 is Reedy monomorphic just when,
for each 𝑎 ∈ 𝒜, the category of elements for the weight 𝜕𝒜𝑎 is either empty or connected. This is the
case if and only if𝒜 has cofibrant constants, meaning that the constant𝒜-indexed diagram at any
cofibrant object in any model category is Reedy cofibrant. Thus, we conclude that if𝒜 has cofibrant
constants, then the limit functor lim ∶ ℳ𝒜 → ℳ is right Quillen.

Dually, the colimit functor colim ∶ ℳ𝒜 → ℳ is a special case of the weighted colimit functor with

the terminal weight 1 ∈ 𝒮𝑒𝑡𝒜
op

. This is Reedy monomorphic just when each category of elements for
the weights 𝜕𝒜𝑎 is either empty or connected, which is the case if and only if𝒜 has fibrant constants,
meaning that the constant𝒜-indexed diagram at any fibrant object in any model category is Reedy
fibrant. Thus, we conclude that if𝒜 has fibrant constants, then the colimit functor colim ∶ ℳ𝒜 → ℳ
is left Quillen (see [107, §9] for more discussion).

In presheaf categories, the cofibrations are often the monomorphisms, and with a bit of elbow
grease, we can identify Reedy monomorphic weights for use in applications of Corollary C.5.17. For

instance, any bisimplicial set is Reedy cofibrant as an object of 𝑠𝒮𝑒𝑡𝚫
op

(see [103, 14.3.7]). Reedy
monomorphic cosimplicial objects can also be identified, on account of the following lemma.

C.5.19. Lemma.

(i) Let 𝑋∶ 𝚫 → 𝒮𝑒𝑡𝒥
op

be a cosimplicial object in a presheaf category. If 𝑋 is unaugmentable, in the
sense that the equalizer of the pair of coface maps 𝛿0, 𝛿1 ∶ 𝑋0 → 𝑋1 is empty, then the latching maps
of 𝑋 are all monomorphisms.

(ii) If 𝑋 is an unaugmentable cosimplicial object in a slice category of a presheaf category, then the latching
maps of 𝑋 are all monomorphisms.

Proof. Since latching objects are defined in terms of certain colimits in 𝒮𝑒𝑡𝒥
op

computed point-
wise in 𝒮𝑒𝑡, we may reduce this result to the corresponding one for cosimplicial sets 𝑋∶ 𝚫 → 𝒮𝑒𝑡. A
simplex in a cosimplicial set is “nondegenerate” if it is not in the image of a monomorphism from 𝚫.
The 𝑛th latching map 𝐿𝑛𝑋 → 𝑋𝑛 is a monomorphism just when each expression of an 𝑛-simplex 𝑥 as
the image of a nondegenerate simplex 𝑧 under a monomorphism 𝜎∶ [𝑘] ↣ [𝑛] is unique.

So suppose we have two such representations 𝑥 = 𝜎 ⋅ 𝑧 = 𝜎′ ⋅ 𝑧′. Any monomorphism 𝜎 ∈ 𝚫 has a
left inverse 𝜏, so we see that 𝑧 = 𝜏𝜎′ ⋅ 𝑧′. The map 𝜏𝜎′ can be factored as an epimorphism followed by
a monomorphism. Because 𝑧 is nondegenerate, this monomorphism must be the identity, so 𝜏𝜎′ is an
epimorphism. Repeating this argument with an left inverse 𝜏′ for 𝜎′ we see that 𝜏′𝜎 is an epimorphism,
so 𝑧 and 𝑧′ have the same degree and both epimorphisms are identities. This proves that 𝑧 = 𝑧′.

If the set of left inverses for a monomorphism in 𝚫 uniquely characterized that monomorphism,
then we could conclude that 𝜎 and 𝜎′ must be equal, and hence that such decompositions would
be fully unique. This is true for nearly all monomorphisms in 𝚫, the only exceptions being the face
maps 𝛿0, 𝛿1 ∶ [0] ↣ [1]. However, 𝑋 is assumed to be unaugmentable, so there is no 𝑧 ∈ 𝑍0 with
𝛿0 ⋅ 𝑧 = 𝛿1 ⋅ 𝑧, and thus 𝐿𝑛𝑋 → 𝑋𝑛 is a monomorphism for all 𝑛. This proves the first statement.

For the second statement, we only need to consider slice categories 𝐴/𝒮𝑒𝑡𝒥
op

under a presheaf

𝐴 ∈ 𝒮𝑒𝑡𝒥
op

, since the slice category𝒮𝑒𝑡𝒥
op

/𝐴 is equivalent to the category of presheaves on the category

of elements of 𝐴, and so this case is covered by (i). The forgetful functor 𝐴/𝒮𝑒𝑡𝒥
op

→ 𝒮𝑒𝑡𝒥
op

creates
monomorphisms and connected colimits, which tells us that the latching maps 𝐿𝑛𝑋 → 𝑋𝑛 of a

complicial object 𝑋 in 𝐴/𝒮𝑒𝑡𝒥
op

are calculated in 𝒮𝑒𝑡𝒥
op

for all 𝑛 > 1. The direct calculation given
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above proves that these are monomorphisms, so it remains only to consider the cases 𝑛 = 0 and 𝑛 = 1.
If 𝑋 is unaugmentable, then by hypothesis the equalizer of the map 𝛿0, 𝛿1 ∶ 𝑋0 → 𝑋1 in 𝒮𝑒𝑡𝒥

op

is
𝐴. Thus, the 0th latching map 𝐴 → 𝑋0 is an equalizer, and so it must be a monomorphism. Finally,
we claim that the 1st latching map (𝛿0, 𝛿1) ∶ 𝐿1𝑋 ≅ 𝑋0 + 𝑋0 → 𝑋1 is a monomorphism: arguing in

𝒮𝑒𝑡𝒥
op

and then ultimately in 𝒮𝑒𝑡, it is easy to see that the pullback of this map along itself is 𝐴. This
completes the proof that 𝑋 is a Reedy monomorphism. �

C.5.20. Example (geometric realization and totalization). By Lemma C.5.19, the Yoneda embedding

defines a Reedy cofibrant weight 𝚫 ∈ 𝑠𝒮𝑒𝑡𝚫. The weighted colimit and weighted limit functors

colim𝚫 −∶ ℳ𝚫op → ℳ and lim𝚫• −∶ ℳ𝚫 → ℳ
typically go by the names of geometric realization and totalization. Corollary C.5.17 proves that ifℳ
is a simplicial model category, then these functors are left and right Quillen.

Exercises.

C.5.i. Exercise. Prove Lemma C.5.1.

C.5.ii. Exercise ([103, 14.3.8]). Prove the relative analog of Lemma C.5.19: if 𝑋 and 𝑌 are both
unaugmentable cosimplicial objects in a presheaf category, then any pointwise monomorphism𝑋 → 𝑌
is also a Reedy monomorphism, i.e., its relative latching maps are monic.
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Appendix of Concrete Constructions





APPENDIX D

The Combinatorics of (Marked) Simplicial Sets

In this appendix we explore the combinatorics of simplicial sets, proving results stated in Chapters
1 and 4. Certain of these results, namely those involving isomorphisms in quasi-categories, are more
easily proved in the closely related category of “marked” simplicial sets, where the quasi-categories are
identified with those marked simplicial sets that are 1-complicial. Because the corresponding 𝑛-complicial
sets provide one of the families of examples of ∞-cosmoi appearing in Appendix E, we prove the
necessary combinatorial results in that more general context.

The category of marked simplicial sets is introduced in §D.1. Certain objects in this category that
have composites of simplices in all dimensions define complicial sets, which are characterized by a right
lifting property that also defines the complicial isofibrations. In §D.2, we begin our combinatorial work
by revisiting the join and slice constructions from §4.2, redeveloping these notions from the viewpoint
of augmented simplicial sets. This work is completed in §D.6, where we prove that various models for
the quasi-category of cones over or under a diagram are equivalent.

In §D.3, we prove the Leibniz stability of complicial isofibrations under exponentiation with
monomorphisms of marked simplicial sets. This closely resembles some of the unproven results of
§1.1, but before making the connection, we must relate complicial sets and complicial isofibrations to
quasi-categories and isofibrations. This task occupies the remaining two sections. In §D.4 we establish
the connection between the theory of complicial sets and the theory of quasi-categories, showing that
any quasi-category can be equipped with a canonically defined “natural” marking in such a way that
it defines a complicial set with all simplices above dimension 1 marked. The proof involves a careful
study of the data that define an isomorphism in a quasi-category. Applying this analysis in §D.5, we
prove Joyal’s “special outer horn filling” Proposition 1.1.14, which amounts to the observation that
isofibrations between naturally marked quasi-categories coincide with the complicial isofibrations.
With this connection established, the previous results can be assembled to supply proofs of the claims
made in §1.1.

D.1. Complicial Sets

When a quasi-category is regarded as an (∞, 1)-category, its vertices play the role of the objects
and its edges represent the morphisms, with the degenerate edge at a vertex representing its identity.
The 𝑛-simplices then witness 𝑛-ary composition relations. When a complicial set is regarded as an
(∞,∞)-category, its 𝑛-simplices must play a dual role: both serving as witnesses for lower dimensional
composition relations and representing a priori noninvertible 𝑛-dimensional cells in their own right. To
disambiguate between these two interpretations, certain positive dimensional simplices in a complicial
set are marked as “thin,” indicating that they should be interpreted as equivalences witnessing a weak
composition relation between their boundary faces. Thus the ambient category in which complicial

485



sets are defined is not the category of ordinary simplicial sets but a closely related category of marked
simplicial sets¹ that we now introduce.

D.1.1. Definition (marked simplicial sets). Amarked simplicial set is a simplicial set with a designated
subset of marked or thin positive dimensional simplices that includes all degenerate simplices. A map
of marked simplicial sets is a simplicial map that preserves marked simplices.

D.1.2. Definition (minimal and maximal marking). The category 𝑠𝒮𝑒𝑡+ of marked simplicial sets is
equipped with an evident forgetful functor to 𝑠𝒮𝑒𝑡 admitting both left and right adjoints:

𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡(−)0 ⊥

core
⊥

(−)♯

(−)♭

⊥

The left adjoint (−)♭ defines the minimal marking of a simplicial set, in which only the degeneracies

are marked, while the right adjoint (−)♯ defines the maximal marking, with all simplices marked. This
functor has a further right adjoint, which takes a marked simplicial set to its core, the simplicial set
with the same vertices comprised of those marked simplices whose faces are also marked.

On various occasions, it is convenient to identify 𝑠𝒮𝑒𝑡 with either of the fully faithful embeddings

into 𝑠𝒮𝑒𝑡+ just introduced. Unless otherwise specified, the default convention is to identify simplicial
sets with their minimal markings. In particular, with this convention, we are free to regard the standard
simplices and their subspaces as minimally marked simplicial sets.

To succinctly introduce other marked simplicial sets, the following terminology is convenient:

D.1.3. Definition. An inclusion 𝑈 ↪ 𝑉 of marked simplicial sets is:

• regular, denoted 𝑈 ↪𝑟 𝑉, if thin simplices in 𝑈 are created in 𝑉 and
• entire, denoted 𝑈 ↪𝑒 𝑉, if the map is an isomorphism (or more commonly the identity) on

underlying simplicial sets, in which case the only difference between 𝑈 and 𝑉 is that 𝑉 has more
marked simplices.

For example, for each 𝑛 ≥ 1, we define the marked simplex Δ[𝑛]𝑡 to be the entire extension of
minimally marked simplex Δ[𝑛] that also marks the top nondegenerate simplex.

D.1.4. Notation (the marked simplex category). Let 𝑡𝚫 ↪ 𝑠𝒮𝑒𝑡+ denote the full subcategory spanned
by the minimally marked simplices Δ[𝑛], for 𝑛 ≥ 0, together with the marked simplices Δ[𝑛]𝑡, for
𝑛 ≥ 1. It can be built from the simplex category 𝚫 of Notation 1.1.1 by:

• adjoining objects [𝑛]𝑡 for 𝑛 ≥ 1,
• adjoining maps 𝜙∶ [𝑛] → [𝑛]𝑡 for 𝑛 ≥ 1 and 𝜁𝑖 ∶ [𝑛 + 1]𝑡 → [𝑛] for 𝑛 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑛, and
• imposing relations 𝜁𝑖𝜙 = 𝜎𝑖 and 𝜎𝑖𝜁𝑗+1 = 𝜎𝑗𝜁𝑖 for 𝑖 ≤ 𝑗.²
¹In the original sources [128, 129], marked simplicial sets are called stratified simplicial sets. To avoid confusing with

the increasingly prominent unrelated notion of stratified spaces, we have elected to change the name. In [78], Lurie uses
the term marked simplicial sets for a special case of the more general notion we presently introduce.

²Viktoriya Ozornova and Martina Rovelli pointed out to us that this last family of relations was omitted from the
original source [122] but should have been included. A corrected definition appears in [89, 1.1].
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For a marked simplicial set 𝑋, the maps Δ[𝑛] → 𝑋 and Δ[𝑛]𝑡 → 𝑋, respectively, parametrize

𝑛-simplices in 𝑋 and marked 𝑛-simplices in 𝑋. This defines a canonical embedding 𝑠𝒮𝑒𝑡+ ↪ 𝒮𝑒𝑡𝑡𝚫
op

,
which is easily seen to be fully faithful. Moreover:

D.1.5. Proposition. There is a reflective fully faithful embedding 𝑠𝒮𝑒𝑡+ 𝒮𝑒𝑡𝑡𝚫
op

⊥ whose

(i) essential image consists of those presheaves 𝐹 for which the component maps − ∘ 𝜙∶ 𝐹[𝑛]𝑡 → 𝐹[𝑛] are
monomorphisms, and

(ii) left adjoint is constructed by replacing the set 𝐹[𝑛]𝑡 with the image of the map − ∘ 𝜙∶ 𝐹[𝑛]𝑡 → 𝐹[𝑛].
Consequently, 𝑠𝒮𝑒𝑡+ is a locally finitely presentable category, and in particular is complete and cocomplete,
with limits constructed pointwise as presheaves and with colimits constructed by applying the reflector to the
pointwise colimit of presheaves.

Put in more elementary terms, limits and colimits of marked simplicial sets are created by the

underlying simplicial set functor (−)0 ∶ 𝑠𝒮𝑒𝑡
+ → 𝑠𝒮𝑒𝑡. A simplex in the limit is marked if and only if

each of its components, defined by composing with the legs of the limit cone, are marked simplices. A
simplex in a colimit is marked if any of its lifts along any leg of the colimit cone are marked simplices.
The reflection in (ii) is a sort of “propositional truncation,” remembering which simplices should be
marked while forgetting the data that indicates why.

Proof. The right action of the operators in 𝑡𝚫 on a presheaf 𝐹 ∈ 𝒮𝑒𝑡𝑡𝚫
op

gives the sets of elements
of 𝐹 the structure of a marked simplicial set with the exception of one condition: namely that the
marked 𝑛-simplices form a subset of the 𝑛-simplices. This explains the condition appearing in (i) and
the construction appearing in (ii). It follows that marked simplicial sets are the category of models
for a finite limit sketch, and hence form a locally finitely presentable category. Any reflective full
subcategory of a complete and cocomplete category inherits limits in the manner constructed in the
statement (see, e.g., [104, 4.5.15]). �

Lemma C.5.9 extends to marked simplicial sets as follows:

D.1.6. Lemma. The momomorphisms in 𝑠𝒮𝑒𝑡+ are cellularly generated by
{𝜕Δ[𝑛] 𝑟 Δ[𝑛]}𝑛≥0 ∪ {Δ[𝑛] 𝑒 Δ[𝑛]𝑡}𝑛≥1.

Proof. Exercise D.1.i. �

A marked simplicial set is a simplicial set with enough structure to talk about composition of
simplices in all dimensions. A complicial set is a marked simplicial set in which composites exist and
in which thin witnesses to composition compose to define thin simplices, an associativity condition
that ultimately implies that thin simplices are equivalences in a sense that is made explicit in Lemma
D.4.2 and Digression D.4.21. The following form of the definition of a (née weak) complicial set, due
to Verity [129], modifies an earlier equivalent presentation due to Street [120]. Verity’s modification
focuses on a particular set of 𝑘-admissible 𝑛-simplices, which are thin 𝑛-simplices that exhibit their 𝑘th
face as a composite of their (𝑘 + 1)th and (𝑘 − 1)th faces, in the case where 0 < 𝑘 < 𝑛. In the cases
𝑘 = 0 or 𝑘 = 𝑛, a 𝑘-admissible 𝑛-simplex witnesses an equivalence between the first or last pair of
faces, respectively.

D.1.7. Definition (𝑘-admissible 𝑛-simplex). For 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛, the 𝑘-admissible 𝑛-simplex
Δ𝑘[𝑛] is the entire superset of the standard 𝑛-simplex with certain additional faces marked thin: a
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nondegenerate 𝑚-simplex in Δ𝑘[𝑛] is thin if and only if it contains all of the vertices in {𝑘 − 1, 𝑘, 𝑘 +
1} ∩ [𝑛]. Thin faces include in particular:

• the top dimensional 𝑛-simplex
• all codimension-one faces except for the (𝑘 − 1)th, 𝑘th, and (𝑘 + 1)th
• the 2-simplex spanned by {𝑘−1, 𝑘, 𝑘+1}when 0 ≤ 𝑘 ≤ 𝑛 or the edge spanned by {𝑘−1, 𝑘, 𝑘+1}∩[𝑛]
when 𝑘 = 0 or 𝑘 = 𝑛.

When drawing pictures of marked simplicial sets, we use the symbol ”≃” to decorate marked
simplices and “∼” to decorate marked edges. Our diagrams also adopt a convention for the direction of
the cells inhabiting an unmarked 𝑛-simplex. Following the combinatorics introduced by Street in his
“Algebra of oriented simplexes” [120], we regard an 𝑛-simplex as an 𝑛-cell from the pasted composite of
its odd-numbered faces to the pasted composite of its even-numbered faces. Note this is compatible
with the convention already in use for depicting a 1-simplex in a simplicial set as an arrow from its 1st
face (the 0th vertex) to its 0th face (the 1st vertex).

D.1.8. Example (admissible simplices in low dimensions).

(i) For 𝑛 = 1, both admissible simplices Δ0[1] and Δ1[1] equal the thin 1-simplex Δ[1]𝑡 = Δ[1]♯.
A map Δ[1]♯ → 𝐴 is interpreted as defining an equivalence between the two vertices in its
image.

(ii) For 𝑛 = 2, the admissible simplex Δ1[2] equals the thin 2-simplex Δ[2]𝑡. A map Δ1[2] → 𝐴 is
interpreted as specifying that the image of the {02}-edge is a composite of the images of the
{01}- and {12}-edges.

By contrast, Δ0[2] and Δ2[2] each have a marked edge, as well as a marked 2-simplex as
indicated by the diagrams:

Δ0[2] ≔
1

0 2

≃∼ Δ1[2] ≔
1

0 2

≃ Δ2[2] ≔
1

0 2

∼≃

A map Δ0[2] → 𝐴 witnesses an equivalence between the image of the {12} edge and the image
of the {02} edge.

(iii) For 𝑛 = 3, the admissible simplices Δ1[3] and Δ2[3] have their 3rd and 0th faces marked,
respectively, as well as the top dimensional 3-simplex, with no other nondegenerate faces
marked. We choose to draw admissible 3-simplices in such a way that allows us to see all of
their codimension-one faces:

Δ2[3] ≔
1 2 1 2

0 3 0 3

𝑔

𝑘
𝛽⇑ ≃

𝑔

𝑘𝑔

≃

⇑𝛼∗𝛽
𝑘𝑓 ⇑𝛼

ℎ

ℓ ℓ

𝑓

Here we label the faces in order to better describe the interpretation of a map Δ2[3] → 𝐴. Its
0th face, which is itself an admissible simplex Δ1[2], witnesses that the edge {13} is a composite
of the edges {12} and {23}. Note that because the 0th face is thin, its 1st edge is interpreted
as a composite 𝑘𝑔 of 𝑔 and 𝑘, which is needed so that the boundary of the 2-cell appearing in
the 2nd face agrees with the boundary of the pasted composite of 𝛽 and 𝛼. On account of this
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boundary condition and the thin 3-simplex, we interpret the 2nd face as the pasted composite
of the 1st and 3rd faces depicted on the right.

The admissible simplex Δ0[3] has both its 2nd and 3rd faces marked, as well as the top
dimensional 3-simplex, and the edge {01}. Dually, Δ3[3] has its 0th and 1st faces marked, as
well as the top dimensional 3-simplex, and the edge {23}.

Δ0[3] ≔
1 2 1 2

0 3 0 3

𝑓 𝑒−1

𝑔
𝛼⇑ ≃

𝑓 𝑒−1

ℎ𝑒−1

𝛼𝑒−1⇑≃ 𝑔∼𝑒

≃

𝑓

ℎ ℎ

∼𝑒

A map Δ0[3] → 𝐴 is interpreted as witnessing an equivalence between the pair of nonthin
2-simplices occupying the 0th and 1st faces, respectively.

D.1.9. Definition. A complicial set is a marked simplicial set 𝐴 that admits extensions along the
elementary marked anodyne extensions, which are given by the following two sets of maps:

(i) The complicial horn extensions

Λ𝑘[𝑛] 𝐴

Δ𝑘[𝑛]
𝑟

for 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛 (D.1.10)

are regular inclusions of 𝑘-admissible 𝑛-horns. An inner admissible 𝑛-horn parametrizes
“admissible composition” of a pair of (𝑛 − 1)-simplices. The extension defines a composite
(𝑛 − 1)-simplex together with a thin 𝑛-simplex witness.

(ii) The complicial thinness extensions

Δ𝑘[𝑛]′ 𝐴

Δ𝑘[𝑛]″

for 𝑛 ≥ 2, 0 ≤ 𝑘 ≤ 𝑛 (D.1.11)

are entire inclusions of two entire supersets of Δ𝑘[𝑛]. The marked simplicial set Δ𝑘[𝑛]′ is
obtained from Δ𝑘[𝑛] by also marking the (𝑘 − 1)th and (𝑘 + 1)th faces, while Δ𝑘[𝑛]″ has all
codimension-one facesmarked. This extension problemdemands that whenever the composable
pair of simplices in an admissible horn are thin, then so is any composite.

D.1.12. Example (complicial horn extensions). For Λ2[4] ↪𝑟 Δ2[4] the nonthin codimension-one
faces in the horn define the two 3-simplices with a common face displayed on the left, while their
composite is a 3-simplex as displayed on the right.
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1

2

0 4

3

1

0 4

3

It makes sense to interpret the right hand simplex, the 2nd face of the 2-admissible 4-simplex, as a
composite of the 3rd and 1st faces because the following simplices are thin:

2

1 3

≃

1

0 3

2

2

1 4

3

We refer to the maps that are cellularly generated by the elementary marked anodyne extensions as
marked anodyne extensions. For instance, by a mild extension of the argument that solves Exercise
1.1.v:

D.1.13. Lemma. Either inclusion 𝟚♯ ↪ 𝕀♯ of the marked 1-simplex into the maximally marked isomorphism is

an marked anodyne extension, as is the injection 𝟙 ↪ 𝕀♯.

Proof. Exercise D.1.iii. �

D.1.14. Definition. A map of marked simplicial sets is a complicial isofibration if it has the right
lifting property with respect to the elementary marked anodyne extensions and if its domain and
codomain are complicial sets.

By Exercise D.1.iv, a marked map between complicial sets is a complicial isofibration if and only if
it lifts against the complicial horn extensions – the complicial thinness extensions come for free. By
Lemma C.2.3, complicial isofibrations then enjoy the right lifting property against all marked anodyne
extensions. Among the complicial isofibrations are the trivial fibrations, defined to be those maps of
marked simplicial sets that lift against the monomorphisms, as characterized by Lemma D.1.6.

The original meaning of “complicial sets” referred to a particular variety that we now call strict.

D.1.15. Definition. A strict complicial set is a marked simplicial set that admits unique extensions
along the elementary marked anodyne extensions (D.1.10) and (D.1.11).

In the manuscript [128], Verity proves that the strict complicial sets are precisely those marked
simplicial sets that are Street nerves of strict 𝜔-categories, resolving a conjecture of Roberts and Street.
In this manuscript, we primarily utilize marked simplicial sets to streamline the proofs of results
concerning isomorphisms in quasi-categories and equivalences between quasi-categories. We discuss
this topic more explicitly in §D.4 and §D.5 after developing some combinatorial constructions required
in the interim.

D.1.16. Definition. A marked simplicial set 𝑋 is 𝑛-trivial if all 𝑟-simplices are marked for 𝑟 > 𝑛.
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The full subcategory of 𝑛-trivial marked simplicial sets is reflective and coreflective

𝑛-𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+⊥
⊥

trv𝑛

core𝑛

in the category ofmarked simplicial sets. That is 𝑛-trivialization defines an idempotentmonad on 𝑠𝒮𝑒𝑡+
with unit the entire inclusion 𝑋 ↪𝑒 trv𝑛𝑋 of a marked simplicial set 𝑋 into the marked simplicial
set trv𝑛𝑋 with the same marked simplices in dimensions 1,… , 𝑛, and with all higher simplices “made
thin.” A complicial set is 𝑛-trivial if this map is an isomorphism.

The 𝑛-core core𝑛𝑋, defined by restricting to those simplices whose faces above dimension 𝑛
are all thin in 𝑋, defines an idempotent comonad with counit the regular inclusion core𝑛𝑋 ↪𝑟 𝑋.
Again, a complicial set is 𝑛-trivial just when this map is an equivalence. As is always the case for a
monad–comonad pair arising in this way, these functors are adjoints: trv𝑛 ⊣ core𝑛.

The inclusions of the subcategories of 𝑛-trivial marked simplicial sets have adjoints

𝑠𝒮𝑒𝑡 0-𝑠𝒮𝑒𝑡+ 1-𝑠𝒮𝑒𝑡+ 𝑛-1-𝑠𝒮𝑒𝑡+ 𝑛-𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+≃(−)♯ ⊥
⊥

core1

trv1

↪ ⋯ ↪ ⊥
⊥

core𝑛−1

trv𝑛−1

↪ ⋯ ↪

The 𝑛-core of a complicial set is a complicial set, but the 𝑛-trivialization functor, which just marks
simplices in the appropriate dimension without changing the underlying simplicial set, does not
necessarily preserve complicial sets (see Exercise D.1.v).

D.1.17. Remark (the odd dual). Recall that the opposite of a simplicial set 𝑋 is the simplicial set
obtained by reindexing along the involution (−)op ∶ 𝚫 → 𝚫 that reverses the ordering in each ordinal.
This operation may be extended to marked simplicial sets in a natural way: marking an 𝑛-simplex
in 𝑋op just when the corresponding 𝑛-simplex in 𝑋 is marked. Note, however, that under Street’s
interpretation of an 𝑛-simplex as encoding an 𝑛-dimensional morphism from the composite of its odd
(𝑛 − 1)-dimensional faces to the composite of its even (𝑛 − 1)-dimensional faces, this operation does
not simply “reverse the direction of all the cells” in a marked simplicial set. Rather, it reverses the
direction of all the simplices in the odd dimensional cells, while preserving the direction in all of the
even dimensional cells. Thus, we refer to the vertex reordering construction as defining the odd dual
of a marked simplicial set.

We close with a discussion of the equivalences between complicial sets.

D.1.18. Definition (equivalences of complicial sets). A map 𝑓 ∶ 𝐴 → 𝐵 between complicial sets is

an equivalence if it extends to the data of a homotopy equivalence with the marked 1-simplex Δ[1]♯
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serving as the interval:³ that is, if there exist maps 𝑔∶ 𝐵 → 𝐴,

𝐴 𝐵

𝐴 𝐴Δ[1]♯ and 𝐵 𝐵Δ[1]♯

𝐴 𝐵
𝑔𝑓

𝛼

ev0

ev1

𝛽

𝑓 𝑔 ev0

ev1

The data of an equivalence of complicial sets transposes to define an instance of a more general
notion of “marked homotopy equivalence,” for which we drop the requirement that the marked
simplicial sets are complicial sets.

D.1.19. Definition. A marked homotopy between a pair of maps 𝑓 , 𝑔 ∶ 𝑋 → 𝑌 is given by a map

𝛼∶ 𝑋 × Δ[1]♯ → 𝑌 that restricts along the endpoint inclusions 𝑋 + 𝑋 ↪𝑟 𝑋 × Δ[1]♯ to the
maps 𝑓 and 𝑔, respectively. In the case where 𝑋 and 𝑌 are minimally marked simplicial sets, a map

𝑋 × Δ[1] → 𝑌 extends to a map 𝑋 × Δ[1]♯ → 𝑌 just when for each 0-simplex 𝑥 ∈ 𝑋, the 1-simplex

(𝑥𝜎0, id[1]) ∈ 𝑋 × Δ[1]♯ maps to a degenerate and hence marked 1-simplex of 𝑌.⁴
A marked homotopy equivalence consists of:

• a pair of marked maps 𝑓 ∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑋 and

• a pair of marked homotopies 𝛼∶ 𝑋 ×Δ[1]♯ → 𝑋 and 𝛽∶ 𝑌 ×Δ[1]♯ → 𝑌 between id𝑋 and 𝑔𝑓 and
𝑓 𝑔 and id𝑌, respectively.

When 𝑋 and 𝑌 are complicial sets, marked homotopies can be reversed and composed. Even when
this is not the case, we permit ourselves the reverse the direction of the marked homotopies that
comprise a marked homotopy equivalence without comment.

D.1.20. Digression (the Verity model structure for complicial sets). The category of marked simplicial
sets bears a cartesian closed, cofibrantly generated model structure whose fibrant objects are exactly
the complicial sets and whose cofibrations are the monomorphisms [129, §6.2-4]. The fibrations and
weak equivalences between fibrant objects are precisely the classes of complicial isofibrations and
equivalences defined above. In the following sections, we verify many of these properties for the
category of fibrant objects directly, leaving only the verification of the actual model structure, which
follows from Jeff Smith’s theorem, to the literature.

Exercises.

D.1.i. Exercise. Prove Lemma D.1.6.

D.1.ii. Exercise. Prove that a maximally marked simplicial set defines a complicial set if and only if
the underlying simplicial set is a Kan complex.

D.1.iii. Exercise. Prove Lemma D.1.13.

³Essentially by Lemma D.1.13 equivalences of complicial sets could be defined using the marked homotopy coherent

isomorphism 𝕀♯ instead (see Corollary D.3.13). But one of the advantages of the complicial sets model of higher categories
is that the correct notion of equivalence can be defined with the simpler data of the marked 1-simplex.

⁴The cartesian product of marked simplicial sets is described in more detail in Proposition D.3.3.
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D.1.iv. Exercise. Let 𝑓 ∶ 𝐴 → 𝐵 be any map of marked simplicial sets whose domain 𝐴 is a complicial
set. Prove that 𝑓 has the (unique) right lifting property against the complicial thinness extensions.

D.1.v. Exercise.

(i) Prove that the 𝑛-core of a complicial set is a complicial set.
(ii) Find an example of a complicial set whose 𝑛-trivialization for some 𝑛 is no longer a complicial

set.

D.2. The Join and Slice Constructions

In this section, we revisit Joyal’s join and slice constructions in considerably more detail than given
in Definition 4.2.4 and discuss their extension to marked simplicial sets. We prove that Leibniz joins of
monomorphisms and various classes of anodyne maps again define monomorphisms of the same type.
The combinatorics are slightly easier if we work with augmented simplicial sets in place of ordinary
simplicial sets, an approach that follows the original definition of the simplicial join by Ehlers and
Porter [40].

D.2.1. Definition (ordinal sum). The algebraists’ skeletal category 𝚫+ of finite ordinals and order-
preserving maps – with objects [𝑛] = {0 ≤ 1 ≤ ⋯ ≤ 𝑛} and [−1] = ∅ – supports a strict (nonsym-
metric) monoidal structure (𝚫+, ⊕, [−1]) in which ⊕ denotes the ordinal sum defined

• for objects [𝑛], [𝑚] ∈ 𝚫+ by [𝑛] ⊕ [𝑚] ≔ [𝑛 + 1 + 𝑚],
• for arrows 𝛼∶ [𝑛] → [𝑛′], 𝛽 ∶ [𝑚] → [𝑚′] by 𝛼 ⊕ 𝛽∶ [𝑛 + 1 + 𝑚] → [𝑛′ + 1 + 𝑚′] where

𝛼 ⊕ 𝛽(𝑖) = �
𝛼(𝑖) if 𝑖 ≤ 𝑛,
𝛽(𝑖 − 𝑛 − 1) + 𝑛′ + 1 otherwise.

By Day convolution [33], the join bifunctor ⊕∶ 𝚫+ × 𝚫+ → 𝚫+ extends to a (nonsymmetric)
monoidal closed structure

(𝑠𝒮𝑒𝑡+, ⋆, Δ[−1], dec𝑙, dec𝑟)
on the category of augmented simplicial sets 𝑠𝒮𝑒𝑡+ ≔ 𝒮𝑒𝑡𝚫

op
+ .

D.2.2. Definition (join of augmented simplicial sets). The join 𝑋 ⋆ 𝑌 of augmented simplicial sets 𝑋
and 𝑌 may be described explicitly as follows:

• Its simplices are pairs (𝑥, 𝑦) ∈ (𝑋 ⋆ 𝑌)𝑟+1+𝑠 with 𝑥 ∈ 𝑋𝑟, 𝑦 ∈ 𝑌𝑠.
• If (𝑥, 𝑦) is a simplex of 𝑋 ⋆ 𝑌 with 𝑥 ∈ 𝑋𝑟 and 𝑦 ∈ 𝑌𝑠 and 𝛼∶ [𝑛] → [𝑟 + 1 + 𝑠] is a simplicial
operator in 𝚫+, then 𝛼 may be uniquely decomposed as 𝛼 = 𝛼1 ⊕ 𝛼2 with 𝛼1 ∶ [𝑛1] → [𝑟] and
𝛼2 ∶ [𝑛2] → [𝑠], and (𝑥, 𝑦) ⋅ 𝛼 ≔ (𝑥 ⋅ 𝛼1, 𝑦 ⋅ 𝛼2).

Note by construction that Δ[𝑛] ⋆ Δ[𝑚] ≅ Δ[𝑛 + 1 + 𝑚], since [𝑛] ⊕ [𝑚] = [𝑛 + 1 + 𝑚].⁵

Note that Δ[−1], the marked simplicial set with a single −1-simplex and no other simplices, is a
two-sided unit for the join bifunctor.

⁵A general feature of the Day convolution product is that the Yoneda embeddingよ ∶ 𝚫+ ↪ 𝒮𝑒𝑡𝚫
op
+ defines a strong

monoidal functor.
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D.2.3. Definition (décalage of augmented simplicial sets). The closures dec𝑙 and dec𝑟, known as the
left and right décalage constructions, respectively, are defined as the parametrized right adjoints to
the join:

𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+
𝑋⋆−
⊥

dec𝑙(𝑋,−)
and

−⋆𝑋
⊥

dec𝑟(𝑋,−)

so that there is a two-variable adjunction formed by the bifunctors:

𝑠𝒮𝑒𝑡+ × 𝑠𝒮𝑒𝑡+
−⋆−

𝑠𝒮𝑒𝑡+ , 𝑠𝒮𝑒𝑡op+ × 𝑠𝒮𝑒𝑡+
dec𝑙(−,−) ∶ 𝑠𝒮𝑒𝑡+ , 𝑠𝒮𝑒𝑡op+ × 𝑠𝒮𝑒𝑡+

dec𝑟(−,−) 𝑠𝒮𝑒𝑡+ .

D.2.4. Observation (simplicial sets vs augmented simplicial sets). The evident functor that forgets
the augmentation 𝑈∶ 𝑠𝒮𝑒𝑡+ → 𝑠𝒮𝑒𝑡 admits both left and right adjoints

𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡𝑈

∗
⊥

𝜋0
⊥

where the left adjoint augments a simplicial set 𝑋 with its set of path components 𝜋0𝑋, defined by the
coequalizer

𝑋1 𝑋0 𝜋0𝑋
𝛿1

𝛿0

and the right adjoint augments a simplicial set “terminally” by adding a single −1-simplex. The unit
of 𝜋0 ⊣ 𝑈 and counit of 𝑈 ⊣ ∗ are both isomorphisms; hence either adjoint defines a fully faithful
embedding 𝑠𝒮𝑒𝑡 ↪ 𝑠𝒮𝑒𝑡+.

Any augmented simplicial set is canonically a coproduct of its terminally augmented “components”:

D.2.5. Lemma. Let 𝑋 be an augmented simplicial set.

(i) For each 𝑖 ∈ 𝑋−1, the subset 𝑋⟨𝑖⟩ comprised of those simplices in any dimension whose −1-simplex face
is 𝑖 forms a terminally augmented simplicial subset of 𝑋.

(ii) The disjoint union⨿𝑖∈𝑋−1𝑋⟨𝑖⟩ of these components is isomorphic to 𝑋.

Proof. Exercise D.2.i. �

D.2.6. Definition (join of simplicial sets). By convention, the join of a pair of simplicial sets is defined
to be the underlying simplicial set of the join of the trivially augmented simplicial sets. Thus, the join
bifunctor is the composite

𝑠𝒮𝑒𝑡 × 𝑠𝒮𝑒𝑡 𝑠𝒮𝑒𝑡

𝑠𝒮𝑒𝑡+ × 𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+

∗×∗

−⋆−

−⋆−
𝑈

Explicitly, 𝑛-simplices of 𝑋 ⋆ 𝑌 are pairs comprised of a 𝑗-simplex of 𝑋 and a 𝑘-simplex of 𝑌 where
𝑗 + 𝑘 = 𝑛 − 1, where in the case 𝑗 = −1 such a “pair” consists of a single 𝑛-simplex of 𝑌 and in the case
𝑘 = −1 such a “pair” consists of a single 𝑛-simplex of 𝑋. This recovers Definition 4.2.4.

As observed in Definition 4.2.4, the join of simplicial sets 𝑋 and 𝑌 admits canonical embeddings

𝑋 𝑋 ⋆ 𝑌 𝑌
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which can be understood as the maps obtained by applying 𝑋 ⋆ − or − ⋆ 𝑌 respectively to the
maps Δ[−1] → 𝑌 and Δ[−1] → 𝑋 in 𝑠𝒮𝑒𝑡+ that pick out the unique −1-simplices in the trivial
augmentations.

D.2.7. Lemma.

(i) The join bifunctor − ⋆ −∶ 𝑠𝒮𝑒𝑡 × 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 preserves connected colimits in each variable.
(ii) For any simplicial set 𝑋, the join functors

𝑠𝒮𝑒𝑡
𝑋⋆− 𝑋/𝑠𝒮𝑒𝑡 and 𝑠𝒮𝑒𝑡

−⋆𝑋 𝑋/𝑠𝒮𝑒𝑡
preserve all colimits.

Proof. In Definition D.2.6, the join of simplicial sets is defined as the composite of three functors,
two of which possess right adjoints and hence preserve all colimits. The third functor ∗ ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡+
does not possess a right adjoint but nevertheless preserves connected colimits as is clear from the
following definition: an indexing 1-category 𝐽 is connected just when the colimit of the constant
𝐽-indexed diagram valued at the singleton set is a singleton. This proves (i).

Now the forgetful functor 𝑋/𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 strictly creates connected colimits [104, 3.3.8], so the join
functors of (ii) preserve connected colimits. Arbitrary colimits may be built from connected colimits
and coproducts, so to prove (ii) it remains only to argue that these functors preserve coproducts. While
𝑋 ⋆ (⨿𝑖𝑌𝑖) ≇ ⨿𝑖(𝑋 ⋆𝑌𝑖) if the latter coproduct is interpreted in 𝑠𝒮𝑒𝑡, it can be directly verified that
𝑋 ⋆ (⨿𝑖𝑌𝑖) is the quotient of⨿𝑖(𝑋 ⋆ 𝑌𝑖) modulo the identification of the images of each inclusion
𝑋 ↪ 𝑋⋆𝑌𝑖 with a single copy of𝑋, which is exactly the construction of the coproduct in the category
𝑋/𝑠𝒮𝑒𝑡. �

D.2.8. Definition (slice of simplicial sets). The categories 𝑠𝒮𝑒𝑡 and 𝑋/𝑠𝒮𝑒𝑡 are locally presentable, so
the cocontinuous functors of Lemma D.2.7(ii) have right adjoints (see [1, 1.57])

𝑠𝒮𝑒𝑡 𝑋/𝑠𝒮𝑒𝑡 𝑠𝒮𝑒𝑡 𝑋/𝑠𝒮𝑒𝑡

𝑋⋆−

⊥
−/−

−⋆𝑋

⊥
−/−

the values of which at 𝑓 ∶ 𝑋 → 𝐴 define Joyal’s sliced simplicial sets 𝑓 /𝐴 and 𝐴/𝑓 characterized by the
universal properties described in Proposition 4.2.5:

⎧⎪
⎨⎪⎩

𝑋

𝑋 ⋆ 𝑌 𝐴
𝑓

⎫⎪
⎬⎪
⎭
≅ � 𝑌 𝑓 /𝐴 � and

⎧⎪
⎨⎪⎩

𝑋

𝑌 ⋆ 𝑋 𝐴
𝑓

⎫⎪
⎬⎪
⎭
≅ � 𝑌 𝐴/𝑓 � .

We think of the slice 𝑓 /𝐴 as being the simplicial set of cones under the diagram 𝑓 and we think of
the dual slice𝐴/𝑓 as being the simplicial set of cones over the diagram 𝑓. This terminology is reconciled
with the terminology of Definition 4.2.1 in Proposition D.6.4. We can also recover these sliced simplicial
sets from the décalage construction of Definition D.2.3 via Lemma D.2.5:

D.2.9. Lemma. For any simplicial map 𝑓 ∶ 𝑋 → 𝐴, the simplicial sets 𝑓 /𝐴 and 𝐴/𝑓 are the terminally
augmented components of dec𝑙(𝑋,𝐴) and dec𝑟(𝑋,𝐴), respectively, indexed by the −1-simplex 𝑓 ∶ 𝑋 → 𝐴.

Proof. We identify simplicial sets 𝑋 and 𝐴 with their terminally augmented simplicial sets.
Recall that Δ[−1] is the monoidal unit for the join bifunctor on 𝑠𝒮𝑒𝑡+. Consequently, by adjunction,
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maps Δ[−1] → dec𝑙(𝑋,𝐴) or Δ[−1] → dec𝑟(𝑋,𝐴) correspond to maps 𝑋 → 𝐴. For another
terminally augmented simplicial set 𝑌, transposing across the adjunction of Definition D.2.3 provides a
correspondence:

⎧⎪⎪
⎨⎪⎪⎩

𝑋 ⋆ Δ[−1] ≅ 𝑋

𝑋 ⋆ 𝑌 𝐴
𝑋⋆! 𝑓

⎫⎪⎪
⎬⎪⎪
⎭

≅

⎧⎪⎪
⎨⎪⎪⎩

Δ[−1]

𝑌 dec𝑙(𝑋,𝐴)
! 𝑓

⎫⎪⎪
⎬⎪⎪
⎭

which shows that the simplicial subset of dec𝑙(𝑋,𝐴) comprised of those simplices whose −1-simplex
face is 𝑓 has the universal property that defines 𝑓 /𝐴. The dual argument proves that the simplicial
subset of dec𝑟(𝑋,𝐴) comprised of those simplices whose −1-simplex face is 𝑓 has the universal property
that defines 𝐴/𝑓. In other words, these décalages admit the following canonical decompositions as
disjoint unions of (terminally augmented) slices:

dec𝑟(𝑋,𝐴) = �
𝑓 ∶ 𝑋→𝐴

𝐴/𝑓 dec𝑙(𝑋,𝐴) = �
𝑓 ∶ 𝑋→𝐴

𝑓 /𝐴 �

D.2.10. Definition ((left-/right-/inner-)anodyne extensions).

• The set of horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛 cellularly generates the
anodyne extensions.

• The set of left horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 ≤ 𝑘 < 𝑛 cellularly generates the
left anodyne extensions.

• The set of right horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 1 and 0 < 𝑘 ≤ 𝑛 cellularly generates the
right anodyne extensions.

• The set of inner horn inclusions Λ𝑘[𝑛] ↪ Δ[𝑛] for 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛 cellularly generates the
inner anodyne extensions.

We refer to the right classes that lift against these maps as Kan, left, right, and inner fibrations,
respectively. By an easy direct calculation:

D.2.11. Lemma. The Leibniz join of a horn inclusion and a boundary inclusion is isomorphic to a single horn
inclusion:

(Λ𝑘[𝑛] ↪ Δ[𝑛]) �⋆ (𝜕Δ[𝑚] ↪ Δ[𝑚]) ≅ Λ𝑘[𝑛 + 1 + 𝑚] ↪ Δ[𝑛 + 1 + 𝑚]
(𝜕Δ[𝑛] ↪ Δ[𝑛]) �⋆ (Λ𝑘[𝑚] ↪ Δ[𝑚]) ≅ Λ𝑛+𝑘+1[𝑛 + 1 + 𝑚] ↪ Δ[𝑛 + 1 + 𝑚]

Proof. Since the join bifunctor is the Day convolution of the ordinal sum [𝑛]⊕ [𝑚] = [𝑛+1+𝑚],
Δ[𝑛] ⋆ Δ[𝑚] ≅ Δ[𝑛 + 1 + 𝑚]. The domain of the first Leibniz tensor is the simplicial set

Λ𝑘[𝑛] ⋆ Δ[𝑚] ∪
Λ𝑘[𝑛]⋆𝜕Δ[𝑚]

Δ[𝑛] ⋆ 𝜕Δ[𝑚].

Weuse Definition D.2.2 to identify this with a simplicial subset ofΔ[𝑛+1+𝑚]. Since 𝜕Δ[𝑚] contains all
the codimension-one faces ofΔ[𝑚], theΔ[𝑛]⋆𝜕Δ[𝑚] component contains the 𝑗th face ofΔ[𝑛+1+𝑚]
for each index 𝑗 > 𝑛. Similarly, since Λ𝑘[𝑛] contains all codimension-one faces of Δ[𝑛]-except one,
the Λ𝑘[𝑛] ⋆ Δ[𝑚] component contains the 𝑖th face of Δ[𝑛 + 1 + 𝑚] for each index 𝑖 ≤ 𝑛 except 𝑖 = 𝑘.
Thus, we see that only the 𝑘th face and the 𝑛 + 1 + 𝑚-simplex are missing, which allows us to identify

the domain of this Leibniz join with the horn Λ𝑘[𝑛 + 1 + 𝑚]. �

Consequently:
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D.2.12. Corollary. If 𝑓 ∶ 𝑋 → 𝐴 is any simplicial map and 𝐴 is a quasi-category, then 𝑓 /𝐴 and 𝐴/𝑓 are
quasi-categories.

Proof. By LemmaD.2.9, to prove that 𝑓 /𝐴 is a quasi-category, it suffices to show that the augmented
simplicial set dec𝑙(𝑋,𝐴) admits fillers for all inner horns, considered as trivially augmented simplicial
sets. For this, it suffices to solve the transposed lifting problem, and argue that 𝐴 admits extensions

along the Leibniz join (∅ ↪ 𝑋) �⋆ (Λ𝑘[𝑛] ↪ Δ[𝑛]) for all 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛:

Λ𝑘[𝑛] dec𝑙(𝑋,𝐴) 𝑋 ⋆ Λ𝑘[𝑛] 𝐴

Δ[𝑛] 𝑋 ⋆ Δ[𝑛]
↭

By Lemma C.5.9, the inclusion ∅ ↪ 𝑋 is cellularly generated by the inclusions 𝜕Δ[𝑚] ↪ Δ[𝑚] for
𝑚 ≥ 0, and by Lemma D.2.11 the Leibniz joins of these maps with inner horn inclusions are inner

anodyne extensions. By Proposition C.2.9(vii), the Leibniz join (∅ ↪ 𝑋) �⋆ (Λ𝑘[𝑛] ↪ Δ[𝑛]) is then
inner anodyne, so the lifting problem above-right admits a solution, which transpose to define a
solution to the lifting problem above-left. �

Our next aim is to prove that the slice quasi-categories are equivalent to the quasi-categories of
cones introduced in §4.2. As sketched there, this result hinges on a suitable equivalence between the
join construction and the so-called “fat join” construction of Definition 4.2.2, which we now extend to
augmented simplicial sets. Recall from Lemma D.2.5 that an augmented simplicial set 𝑋 canonically
decomposes into a coproduct 𝑋 ≅ ⨿𝑖∈𝑋−1𝑋⟨𝑖⟩ of terminally augmented simplicial sets, indexed by the
set of −1-simplices.

D.2.13. Definition (fat join and décalage of augmented simplicial sets). For augmented simplicial sets
𝑋 ≅ ⨿𝑖∈𝑋−1𝑋⟨𝑖⟩ and 𝑌 ≅ ⨿𝑗∈𝑌−1𝑌⟨𝑗⟩ their fat join is constructed by the pushout:

(𝑋 × 𝑌) ⊔ (𝑋 × 𝑌) (𝑋 × 𝑌−1) ⊔ (𝑋−1 × 𝑌)

𝑋 × 𝟚 × 𝑌 𝑋 ⋄ 𝑌

𝜋𝑋⊔𝜋𝑌

i.e., 𝑋 ⋄ 𝑌 ≔ �
(𝑖,𝑗)∈𝑋−1×𝑌−1

𝑋⟨𝑖⟩ ⋄ 𝑌⟨𝑗⟩

where 𝑋⟨𝑖⟩ ⋄ 𝑌⟨𝑗⟩ is the terminally augmented simplicial set defined by the fat join of Definition 4.2.2.
This construction is arranged so that the bifunctor −⋄−∶ 𝑠𝒮𝑒𝑡+×𝑠𝒮𝑒𝑡+ → 𝑠𝒮𝑒𝑡+ preserves all colimits
in each variable, not simply the connected ones preserved by the bifunctor − ⋄ −∶ 𝑠𝒮𝑒𝑡 × 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡.

Explicitly, the set of 𝑛-simplices (𝑋 ⋄ 𝑌)𝑛 is the quotient of the set 𝑋𝑛 × 𝚫([𝑛], [1]) × 𝑌𝑛 of
𝑛-simplices of 𝑋 × 𝟚 × 𝑌 modulo the relation that identifies triples

• (𝑥, 0, 𝑦) ∼ (𝑥, 0, 𝑦′) where 0∶ [𝑛] → [1] is the constant operator and 𝑦 and 𝑦′ are in the same
component of 𝑌 ≅ ⊔𝑗∈𝑌−1𝑌⟨𝑗⟩ and

• (𝑥, 1, 𝑦) ∼ (𝑥′, 1, 𝑦) where 1∶ [𝑛] → [1] is the constant operator and 𝑥 and 𝑥′ are in the same
component of 𝑋 ≅ ⊔𝑖∈𝑋−1𝑋⟨𝑖⟩.

By cocontinuity and the adjoint functor theorems, the fat join bifunctor on 𝑠𝒮𝑒𝑡+ has both left and
right closures fatdec𝑙(𝑋,𝐴) and fatdec𝑟(𝑋,𝐴), called left and right fat décalage, respectively, whose
handedness we fix by declaring that if 𝑋 is an augmented simplicial set then 𝑋 ⋄ − ⊣ fatdec𝑙(𝑋, −) and
− ⋄ 𝑋 ⊣ fatdec𝑟(𝑋, −).
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There is a canonical comparison map from the fat join to the join as previewed in the discussion
surrounding Proposition 4.2.7.

D.2.14. Lemma. There exists a canonical map of augmented simplicial sets

𝑠𝑋,𝑌 ∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌
natural in 𝑋 and 𝑌 that in particular defines a natural transformation

𝑠𝑛,𝑚 ∶ Δ[𝑛] ⋄ Δ[𝑚] → Δ[𝑛] ⋆ Δ[𝑚] ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+

that is an isomorphism⁶ if 𝑛 or 𝑚 equals −1 and otherwise arises as a quotient of the map defined by its
order-preserving action on vertices:

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛 + 1 + 𝑚]
(𝑖, 0, 𝑘) 𝑖
(𝑖, 1, 𝑘) 𝑘 + 𝑛 + 1

�̄�𝑛,𝑚

Note that �̄�𝑛,𝑚 takes simplices related under the congruence described in Definition D.2.13 to the
same simplex and thus induces a unique map 𝑠𝑛,𝑚 ∶ Δ[𝑛] ⋄ Δ[𝑚] → Δ[𝑛] ⋆ Δ[𝑚] on the quotient
simplicial set. In the proof, we give a general construction of the map 𝑠𝑋,𝑌 that can be shown to
coincide with this description in the case where 𝑋 and 𝑌 are standard simplices.

Proof. Identifying the set 𝑋−1 with the augmented simplicial set⨿𝑋−1Δ[−1], the Yoneda lemma
supplies a canonical map 𝑋−1 → 𝑋 of augmented simplicial sets, which gives rise to a canonical map

(𝑋 × 𝑌) ⊔ (𝑋 × 𝑌) (𝑋 × 𝑌−1) ⊔ (𝑋−1 × 𝑌)

𝑋 × 𝟚 × 𝑌 𝑋 ⋄ 𝑌 𝑋 ⋆ 𝑌

𝟚

𝜋⊔𝜋

𝜋

𝑠𝑋,𝑌 (D.2.15)

Note that the fibers of both 𝑋 ⋄ 𝑌 and 𝑋 ⋆ 𝑌 over the endpoints 0, 1 of 𝟚 are 𝑋 × 𝑌−1 and 𝑋−1 × 𝑌,
respectively, and the map 𝑠𝑋,𝑌 commutes with the inclusions of these fibers.

The map 𝑠𝑋,𝑌 is defined on those 𝑛-simplices of 𝑋 ⋄ 𝑌 that map surjectively onto 𝟚 by sending
a triple (𝜎 ∈ 𝑋𝑛, 𝛼 ∶ [𝑛] ↠ [1], 𝜏 ∈ 𝑌𝑛) representing an 𝑛-simplex of 𝑋 ⋄ 𝑌 to the pair (𝜎|{0,…,𝑘} ∈
𝑋𝑘, 𝜏|{𝑘+1,…,𝑛} ∈ 𝑌𝑛−𝑘−1) representing an 𝑛-simplex of 𝑋 ⋆ 𝑌, where 𝑘 ∈ [𝑛] is the maximal vertex in

𝛼−1(0). �

We now prove that the natural comparison between the fat join of simplices and the join of simplices
defines a component of a marked homotopy equivalence (see Definition D.1.19).

D.2.16. Proposition. For each 𝑛,𝑚 ≥ −1, the map of augmented simplicial sets

𝑠𝑛,𝑚 ∶ Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋆ Δ[𝑚] ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+

is a marked homotopy retract equivalence which is an isomorphism in the case 𝑛 = −1 or 𝑚 = −1.
⁶Note that 𝑋 ⋄ Δ[−1] ≅ 𝑋 ⋆ Δ[−1] ≅ 𝑋 ≅ Δ[−1] ⋄ 𝑋 ≅ Δ[−1] ⋆ 𝑋.
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Proof. To define a section and left homotopy inverse to 𝑠𝑛,𝑚, we consider a map determined by
its order-preserving action on vertices:

Δ[𝑛 + 1 + 𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]

𝑖 �
(𝑖, 0, 0) if 𝑖 ≤ 𝑛,
(𝑛, 1, 𝑖 − 𝑛 − 1) if 𝑖 > 𝑛.

̄𝑡𝑛,𝑚

and note immediately that that �̄�𝑛,𝑚 ∘ ̄𝑡𝑛,𝑚 = id. The obverse composite is given by the explicit formula:

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]
(𝑖, 0, 𝑘) (𝑖, 0, 0)
(𝑖, 1, 𝑘) (𝑛, 1, 𝑘)

̄𝑡𝑛,𝑚∘�̄�𝑛,𝑚

Now we may define a related order-preserving endo-map �̄�𝑛,𝑚 on [𝑛] × [1] × [𝑚] by

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]
(𝑖, 0, 𝑘) (𝑖, 0, 0)
(𝑖, 1, 𝑘) (𝑖, 1, 𝑘)

�̄�𝑛,𝑚

which is of interest because in the pointwise ordering on such maps we have �̄�𝑛,𝑚 ≤ ̄𝑡𝑛,𝑚 ∘ �̄�𝑛,𝑚 and
�̄�𝑛,𝑚 ≤ id[𝑛]×[1]×[𝑚], representing simplicial homotopies:

Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚] Δ[𝑛] × Δ[1] × Δ[𝑚]

(Δ[𝑛] × Δ[1] × Δ[𝑚]) × Δ[1] (Δ[𝑛] × Δ[1] × Δ[𝑚]) × Δ[1]

Δ[𝑛] × Δ[1] × Δ[𝑚]

𝛿0

̄𝑡𝑛,𝑚∘�̄�𝑛,𝑚

𝛿1 𝛿1

�̄�𝑛,𝑚

𝛿0

idΔ[𝑛]×Δ[1]×Δ[𝑚]

ℎ̄𝑛,𝑚 �̄�𝑛,𝑚

Passing to quotients under the congruence defined in Definition D.2.13, this induces simplicial
maps 𝑡𝑛,𝑚 ∶ Δ[𝑛] ⋆ Δ[𝑚] → Δ[𝑛] ⋄ Δ[𝑚] and 𝑢𝑛,𝑚 ∶ Δ[𝑛] ⋄ Δ[𝑚] → Δ[𝑛] ⋄ Δ[𝑚] so that 𝑠𝑛,𝑚 ∘ 𝑡𝑛,𝑚 =
idΔ[𝑛]⋆Δ[𝑚], and simplicial homotopies ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 that assemble into a diagram:

Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋄ Δ[𝑚]

(Δ[𝑛] ⋄ Δ[𝑚]) × Δ[1] (Δ[𝑛] ⋄ Δ[𝑚]) × Δ[1]

Δ[𝑛] ⋄ Δ[𝑚]

𝛿0

𝑡𝑛,𝑚∘𝑠𝑛,𝑚

𝛿1 𝛿1

𝑢𝑛,𝑚

𝛿0

idΔ[𝑛]⋄Δ[𝑚]
ℎ𝑛,𝑚 𝑘𝑛,𝑚

To see that the maps ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 define marked homotopies, Definition D.1.19 tells us that we
must verify, for each 0-simplex [𝑖, 𝑗, 𝑘]∼ of Δ[𝑛] ⋄ Δ[𝑚], that the 1-simplex ([𝑖, 𝑗, 𝑘]∼ ⋅ 𝜎0, id[1]) of
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(Δ[𝑛]⋄Δ[𝑚])×Δ[1] is mapped by ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 to degenerate, and thusmarked, simplices inΔ[𝑛]⋄Δ[𝑚].
We argue by cases in the index 𝑗. If 𝑗 = 0, then �̄�𝑛,𝑚(𝑖, 0, 𝑘) = (𝑖, 0, 0) ∼ (𝑖, 0, 𝑘) = ̄𝑡𝑛,𝑚 ∘ �̄�𝑛,𝑚(𝑖, 0, 𝑘), so
the components of both ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 are degenerate. If 𝑗 = 1, then �̄�𝑛,𝑚(𝑖, 1, 𝑘) = (𝑖, 1, 𝑘) ∼ (𝑛, 𝑖, 𝑘) =
̄𝑡𝑛,𝑚 ∘ �̄�𝑛,𝑚(𝑖, 1, 𝑘), so again the components of both ℎ𝑛,𝑚 and 𝑘𝑛,𝑚 are degenerate. Thus, 𝑠𝑛,𝑚 extends
to a marked homotopy retract equivalence with equivalence inverse 𝑡𝑛,𝑚. �

The marked simplicial homotopy equivalence of Proposition D.2.16 witnesses a pointwise weak

equivalence in a suitable sense between two diagrams in 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+ considered in Lemma D.2.14. This is

the key ingredient in the proof that the canonical map of augmented simplicial sets 𝑠𝑋,𝑌 ∶ 𝑋⋄𝑌 → 𝑋⋆𝑌
is also a weak equivalence in a suitable sense, but this conclusion requires an exploration of the
connection between the homotopy theory of marked simplicial sets and the homotopy theory of
quasi-categories. We make this connection in §D.4 and then resume this line of reasoning in §D.6.

We close this section with one final result, a marked analogue of Lemma D.2.11. The join construc-
tion of Definition D.2.6 is extended to marked simplicial sets in [128].

D.2.17. Definition (join of marked simplicial sets). The simplicial join lifts to a join bifunctor

𝑠𝒮𝑒𝑡+ × 𝑠𝒮𝑒𝑡+
⋆

𝑠𝒮𝑒𝑡+

in which a simplex (𝛼, 𝛽) ∶ Δ[𝑛] → 𝐴⋆𝐵, with components 𝛼∶ Δ[𝑘] → 𝐴 and 𝛽∶ Δ[𝑛 − 𝑘 − 1] → 𝐵,
is marked in 𝐴 ⋆ 𝐵 if and only if at least one of the simplices 𝛼 or 𝛽 is marked in 𝐴 or 𝐵.

D.2.18. Lemma.

(i) The Leibniz join of a complicial horn extension and a boundary inclusion is isomorphic to a single
complicial horn extension:

(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) �⋆ (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) ≅ Λ𝑘[𝑛 + 1 + 𝑚] ↪𝑟 Δ𝑘[𝑛 + 1 + 𝑚]
unless 𝑘 = 𝑛, in which case (Λ𝑛[𝑛] ↪𝑟 Δ𝑛[𝑛]) �⋆ (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) is a pushout of Λ𝑛[𝑛 + 1 +
𝑚] ↪𝑟 Δ𝑛[𝑛 + 1 + 𝑚].

(ii) The Leibniz joins below are complicial thinness extensions

(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) �⋆ (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡) ≅ Δ𝑘[𝑛 + 1 + 𝑚]′ ↪𝑒 Δ𝑘[𝑛 + 1 + 𝑚]″

(Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) �⋆ (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) ≅ Δ𝑘[𝑛 + 1 + 𝑚]′ ↪𝑒 Δ𝑘[𝑛 + 1 + 𝑚]″

unless 𝑘 = 𝑛, in which case the Leibniz joins are instead pushouts ofΔ𝑘[𝑛+1+𝑚]′ ↪𝑒 Δ𝑘[𝑛+1+𝑚]″,
while (Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) �⋆ (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡) is the identity map.

Since the join is antisymmetric – with (𝐴 ⋆ 𝐵)op ≅ 𝐵op ⋆ 𝐴op – the cases where the left and right
maps of each Leibniz join are exchanged are easily deduced from the cases considered here.

Proof. The underlying map of simplicial sets in (i) is identified in Lemma D.2.11, so it remains
only to consider the markings. Similarly, in each of the three Leibniz joins considered in (ii), the
underlying map of simplicial sets is a Leibniz join of a monomorphism with an identity, and is thus an
identity, so it remains only to consider the markings in the resulting entire inclusion. Since a simplex
in a join of marked simplicial sets is marked if and only if either of its components are, this description
lends itself readily to a case analysis. We leave the details to Exercise D.2.ii or to [129, 38]. �

The slice construction of Definition D.2.8 also extends to marked simplicial sets. We adopt new
notation for this construction because it is not typically the case that the underlying simplicial set of
the marked join is the slice of corresponding map of underlying simplicial sets.
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D.2.19. Lemma. For any map of marked simplicial sets 𝑓 ∶ 𝑋 → 𝐴, there exist marked simplicial sets 𝑓 ⫽𝐴 and
𝐴⫽𝑓 characterized by the universal properties

⎧⎪
⎨⎪⎩

𝑋

𝑋 ⋆ 𝑌 𝐴
𝑓

⎫⎪
⎬⎪
⎭
≅ � 𝑌 𝑓 ⫽𝐴 � and

⎧⎪
⎨⎪⎩

𝑋

𝑌 ⋆ 𝑋 𝐴
𝑓

⎫⎪
⎬⎪
⎭
≅ � 𝑌 𝐴⫽𝑓 � .

Proof. Exercise D.2.iv. �

Exercises.

D.2.i. Exercise. Prove Lemma D.2.5.

D.2.ii. Exercise ([129, 38]). Finish the proof of Lemma D.2.18.

D.2.iii. Exercise. Generalize the last case of Lemma D.2.18(ii) by showing that the Leibniz join of two
entire inclusions is an identity.

D.2.iv. Exercise. Prove Lemma D.2.19.

D.3. Leibniz Stability of Cartesian Products

We now turn our attention to analogous Leibniz constructions defined with respect to the cartesian
product, which in the context of marked simplicial sets is called the Gray tensor product in [129]. We
warm up with a basic result about the geometry of the Leibniz product.

D.3.1. Lemma. The Leibniz product of any pair of monomorphisms of simplicial sets is a monomorphism.

Proof. Products, pushouts, and monomorphisms in 𝑠𝒮𝑒𝑡 are determined pointwise in the category
of sets, so this result follows from the fact that for monomorphisms 𝑆 ↪ 𝑇 and 𝑈 ↪ 𝑉 of sets, the
Leibniz product

(𝑆 ↪ 𝑇) �× (𝑈 ↪ 𝑉) ≅ (𝑆 × 𝑉 ∪
𝑆×𝑈

𝑇 × 𝑈 ↪ 𝑇 × 𝑉)
is a monomorphism, which is clear by inspection. �

D.3.2. Remark (why “Leibniz”). The inclusion defined by the Leibniz product of a pair of simplex
boundary inclusions

(𝜕Δ[𝑛] ↪ Δ[𝑛]) �× (𝜕Δ[𝑚] ↪ Δ[𝑚]) ≅ 𝜕Δ[𝑛] × Δ[𝑚] ∪
𝜕Δ[𝑛]×𝜕Δ[𝑚]

Δ[𝑛] × 𝜕Δ[𝑚] ↪ Δ[𝑛] × Δ[𝑚]

corresponds geometrically to the inclusion of the boundary 𝜕(Δ[𝑛] × Δ[𝑚]) ↪ Δ[𝑛] × Δ[𝑚] of the
prism. The identification

𝜕(Δ[𝑛] × Δ[𝑚]) ≅ 𝜕Δ[𝑛] × Δ[𝑚] ∪
𝜕Δ[𝑛]×𝜕Δ[𝑚]

Δ[𝑛] × 𝜕Δ[𝑚]

is formally similar to various identities that are commonly called “the Leibniz rule.”

To prove an analogous result for marked simplicial sets, we first require the following observation:

D.3.3. Proposition. The category of marked simplicial sets is cartesian closed with

• cartesian product defined by marking a simplex in the cartesian product of the underlying simplicial sets
just when both components are marked simplices
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• internal hom 𝑌𝑋 defined to be the simplicial set whose 𝑛-simplices are maps of marked simplicial sets
𝜎∶ 𝑋 × Δ[𝑛] → 𝑌, where 𝜎 is marked just when this map extends to a map of marked simplicial sets:

𝑋 × Δ[𝑛] 𝑌

𝑋 × Δ[𝑛]𝑡

𝜎

𝑒
𝜎

Proof. It is clear from the universal property of the product and its closure that the cartesian
product and internal hom must be defined in this way if these objects exist. To verify the adjunction,
recall from Proposition D.1.5 that marked simplicial sets embed as a reflexive full subcategory of a

category of presheaves𝒮𝑒𝑡𝑡𝚫
op

. By Example A.1.4, the category𝒮𝑒𝑡𝑡𝚫
op

is cartesian closed and moreover
this embedding preserves the products and internal homs as just defined. Now we conclude that these

define the functors of a two-variable adjunction on 𝑠𝒮𝑒𝑡+ by restricting the corresponding natural

isomorphisms from 𝒮𝑒𝑡𝑡𝚫
op

to its full subcategory. �

The result of Lemma D.3.1 extends to the marked context. Our proof uses a simple observation
that is also deployed elsewhere.

D.3.4. Lemma. The Leibniz product of any map of marked simplicial sets with an entire inclusion is an entire
inclusion.

Proof. By definition the Leibniz product of 𝑓 ∶ 𝑋 → 𝑌 and 𝑖 ∶ 𝑈 ↪𝑒 𝑉 is the induced map of
marked simplicial sets

𝑋 × 𝑈 𝑋 × 𝑉

𝑌 × 𝑈 •

𝑌 × 𝑉

𝑒
𝑋×𝑖

𝑓 ×𝑈
𝑓 ×𝑉

𝑒

𝑒𝑌×𝑖

Note that the forgetful functor (−)0 ∶ 𝑠𝒮𝑒𝑡
+ → 𝑠𝒮𝑒𝑡 preserves products and pushouts, and recall that

a map of marked simplicial sets is entire just when the underlying map is an isomorphism. Since the
product of a simplicial set with an isomorphism is an isomorphism, the maps 𝑋 × 𝑈 ↪𝑒 𝑋 × 𝑉 and
𝑌 × 𝑈 ↪𝑒 𝑌 × 𝑉 are entire. Since pushouts of isomorphisms are isomorphisms, it follows that the
remaining horizontal map is also entire. Finally, since isomorphisms obey the 2-of-3 property, the
Leibniz product map must also be entire. �

D.3.5. Lemma. The Leibniz product of two regular inclusions is again a regular inclusion.

Proof. By Lemma D.3.1, the underlying simplicial set of the Leibniz product of two regular
inclusions 𝐴 ↪𝑟 𝐵 and 𝐶 ↪𝑟 𝐷 is the monomorphism

𝐴 ×𝐷 ∪
𝐴×𝐶

𝐵 × 𝐶 𝐵 × 𝐷.

Note, in particular, that the inclusions of the components 𝐴 ×𝐷 and 𝐵 × 𝐶 jointly surject onto the
domain of this map. Our task is to show that any 𝑛-simplex in 𝐴 × 𝐷 ∪

𝐴×𝐶
𝐵 × 𝐶 that is marked

in 𝐵 × 𝐷 is marked in 𝐴 × 𝐷 ∪
𝐴×𝐶

𝐵 × 𝐶. We argue by cases and assume without loss of generality
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that the 𝑛-simplex is in the image of the inclusion from 𝐵 × 𝐶. In this case, the regularity of the map
𝐵 × 𝐶 ↪𝑟 𝐵 × 𝐷 implies that it is marked in 𝐴 ×𝐷 ∪

𝐴×𝐶
𝐵 × 𝐶 as claimed. �

A generic monomorphism of marked simplicial sets is neither regular nor entire, but the generating
monomorphisms of marked simplicial sets have one of these properties. Thus, by Lemmas D.3.4 and
D.3.5, we immediately conclude:

D.3.6. Lemma. For any 𝑛,𝑚 ≥ 0, the Leibniz products
(𝜕Δ[𝑛] ↪𝑟 Δ[𝑛]) �× (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]), (𝜕Δ[𝑛] ↪𝑟 Δ[𝑛]) �× (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡),

and (Δ[𝑛] ↪𝑒 Δ[𝑛]𝑡) �× (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡)
are monomorphisms of marked simplicial sets. �

As a corollary, we can characterize Leibniz products of arbitrary monomorphisms of marked
simplicial sets by invoking a very general argument that is repeated throughout this chapter.

D.3.7. Corollary.

(i) The Leibniz product of any pair of monomorphisms of marked simplicial sets is again a monomorphism.
(ii) The Leibniz exponential of any trivial fibration of marked simplicial sets with any monomorphism is

again a trivial fibration.

Proof. In the terminology of Lemma C.2.11, the two statements combine to assert that the two-
variable adjunction defined by the cartesian product and internal hom is a Leibniz two-variable
adjunction with respect to the (monomorphism, trivial fibration) weak factorization system. By
Remark C.2.12 this follows from the properties established in Lemmas D.1.6 and D.3.6. �

Considerably harder is to show the Leibniz stability of the class of marked anodyne extensions
with the class of marked monomorphisms. We prove a slightly more specific result that also describes
the cases of inner, left, or right marked anodyne extensions, which restrict the inequalities 0 ≤ 𝑘 ≤ 𝑛
to 0 < 𝑘 < 𝑛, 𝑘 < 𝑛, or 0 < 𝑘, respectively.

D.3.8. Proposition. For 𝑛 ≥ 1, 𝑚 ≥ 0, and 0 < 𝑘 ≤ 𝑛 each of the Leibniz products
(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) �× (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) (Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) �× (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡)

(Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) �× (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) (Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″) �× (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡)
is a right marked anodyne extension and is an inner marked anodyne extension if 𝑘 < 𝑛.

On account of the symmetry of the cartesian product, it is immaterial whether the horn inclusion
or the simplex boundary inclusion appears on the left or right. The proof of this result requires some
special notation to describe the cartesian product of simplices.

D.3.9. Digression (on shuffles). Since Δ[𝑛] is the nerve of the poset [𝑛], an 𝑟-simplex 𝑖 ∶ Δ[𝑟] → Δ[𝑛]
may equally be encoded by the ordered sequence of vertices 𝑖0 ≤ ⋯ ≤ 𝑖𝑟 ∈ [𝑛] appearing in its image.

By the universal property of the product, an 𝑟-simplex in Δ[𝑛] × Δ[𝑚] is given by an 𝑟-simplex
𝑖 ∶ Δ[𝑟] → Δ[𝑛] and an 𝑟-simplex 𝑗 ∶ Δ[𝑟] → Δ[𝑚]. Since Δ[𝑛] × Δ[𝑚] is the nerve of the poset
[𝑛] × [𝑚], such simplices correspond bijectively to ordered sequences of pairs

(𝑖0, 𝑗0) ≤ (𝑖1, 𝑗1) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟) (D.3.10)

with each 𝑖𝑠 ∈ [𝑛] and each 𝑗𝑡 ∈ [𝑚], and is degenerate just when one of these inequalities is an equality.
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The nondegenerate 𝑛 +𝑚-simplices of the simplicial set Δ[𝑛] × Δ[𝑚] are called shuffles; these are
the simplices of maximal dimension. An 𝑛 + 𝑚-simplex (𝑖, 𝑗) defines a shuffle just when 𝑖𝑡 + 𝑗𝑡 = 𝑡 for
all 𝑡 ∈ [𝑛 + 𝑚]. If the objects of [𝑛] × [𝑚] are arranged in a rectangular grid, the shuffles are those
maximal-length nondegenerate paths that start from (0, 0) and end with (𝑛,𝑚), by taking steps which
add one to exactly one coordinate at a time.

The first case of the following proof is an adaptation of an argument of Dugger and Spivak [36,
A.1] to the marked context.

Proof. By Lemma D.3.5, the Leibniz product (Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) �× (𝜕Δ[𝑚] ↪𝑟 Δ[𝑚]) is the
regular inclusion

Λ𝑘[𝑛] × Δ[𝑚] ∪
Λ𝑘[𝑛]×𝜕Δ[𝑚]

Δ𝑘[𝑛] × 𝜕Δ[𝑚] 𝑟 Δ
𝑘[𝑛] × Δ[𝑚].

A nondegenerate 𝑟-simplex (D.3.10) ofΔ𝑘[𝑛]×Δ[𝑚] is missing from the domain of the Leibniz product
inclusion just when

• its component {𝑖0, … , 𝑖𝑟} ⊃ [𝑛]\{𝑘} and
• its component {𝑗0, … , 𝑗𝑟} ⊃ [𝑚].

We filter this inclusion as a sequence of regular inclusions

Λ𝑘[𝑛] × Δ[𝑚] ∪
Λ𝑘[𝑛]×𝜕Δ[𝑚]

Δ𝑘[𝑛] × 𝜕Δ[𝑚] ≕ 𝑌−1 ↪𝑟 𝑌0 ↪𝑟 ⋯ ↪𝑟 𝑌𝑚 = Δ𝑘[𝑛] × Δ[𝑚]

and argue that each 𝑌𝑡 ↪ 𝑌𝑡+1 is right or inner marked anodyne, as appropriate.

Starting from 𝑌−1 ≔ Λ𝑘[𝑛] × Δ[𝑚] ∪
Λ𝑘[𝑛]×𝜕Δ[𝑚]

Δ𝑘[𝑛] × 𝜕Δ[𝑚], we define 𝑌𝑡 to be the smallest

regular simplicial subset of Δ𝑘[𝑛] × Δ[𝑚] that contains 𝑌𝑡−1 together with every simplex (D.3.10) that
contains the vertex (𝑘, 𝑡). Since every missing simplex is a face of a simplex that contains one of the

vertices (𝑘, 0), … , (𝑘, 𝑚), it is clear from this description that 𝑌𝑚 = Δ𝑘[𝑛] × Δ[𝑚].
It remains only to analyze the regular inclusions 𝑌𝑡−1 ↪𝑟 𝑌𝑡, which we do by producing another

filtration
𝑌𝑡−1 = 𝑌𝑡,𝑛−1 ↪𝑟 𝑌𝑡,𝑛 ↪𝑟 ⋯ ↪𝑟 𝑌𝑡,𝑛+𝑚 = 𝑌𝑡.

Note that every simplex of Δ𝑘[𝑛] × Δ[𝑚] that contains the vertex (𝑘, 𝑡) and has dimension 𝑛 − 1 or
less is contained in 𝑌−1, so the simplices containing the vertex (𝑘, 𝑡) that are attached to 𝑌𝑡−1 to form
𝑌𝑡 have dimensions between 𝑛 and 𝑛 + 𝑚. With this in mind, we define 𝑌𝑡,𝑟 to be the smallest regular

simplicial subset of Δ𝑘[𝑛] × Δ[𝑚] containing 𝑌𝑡,𝑟−1 and all simplices of dimension 𝑟 that contain the
vertex (𝑘, 𝑡). In particular, 𝑌𝑡,𝑛−1 = 𝑌𝑡−1 and 𝑌𝑡,𝑛+𝑚 = 𝑌𝑡.
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We now argue that each regular inclusion in this filtration is a pushout of a coproduct of complicial
horn extensions followed by complicial thinness extensions

∐
𝜏∈𝑆𝑡,𝑟

Λℓ𝜏[𝑟] 𝑌𝑡,𝑟−1

∐
𝜏∈𝑆𝑡,𝑟

Δℓ𝜏[𝑟] • ∐
𝜏∈𝑇 𝑡,𝑟

Δℓ𝜏[𝑟]′

𝑌𝑡,𝑟 ∐
𝜏∈𝑇 𝑡,𝑟

Δℓ𝜏[𝑟]″

𝑟 𝑟

𝑒 𝑒

indexed by the sets 𝑆𝑡,𝑟 of 𝑟-simplices containing the vertex (𝑘, 𝑡) and not already present in 𝑌𝑡,𝑟−1

and 𝑇 𝑡,𝑟 ⊂ 𝑆𝑡,𝑟 defined to be the subset of those 𝑟-simplices 𝜏 so that 𝜏𝛿ℓ𝜏 is marked in Δ𝑘[𝑛] × Δ[𝑚].
Moreover, for each 𝜏 ∈ 𝑆𝑡,𝑟, we will see that that 0 < ℓ𝜏 and if 𝑘 < 𝑛 then ℓ𝜏 < 𝑟. This will show that
the Leibniz product is a right marked anodyne extension, which is an inner marked anodyne extension
if 𝑘 < 𝑛.

To see this, let 𝜏 ∈ 𝑆𝑡,𝑟 be the 𝑟-simplex

(𝑖0, 𝑗0) ≤ ⋯ ≤ (𝑖ℓ𝜏, 𝑗ℓ𝜏) = (𝑘, 𝑡) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟)
containing (𝑘, 𝑡) as its ℓ𝜏th vertex; for readability we write ℓ for ℓ𝜏 going forward. Since the set
{𝑖0, … , 𝑖𝑟} ⊃ [𝑛] and 0 < 𝑘 we must also have 0 < ℓ, and if 𝑘 < 𝑛, we must also have ℓ < 𝑟. We will
argue that:

• Each face of 𝜏 except the ℓth is contained in 𝑌𝑡,𝑟−1.
• The ℓth face of 𝜏 is not in 𝑌𝑡,𝑟−1.
• The 𝑟-simplex 𝜏 is a ℓ-admissible simplex of Δ𝑘[𝑛] × Δ[𝑚].
• If 𝜏𝛿ℓ is marked in Δ𝑘[𝑛] × Δ[𝑚] then so is 𝜏𝛿ℓ−1 and 𝜏𝛿ℓ+1 (in the case ℓ < 𝑟).

Thus, the union of 𝜏 with 𝑌𝑡,𝑟−1 may be formed as a pushout of a complicial horn extension Λℓ[𝑟] ↪𝑟
Δℓ[𝑟] as claimed.

For the first item, note that each codimension-one face except for 𝜏𝛿ℓ has dimension 𝑟 − 1 and
contains the vertex (𝑘, 𝑡) and thus lies in 𝑌𝑡,𝑟−1 as claimed. To see that 𝑌𝑡,𝑟−1 does not also contain the
face 𝜏𝛿ℓ, we consider the vertex (𝑖ℓ−1, 𝑗ℓ−1). If 𝑖ℓ−1 = 𝑘 then by nondegeneracy, 𝑗ℓ−1 < 𝑡, in which case
we would have 𝜏 ∈ 𝑌𝑡−1, a contradiction. Thus 𝑖ℓ−1 < 𝑘. Now if 𝑖ℓ−1 ≤ 𝑘 − 2, then we would have
𝜏 ∈ 𝑌−1, again a contradiction. So it must be that 𝑖ℓ−1 = 𝑘 − 1. Now if 𝑗ℓ−1 < 𝑡, then 𝜏 would be a
face of the 𝑟 + 1-dimensional simplex

(𝑖0, 𝑗0) ≤ ⋯ ≤ (𝑖ℓ−1, 𝑗ℓ−1) ≤ (𝑘, 𝑡 − 1) ≤ (𝑖ℓ, 𝑗ℓ) = (𝑘, 𝑡) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟)
which is contained in 𝑌𝑡−1, a contradiction. So we conclude that (𝑖ℓ−1, 𝑗ℓ−1) = (𝑘 − 1, 𝑡).

From this computation we see that the vertices of 𝜏𝛿ℓ satisfy {𝑖0, … , 𝑖ℓ−1 = 𝑘 − 1, 𝑖ℓ+1, … , 𝑖𝑟} ⊃
[𝑛]\{𝑘} and {𝑗0, … , 𝑗ℓ−1, 𝑗ℓ+1, … , 𝑗𝑟} ⊃ [𝑚]. Thus, 𝜏𝛿ℓ is not in 𝑌−1. Furthermore, 𝜏𝛿ℓ was not added
in along the way to 𝑌𝑡,𝑟−1, since it is not a face of a simplex containing the vertex (𝑘, 𝑠) for any 𝑠 < 𝑡.
This completes our second task.

We have shown that it is possible to attach 𝜏 to 𝑌𝑡,𝑟−1 along with its ℓth face by filling a suitable
horn. It remains only to argue that the horn Λℓ[𝑟] → 𝑌𝑡,𝑟−1 along which we are attaching 𝜏 is
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admissible. Since the inclusion 𝑌𝑡,𝑟−1 ↪𝑟 Δ𝑘[𝑛] × Δ[𝑚] is regular it suffices to show that each simplex
containing the vertices (𝑖ℓ−1, 𝑗ℓ−1), (𝑖ℓ, 𝑗ℓ), and (𝑖ℓ+1, 𝑗ℓ+1) – or just the first two of these in the case

ℓ = 𝑟 – is marked in Δ𝑘[𝑛] ×Δ[𝑚]. We have seen above that (𝑖ℓ−1, 𝑗ℓ−1) = (𝑘 − 1, 𝑡) and (𝑖ℓ, 𝑗ℓ) = (𝑘, 𝑡).
In the case ℓ < 𝑟, since 𝜏 is missing from 𝑌−1, 𝑖ℓ+1 must equal 𝑘 or 𝑘 + 1. But now the component in

Δ[𝑚] of this simplex is degenerate, containing the sequence 𝑡 ≤ 𝑡, while the component in Δ𝑘[𝑛] is
either degenerate, contains the sequence 𝑘 − 1 ≤ 𝑘 ≤ 𝑘 + 1, or contains the sequence 𝑘 − 1 ≤ 𝑘 in the
case ℓ = 𝑟 in which case 𝑘 = 𝑛. Thus both components are marked simplices, which means that their
product is marked in Δ𝑘[𝑛] × Δ[𝑚] as required.

Finally, we must argue that the simplices attached by the pushout contain all the markings present

in the regular subset 𝑌𝑡,𝑟 ↪𝑟 Δ𝑘[𝑛] × Δ[𝑚]. The only simplices present in 𝑌𝑡,𝑟 but not 𝑌𝑡,𝑟−1 are
in dimensions 𝑟 and 𝑟 − 1. The newly attached 𝑟-simplices are all marked, so we need only concern
ourselves with the (𝑟 − 1)-simplex

(𝑖0, 𝑗0) ≤ ⋯ ≤ (𝑖ℓ−1, 𝑗ℓ−1) = (𝑘 − 1, 𝑡) ≤ (𝑖ℓ+1, 𝑗ℓ+1) ≤ ⋯ ≤ (𝑖𝑟, 𝑗𝑟)
arising as the ℓ-face for each 𝜏 ∈ 𝑆𝑡,𝑟 when this simplex is marked in Δ𝑘[𝑛] × Δ[𝑚].

There are two cases depending on whether 𝑖ℓ+1 = 𝑘 + 1 or 𝑖ℓ+1 = 𝑘. In the former case, the
fact that this simplex is marked tells us that there is a duplication present in the sequence 𝑖0 ≤ ⋯ ≤
𝑖ℓ𝜏−1 ≤ 𝑖ℓ𝜏+1 ≤ ⋯ ≤ 𝑖𝑟 and also in the sequence 𝑗0 ≤ ⋯ ≤ 𝑗ℓ𝜏−1 ≤ 𝑗ℓ𝜏+1 ≤ … ≤ 𝑗𝑟. When we
substitute 𝑖ℓ = 𝑘 in the first sequence for 𝑖ℓ−1 or 𝑖ℓ+1 either the duplication remains or we now have
the subsequence 𝑘 − 1 ≤ 𝑘 ≤ 𝑘 + 1. Either way, this tells us that the component of the faces 𝜏𝛿ℓ−1 and
𝜏𝛿ℓ+1 is marked in Δ𝑘[𝑛]. Similarly, when we substitute 𝑗ℓ = 𝑡 for 𝑗ℓ−1 = 𝑡, the sequence is unchanged,
and when we substitute for 𝑗ℓ+1 our sequence now contains a duplication 𝑡 ≤ 𝑡. Either way, this tells
us that the component of the faces 𝜏𝛿ℓ−1 and 𝜏𝛿ℓ+1 is marked in Δ[𝑚]. In conclusion, the simplex
𝜏∶ Δℓ[𝑟] → Δ𝑘[𝑛] ×Δ[𝑚] extends along Δ𝑘[𝑛] ↪𝑒 Δ𝑘[𝑛]′, so we obtain the desired marking of its ℓth
face by extending along the entire inclusion Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″ included in the second pushout.

In the case where 𝑖ℓ+1 = 𝑘, the sequence of vertices for 𝜏𝛿ℓ−1 contains 𝑘 ≤ 𝑘 in its first component
and the same sequence of vertices as 𝜏𝛿ℓ in its second component. Thus, 𝜏𝛿ℓ−1 is marked. The sequence
of vertices for 𝜏𝛿ℓ+1 contains 𝑘−1 ≤ 𝑘 ≤ 𝑘+1 in its first component and 𝑡 ≤ 𝑡 in its second component.
Thus, 𝜏𝛿ℓ+1 is marked, and once more we obtain the desired marking of its ℓth face by extending along

the entire inclusion Δ𝑘[𝑛]′ ↪𝑒 Δ𝑘[𝑛]″ included in the second pushout. This completes the proof that
the first Leibniz product is a marked anodyne extension.

By Lemma D.3.4, the remaining three Leibniz products are entire inclusions, so all that is required
is to verify that the additional markings present in the codomains are the results of complicial thinness
extensions. We treat simultaneously the two cases involving Leibniz products

(Δ𝑘[𝑛]′ 𝑒 Δ
𝑘[𝑛]″) �× (𝐴 𝐵)

of a complicial horn extension with a marked monomorphism. The only marked simplex of Δ𝑘[𝑛]″
that is not marked in Δ𝑘[𝑛]′ is the face 𝛿𝑘 ∶ Δ[𝑛− 1]𝑡 → Δ𝑘[𝑛]″, which implies that we have a pullback
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and pushout square

∐
𝜏∈𝑆

Δ[𝑛 − 1] Δ𝑘[𝑛]′ × 𝐵 ∪
Δ𝑘[𝑛]′×𝐴

Δ𝑘[𝑛]″ × 𝐴

∐
𝜏∈𝑆

Δ[𝑛 − 1]𝑡 Δ𝑘[𝑛]″ × 𝐵
𝑒 𝑒

(𝛿𝑘,𝜏)

where 𝑆 is the set of marked (𝑛 − 1)-simplices in 𝐵 that are not present or not marked in 𝐴. We argue

that for any marked (𝑛 − 1)-simplex 𝜏 ∈ 𝐵, the degenerate 𝑛-simplex 𝜏𝜎𝑘−1 admits the indicated
markings:

Δ[𝑛] Δ𝑘[𝑛]″

Δ[𝑛 − 1]𝑡 𝐵
𝜎𝑘−1

𝑒

𝜏

because the 𝑘 − 1th and 𝑘th faces equal 𝜏, and so are marked, and any face that contains the vertices
𝑘 − 1 and 𝑘 is degenerate and so is also marked; these conditions cover all of the required marked faces.
Now it is clear that the pushout square above factors through the left-hand pushout diagram

∐
𝜏∈𝑆

Δ[𝑛 − 1] ∐
𝜏∈𝑆

Δ𝑘[𝑛]′ Δ𝑘[𝑛]′ × 𝐵 ∪
Δ𝑘[𝑛]′×𝐴

Δ𝑘[𝑛]″ × 𝐴

∐
𝜏∈𝑆

Δ[𝑛 − 1]𝑡 ∐
𝜏∈𝑆

Δ𝑘[𝑛]″ Δ𝑘[𝑛]″ × 𝐵
𝑒 𝑒 𝑒

𝛿𝑘 (id,𝜏𝜎𝑘−1)

demonstrating that the Leibniz product inclusion is a pushout of coproducts of suitable complicial
thinness extensions.

The final case of

(Λ𝑘[𝑛] ↪𝑟 Δ𝑘[𝑛]) �× (Δ[𝑚] ↪𝑒 Δ[𝑚]𝑡) ≅ Λ𝑘[𝑛] ×Δ[𝑚]𝑡 ∪
Λ𝑘[𝑛]×Δ[𝑚]

Δ𝑘[𝑛] ×Δ[𝑚] ↪𝑒 Δ𝑘[𝑛] ×Δ[𝑚]𝑡

is again an entire inclusion. Since the only simplex that is marked in Δ[𝑚]𝑡 but not in Δ[𝑚] is the top
dimensional 𝑚-simplex, the only simplices that are marked in the codomain but not in the domain are

𝑚-simplices (𝜏, id) ∶ Δ[𝑚]𝑡 → Δ𝑘[𝑛] × Δ[𝑚]𝑡 in which the image of 𝜏 either

• contains [𝑛] or
• contains [𝑛]\{𝑘} but not {𝑘} and is degenerate.

In particular, this Leibniz product inclusion is an identity if 𝑚 < 𝑛. In the case 𝑚 = 𝑛, there are
𝑚 + 1 simplices that are marked in Δ𝑘[𝑚] × Δ[𝑚]𝑡 but not in the domain, corresponding to the 𝑚
𝑚-simplices that are degenerate on the 𝑘th face of Δ𝑘[𝑚] and the top dimensional 𝑚-simplex.

We factor the inclusion as a finite composite of pushouts of coproducts of maps Δ𝑠[𝑚 + 1]′ ↪𝑒
Δ𝑠[𝑚+1]″ for varying 0 < 𝑠 ≤ 𝑚+1, where each 𝑠 < 𝑚+1 if 𝑘 < 𝑛. This will prove that this Leibniz
product is a complicial thinness extension of the appropriate kind.

We can classify the missing marked simplices in terms of their component 𝜏∶ Δ[𝑚]𝑡 → Δ𝑘[𝑛],
which we may represent as a sequence 𝑖0, … , 𝑖𝑚 of vertices of [𝑛] that either contains [𝑛] or contains
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[𝑛]\{𝑘} and has repetitions. We induct over a partial ordering of these simplices in decreasing order of
the sum∑𝑚

𝑡=0 𝑖𝑡.⁷
For a simplex 𝜏 with maximal vertex sum∑𝑚

𝑡=0 𝑖𝑡 among those simplices that remain to be marked,
let 𝑠 be minimal so that 𝑖𝑠 ≥ 𝑘; when 𝑘 = 𝑛 it is possible that all 𝑖𝑡 < 𝑘 = 𝑛, which gives a second case
that we will consider in a moment. Then we consider the 𝑚 + 1-simplex:

Δ𝑠[𝑚 + 1]″
(𝜏𝜎𝑠,𝜎𝑠−1)

Δ𝑘[𝑛] × Δ[𝑚]𝑡.
By construction, the 𝑠 + 1th face is marked in Δ𝑘[𝑛] × Δ[𝑚], while the 𝑠 − 1th face has strictly greater
vertex sum, and so is marked by the inductive hypothesis. The faces containing the 𝑠 − 1, 𝑠, and 𝑠 + 1
vertices are all degenerate and thus marked. This proves that the face 𝜏 can be marked by forming an
extension Δ𝑠[𝑚 + 1]′ ↪𝑒 Δ𝑠[𝑚 + 1]″.

In the case where 𝜏 is a simplex where all 𝑖𝑡 < 𝑘 = 𝑛, then we consider the 𝑚 + 1-simplex

Δ𝑚+1[𝑚 + 1]″
(𝜒,𝜎𝑚)

Δ𝑛[𝑛] × Δ[𝑚]𝑡.
where 𝜒∶ Δ[𝑚 + 1] → Δ𝑛[𝑛] is the simplex spanned by the vertices 𝑖0, … , 𝑖𝑚 = 𝑛 − 1, 𝑖𝑚+1 = 𝑛.
Here the 𝑚th face has strictly greater sum, and so is marked by the inductive hypothesis. The faces
containing the𝑚th and𝑚+ 1th vertices have a degenerate component in Δ[𝑚] and have a component
in Δ𝑛[𝑛] that contains the last two vertices 𝑛 − 1 and 𝑛. Thus, all such simplices are marked. This
proves that the face 𝜏 can be marked by forming an extension Δ𝑚+1[𝑚 + 1]′ ↪𝑒 Δ𝑚+1[𝑚 + 1]″. �

As in the proof of Corollary D.3.7, by Remark C.2.12 the result of Proposition D.3.8 extends
to Leibniz products of marked anodyne extensions with marked monomorphisms. We derive a few
consequences of this in Corollary D.3.12, but first explain how this result implies its unmarked analogue.

D.3.11. Corollary. Let 𝑖 ∶ 𝐴 ↪ 𝐵 and 𝑗 ∶ 𝐾 ↪ 𝐿 be monomorphisms of simplicial sets. If either 𝑖 or 𝑗 is
also anodyne (or, respectively, left-, right-, or inner-anodyne), then so is the Leibniz product

𝐴 × 𝐿 ∪𝐴×𝐾 𝐵 × 𝐾 𝐵 × 𝐿
𝑖×̂𝑗

Proof. The maximal marking functor (−)♯ ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡+ sends (left/right/inner) horn in-
clusions to (left/right/inner) marked anodyne extensions, and as a left adjoint, therefore carries all
(left/right/inner) anodyne extensions of simplicial sets to (left/right/inner) marked anodyne extensions.
As a left and right adjoint, the maximal marking functor also preserves Leibniz products. Similarly, the

forgetful functor (−)0 ∶ 𝑠𝒮𝑒𝑡
+ → 𝑠𝒮𝑒𝑡 preserves products and colimits and carries the (left/right/inner)

marked anodyne extensions to the classes of anodyne extensions introduced in Definition D.2.10. Thus,
this result follows immediately from the first case of Proposition D.3.8 and Remark C.2.12. �

Recall fromDefinition D.1.14 that amarkedmap between complicial sets is a complicial isofibration
if it has the right lifting property with respect to the complicial horn extensions and complicial thinness
extensions of Definition D.1.9.

D.3.12. Corollary.

(i) For any quasi-category 𝐴 and simplicial set 𝑋, 𝐴𝑋 is again a quasi-category.

⁷Here the vertex sum of an 𝑚-simplex 𝜏 is greater than the vertex sum of an 𝑚-simplex 𝜏′ if and only if 𝜏 has greater
“depth” in the sense defined in [129, 68]. The inductive argument of [129, §5.2] involves Leibniz products of inner or left
horn inclusions and starts by considering simplices of lowest depth; ours involves an inner or right horn inclusion and
starts by considering simplices of highest depth.
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(ii) For any complicial set 𝐴 and marked simplicial set 𝑋, 𝐴𝑋 is again a complicial set.
(iii) For any complicial isofibration 𝑝∶ 𝐸 ↠ 𝐵 and any monomorphism of marked simplicial sets 𝑖 ∶ 𝑋 ↪ 𝑌,

the Leibniz exponential �{𝑖, 𝑝} ∶ 𝐸𝑌 ↠ 𝐸𝑋 ×
𝐵𝑋

𝐵𝑌 is a complicial isofibration.

(iv) For any complicial isofibration 𝑝∶ 𝐸 ↠ 𝐵 and any marked anodyne extension 𝑖 ∶ 𝑋 ↪ 𝑌, the Leibniz
exponential �{𝑖, 𝑝} ∶ 𝐸𝑌 ∼ 𝐸𝑋 ×

𝐵𝑋
𝐵𝑌 is a trivial fibration of complicial sets.

Proof. The second statement is a special case of the third statement, which, together with the
fourth statement, follows by transposing the result of Proposition D.3.8 across the Leibniz version of
the two variable adjunction of Proposition D.3.3 (see Proposition C.2.9). The first statement follows
similarly by applying Corollary D.3.11 in place of Proposition D.3.8. �

In particular, by Lemma D.1.13, for any complicial set 𝐴, 𝐴𝕀♯ → 𝐴Δ[1]♯ is a trivial fibration of
complicial sets. Thus the notion of equivalence of complicial sets can be redefined as follows:

D.3.13. Corollary. If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 are inverse equivalences of complicial sets, then there
exists a homotopy equivalence with the marked homotopy coherent isomorphism serving as the interval:

𝐴 𝐵

𝐴 𝐴𝕀♯ 𝐵 𝐵𝕀♯

𝐴 𝐵
𝑔𝑓

𝛼

ev0

ev1

𝛽

𝑓 𝑔 ev0

ev1

Conversely, such data restricts to exhibit an equivalence of complicial sets.

Proof. The data of Definition D.1.18 can be lifted as follows:

𝐴𝕀♯ 𝐵𝕀♯

𝐴 𝐴Δ[1]♯ 𝐵 𝐵Δ[1]♯

∼ ∼�̂�

𝛼

�̂�

𝛽

�

We would like to prove the analogous statement to Corollary D.3.12(iii) and (iv) for isofibrations
between quasi-categories, which requires analogous statements to Proposition D.3.8 and Corollary
D.3.11 analyzing Leibniz products of monomorphisms of simplicial sets with the inclusion 𝟙 ↪ 𝕀. We
shall deduce this by considering the relationship between isomorphisms in quasi-categories and marked
edges in complicial sets, which is the subject of the next section.

Exercises.

D.3.i. Exercise. State and prove the unmarked analogue of Corollary D.3.7.

D.3.ii. Exercise. The Leibniz product of a regular inclusion with a noninvertible entire inclusion is
entire but not necessarily regular. Find examples that illustrate both possibilities and state and prove a
characterization of those Leibniz products of this form that are necessarily regular. Would this have
simplified the proof of Proposition D.3.8?

D.3.iii. Exercise. If 𝑓 ∶ 𝑋 → 𝑌 is a marked homotopy equivalence and 𝐴 is a complicial set, prove
that the restriction map 𝑓 ∗ ∶ 𝐴𝑌 → 𝐴𝑋 is an equivalence of complicial sets.
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D.4. Isomorphisms in Naturally Marked Quasi-Categories

By Exercise D.1.ii, Kan complexes can be regarded as a special case of complicial sets: namely Kan
complexes coincide with the complicial sets that are maximally marked. In this section, we discover
that quasi-categories can similarly be identified with certain 1-trivial complicial sets (see Definition
D.1.16) whose marked 1-simplices are determined by the underlying simplicial set. In Theorem D.4.14,
we prove that the category of quasi-categories may be identified with the 1-trivial complicial sets whose
marked 1-simplices are saturated in a precise sense to be introduced.

The markings on the 1-simplices in a complicial set cannot be arbitrarily assigned: every marked
edge must be an equivalence in a sense that we now introduce.

D.4.1. Definition. A 1-simplex 𝑓 in a marked simplicial set is an equivalence if there exist a pair of
thin 2-simplices as displayed

𝑥 𝑦

𝑦 𝑦 𝑥 𝑥

𝑓≃ 𝑔′≃𝑔 𝑓

Note the notion of equivalence is defined relative to the choice of markings on the 2-simplices. A
very similar notion is defined for the edges of a quasi-category in Definition 1.1.13 under the name
“isomorphism.”

D.4.2. Lemma. Every marked edge in a complicial set is an equivalence.

Proof. If 𝑓 is a marked edge in any complicial set 𝐴, then the Λ2[2]-horn with 0th face 𝑓 and 1st
face degenerate is admissible, so 𝑓 has a right equivalence inverse. A dual construction involving a
Λ0[2]-horn shows that 𝑓 has a left equivalence inverse:⁸

𝑥 𝑦

𝑦 𝑦 𝑥 𝑥

∼

𝑓≃ ∼≃∼ ∼𝑓
�

This observation suggests two ways to mark the edges in the nerve of a 1-category.

D.4.3. Lemma. The nerve of a 1-category defines a complicial set by marking all simplices in dimension greater
than one and then either defining:

(i) the marked edges to be the identity arrows only or
(ii) the marked edges to be all isomorphisms.

Proof. Exercise D.4.ii. �

The first of these options defines the minimal 1-trivial marking that makes the nerve of a 1-category
into a complicial set. By Lemma D.4.2, the latter option defines the maximal marking that makes the
nerve of a 1-category into a complicial set. We now introduce terminology to describe “maximally
marked” 1-trivial complicial sets.

⁸Note also that the complicial thinness extensions imply further that these one-sided inverses are also marked, so they
admit further inverses of their own.
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D.4.4. Definition. A complicial set is 1-saturated if every equivalence it contains among its edges is
marked.⁹

This motivates a definition of the canonical marking of a quasi-category, which is called the “natural
marking” in [78]. Namely, we assign a quasi-category its unique 1-saturated 1-trivial marking:

D.4.5. Definition. For any quasi-category 𝐴, its natural marking is defined by:

• marking all simplices in dimension greater than one
• marking exactly those edges that are isomorphisms, in the sense of Definition 1.1.13, or equivalently

marking all those edges that are equivalences, in the sense of Definition D.4.1.

The natural marking for quasi-categories is convenient for stating and proving an important
combinatorial result due to Joyal:

D.4.6. Proposition. Any naturally marked quasi-category𝐴 admits fillers for outer complicial horn extensions
for 𝑛 ≥ 1:

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ0[𝑛] Δ𝑛[𝑛]
𝑟 𝑟

In the original [61], the result is stated without reference to markings as follows: a quasi-category
admits fillers for special outer horns, left horns Λ0[𝑛] → 𝐴 whose initial {01}-edge is mapped to an
isomorphism in𝐴 and right hornsΛ𝑛[𝑛] → 𝐴whose final {𝑛 − 1𝑛}-edge is mapped to an isomorphism
in 𝐴.

Many proofs of Proposition D.4.6 are possible; for instance, see [36, §B] or the original [61]. We
choose to use combinatorial results of Verity [129, §4.2], which we present in stages, that use an alternate
(a posteriori equivalent) notion of homotopy coherent isomorphism, which a homotopy type theorist
would recognize by the name “half adjoint equivalence” [125, §4.2].

D.4.7. Notation (subcomplexes of the coherent isomorphism). Recall the coherent isomorphism is the
simplicial set 𝕀 defined as the nerve of the free-living isomorphism. It has exactly two nondegenerate
simplices in each dimension. If we label its vertices as “−” and “+,” then its remaining nondegenerate
simplices are uniquely determined by their vertices, which are given by alternating sequences of “−”
and “+” starting from either vertex. As marked simplicial sets, we give 𝕀 and its subcomplexes the
maximal marking.

Following the notation introduced in [129, 42], we write 𝐸+
𝑛 , 𝐸−

𝑛 ⊂ 𝕀 for the simplicial subsets
generated by the 𝑛-simplices − + −⋯± and + − +⋯∓, respectively. Both simplicial subsets include

⁹Since the characterization of equivalences among the 1-simplices requires prior agreement about which 2-simplices
are marked, we typically apply Definition D.4.4 to 1-trivial complicial sets, in which case we say a 1-saturated 1-trivial
complicial set is simply “saturated.” This is a special case of a general notion of saturated complicial set discussed in
Digression D.4.21.
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uniquely into both 𝐸+
𝑛+1 and 𝐸−

𝑛+1 and these inclusions factor as follows

Λ0[𝑛 + 1] 𝐸±
𝑛 Λ𝑛+1[𝑛 + 1] 𝐸±

𝑛

Δ0[𝑛 + 1] • Δ0[𝑛 + 1]′ Δ𝑛+1[𝑛 + 1] • Δ𝑛+1[𝑛 + 1]′

𝐸±
𝑛+1 Δ0[𝑛 + 1]″ 𝐸∓

𝑛+1 Δ𝑛+1[𝑛 + 1]″

𝑟 𝑟

𝑒 𝑒

proving that any inclusion 𝐸±
𝑛 ↪ 𝐸±

𝑚 or 𝐸±
𝑛 ↪ 𝐸∓

𝑚 with 𝑚 > 𝑛 is a marked anodyne extension.

The following result gives a criterion under which an inner complicial fibration – a marked map
that is only assumed to have the right lifting property against the inner complicial horn extensions and
inner complicial thinness extensions – in fact defines a complicial isofibration.

D.4.8. Proposition. Let 𝑝∶ 𝐴 ↠ 𝐵 be an inner complicial fibration whose codomain 𝐵 is a complicial set.
Then 𝑝 is a complicial isofibration if and only if 𝑝 admits lifts against the inclusions 𝐸−

0 ↪ 𝐸−
1 and 𝐸−

1 ↪ 𝐸−
3 .

Proof. Any complicial isofibration admits lifts against the marked anodyne extensions 𝐸−
0 ↪ 𝐸−

1
and 𝐸−

1 ↪ 𝐸−
3 . Thus, the heart of this result, and the only part that remains to be proven, is the

assertion that any inner complicial fibration that admits lifts against this pair of inclusions and whose
codomain is a complicial set necessarily also admits fillers for outer complicial horn extensions and
outer complicial thinness extensions.

We begin by arguing that an inner complicial fibration 𝑝∶ 𝐴 ↠ 𝐵 satisfying the conditions of
the statement also admits lifts against the dual inclusion 𝐸−

0 ↪ 𝐸+
1 . Given a lifting problem such as

presented by the maps 𝑎 and 𝑏 in the square below:

𝐸−
0 𝐴

𝐸−
1 𝐸+

1 𝐵

𝐸−
3

𝑎

𝑝

𝑏

there exists the dashed extension of 𝑏 along 𝐸+
1 ↪ 𝐸−

3 , since this inclusion is marked anodyne and 𝐵
is a complicial set. Now the inclusion 𝐸−

0 ↪ 𝐸−
3 factors as indicated 𝐸−

0 ↪ 𝐸−
1 ↪ 𝐸−

3 and since 𝑝 is
assumed to lift against both maps, the dotted lift exists as well, which restricts to define a solution to
the original lifting problem.

With this result in hand, it follows that the odd dual of 𝑝∶ 𝐴 ↠ 𝐵 satisfies the same lifting
properties as 𝑝∶ 𝐴 ↠ 𝐵 does, since the odd dual of 𝐸−

0 ↪ 𝐸−
1 is 𝐸−

0 ↪ 𝐸+
1 , while the odd dual of

𝐸−
1 ↪ 𝐸−

3 is isomorphic to itself. So it suffices to show that 𝑝 admits lifts against left complicial horn
extensions Λ0[𝑛] ↪𝑟 Δ0[𝑛] and left complicial thinness extensions Δ0[𝑛]′ ↪𝑒 Δ0[𝑛]″ since its odd
dual will then share these properties, which implies that 𝑝 also admits lifts against right complicial horn
extensions and right complicial thinness extensions. The case Λ0[1] ↪ Δ0[1] is the map 𝐸−

0 ↪ 𝐸−
1 so

it suffices also to assume 𝑛 > 1, in which case we have an isomorphism

Λ0[𝑛] ↪ Δ0[𝑛] ≅ (Λ0[1] ↪ Δ0[1]) �⋆ (𝜕Δ[𝑛 − 2] ↪ Δ[𝑛 − 2])
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by Lemma D.2.18. Writing 𝑚 = 𝑛 − 2 for concision, consider a lifting problem as presented by the
maps 𝑎 and 𝑏:

𝐸−
0 ⋆ Δ[𝑚] ∪ 𝐸−

1 ⋆ 𝜕Δ[𝑚] 𝐴

𝐸−
1 ⋆ Δ[𝑚] 𝐸−

2 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−
3 ⋆ 𝜕Δ[𝑚] 𝐸−

3 ⋆ Δ[𝑚] 𝐵

𝑎

𝑖 𝑝

𝑗

𝑏

By Lemma D.2.18, the map 𝑗 is a marked anodyne extension, so since 𝐵 is a complicial set, the dashed
extension exists. To show that the dotted lift exists as well, we argue that the map 𝑖 is cellularly
generated by the inner complicial horn extensions and the map 𝐸−

1 ↪ 𝐸−
3 . To see this, factor the map 𝑖

as the composite of the three vertical maps in the middle column of the diagram of pushout squares

𝐸−
1 𝐸−

0 ⋆ Δ[𝑚] ∪ 𝐸−
1 ⋆ 𝜕Δ[𝑚]

𝐸−
3 • 𝐸−

1 ⋆ 𝜕Δ[𝑚] ∪ 𝐸−
3 ⋆ ∅

𝐸−
0 ⋆ Δ[𝑚] ∪ 𝐸−

2 ⋆ 𝜕Δ[𝑚] • 𝐸−
3 ⋆ 𝜕Δ[𝑚]

𝐸−
2 ⋆ Δ[𝑚] 𝐸−

2 ⋆ Δ[𝑚] ∪ 𝐸−
3 ⋆ 𝜕Δ[𝑚]

(D.4.9)

The first attached cell is the map 𝐸−
1 ↪ 𝐸−

3 itself. As observed in D.4.7, 𝐸−
1 ↪ 𝐸−

3 is a right anodyne

extension, so by Lemma D.2.18 the second attached cell (𝐸−
1 ↪ 𝐸−

3 ) �⋆ (∅ ↪ 𝜕Δ[𝑚]) is an inner
anodyne extension. Similarly 𝐸−

0 ↪ 𝐸−
2 is a right anodyne extension, so the final attached cell

(𝐸−
0 ↪ 𝐸−

2 ) �⋆ (𝜕Δ[𝑚] ↪ Δ[𝑚]) is also an inner anodyne extension. Thus, 𝑝 admits lifts against left
complicial horn extensions as claimed.

To see that 𝑝∶ 𝐴 ↠ 𝐵 also admits outer complicial thinness extensions we make use of the
isomorphism

(Λ0[1] ↪ Δ0[1]) �⋆ (Δ[𝑚] ↪ Δ[𝑚]𝑡) ≅ Δ0[𝑚 + 2]′ ↪ Δ0[𝑚 + 2]″

of Lemma D.2.18, recalling thatΛ0[1] ↪ Δ0[1] is the inclusion 𝐸−
0 ↪ 𝐸−

1 . So we may consider a lifting
problem as presented by the maps 𝑎 and 𝑏:

𝐸−
0 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−

1 ⋆ Δ[𝑚] 𝐴

𝐸−
1 ⋆ Δ[𝑚]𝑡 𝐸−

2 ⋆ Δ[𝑚] ∪ 𝐸−
3 ⋆ Δ[𝑚] 𝐸−

3 ⋆ Δ[𝑚]𝑡 𝐵

𝑎

𝑖 𝑝

𝑗

𝑏

By Lemma D.2.18, the map 𝑗 is a marked anodyne extension, so since 𝐵 is a complicial set, the dashed
extension exists. To show that the dotted lift exists as well, we argue that the map 𝑖 is cellularly
generated by the inner complicial horn extensions, the inner complicial thinness extensions, and the
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map 𝐸−
1 ↪ 𝐸−

3 . To see this, factor the map 𝑖 as the composite of the three vertical maps in the middle
column of the diagram of pushout squares

𝐸−
1 𝐸−

0 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−
1 ⋆ Δ[𝑚]

𝐸−
3 • 𝐸−

1 ⋆ Δ[𝑚] ∪ 𝐸−
3 ⋆ ∅

𝐸−
0 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−

2 ⋆ Δ[𝑚] • 𝐸−
3 ⋆ Δ[𝑚]

𝐸−
2 ⋆ Δ[𝑚]𝑡 𝐸−

2 ⋆ Δ[𝑚]𝑡 ∪ 𝐸−
3 ⋆ Δ[𝑚]

The first attached cell is the map 𝐸−
1 ↪ 𝐸−

3 itself. As observed in D.4.7, 𝐸−
1 ↪ 𝐸−

3 is a right marked

anodyne extension, so by Lemma D.2.18 the second attached cell (𝐸−
1 ↪ 𝐸−

3 ) �⋆ (∅ ↪ Δ[𝑚]) is an inner
marked anodyne extension. Similarly 𝐸−

0 ↪ 𝐸−
2 is a right anodyne extension, so the final attached cell

(𝐸−
0 ↪ 𝐸−

2 ) �⋆ (Δ[𝑚] ↪ Δ[𝑚]𝑡) is also an inner complicial thinness extension. Thus, 𝑝 admits lifts
against left complicial thinness extensions as claimed. �

Since the inclusions 𝐸−
0 ↪ 𝐸−

1 and 𝐸−
1 ↪ 𝐸−

3 are left marked anodyne extensions, Proposition
D.4.8 has the following immediate corollary.

D.4.10. Corollary. Let 𝑝∶ 𝐴 ↠ 𝐵 be an inner complicial fibration whose codomain 𝐵 is a complicial set.
Then if 𝑝 is a left complicial fibration or a right complicial fibration, then 𝑝 is a complicial isofibration. �

Note that in the proof of Proposition D.4.8, lifts against the inclusion 𝐸−
0 ↪ 𝐸−

1 are only needed
to construct lifts for the outer complicial horn extensions Λ0[1] ↪ Δ0[1] and Λ1[1] ↪ Δ1[1]. Thus,
even if this lifting condition is dropped, the outer complicial horn extensions in higher dimensions can
still be constructed. The argument just given supplies a proof of a special case of “special outer horn
filling” that is useful in proving the general version.

D.4.11. Lemma. Let 𝑝∶ 𝐴 ↠ 𝐵 be an inner complicial fibration whose codomain 𝐵 is a complicial set. Then 𝑝
admits fillers for left horns

Λ0[𝑛] 𝐴

Δ0[𝑛] 𝐵

𝑎

𝑝

𝑏

with 𝑛 > 1 provided 𝑎 carries the {01} edge of the horn Λ0[𝑛] to a degenerate simplex in 𝐴.

Proof. Writing 𝑚 = 𝑛 − 2, by Lemma D.2.18, we have an isomorphism

Λ0[𝑚 + 2] ↪ Δ0[𝑚 + 2] ≅ (Λ0[1] ↪ Δ0[1]) �⋆ (𝜕Δ[𝑚] ↪ Δ[𝑚])
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so once more we are asked to consider a lifting problem as presented by the maps 𝑎 and 𝑏:

𝐸−
0 ⋆ Δ[𝑚] ∪ 𝐸−

1 ⋆ 𝜕Δ[𝑚] 𝐸−
0 ⋆ Δ[𝑚] ∪ 𝐸−

1 ⋆ 𝜕Δ[𝑚] ∪
𝐸−1

𝐸−
3 𝐴

𝐸−
1 ⋆ Δ[𝑚] 𝐸−

2 ⋆ Δ[𝑚] ∪ 𝐸−
3 ⋆ 𝜕Δ[𝑚] 𝐸−

3 ⋆ Δ[𝑚] 𝐵

𝑎

𝑖

𝑘

ℓ
𝑝

𝑗

𝑏

The map 𝑗 is a marked anodyne extension, so since 𝐵 is a complicial set, the lower dashed extension
exists, and we are left to solve a lifting problem between the map 𝑖 and the map 𝑝. To do so, we factor
the map 𝑖 as a composite of the three middle vertical morphisms displayed in (D.4.9) and let 𝑘 denote
the first of these morphisms while ℓ denotes the composite of the second two. We next solve the lifting
problem between 𝑘 and 𝑝 by defining the image of the attached 𝐸−

3 to be a degenerate 3-simplex; note
that 𝑘 is constructed by attaching this 𝐸−

3 to the 𝐸−
1 that corresponds to the initial edge of the horn

Λ0[𝑚 + 2], which 𝑎 maps to a degenerate edge.
Now to construct the dotted lift, it remains only to solve the lifting problem between ℓ and 𝑝, and

the diagram (D.4.9) reveals that this can be done, as it expresses the map ℓ as the composite of pushouts
of inner complicial horn extensions. �

D.4.12. Corollary. A marked simplicial set 𝐴 that admits fillers for inner complicial horn extensions and

inner complicial thinness extensions is a complicial set if and only if it admits extensions along Δ[1]♯ ↪ sk2 𝕀♯.

Proof. Applying Proposition D.4.8 to the inner complicial fibration 𝐴 → 1, to conclude that 𝐴
is a complicial set, we need only construct extensions along the maps 𝐸−

0 ↪ 𝐸−
1 and 𝐸−

1 ↪ 𝐸−
3 . The

former is automatic, since 𝐸−
0 ↪ 𝐸−

1 is isomorphic to Δ[0] ↪ Δ[1]♯, which admits a retraction, so to
complete our proof we will show that if 𝐴 admits extensions along the map 𝐸−

1 ↪ 𝐸−
3 under the stated

hypotheses.

The domain mapΔ[1]♯ ≅ 𝐸−
1 → 𝐴 defines a marked 1-simplex 𝑓 ∶ 𝑥 → 𝑦 in𝐴, which by hypothesis

we may extend to a map sk2 𝕀♯ → 𝐴, which specifies marked 2-simplices

𝑦 𝑥

𝑥 𝑥 𝑦 𝑦

𝑓 −1

𝛼 𝛼′
𝑓𝑓 𝑓 −1

The 2-simplices 𝛼 and 𝛼′ can be understood as defining 2-dimensional equivalences 𝛼∶ id𝑥 ≃ 𝑓 −1𝑓
and 𝛼′ ∶ id𝑦 ≃ 𝑓 𝑓 −1. It is not necessarily be the case that the pair of 2-simplices 𝛼 and 𝛼′ form
the two nondegenerate 2-simplex faces of a map 𝐸−

3 → 𝐴, which would amount to the additional
requirement that the triangle identity composite (𝛼′)−1𝑓 ⋅ 𝑓 𝛼 is equivalent to id𝑓,¹⁰ but we will
construct a replacement 𝛽 of 𝛼′ so that 𝛼 and 𝛽 form the nondegenerate 2-simplices of 𝐸−

3 → 𝐴.¹¹
The 3-simplex 𝐸−

3 will be constructed as the 2nd face of the filler to a horn Λ2[4] → 𝐴 that we
now build. As orientation for the construction given below, we first summarize the end result:

• the 0th, 2nd, and 3rd vertices will be 𝑥, while the 1st and 4th vertex will be 𝑦;

¹⁰This is why the marked simplicial sets 𝐸−
3 and 𝐸+

3 might be referred to as “half adjoint equivalences.”
¹¹This should be compared with the proof of Proposition 2.1.12 via Lemma 2.1.11.
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• all of the edges will be either id𝑥, id𝑦, 𝑓, or 𝑓 −1, with the positioning of these determined uniquely
by the vertices;

• the faces {0, 1, 2} and {0, 1, 3} are 𝛼, while the face {1, 2, 4} is 𝛼′;
• the faces {0, 2, 3}, {0, 1, 4}, {0, 3, 4}, and {1, 2, 3} are degenerate; and
• the missing faces {0, 2, 4} called 𝛾, {2, 3, 4} called �̄�, and {1, 3, 4} called 𝛽 will be filled in in this

order, with the desired 3-simplex 𝐸−
3 appearing as the 2nd face of the horn.

The 4th face is the degenerated 3-simplex 𝛼𝜎2. The 3rd face is constructed by filling the horn
Λ1[3] → 𝐴 depicted below:

𝑦 𝑥 𝑦 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓 −1

𝑓
𝛾≃ ≃

𝑓 −1

𝛼′ ≃

=

𝑓𝑓
𝛼≃

𝑓 𝑓

𝑓

By a complicial thinness extension, the face 𝛾 defined by filling this horn is marked. Next, the 1st face
is constructed by filling a horn Λ0[3] → 𝐴, as permitted by Lemma D.4.11.

𝑥 𝑥 𝑥 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓

= ≃
𝑓

�̄�≃

𝛾≃ 𝑓=

𝑓 𝑓

This produces another marked 3-simplex �̄� defined by filling this horn. The 0th face is constructed by
filling the horn Λ1[3] → 𝐴 depicted below:

𝑥 𝑥 𝑥 𝑥

𝑦 𝑦 𝑦 𝑦

𝑓
𝛽≃ ≃

𝑓

�̄�≃

𝛼′ ≃ 𝑓𝑓 −1 =

𝑓 −1

𝑓 −1

The face defined by filling this horn is the replacement 2-simplex 𝛽. These four 3-simplices define a
map Λ2[4] → 𝐴 whose filler defines a 3-simplex face as depicted below:

𝑦 𝑥 𝑦 𝑥

𝑥 𝑦 𝑥 𝑦

𝑓 −1

𝑓

= ≃

𝑓 −1

𝛽≃

=

𝑓𝑓
𝛼≃

𝑓 𝑓

𝑓
(D.4.13)

This defines the required extension 𝐸−
3 → 𝐴. �

With Corollary D.4.12 in hand, we can now prove Joyal’s special outer horn filling result.

Proof of Proposition D.4.6. Let 𝐴 be a naturally marked quasi-category. We demonstrate that
the unique map ! ∶ 𝐴 → 1 satisfies the hypotheses of Corollary D.4.12. For the inner complicial horn
extensions, all of the nondegenerate marked simplices are in dimension two and higher, so 𝐴 admits
fillers for these, simply because quasi-categories are simplicial sets that admit fillers for all inner horns.
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Since the composite of a pair of isomorphisms in a quasi-category is again an isomorphism, 𝐴 admits
extensions alongΔ1[2]′ ↪𝑒 Δ1[2]″. The remaining complicial thinness extensions of (D.1.11) are entire
inclusions that differ only in markings of simplices in dimension at least two; since all such simplices
are thin in the natural marking, 𝐴 admits these extensions as well. Thus, 𝐴 → 1 is an inner complicial
fibration

To conclude, we need only argue that 𝐴 admits extensions of the form

Δ[1]♯ 𝐴

sk2 𝕀♯

𝑓

Since 𝐴 is naturally marked, the attaching map 𝑓 ∶ 𝑥 → 𝑦 defines an isomorphism in 𝐴. By Definition
1.1.13, this means there exist 2-simplices

𝑦 𝑥

𝑥 𝑥 𝑦 𝑦

𝑓 −1

𝛼 𝛼′
𝑓𝑓 𝑓 −1

which provide the data of the required extension sk2 𝕀♯ → 𝐴. �

This proves the hard direction of the following characterization of quasi-categories as complicial
sets:

D.4.14. Theorem. The natural marking of a quasi-category is a complicial set and indeed is the maximal
marking that turns a quasi-category into a complicial set. Conversely, the underlying simplicial set of any
complicial set with all simplices above dimension one marked is a quasi-category.

Proof. Proposition D.4.6 demonstrates that a naturally marked quasi-category admits fillers for
outer complicial horn extensions and its proof demonstrates that it admits fillers for inner complicial
horn extensions as well. As argued there, since naturally marked quasi-categories are 1-trivial, the
complicial thinness extensions in dimension greater than 1 are automatic, while the three complicial
thinness extensions in dimension 1 ask that the isomorphisms in a quasi-category satisfy the 2-of-3
property, which is true. Thus, naturally marked quasi-categories are complicial sets. By Lemma D.4.2,
it is not possible to mark any additional edges in 𝐴 and retain the property of being a complicial set,
so the natural marking is the maximal one.

The converse is elementary, and left to the reader in Exercise D.4.i. �

We now give a few sample applications of Theorem D.4.14, revisiting some results that were proven
in §1.1 using Proposition D.4.6. For instance, we return to Corollary 1.1.15:

D.4.15. Corollary. A quasi-category 𝐴 is a Kan complex if and only if its homotopy category is a groupoid.

Proof. It is clear that the homotopy category of a Kan complex is a groupoid, so we focus our
attention on the converse. By TheoremD.4.14, a quasi-category may be regarded as a complicial set, with
every simplex above dimension 1 marked, and where the marked edges are exactly the isomorphisms
defined to be those 1-simplices that represent isomorphisms in the homotopy category. If the homotopy
category of 𝐴 is a groupoid, then this tells us that 𝐴 is maximally marked, and Exercise D.1.ii observes
that a maximally marked complicial set defines a Kan complex. �
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For our next result, we revisit Corollary 1.1.16 and eliminate the reference to the maximal Kan
complex spanned by the isomorphisms in a quasi-category – the existence of which follows from special
outer horn lifting – from the proof given there.

D.4.16. Corollary. An arrow 𝑓 in a quasi-category 𝐴 is an isomorphism if and only if it extends to a
homotopy coherent isomorphism

𝟚 𝐴

𝕀

𝑓

Proof. When the quasi-category𝐴 is regarded as a naturally marked complicial set, the isomorph-

ism 𝑓 defines a marked map 𝑓 ∶ 𝟚♯ → 𝐴. By Lemma D.1.13, the injection 𝟚♯ ↪ 𝕀♯ is a marked anodyne
extension, and thus 𝐴 lifts against this map. Forgetting markings, this proves that every isomorphism
in𝐴 extends to a homotopy coherent isomorphism. The converse is obvious from Definition 1.1.13. �

Next, we prove the two statements appearing in Corollary 1.1.22.

D.4.17. Lemma. If 𝐴 is a naturally marked quasi-category and 𝑋 is a minimally marked simplicial set, then
𝐴𝑋 is a naturally marked quasi-category.

Proof. By Proposition D.3.3, 𝑛-simplices in 𝐴𝑋 correspond to maps 𝑋 × Δ[𝑛] → 𝐴. Since the
domain is minimally marked, it follows that the underlying simplicial set of 𝐴𝑋 coincides with the
exponential of the underlying simplicial sets and hence, by Corollary D.3.12(i) defines a quasi-category.

To see that every simplex of dimension greater than one is marked in 𝐴𝑋 consider an extension
problem

𝑋 × Δ[𝑛] 𝐴

𝑋 × Δ[𝑛]𝑡
𝑒

for 𝑛 > 1. By Proposition D.3.3, the only simplices that are marked in 𝑋 × Δ[𝑛]𝑡 but not in 𝑋 × Δ[𝑛]
are 𝑛-simplices, and since all 𝑛-simplices in 𝐴 are marked, it is clear that the desired extension exists.

By Corollary D.3.12(ii), 𝐴𝑋 is a complicial set, so by Lemma D.4.2 every marked edge in 𝐴𝑋 is an
isomorphism. It remains only to show that every isomorphism 𝑓 ∶ Δ[1] → 𝐴𝑋 in the quasi-category
𝐴𝑋 is marked, admitting an extension as indicated below-right:

∐
𝑥∈𝑋0

Δ[1] 𝑋 × Δ[1] 𝐴

∐
𝑥∈𝑋0

Δ[1]𝑡 𝑋 × Δ[1]𝑡

𝑓𝑥

𝑒

𝑓

𝑒(𝑥𝜎0,id)

(D.4.18)

By Proposition D.3.3, the only simplices that are marked in𝑋×Δ[1]𝑡 but not in𝑋×Δ[1] are 1-simplices
whose component in𝑋 is degenerate and whose component in Δ[1]𝑡 is the nondegenerate 1-simplex, as
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indicated by the square above-left that is both a pullback and a pushout. The images of such simplices
in 𝐴 define the “components” of 𝑓, as indicated by the top composite above.

If 𝑓 is an isomorphism in 𝐴𝑋 then each of its components 𝑓𝑥, the image of 𝑓 under the evaluation
function ev𝑥 ∶ 𝐴𝑋 → 𝐴, are clearly also isomorphisms, which is the case if and only if each 𝑓𝑥 is marked
in 𝐴. These components 𝑓𝑥 are marked in 𝐴 if and only if the dotted lift exists, and by the universal
property of the pushout, this is equivalent to the existence of the dashed lift, as required. �

As a consequence of Lemma D.4.17, we can prove an oft-cited result:

D.4.19. Corollary. For any quasi-category 𝐴 and simplicial set 𝑋, an edge in 𝐴𝑋 is an isomorphism if and
only if each of its components in 𝐴, indexed by the vertices of 𝑋, are isomorphisms.

Proof. Regarding 𝐴 as a naturally marked quasi-category and 𝑋 as a minimally marked simplicial
set, by Lemma D.4.17 a 1-simplex in 𝐴𝑋 is marked if and only if it defines an isomorphism in the
quasi-category 𝐴𝑋. So the statement asserts that a 1-simplex is marked in 𝐴𝑋 if and only if its
components are marked in 𝐴. By the definition, given in Proposition D.3.3, of the markings in the
exponential, a 1-simplex 𝑓 ∶ Δ[1] → 𝐴𝑋 is marked if and only if the dashed extension of (D.4.18) exists.
By the pushout given there, this is equivalent to the existence of the dotted extensions, which say
exactly that each component 𝑓𝑥 is marked in 𝐴. �

We close by observing that marked homotopy equivalences induce equivalences of naturally marked
quasi-categories.

D.4.20. Lemma. Let 𝐴 be a quasi-category and let 𝐼 → 𝐽 be a map of simplicial sets that extends to a marked
homotopy equivalence between minimally marked simplicial sets. Then the induced map 𝐴𝐽 ∼ 𝐴𝐼 is an
equivalence of quasi-categories.

Proof. Equip 𝐴 with its natural marking so that by Theorem D.4.14 it defines a complicial set. By
Exercise D.3.iii, 𝐴𝐽 ∼ 𝐴𝐼 is then an equivalence of complicial sets. By Corollary D.3.13 the data of this
equivalence may be given by the maps

𝐴𝐽 → 𝐴𝐼, 𝐴𝐼 → 𝐴𝐽, 𝐴𝐼 → (𝐴𝐼)𝕀♯, 𝐴𝐽 → (𝐴𝐽)𝕀♯,
and upon forgetting the markings, this data defines an equivalence of quasi-categories in the sense of
Definition 1.1.23.¹² �

D.4.21. Digression (on equivalences and saturation for higher simplices). Lemma D.4.2 demonstrates
that the marked edges in a complicial set should be interpreted as equivalences, in a suitable sense. A
similar interpretation is appropriate for the higher dimensional marked simplices as well. Consequently,
we may interpret the condition that a complicial set is 𝑛-trivial as demanding that all simplices in
dimension 𝑟 > 𝑛 are weakly invertible.

Having understood that every marked simplex in a complicial set is an equivalence, we are lead to
consider complicial sets that satisfy the converse of this condition, in which every equivalence is marked.
Such saturated complicial sets are especially important, and we suggest the terminology 𝑛-complicial
set to describe an 𝑛-trivial saturated complicial set (see [105] and [89] for the precise definition and
some discussion). The Kan complexes are precisely the 0-complicial sets by Exercise D.1.ii, while the
quasi-categories are precisely the 1-complicial sets by Theorem D.4.14. As this pattern suggests, the
𝑛-complicial sets define a well-behaved model for (∞, 𝑛)-categories in the sense that the full subcategory
of such defines a cartesian closed∞-cosmos, as we prove Proposition E.3.9.

¹²Note that 𝐴𝕀 ≅ 𝐴𝕀♯ when 𝐴 is a naturally marked quasi-category.
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Exercises.

D.4.i. Exercise. Prove that the underlying simplicial set of any 1-trivial complicial set is a quasi-cate-
gory.¹³

D.4.ii. Exercise. Prove Lemma D.4.3.

D.4.iii. Exercise. Let Δ[3]eq denote the “2-of-6 3-simplex,” in which the edges {02} and {13} and all
simplices in dimension greater than 1 are marked. Show that:

(i) A 1-simplex in a complicial set 𝐴 is an equivalence if and only if it defines the {12}-edge of a
3-simplex Δ[3]eq → 𝐴.

(ii) A complicial set is 1-saturated if and only if it admits extensions along the entire inclusion

Δ[3]eq 𝐴

Δ[3]♯
𝑒

D.5. Isofibrations between Quasi-Categories

Our aim in this section is to explain the relevance of Proposition D.3.8 to the theory of quasi-cate-
gories. In particular, this finally enables us to complete the combinatorial work required to supply
proofs of the Leibniz stability results stated in §1.1. The missing ingredient is a relative version of
Theorem D.4.14, which admits a similar proof:

D.5.1. Theorem. A map between quasi-categories defines an isofibration if and only if it defines a complicial
isofibration when those quasi-categories are given their natural markings. In particular, an isofibration between
naturally marked quasi-categories admits fillers for outer complicial horn extensions for 𝑛 ≥ 1:

Λ0[𝑛] 𝐴 Λ𝑛[𝑛] 𝐴

Δ0[𝑛] 𝐵 Δ𝑛[𝑛] 𝐵
𝑟 𝑟

Proof. We leave it to the reader to verify that, upon forgetting the markings, a complicial isofibra-
tion between naturally marked quasi-categories defines an isofibration between quasi-categories. The
content is in the converse, so consider an isofibration 𝑝∶ 𝐴 ↠ 𝐵 between quasi-categories which have
been given their natural markings. By Theorem D.4.14, the quasi-categories 𝐴 and 𝐵 are complicial
sets, so by Proposition D.4.8, to prove that 𝑝∶ 𝐴 ↠ 𝐵 is a complicial isofibration it suffices to show
that it has the right lifting property against the inner complicial horn extensions, inner complicial
thinness extensions, and the two maps 𝐸−

0 ↪ 𝐸−
1 and 𝐸−

1 ↪ 𝐸−
3 .

¹³A converse of sorts to this result appears in Theorem D.4.14.
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The inner complicial horn and thinness extensions are straightforward, as in the proof of Proposition
D.4.6. To construct a lift

𝟙 ≅ 𝐸−
0 𝐴

𝟚♯ ≅ 𝐸−
1 𝐵

𝕀

𝑝

𝑏

we use Lemma D.1.13, recalled as Corollary D.4.16, to extend the codomain to a homotopy coherent
isomorphism and then solve the composite lifting problem.

The construction of the lift against 𝐸−
1 ↪ 𝐸−

3 is considerably more laborious. To begin, we argue
that since 𝐴 and 𝐵 are complicial sets and 𝑝 is an inner complicial fibration, then 𝑝 admits lifts against
the complicial horn extension Λ0[2] → Δ0[2]. To see this, we identify the codomain Δ0[2] with the
second face of the 3-simplex 𝐸−

2 ⋆ Δ[0] and consider the lifting problem presented by the exterior
diagram

Λ0[2] 𝐸−
0 ⋆ Δ[0] ∪ 𝐸−

2 ⋆ ∅ 𝐴

Δ0[2] • 𝐸−
2 ⋆ Δ[0] 𝐵

𝑖013

𝑎

𝑘 𝑝

𝛿2

𝑏

𝑗

The inclusion 𝑖013 is marked anodyne, so the top dashed extension exists since 𝐴 is a complicial set.
This induces the dotted map by the universal property of the pushout. Since the map 𝑗 is also marked
anodyne, the bottom dashed extension exists since 𝐵 is a complicial set. These dashed maps define
a new lifting problem between the composite map 𝑘 and 𝑝 and since 𝑘 is an inner marked anodyne
extension, the dotted lift exists, solving the original lifting problem.

Now we can use the fact that 𝑝 admits lifts along Λ0[2] ↪ Δ0[2] to construct lifts along the
horizontal composite map

𝐸+
1 𝐸+

2

𝐸−
1 𝐸−

2 𝐸−
2 ∪
𝐸+1

𝐸+
2

since the observation made in Notation D.4.7 reveals that both maps 𝐸±
1 ↪ 𝐸±

2 are composites of
pushouts of Λ0[2] ↪ Δ0[2] and Δ0[2]′ ↪ Δ0[2]″; since 𝐴 is a complicial set, the complicial thinness
extension comes for free. Now lifts against the composite 𝐸−

1 ↪ 𝐸−
2 ∪
𝐸+1

𝐸+
2 have the effect of giving the

data of a right inverse and also a right inverse to the right inverse to an isomorphism in 𝐴, lifting the
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corresponding data in 𝐵. To solve a lifting problem against 𝐸−
1 ↪ 𝐸−

3

𝐸−
1 𝐴

𝐸−
2 ∪
𝐸+1

𝐸+
2 𝐸−

3 𝐵

𝑓

𝑝(𝛼,𝛼′)

𝜏

we first construct the outer lift, defining a pair of 2-simplices in 𝐴:

𝑦 𝑥

𝑥 𝑥 𝑦 𝑦

𝑓 −1

𝛼 𝛼′
(𝑓 −1)−1𝑓 𝑓 −1

We now extend the data of the lifted 𝐸−
2 ∪

𝐸+1
𝐸+
2 → 𝐴 to construct a 3-simplex 𝐸−

3 → 𝐴 lifting

𝜏∶ 𝐸−
3 → 𝐵 using a mild modification of the construction in the proof of Corollary D.4.12. We define

a complicial inner horn extension

Λ2[4] 𝐴

Δ2[4] 𝐵

𝑝

𝜏𝜎2

so that the lift of the 2nd face defines the simplex 𝐸−
3 → 𝐴 that we seek. It remains only to define an

appropriate horn Λ2[4] → 𝐴 over 𝜏𝜎2 ∶ Δ2[4] → 𝐵. The 4th face is 𝛼𝜎2. The 3rd face is constructed
by lifting along aΛ1[3]-horn whose 3rd face is 𝛼, whose 0th face is 𝛼′, and whose 2nd face is degenerate.
Writing 𝛾 for the face defined by filling this horn, the 1st face is constructed by filling a Λ0[3]-horn
whose 2nd face is 𝛾 and 1st and 3rd faces are degenerate; this lift is permitted by Lemma D.4.11. The
0th face is constructed by filling the Λ1[3]-horn whose faces have all already been described. The face
defined by filling this horn is the replacement 2-simplex 𝛽 – a replacement for 𝛼′ – which witnesses that
𝑓 is a right inverse to its right inverse 𝑓 −1. These four 3-simplices define a map Λ2[4] → 𝐴 over 𝜏𝜎2
whose filler defines a 3-simplex face of the form displayed in (D.4.13). This defines the required lift along
𝐸−
1 ↪ 𝐸−

3 . Now Proposition D.4.8 completes the proof that isofibrations between quasi-categories are
complicial isofibrations. �

With this result in hand, we may now integrate the class of isofibrations between quasi-categories
into the results of §D.3, proving Propositions 1.1.20 and 1.1.29, restated here for convenience.

D.5.2. Proposition.

(i) There is a solution to any lifting problem between the Leibniz product of a monomorphism 𝑖 ∶ 𝑋 ↪ 𝑌
and the map 𝟙 ↪ 𝕀 and any isofibration 𝑓 ∶ 𝐴 ↠ 𝐵.

(ii) If 𝑖 ∶ 𝑋 ↪ 𝑌 is a monomorphism and 𝑓 ∶ 𝐴 ↠ 𝐵 is an isofibration, then the induced Leibniz exponential
map 𝑖 �⋔ 𝑓∶ 𝐴𝑌 ↠ 𝐵𝑌 ×𝐵𝑋 𝐴𝑋 is again an isofibration.

(iii) If 𝑖 ∶ 𝑋 ↪ 𝑌 is a monomorphism and 𝑓 ∶ 𝐴 ∼ 𝐵 is a trivial fibration, then the induced Leibniz

exponential map 𝑖 �⋔ 𝑓∶ 𝐴𝑌 ∼ 𝐵𝑌 ×𝐵𝑋 𝐴𝑋 is again a trivial fibration.
(iv) If 𝑖 ∶ 𝑋 ↪ 𝑌 is in the class cellularly generated by the inner horn inclusions and the map 𝟙 ↪ 𝕀 and

𝑓 ∶ 𝐴 ↠ 𝐵 is an isofibration, then the induced Leibniz exponential map 𝑖 �⋔ 𝑓∶ 𝐴𝑌 ∼ 𝐵𝑌 ×𝐵𝑋 𝐴𝑋 is
a trivial fibration.
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Proof. It suffices to construct the lift of (i) in marked simplicial sets and then forget the markings.
By Lemma D.1.13, 𝟙 ↪ 𝕀 is a marked anodyne extension, when 𝕀 is assigned its natural maximal
marking. Thus by Proposition D.3.8, the Leibniz product of the minimally marked monomorphism
𝑖 with this map is again a marked anodyne extension. By Theorem D.5.1, an isofibration defines a
complicial isofibration between naturally marked quasi-categories, so the postulated lift exists.

Parts (ii) and (iv) follow from the conclusion of (i) and a similar result, Corollary D.3.11, by
transposing lifting problems across the two-variable adjunction between the Leibniz product and the
Leibniz exponential.

Part (iii) follows by a similar argument from an easier observation made in Lemma D.3.1: that the
Leibniz product of two monomorphisms is again a monomorphism. �

Theorems D.4.14 and D.5.1 permit the use of complicial techniques to solve lifting problems
involving isofibrations between quasi-categories. The results of this section suggest that these techniques
are particularly fruitful when isomorphisms are involved. We now develop a few specific applications
of this principle, which are used to prove the final missing result from §1.1.

To that end we consider a pair of cosimplicial marked simplicial sets

Δ[•]♯ 𝕀[•]♯ ∈ (𝑠𝒮𝑒𝑡+)𝚫

the former of which is given by the maximally marked simplices Δ[𝑛]♯ and the latter of which is given

by the maximally marked contractible groupoids 𝕀[𝑛]♯ on objects 0, 1, … , 𝑛.

D.5.3. Lemma. The natural inclusion Δ[•]♯ ↪ 𝕀[•]♯ is a Reedy monomorphism in (𝑠𝒮𝑒𝑡+)𝚫 between Reedy
monomorphic cosimplicial objects that is moreover a pointwise weak equivalence in the Verity model structure.

Proof. When 𝑠𝒮𝑒𝑡+ is identified with its image in 𝒮𝑒𝑡𝑡𝚫
op

, the first half of the statement follows
the relative version of Lemma C.5.19 stated as Exercise C.5.ii: any pointwise monomorphism between
“unaugmentable” cosimplicial objects is a Reedy monomorphism between Reedy monomorphic cosim-

plicial objects. As the equalizers of the face maps 𝛿0, 𝛿1 ∶ Δ[0]♯ → Δ[1]♯ and 𝛿0, 𝛿1 ∶ 𝕀[0]♯ → 𝕀[1]♯
are empty, both Δ[•]♯ and 𝕀[•]♯ are unaugmentable, so we conclude that these simplicial objects are
Reedy monomorphic and the natural inclusion is a Reedy monomorphism.

Finally to prove that Δ[𝑛]♯ → 𝕀[𝑛]♯ is a pointwise weak equivalence, we appeal to the 2-of-3

property and argue that both Δ[𝑛]♯ and 𝕀[𝑛]♯ are marked homotopy equivalent to 𝟙 ∈ 𝑠𝒮𝑒𝑡+. The
inverse equivalences are given by 0∶ 𝟙 → Δ[𝑛]♯ and 0∶ 𝟙 → 𝕀[𝑛]♯ and the marked homotopies

Δ[𝑛]♯ ×Δ[1]♯ → Δ[𝑛]♯ and 𝕀[𝑛]♯ ×Δ[1]♯ → 𝕀[𝑛]♯ are both defined by the map on objects (𝑖, 0) ↦ 0
and (𝑖, 1) ↦ 𝑖. �

Our intent is to use the simplicial objects Δ[•]♯ and 𝕀[•]♯ to “freely invert” the simplices of a

simplicial set 𝐾. To see how this works, consider also the cosimplicial object Δ[•] ∈ 𝑠𝒮𝑒𝑡𝚫 defined by
the Yoneda embedding. By the coYoneda lemma, the weighted colimit colim𝐾 Δ[•] ≅ 𝐾 recovers the

original simplicial set 𝐾. Similarly, since the maximal marking functor (−)♯ ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡+ is a left

adjoint, the weighted colimit colim𝐾 Δ[•]♯ ≅ 𝐾♯ equips the simplicial set 𝐾 with the maximal marking.

Finally, we define �̃�♯ ≔ colim𝐾 𝕀[•]♯ using the weighted colimit bifunctor. The idea of this functor is

that it replaces each 𝑛-simplex of 𝐾 by 𝕀[𝑛]♯, a “homotopy coherent composite of 𝑛 isomorphisms.” As

the notation suggests, �̃�♯ is also maximally marked.
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D.5.4. Proposition. For any simplicial set 𝐾, the natural map 𝐾♯ → �̃�♯ is a trivial cofibration in the Verity
model structure .

Proof. Any simplicial set𝐾 is Reedymonomorphic when considered as an object of𝒮𝑒𝑡𝚫
op

. Hence,
by Corollary C.5.17, the weighted colimit functor

colim𝐾 −∶ (𝑠𝒮𝑒𝑡
+)𝚫 → 𝑠𝒮𝑒𝑡+

is left Quillen with respect to the Reedy model structure on (𝑠𝒮𝑒𝑡+)𝚫. Lemmas C.5.13 and D.5.3 prove

that Δ[•]♯ ↪ 𝕀[•]♯ is a Reedy trivial cofibration, so it follows that 𝐾♯ → �̃�♯ is a trivial cofibration as
claimed. �

We refer to the functor ̃(−) ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡 defined by applying colim− 𝕀[•]♯ and forgetting the
markings as the “free-inversion functor.”

D.5.5. Example. Proposition D.5.4 can be applied to the anodyne extension Λ1[2] ↪ Δ[2] to prove
that composites of homotopy coherent isomorphisms can be lifted along isofibrations of quasi-cat-

egories. By definition �Δ[2] ≅ 𝕀[2], the contractible groupoid on three vertices 0, 1, and 2, so we

adopt similar notation �Λ1[2] ≕ Λ1[𝕀[2]] for the freely inverted horn. Since Λ1[2] is built by gluing
two 1-simplices along a common vertex and the free inversion functor preserves colimits, we see that
Λ1[𝕀[2]] is the union of two homotopy coherent isomorphisms between 0 and 1 and between 1 and 2.
Giving these simplicial sets their maximal markings, it follows from the 2-of-3 property applied to the
square

Λ1[2]♯ Λ1[𝕀[2]]♯

Δ[2]♯ 𝕀[2]♯

that the inclusion Λ1[𝕀[2]]♯ ↪ 𝕀[2]♯ is a trivial cofibration of marked simplicial sets. Applying
Theorem D.5.1, we conclude that composites of homotopy coherent isomorphisms can be lifted along
isofibrations between quasi-categories

Λ1[𝕀[2]] 𝐴

𝕀[2] 𝐵

A similar example is left as Exercise D.5.ii. To complete the verification of the results claimed in
§1.1, it remains only to prove Proposition 1.1.28:

D.5.6. Proposition. For an isofibration 𝑓 ∶ 𝐴 ↠ 𝐵 of quasi-categories the following are equivalent:
(i) 𝑓 is at trivial fibration
(ii) 𝑓 is both an isofibration and an equivalence
(iii) 𝑓 is a split fiber homotopy equivalence: an isofibration admitting a section 𝑠 that is also an equivalence

inverse via a homotopy from id𝐴 to 𝑠𝑓 that composes with 𝑓 to the constant homotopy from 𝑓 to 𝑓.

Proof. For (i)⇒(ii), observe that the simplex boundary inclusions generate the monomorphisms
of simplicial sets under coproduct, pushout, and sequential composition (see Lemma C.5.9), so the
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lifting property of (1.1.26) implies that the trivial fibrations lift against all monomorphisms of simplicial
sets, and in particular against the monomorphisms that detect the class of isofibrations. Thus, trivial
fibrations are isofibrations. By the same lifting property, every trivial fibration admits a section

𝐴

𝐵 𝐵

≀ 𝑓𝑠

To show that 𝑠 defines an inverse equivalence to 𝑓, observe that the outer rectangle built from the
constant homotopy 𝜋∶ 𝐴 × 𝕀 → 𝐴

𝐴 + 𝐴 𝐴

𝐴 × 𝕀 𝐴 𝐵

(id𝐴,𝑠𝑓 )

𝑓≀

𝜋

𝛼

𝑓
∼

commutes since 𝑓 𝑠𝑓 = 𝑓. The lift defines a homotopy between id𝐴 and 𝑠𝑓 completing the proof that
trivial fibrations are equivalences. And note in fact that the equivalence just constructed is a split fiber
homotopy equivalence, proving that (i)⇒(iii).

To prove (ii)⇒(iii), suppose that 𝑓 is an isofibration with equivalence inverse 𝑔. By Lemma D.5.7
below, the homotopies𝛼 from id𝐴 to 𝑔𝑓 and 𝛽 from 𝑓 𝑔 to id𝐵may be chosen so as to define a “half adjoint
equivalence,” meaning that there exists a mapΦ∶ 𝐴×𝕀[2] → 𝐵, where 𝕀[2] is the contractible groupoid
on three objects, whose boundary is formed by 𝑓 𝛼, 𝛽𝑓, and the constant homotopy id𝑓 ≔ 𝑓 𝜋.¹⁴

Applying Proposition D.5.2(i) to the monomorphism∅ ↪ 𝐵, we find that we can lift the homotopy
𝛽 between 𝑓 𝑔 and id𝐵 along 𝑓

𝐵 𝐴

𝐵 𝐵 × 𝕀 𝐵

𝑔

𝑖0 𝑓
𝑖1

𝑠
𝛾
𝛽

The composite map 𝑠 defines a strict section of 𝑓, while the lift defines a homotopy 𝛾 from 𝑔 to 𝑠.
Applying Proposition D.3.8, Theorem D.5.1, and Example D.5.5, we can solve the lifting problem

𝐴 × Λ1[𝕀[2]] 𝐴

𝐴 × 𝕀 𝐴 × 𝕀[2] 𝐵

𝐴

(𝛼,𝛾𝑓 )

𝑓

𝛿1

𝜋

𝜂 Ψ

Φ

𝑓

The lift defines a composite homotopy 𝜂 from id𝐴 to 𝑠𝑓 so that 𝑓 𝜂 = 𝑓 𝜋 is the constant homotopy.
This data exhibits 𝑓 as a split fiber homotopy equivalence.

¹⁴This is similar but not isomorphic to the notion of half adjoint equivalence encoded by the marked simplicial sets
𝐸−
3 and 𝐸+

3 .
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Finally, for (iii)⇒(i) note that the data of a split fiber homotopy equivalence defines a retract
diagram

𝐴 𝐴𝕀 𝐴

𝐵 𝐵𝕀 ×
𝐵
𝐴 𝐵

𝑓

𝛼

∼ ⟨𝑓 𝕀,ev1⟩

ev0

𝑓

⟨Δ,𝑠⟩ ev0 𝜋

The central map is the Leibniz cotensor of {1} ↪ 𝕀 with the isofibration 𝑓 and so is a trivial fibration
by Proposition D.5.2. Since the trivial fibrations are characterized by a right lifting property, Lemma
C.2.3 tells us that they are closed under retracts. Thus 𝑓 is a trivial fibration as desired. �

D.5.7. Lemma. Any equivalence of quasi-categories

𝐴 𝐵 𝐴

𝐴 × 𝕀 𝐴 𝐵 × 𝕀 𝐵

𝐴 𝐵 𝐵

𝑖0 𝑖0

𝑔

𝑓

𝛼 𝛽

𝑖1

𝑓

𝑔 𝑖1

can be extended to a half adjoint equivalence of quasi-categories, with an additional coherence homotopy
Φ∶ 𝐴 × 𝕀[2] → 𝐵 whose boundary is comprised of the three homotopy coherent isomorphisms:

𝑓 𝑔𝑓

𝑓 𝑓

𝛽𝑓
Φ

𝑓 𝛼

id𝑓

at the cost of replacing one of the homotopies 𝛼 or 𝛽.

The proof is by a simplicial reinterpretation of the 2-categorical argument that proves Proposition
2.1.12.

Proof. Consider an equivalence of quasi-categories as in the statement. By Example D.5.5, the
homotopies 𝑓 𝛼 and 𝛽𝑓 admit some composite defined by solving the lifting problem

𝐴 × Λ1[𝕀[2]] 𝐵

𝐴 × 𝕀 𝐴 × 𝕀[2]

(𝑓 𝛼,𝛽𝑓 )

𝜓

𝛿1

Ψ

Restriction along the nonidentity involution 𝕀 → 𝕀 defines the inverse of any homotopy, denoted by
(−)−1. We will replace 𝛼 by the composite 𝛼′ ≔ 𝑔𝜓−1 ⋅ 𝛼 defined by solving the lifting problem

𝐴 × Λ1[𝕀[2]] 𝐴

𝐴 × 𝕀 𝐴 × 𝕀[2]

(𝛼,𝑔𝜓−1)

𝛼′

𝛿1

Ξ
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and show that this homotopy defines a half adjoint equivalence with 𝛽.
The witness to the half adjoint equivalence is obtained by solving a final lifting problem

𝐴 × Λ1[𝕀[3]] 𝐵

𝐴 × 𝕀[2] 𝐴 × 𝕀[3]

Γ

Φ

𝛿1

involving an extension along Λ1[𝕀[3]] ↪ 𝕀[3], whose codomain is the contractible groupoid with four
objects 0, 1, 2, 3 and whose domain is the union of the three faces 𝕀[2] that contain the vertex 1. This
is permitted by Exercise D.5.ii.

It remains to define the faces of the “horn of homotopy coherent isomorphisms” Γ, which is built
from the homotopy coherent isomorphisms

𝑓 𝑔𝑓

𝑓 𝑓

𝑓 𝑔𝑓

𝑓 𝛼−1𝑓 𝛼

𝑓 𝛼′
𝑓 𝑔𝜙−1

𝛽𝑓

The 3rd face is 𝑓 Ξ∶ 𝐴 × 𝕀[2] → 𝐵 while the second face is the composite

𝐴 × 𝕀[2] 𝐴 × 𝕀 𝐵
𝐴×𝑞 𝑓 𝛼

where 𝑞 ∶ 𝕀[2] → 𝕀 is the unique map defined by 0, 2 ↦ 0 and 1 ↦ 1. It remains to define the 0th face.
For this, we first extend along another horn Λ1[𝕀[3]] ↪ 𝕀[3] of homotopy coherent isomorphisms in
𝐵𝐴 as depicted below

𝑓

𝑓 𝑔𝑓 𝑓

𝑓 𝑔𝑓

𝜓−1𝛽𝑓

𝛿

𝑓 𝛼−1
𝛽−1𝑓

Here the 0th face isΨ−1, the 3rd face is the composite

𝐴 × 𝕀[2] 𝐴 × 𝕀 𝐵
𝐴×𝑞 𝛽𝑓

and the 2nd face is the composite

𝐴 × 𝕀[2] 𝐴 × 𝕀[2] × 𝕀 𝐵 × 𝕀 𝐵𝐴×𝑑 Ψ×𝕀 𝛽

where 𝑑∶ 𝕀[2] → 𝕀[2] × 𝕀 is the unique map defined by 0 ↦ (2, 0), 1 ↦ (2, 1), and 2 ↦ (0, 1).
The 𝛿1-face of this horn can be used to define a final horn Λ1[𝕀[3]] ↪ 𝕀[3] of homotopy coherent
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isomorphisms in 𝐵𝐴 as depicted below

𝑓 𝑔𝑓

𝑓 𝑔𝑓 𝑓

𝑓 𝑔𝑓

𝛿
𝑓 𝛼−1

𝑓 𝑔𝜓−1 𝛽𝑓
𝑓 𝑔𝜓−1

whose 3rd face is degenerate, whose 2nd face is an inversion that swaps the first two vertices of the
𝛿1-face 𝐴 × 𝕀[2] → 𝐵 just defined, and whose 0th face is the composite

𝐴 × 𝕀[2] 𝐴 × 𝕀[2] × 𝕀 𝐵 × 𝕀 𝐵𝐴×𝑐 Ψ×𝕀 𝛽

where 𝑐 ∶ 𝕀[2] → 𝕀[2] × 𝕀 is the unique map defined by 0 ↦ (2, 0), 1 ↦ (0, 0), and 2 ↦ (0, 1). The
filler defines the desired 0th face

𝑓 𝑔𝑓

𝑓 𝑔𝑓 𝑓

𝛽𝑓
Σ

𝑓 𝑔𝜓−1

𝑓 𝛼−1

that completes the horn Γ∶ 𝐴 × Λ1[𝕀[3]] → 𝐵 whose filler defines the witness for the half adjoint
equivalence between 𝛼′ and 𝛽. �

Exercises.

D.5.i. Exercise. Verify that the underlying map defined by a complicial isofibration between naturally
marked quasi-categories is an isofibration of quasi-categories.

D.5.ii. Exercise. Extend the result of Example D.5.5 to show that the maximally marked “Λ1[3]-horn
of homotopy coherent isomorphisms” Λ1[𝕀[3]] ↪ 𝕀[3], whose codomain is the contractible groupoid
on four vertices 0, 1, 2, 3 and whose domain is the union of the three copies of 𝕀[2] spanned by the
subsets of three of these four vertices that include the vertex 1, is a marked anodyne extension.

D.6. Equivalence of Slices and Cones

Theorems D.4.14 and D.5.1 also enable us to finally prove the results sketched in §4.2, which now
follow easily from the combinatorial work done in §D.2. Recall in particular Proposition D.2.16, which
shows that the map of augmented simplicial sets

𝑠𝑛,𝑚 ∶ Δ[𝑛] ⋄ Δ[𝑚] Δ[𝑛] ⋆ Δ[𝑚] ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+

is a marked homotopy retract equivalence. By Lemma D.4.20, we now know that such maps induce
equivalences upon mapping into quasi-categories.

In this section, we use these observations to verify that for any augmented simplicial sets 𝑋 and 𝑌
the canonical map of augmented simplicial sets 𝑠𝑋,𝑌 ∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌 also induces an equivalence on
mapping into quasi-categories. For this, we use the Reedy categorical homotopy theory developed in
§C.5. To begin:
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D.6.1. Lemma. The latching maps for the diagrams 𝐹⋄, 𝐹⋆ ∈ 𝑠𝒮𝑒𝑡𝚫+×𝚫+
+ defined by

𝐹𝑛,𝑚
⋄ ≔ Δ[𝑛] ⋄ Δ[𝑚] and 𝐹𝑛,𝑚

⋆ ≔ Δ[𝑛] ⋆ Δ[𝑚]
are the maps

(𝜕Δ[𝑛] ↪ Δ[𝑛]) ̂⋄ (𝜕Δ[𝑚] ↪ Δ[𝑚]) and (𝜕Δ[𝑛] ↪ Δ[𝑛]) �⋆ (𝜕Δ[𝑚] ↪ Δ[𝑚]), (D.6.2)

which are both monomorphisms. Hence, both 𝐹⋄ and 𝐹⋆ are Reedy monomorphic.

Proof. For any pair of augmented simplicial sets 𝑋 and 𝑌 we define their external product

𝑋 𝑌 ∈ 𝒮𝑒𝑡𝚫
op
+ ×𝚫op

+ to be the functor that takes an object ([𝑛], [𝑚]) to the set 𝑋𝑛 × 𝑌𝑚. In particular,
the functor represented by ([𝑛], [𝑚]) is Δ[𝑛] Δ[𝑚]. We can view an external product 𝑋 𝑌 as a weight
for the diagrams 𝐹⋄ and 𝐹⋆ and use Definition A.6.2 and cocontinuity of the join and fat join bifunctors
to compute the weighted colimits:

colim𝑋𝑌 𝐹⋄ ≅ ∫([𝑛],[𝑚])∈𝚫+×𝚫+ �
𝑋𝑛×𝑌𝑚

Δ[𝑛] ⋄ Δ[𝑚] ≅
⎛
⎜
⎝
∫[𝑛]∈𝚫+ �

𝑋𝑛

Δ[𝑛]
⎞
⎟
⎠
⋄
⎛
⎜
⎝
∫[𝑚]∈𝚫+ �

𝑌𝑚

Δ[𝑚]
⎞
⎟
⎠

≅ 𝑋 ⋄ 𝑌
Similarly, colim𝑋𝑌 𝐹⋆ ≅ 𝑋 ⋆ 𝑌.

By Definition C.4.14, the latching map at the object ([𝑛], [𝑚]) ∈ 𝚫+ × 𝚫+ is the map on weighted
colimits induced by the map

(𝜕Δ[𝑛] ↪ Δ[𝑛]) ̂(𝜕Δ[𝑚] ↪ Δ[𝑚])
of weights. By the weighted colimit calculation just given, we see that the latching maps for 𝐹⋄ and 𝐹⋆
are the maps (D.6.2).

It remains to verify that these latching maps are monomorphisms. By direct calculation,

(𝜕Δ[𝑛] ↪ Δ[𝑛]) �⋆ (𝜕Δ[𝑚] ↪ Δ[𝑚]) ≅ 𝜕Δ[𝑛 + 1 + 𝑚] ↪ Δ[𝑛 + 1 + 𝑚],
which is clearly a monomorphism, so 𝐹⋆ is Reedy monomorphic.

For the analogous result for the fat join, observe first that

(𝜕Δ[−1] ↪ Δ[−1]) ̂⋄ (𝑋 ↪ 𝑌) ≅ (𝑋 ↪ 𝑌),
since 𝜕Δ[−1] is the initial object and Δ[−1] is the unit for the fat join. Thus, it suffices to consider
Leibniz products of simplex boundary inclusions with 𝑛,𝑚 ≥ 0, in which case the formula for the fat
join simplifies since 𝜕Δ[𝑛] and Δ[𝑛] are both terminally augmented. Recall from Definition 4.2.2 that
for terminally augmented simplicial sets𝑋 and𝑌 and for𝑛 ≥ 0, (𝑋⋄𝑌)𝑛 ≅ 𝑋𝑛⊔(⨆[𝑛]↠[1]𝑋𝑛×𝑌𝑛)⊔𝑌𝑛.

Thus, we see that for any monomorphisms of terminally augmented simplicial sets𝑋 ↪ 𝑌 and𝑈 ↪ 𝑉,
the square

(𝑈 ⋄ 𝑋)𝑛 (𝑉 ⋄ 𝑋)𝑛

(𝑈 ⋄ 𝑌)𝑛 (𝑉 ⋄ 𝑌)𝑛
is a pullback in the category of sets. For any pullback square comprised of monomorphisms in the
category of sets, the pushout inside the square is constructed by the joint image of the lower and
right-hand legs: in particular the map (𝑈 ⋄ 𝑌)𝑛 ∪(𝑈⋄𝑋)𝑛 (𝑉 ⋄ 𝑋)𝑛 ↪ (𝑉 ⋄ 𝑌)𝑛 is a monomorphism.
Thus, the Leibniz fat join (𝑈 ↪ 𝑉) ̂⋄ (𝑋 ↪ 𝑌) of two monomorphisms of terminally augmented
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simplicial sets is a monomorphism, and in particular the latching maps of 𝐹⋄ are monomorphisms as
claimed. �

Recall the natural comparison map of Lemma D.2.14 from the fat join of a pair of simplicial sets to
the join of the pair of simplicial sets. We are now in the position to prove Proposition 4.2.7.

D.6.3. Proposition. For all simplicial sets 𝑋 and 𝑌, the natural map 𝑠𝑋,𝑌 ∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌 induces an
equivalence of quasi-categories 𝐴𝑋⋆𝑌 ∼ 𝐴𝑋⋄𝑌 for all quasi-categories 𝐴.

Lurie gives an alternate proof of this result in [78, 4.2.1.2].

Proof. A direct verification shows that the latching maps of the augmented bisimplicial set

𝑋 𝑌 ∈ 𝒮𝑒𝑡𝚫
op
+ ×𝚫op

+ are monomorphisms.¹⁵ Hence by Corollary C.5.17, the weighted colimit functor

colim𝑋𝑌 −∶ 𝑠𝒮𝑒𝑡
𝚫+×𝚫+ 𝑠𝒮𝑒𝑡

is a left Quillen bifunctor from the Reedy version of the Joyal model structure to the Joyal model
structure on simplicial sets.

By Proposition D.2.16 and Lemma D.4.20, the components 𝑠𝑛,𝑚 ∶ Δ[𝑛] ⋄ Δ[𝑚] → Δ[𝑛] ⋆ Δ[𝑚]
are weak equivalences in the Joyal model structure, as these are characterized as those maps that
induce equivalences upon mapping into an arbitrary quasi-category. So Proposition D.2.16 and Lemma
D.6.1 establish that the natural transformation 𝑠 ∶ 𝐹⋄ → 𝐹⋆ is a pointwise weak equivalence between

Reedy cofibrant objects in 𝑠𝒮𝑒𝑡𝚫+×𝚫+ . By Lemma C.3.4, the induced map on weighted colimits
𝑠𝑋,𝑌 ∶ 𝑋 ⋄𝑌 → 𝑋⋆𝑌 is then a weak equivalence in the Joyal model structure, which means exactly that
it induces an equivalence of quasi-categories 𝐴𝑋⋆𝑌 ∼ 𝐴𝑋⋄𝑌 for all quasi-categories 𝐴 as claimed. �

In particular, for any quasi-category 𝐴, there are natural equivalences 𝐴𝟙⋆𝐽 ∼ 𝐴𝟙⋄𝐽 and 𝐴𝐽⋆𝟙 ∼

𝐴𝐽⋄𝟙 over 𝐴 × 𝐴𝐽. By Lemma 4.2.3 the codomains pullback to define the quasi-categories of cones
under or over a diagram 𝑑∶ 𝐽 → 𝐴, respectively. However, as discussed in Warning 4.2.10, the domains

do not pull back to the slice quasi-categories 𝐴/𝑑 and
𝑑/𝐴 of Definition D.2.8. Nonetheless, we can

use the equivalence between the join and fat join constructions to prove that 𝐴/𝑑 ≃ Hom𝐴𝐽(Δ, 𝑑) and
𝑑/𝐴 ≃ Hom𝐴𝐽(𝑑, Δ) over 𝐴 and do so now.

D.6.4. Proposition. For any diagram 𝑑∶ 𝐽 → 𝐴 indexed by a simplicial set 𝐽 and valued in a quasi-category
𝐴, there are natural equivalences

𝐴/𝑑 Hom𝐴𝐽(Δ, 𝑑) 𝑑/𝐴 Hom𝐴𝐽(𝑑, Δ)

𝐴 𝐴

∼

res res

∼

res res

between the slice quasi-categories and the quasi-categories of cones.

Proof. Our proof again uses Reedy category theory. To begin, recall the adjunction of Definition
D.2.8

𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡
−⋆𝐽

⊥
−/−

¹⁵This follows because 𝚫+ × 𝚫+ is an elegant Reedy category: every element of a presheaf indexed by this category is
a degeneracy of some nondegenerate element in a unique way [15], and hence all presheaves are Reedy monomorphic.
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which gives a correspondence, for a simplicial set 𝐼 and a map 𝑑∶ 𝐽 → 𝐴, between maps 𝐼 ⋆ 𝐽 → 𝐴
under 𝐽 and maps of simplicial sets 𝐼 → 𝐴/𝑑. A right adjoint to the fat join functor −⋄ 𝐽 ∶ 𝑠𝒮𝑒𝑡 → 𝐽/𝑠𝒮𝑒𝑡
can be calculated similarly. By the defining pushout of Definition 4.2.2, the data of a map 𝐼 ⋄ 𝐽 → 𝐴
under 𝐽 displayed below-left transposes to the data displayed below-right

(𝐼 × 𝐽) ⊔ (𝐼 × 𝐽) 𝐼 ⊔ 𝐽 𝐼 Hom𝐴𝐽(Δ, 𝑑) 𝐴𝟚×𝐽

𝐼 × 𝟚 × 𝐽 𝐼 ⋄ 𝐽 𝐴 1 × 𝐴 𝐴𝐽 × 𝐴𝐽

𝜋𝐼⊔𝜋𝐽

−⊔𝑑

𝑑×Δ

whence we see that the value of the right adjoint to − ⋄ 𝐽

𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡
−⋄𝐽

⊥
Hom(−)𝐽(Δ,−)

at 𝑑∶ 𝐽 → 𝐴 defines the∞-category of cones Hom𝐴𝐽(Δ, 𝑑) over 𝑑.
The natural map 𝑠𝑋,𝑌 ∶ 𝑋 ⋄ 𝑌 → 𝑋 ⋆ 𝑌 of Lemma D.2.14 defines a natural transformation

𝚫 𝐽/𝑠𝒮𝑒𝑡 𝚫 𝑠𝒮𝑒𝑡 𝐽/𝑠𝒮𝑒𝑡
Δ[•]⋄𝐽

Δ[•]⋆𝐽
⇓𝑠 = よ

−⋄𝐽

−⋆𝐽
⇓𝑠

that by Proposition D.6.3 is a pointwise weak equivalence in the (sliced) Joyal model structure. Note
that by adjunction, Hom𝐴𝐽(Δ, 𝑑) is isomorphic to the simplicial set defined by mapping from the
cosimplicial object Δ[•] ⋄ 𝐽 to 𝑑∶ 𝐽 → 𝐴 in 𝐽/𝑠𝒮𝑒𝑡, and 𝐴/𝑑 is isomorphic to the simplicial set defined

by mapping from the cosimplicial object Δ[•] ⋆ 𝐽 to 𝑑∶ 𝐽 → 𝐴 in 𝐽/𝑠𝒮𝑒𝑡. In particular, the mate of the
natural transformation 𝑠 defines a natural comparison map �̂� ∶ 𝐴/𝑑 → Hom𝐴𝐽(Δ, 𝑑). Moreover, since

𝑠Δ[𝑛],∅ is the identity, this natural comparison map lies over 𝐴. Observe also that the cosimplicial
objects Δ[•] ⋄ 𝐽 and Δ[•] ⋆ 𝐽 are both unaugmentable and thus Reedy cofibrant by Lemma C.5.19.

The hom-bifunctor in the category 𝐽/𝑠𝒮𝑒𝑡 defines a bifunctor

((𝐽/𝑠𝒮𝑒𝑡)𝚫)op × 𝐽/𝑠𝒮𝑒𝑡 𝒮𝑒𝑡𝚫
op

≕ 𝑠𝒮𝑒𝑡

(Δ[•] ⋄ 𝐽 , 𝑑) Hom𝐴𝐽(Δ, 𝑑)

(Δ[•] ⋆ 𝐽, 𝑑) 𝐴/𝑑

hom

(𝑠,id) �̂�

(D.6.5)

which carries the map 𝑠 and the object 𝑑∶ 𝐽 → 𝐴 to the map �̂� ∶ 𝐴/𝑑 → Hom𝐴𝐽(Δ, 𝑑) over 𝐴.

By Lemma C.2.13, the hom bifunctor for any model category, such as 𝐽/𝑠𝒮𝑒𝑡, is a right Quillen
bifunctor relative to the model structure on𝒮𝑒𝑡 of Exercise C.3.iv, with both weak factorization systems
taken to be (monomorphism, epimorphism). Now since 𝚫 is a Reedy category, Theorem C.5.15 tells us
that the bifunctor (D.6.5) is again right Quillen, with respect to the Reedy model structure on (𝐽/𝑠𝒮𝑒𝑡)𝚫

and the model structure on 𝒮𝑒𝑡𝚫
op

for which both weak factorization systems are taken to be (Reedy
monomorphism, Reedy epimorphism). By Lemma C.5.9, this latter weak factorization system coincides
with the familiar (monomorphism, trivial fibration) weak factorization system on 𝑠𝒮𝑒𝑡. In particular,
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this bifunctor carries a Reedy trivial cofibration in its first variable and a fibrant object 𝑑∶ 𝐽 → 𝐴 in
its second variable to a trivial fibration of simplicial sets. By Ken Brown’s Lemma C.1.10, it follows
that (D.6.5) carries a pointwise weak equivalence between Reedy cofibrant objects to an equivalence of
quasi-categories over𝐴, proving that �̂� defines the claimed fibered equivalence of quasi-categories. �

In the case 𝐽 = 𝟙, a diagram 𝑎 ∶ 𝟙 → 𝐴 defines an element of the quasi-category 𝐴, and we have
the same result with different notion.

D.6.6. Corollary. For any element 𝑎 ∶ 𝟙 → 𝐴 of a quasi-category 𝐴, there are canonical equivalences
𝐴/𝑎 ∼ Hom𝐴(𝐴, 𝑎) and 𝑎/𝐴 ∼ Hom𝐴(𝑎, 𝐴) over 𝐴.

Proof. When 𝐽 = 𝟙, the constant diagram functor Δ∶ 𝐴 → 𝐴𝐽 appearing in Proposition D.6.4
reduces to the identity functor on 𝐴. �

Exercises.

D.6.i. Exercise. In [78, §1.2.2], Lurie defines the right and left mapping spaces between a pair of
elements 𝑥 and 𝑦 in a quasi-category 𝐴 by the pullbacks:

Hom𝑅
𝐴(𝑥, 𝑦) 𝐴/𝑦 Hom𝐿

𝐴(𝑥, 𝑦) 𝑥/𝐴

1 𝐴 1 𝐴

𝑝0 𝑝1

𝑥 𝑦

Show that these simplicial sets are Kan complexes, which are equivalent to the mapping spaces of
Definition 3.4.9:

Hom𝑅
𝐴(𝑥, 𝑦) ≃ Hom𝐴(𝑥, 𝑦) ≃ Hom𝐿

𝐴(𝑥, 𝑦).
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APPENDIX E

∞-Cosmoi Found in Nature

In this appendix we establish concrete examples of ∞-cosmoi found in nature. Typically, the
objects of these ∞-cosmoi are infinite-dimensional categories as instantiated by some particular
nonalgebraic model and the functors between them are the morphisms of such. In most cases, there is
an accompanying model structure known to the higher categories literature, which lends us appropriate
classes of isofibrations, equivalences, and trivial fibrations. After indicating where a proof of the
existence of a suitable model structure may be found, the only work that remains for us is to transfer
previously established enrichments to an enrichment over Joyal’s model structure for quasi-categories
on simplicial sets.

The general theory of what wemight call “quasi-categorically enrichedmodel categories” is discussed
in §E.1. In particular, we prove that any “quasi-categorically enriched category of fibrant objects” –
a combination of Definitions C.1.1 and C.3.11 – defines an∞-cosmos and describe a change-of-base
result that helps produce examples.

In §E.2, we apply these results to establish the ∞-cosmoi of (∞, 1)-categories defined using the
complete Segal space, Segal categories, and 1-complicial set models. These complement the∞-cosmos
of quasi-categories of Proposition 1.2.10. We also prove that the change-of-model functors displayed in
(10.0.1) define cosmological biequivalences.

Finally, in §E.3, we turn our attention to what might be called higher∞-categories, establishing
∞-cosmoi whose objects are (∞, 𝑛)- or even (∞,∞)-categories in various models.

E.1. Quasi-Categorically Enriched Model Categories

Many examples of ∞-cosmoi arise as categories of fibrant objects in a model category that is
enriched over Joyal’s model structure simplicial sets – at least if all fibrant objects are cofibrant as is
surprisingly often the case.¹ For example, the∞-cosmos of quasi-categories itself arises in this manner,
as Joyal’s model structure is cartesian closed (see Digression 1.1.31). The fibrant objects in the Joyal
model structure are exactly the quasi-categories, the fibrations between fibrant objects are precisely
the isofibrations of Definition 1.1.17, and the weak equivalences between fibrant objects are exactly the
equivalences of Definition 1.1.23.

E.1.1. Proposition. Letℳ be any model category that is enriched over the Joyal model structure and in
which every fibrant object is cofibrant. Then the full subcategory of fibrant objectsℳ𝑓 inherits the structure of
an∞-cosmos in which the isofibrations are the fibrations between fibrant objects, the equivalences are the weak
equivalences between fibrant objects, and the trivial fibrations are the trivial fibrations between fibrant objects.

Proof. Since the fibrant objects inℳ are also cofibrant, Lemma C.3.12 implies the simplicially
enriched homs between fibrant–cofibrant objects of ℳ are quasi-categories, which we denote by

¹This hypothesis – that all fibrant objects are cofibrant – is not essential for the development of ∞-category theory,
though it does streamline various proofs. Indeed, the first definition of an “∞-cosmos” to appear in the literature did not
include this requirement [110].
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Fun(𝐴, 𝐵). The same result also implies that for any fibration 𝑓 ∶ 𝐴 ↠ 𝐵 between fibrant objects, the
induced map 𝑓∗ ∶ Fun(𝑋,𝐴) ↠ Fun(𝑋, 𝐵) is an isofibration of quasi-categories.

By Example C.1.4, the fibrant objects and fibrations and weak equivalences between them define a
category of fibrant objects (see Definition C.1.1). In particular, the unenriched categoryℳ𝑓 has a ter-
minal object, small products, pullbacks of isofibrations, and limits of countable towers of isofibrations,
with each of these limits created inℳ. Sinceℳ admits simplicial tensors, Proposition A.5.4 implies
that these 1-categorical limits are conical, and thusℳ𝑓 possesses the conical limits of axiom 1.2.1(i).
The stability of the isofibrations under the 1-categorical limits of axiom 1.2.1(ii) then is also part of the
category of fibrant objects structure of Example C.1.4, though in many examples the stability of the
class of isofibrations can also be established via Lemma C.2.3.

It remains to verify the axioms concerning the simplicial cotensors. By hypothesis ℳ is also
cotensored over simplicial sets, and sinceℳ is an enriched model category, the cotensor bifunctor is a
right adjoint of a Quillen two-variable adjunction. Directly from the defining axiom of Definition
C.3.8, the fibrant objects are closed under cotensor with cofibrant objects, but since all objects in the
Joyal model structure are cofibrant, the fibrant objects are closed under simplicial cotensors. Thusℳ𝑓
possesses all the limits of 1.2.1(i). Leibniz stability of the isofibrations is a special case of Definition
C.3.8, proving thatℳ𝑓 is an∞-cosmos.

Since all fibrant objects are cofibrant, Fun(𝑋, −) ∶ ℳ𝑓 → 𝒬𝒞𝑎𝑡 is the action on fibrant objects
of a right Quillen functor (see Exercise C.3.iii), and thus by Lemma C.3.4 weak equivalences in ℳ𝑓
are sent to the equivalences of Definition 1.2.2. Conversely, by Lemma 1.2.15 each equivalence in the
∞-cosmos admits the structure of a homotopy equivalence, defined using what Quillen would call
“right homotopies.” Quillen proves that any homotopy equivalence is necessarily a weak equivalence in
the model category [93, §I.1]. �

Furthermore:

E.1.2. Corollary. Any simplicially enriched right Quillen adjoint between quasi-categorically enriched model
categories with all fibrant objects cofibrant defines a cosmological functor that is a cosmological biequivalence
whenever the Quillen adjoint defines a Quillen equivalence.

Proof. A right Quillen adjoint preserves fibrant objects, so a simplicially enriched right Quillen
adjoint defines a simplicial functor between the subcategories of fibrant objects, satisfying the first
requirement of a cosmological functor. As a right Quillen functor, it preserves fibrations between
fibrant objects, and thus preserves the isofibrations in the ∞-cosmoi defined by Proposition E.1.1.
Finally, a simplicially enriched right adjoint preserves both conical and weighted limits, by Proposition
A.6.20. This verifies all of the axioms defining a cosmological functor.

Now consider a simplicially enriched right Quillen equivalence 𝑈∶ 𝒩 → ℳ, with left adjoint
𝐹. The action on homs of the functor 𝑈 is isomorphic to the map defined by precomposition with a
counit component:

𝒩(𝑋,𝑌) ℳ(𝑈𝑋,𝑈𝑌)

𝒩(𝐹𝑈𝑋,𝑌)

𝑈𝑋,𝑌

−∘𝜖𝑋

≃

where the displayed vertical isomorphism is adjoint transposition. By Lemma C.3.6, the counit compo-
nent 𝜖𝑋 is a weak equivalence when𝑋 is fibrant. When𝑌 is fibrant, the functor𝒩(−, 𝑌) ∶ 𝒩op → 𝑠𝒮𝑒𝑡
is right Quillen by Exercise C.3.iii. Hence, by Lemma C.3.4, this functor carries weak equivalences
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between cofibrant objects in 𝒩 to equivalences between quasi-categories. Putting all this together,
we see that when 𝑋 and 𝑌 are fibrant, the diagonal map defines an equivalence of quasi-categories,
and thus 𝑈𝑋,𝑌 ∶ 𝒩(𝑋, 𝑌) → ℳ(𝑈𝑋,𝑈𝑌) must be an equivalence of quasi-categories as well. This
verifies the local equivalence property of cosmological biequivalences.

Essential surjectivity is also a consequence of Lemma C.3.6, since the derived unit supplies a weak
equivalence 𝑀 ∼ 𝑈𝑅𝐹𝑀 for any fibrant object 𝑀 ∈ ℳ. Since 𝑅𝐹𝑀 is a fibrant object in 𝒩, this
defines an equivalence in the∞-cosmosℳ𝑓 involving an object in the image of 𝑈∶ 𝒩𝑓 → ℳ𝑓. �

With Proposition E.1.1 in hand, the next question is where do model categories enriched over the
Joyal model structure come from? This question has not attracted much attention in the literature,
but the community has done us a considerable favor, in many cases, by providing model categories
of infinite-dimensional categories that are enriched over some other cartesian closed model category.
This allows us to apply Theorem C.3.16 to convert a known enrichment to an enrichment over Joyal’s
model structure for quasi-categories. Combining that result with Proposition E.1.1, we obtain a useful
change-of-base result that produces model categories enriched over the Joyal model structure.

E.1.3. Proposition. Let𝒱 be a cartesian closed model category equipped with a Quillen adjunction whose
right adjoint is valued in the Joyal model structure and whose left adjoint preserves finite products.

𝑠𝒮𝑒𝑡 𝒱
𝐹
⊥
𝑈

(i) Then for any𝒱-model categoryℳ in which every fibrant object is cofibrant, the full subcategory of
fibrant objectsℳ𝑓 defines an∞-cosmos in which the isofibrations are the fibrations between fibrant
objects, the equivalences are the weak equivalences between fibrant objects, the trivial fibrations are the
trivial fibrations between fibrant objects, the functor spaces are defined byFun(𝑀,𝑁) ≔ 𝑈ℳ(𝑀,𝑁),
whereℳ(𝑀,𝑁) is the hom-object in𝒱, and the simplicial cotensor of𝑀 ∈ ℳ𝑓 with 𝑆 ∈ 𝑠𝒮𝑒𝑡 are
defined by the𝒱-cotensor𝑀𝐹𝑆.

(ii) Moreover, any right Quillen𝒱-adjoint between𝒱-model categories of this form defines a cosmological
functor that is a cosmological biequivalence whenever the Quillen adjoint is a Quillen equivalence.

Proof. The adjunction 𝐹 ⊣ 𝑈 is assumed to be Quillen adjunction between cartesian closed
model categories in which the left adjoint preserves finite products. Thus, by Theorem C.3.16, any
𝒱-model categoryℳ admits the structure of a model category enriched over the Joyal model structure
with the same underlying unenriched model category with enriched homs and cotensors defined by:

Fun(𝑀,𝑁) ≔ 𝑈ℳ(𝑀,𝑁) and 𝑀𝑆 ≔ 𝑀𝐹𝑆,
as claimed. Since the underlying model category is unchanged, every fibrant object in ℳ is still
cofibrant. Thus, by Proposition E.1.1, the full subcategory of fibrant objects defines an∞-cosmos.

Again because the change-of-base result does not affect the underlying model categories, any right
Quillen adjoint between𝒱-model categories remains a right Quillen adjoint. By Proposition A.7.3,
a 𝒱-functor becomes a simplicially enriched functor under the new enrichments. Corollary E.1.2
now tells us that a right Quillen𝒱-adjoint gives rise to a cosmological functor that is a cosmological
biequivalence when that Quillen adjoint is a Quillen equivalence. �

We often make use of this result in the following special case:
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E.1.4. Corollary. Let𝒱 be a cartesian closed model category in which all fibrant objects are cofibrant that
is equipped with a Quillen adjunction whose right adjoint is valued in the Joyal model structure and whose left
adjoint preserves finite products.

𝑠𝒮𝑒𝑡 𝒱
𝐹
⊥
𝑈

Then the fibrant objects of𝒱 define a cartesian closed∞-cosmos𝒱𝑓 and the right adjoint defines a cosmological
functor 𝑈∶ 𝒱𝑓 → 𝒬𝒞𝑎𝑡 that is naturally isomorphic to the underlying quasi-category functor and is a
cosmological biequivalence whenever 𝐹 ⊣ 𝑈 is a Quillen equivalence.

Proof. When the fibrant objects of𝒱 are cofibrant,𝒱 itself satisfies the hypotheses of Proposition
E.1.3(i) and thus 𝒱𝑓 defines an ∞-cosmos. By Lemma A.7.7, 𝐹 ⊣ 𝑈 defines a simplicially enriched
adjunction between simplicial sets and the simplicially enriched category𝑈∗𝒱, so in this way we obtain
a simplicially enriched right Quillen functor𝑈∶ 𝑈∗𝒱 → 𝑠𝒮𝑒𝑡 between model categories enriched over
the Joyal model structure. By Corollary E.1.2, 𝑈 then defines a cosmological functor 𝑈∶ 𝒱𝑓 → 𝒬𝒞𝑎𝑡
that is a biequivalence if 𝐹 ⊣ 𝑈 is a Quillen equivalence. Combining Remark A.1.9 with the definition
of the functor spaces of𝒱𝑓 given in Proposition E.1.3, we obtain the following natural isomorphism
for any 𝑋 ∈ 𝒱𝑓

𝑈(𝑋) ≅ 𝑈(𝑋1) ≅ Fun(1, 𝑋)
proving that the cosmological functor 𝑈∶ 𝒱𝑓 → 𝒬𝒞𝑎𝑡 is naturally isomorphic to the underlying
quasi-category functor associated to the∞-cosmos𝒱𝑓 (see also Remark 1.3.11). �

Proposition E.1.3 inspires the following trivial examples of∞-cosmoi.

E.1.5. Example (1-categories as∞-cosmoi). Any complete locally small 1-category 𝒞 can be made into
an ∞-cosmos in which Fun(𝐴, 𝐵) is just the set of morphisms from 𝐴 to 𝐵. By the Yoneda lemma,
the equivalences are then the isomorphisms in 𝒞 and so by Lemma 1.2.19 all maps must necessarily be
isofibrations. The cotensor of an object 𝐴 ∈ 𝒞 with a simplicial set 𝑆 is defined by

𝐴𝑆 ≔ 𝐴𝜋0𝑆 ≔ �
𝜋0𝑆

𝐴.

Ignoring the fact that model categories are typically assumed to have colimits as well as limits, this
construction can be seen as a special case of Proposition E.1.3 applied to the adjunction

𝑠𝒮𝑒𝑡 𝒮𝑒𝑡
𝜋0

⊥
sk0

whose right adjoint embeds 𝒮𝑒𝑡 ↪ 𝑠𝒮𝑒𝑡 as the subcategory of 0-skeletal simplicial sets (see Definition
C.5.2). Here the cartesian closed model structure on 𝒮𝑒𝑡 is not the one considered in Exercise C.3.iv
but rather the one in which the weak equivalences are the isomorphisms and all maps are taken to
be both cofibrations and fibrations. To see that this adjunction is Quillen, note that 𝜋0 vacuously
preserves cofibrations, while sk0 carries any map to an isofibration of quasi-categories: This latter
claim follows by adjunction since the defining lifting properties below-left transpose to the lifting
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properties below-right:

Λ𝑘[𝑛] sk0𝐴 𝟙 sk0𝐴 𝜋0Λ𝑘[𝑛] 𝐴 𝜋0𝟙 𝐴

Δ[𝑛] sk0 𝐵 𝕀 sk0 𝐵 𝜋0Δ[𝑛] 𝐵 𝜋0𝕀 𝐵

∼ ∼ ↭ ∃! ∃!

Famously, 𝜋0 preserves finite products, so the conditions of the change-of-base theorem apply. The
homotopy 2-category of an∞-cosmos arising in this way has only identity 2-cells.

E.1.6. Example (2-categories as ∞-cosmoi). Categorifying the previous example, any 2-category 𝒞
with sufficient limits defines an ∞-cosmos where Fun(𝐴, 𝐵) is the nerve of the hom-category of
morphisms from 𝐴 to 𝐵 in 𝒞. By Theorem 1.4.7 and Proposition B.6.1, the equivalences are necessarily
the equivalences in the 2-category. Inspired by Proposition 1.4.9, we take the isofibrations to be the
isofibrations in the 2-category.

Interpreting “sufficient limits” to mean the limits of axiom 1.2.1(i), the remaining axiom 1.2.1(ii) can
be verified by hand. Alternatively, again ignoring the fact that model categories are typically assumed
to have colimits as well as limits, we may apply Proposition E.1.3 to the homotopy category ⊣ nerve
adjunction of Proposition 1.1.11

𝑠𝒮𝑒𝑡 𝒞𝑎𝑡
h
⊥

which is a Quillen adjunction between Joyal’s model structure and the usual “folk” model structure on
categories. Any 2-category admitting suitable finite limits and colimits is canonically enriched over the
folk model structure on categories, when it is given the “trivial”𝒞𝑎𝑡-enriched model structure described
by Lack [72], with weak equivalences and fibrations are exactly the equivalences and isofibrations just
described.

It remains to unpack the meaning of the weaselly phrase “sufficient limits.” By Proposition 6.2.8,
the 2-category 𝒞 is required to have all PIE limits, that is 2-categorical products, inserters, and
equifiers discussed in Digression 6.2.7. This implies that 𝒞 admits pseudopullbacks of all maps, by
the construction of Definition 6.2.10, but this does not quite imply that 𝒞 admits 2-pullbacks of
isofibrations. Instead, the proof of Lemma 6.2.14 constructs a bipullback of an isofibration, with the
usual hom-category isomorphism replaced by a hom-category equivalence. Similar remarks apply to
limits of towers of isofibrations. But in practice, the 2-categories that admit PIE limits such as those
considered in [17] do seem to admit 2-pullbacks of isofibrations and 2-limits of towers of isofibrations
and thus define examples of∞-cosmoi.

In particular, Example E.1.6 specializes to recover the ∞-cosmos structure on 𝒞𝑎𝑡 discussed in
Proposition 1.2.11. Intriguingly, it also defines an∞-cosmos structure on 𝒞𝑎𝑡op in which the “isofibra-
tions” are those functors that are injective on objects.² Combining these observations with the dual
∞-cosmos construction of Definition 1.2.25, we see that the four 2-categorical duals 𝒞𝑎𝑡, 𝒞𝑎𝑡op, 𝒞𝑎𝑡co,
and 𝒞𝑎𝑡coop are all∞-cosmoi.

The ∞-cosmoi of Example E.1.6 admit an abstract characterization as those ∞-cosmoi that are
isomorphic (as quasi-categorically enriched categories) to their homotopy 2-categories. In this case,

²In the “folk” model structure on 𝒞𝑎𝑡, the fibrations are the isofibrations, the weak equivalences are the equivalences,
and the cofibrations are the injective-on-objects functors. Injective-on-objects functors satisfy an isomorphism extension
property dual to the isomorphism lifting property that defines the 2-categorical notion of isofibration.
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the weak 2-limits of Chapter 3 are actually strict and many of our results specialize to known theorems
in the 2-categorical literature.

E.1.7. Example (simplicial model categories as ∞-cosmoi). The identity functor id ∶ 𝑠𝒮𝑒𝑡 → 𝑠𝒮𝑒𝑡
defines a right Quillen adjoint from Quillen’s model structure for Kan complexes to Joyal’s model
structure for quasi-categories; evidently its left adjoint preserves products. Hence, any Kan complex
enriched model category – or simplicial model category in the usual parlance – may be regarded as a
quasi-categorically enriched model category in which each of the mapping spaces between fibrant–cofi-
brant objects happens to be a Kan complex. Thus, any simplicial model category whose fibrant objects
are cofibrant may be regarded as presenting an∞-cosmos.

The homotopy 2-categories of∞-cosmoi arising in this manner are all (2, 1)-categories, with every
natural transformation defining a natural isomorphism.

E.1.8. Digression (on accessible ∞-cosmoi). Many of the model categories one meets in practice,
including all of the examples considered in this text, are combinatorial, meaning that the underlying
category is locally presentable and the model structure is cofibrantly generated. When a model category
ℳ satisfying the hypotheses of Proposition E.1.1 is combinatorial, the resulting∞-cosmosℳ is an
accessible∞-cosmos, a notion being studied by Bourke and Lack, based on their earlier work [21] with
Vokřínek on homotopical adjoint functor theorems. In fact, it seems likely that all of the constructions
of Chapter 6 preserve accessibility, which would mean that every∞-cosmos considered in this text is
accessible.

There are innumerable applications of this observation that will be explored in future work,
stemming from the specialization of the main theorems of [21] to this setting. First any accessible
∞-cosmos has all flexible weighted homotopy colimits, which are defined by a simplicially enriched
universal property of the form of Definition A.6.5 except expressed by an equivalence, rather than an
isomorphism, of quasi-categories.³ This result itself can be understood as a consequence of a second
theorem which says that any cosmological functor 𝑈∶ 𝒦 → ℒ between accessible∞-cosmoi that is
accessible as an unenriched functor admits a homotopical left adjoint: for every 𝐴 ∈ ℒ, there exists
𝐹𝐴 ∈ 𝒦 and a map 𝜂𝐴 ∶ 𝐴 → 𝑈𝐹𝐴 inducing an equivalence of quasi-categories

Fun(𝐹𝐴, 𝐵) ∼ Fun(𝐴,𝑈𝐵)
for all 𝐵 ∈ 𝒦. For instance, the cosmological embedding𝒟𝑖𝑠𝑐(𝒦) ↪ 𝒦 is accessible whenever𝒦 is
an accessible∞-cosmos, so this result defines a weak reflection, that “freely inverts” all of the arrows in
an∞-category.

Exercises.

E.1.i. Exercise. State and prove a version of Proposition E.1.3 that applies to enriched categories of
fibrant objects, such as considered in Examples E.1.5 and E.1.6, that may have few colimits.

E.2. ∞-Cosmoi of (∞, 1)-Categories

The∞-cosmos of quasi-categories is established in Proposition 1.2.10. In this section, we establish
three other∞-cosmoi whose objects define (∞, 1)-categories – modeled as complete Segal spaces, Segal

³The fact that all of the simplicial sets of (A.6.6) are quasi-categories is a consequence of the flexibility of the weight
(see Definition 6.2.1 and Proposition 6.2.8).
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categories, or 1-complicial sets – and construct the following biequivalences between them:

𝒞𝒮𝒮 𝒮𝑒𝑔𝑎𝑙

𝒬𝒞𝑎𝑡

1-𝒞𝑜𝑚𝑝

(−)0
disc

(−)0

♮

nervenerve

(−)0

Before giving the formal definition of a complete Segal space, introduced by Charles Rezk in

[100], we explain the idea. To start, a complete Segal space is a bisimplicial set 𝑋 ∈ 𝒮𝑒𝑡𝚫
op×𝚫op

. It is
conventional to regard the simplicial sets 𝑋𝑚 ≔ 𝑋𝑚,• as the “columns” of the bisimplicial set 𝑋, while
the simplicial sets 𝑋•,𝑛 define the “rows.” In a complete Segal space, the diagram

𝑋• ≔ 𝑋0 𝑋1 𝑋2 ⋯

defines a simplicial object in the category of Kan complexes. Moreover, for each 𝑚 ≥ 0, the matching
map 𝑋𝑚 → 𝑀𝑚𝑋 whose codomain is the space of “boundary data” associated with the 𝑚-simplex is
a Kan fibration. The spaces 𝑋0 and 𝑋1 are the “spaces of objects and arrows” for the complete Segal
space. The so-called “Segal condition” implies that the space 𝑋𝑛 may be regarded as the “space of
𝑛-composable arrows.” A Segal space, satisfying the conditions enumerated thus far, is then something
like an “internal category up to homotopy” (compare with Definition B.1.8). The final “completeness”
condition relates the spatial structure of 𝑋0 with the categorical structure just defined, expressing the
idea that paths in 𝑋0 should correspond to isomorphisms in 𝑋•.

The formal definition of a complete Segal space has three conditions, which aremost easily described
in terms of the weighted limit bifunctor

(𝒮𝑒𝑡𝚫
op

)op × 𝑠𝒮𝑒𝑡𝚫
op

𝑠𝒮𝑒𝑡lim− −

where 𝑠𝒮𝑒𝑡 is regarded as a 𝒮𝑒𝑡-enriched category. Note that the weights for 𝚫op-indexed diagrams in
𝑠𝒮𝑒𝑡 are 𝚫op-indexed diagrams in 𝒮𝑒𝑡, i.e., simplicial sets. In more detail:

E.2.1. Definition (complete Segal space).

(i) A simplicial object 𝑋• ∈ 𝑠𝒮𝑒𝑡𝚫
op

is Reedy fibrant just when the induced map on weighted
limits

𝑋𝑚 ≅ limΔ[𝑚]𝑋 → lim𝜕Δ[𝑚]𝑋 ≕ 𝑀𝑚𝑋
is a Kan fibration of simplicial sets for all 𝑚 ≥ 0.

(ii) A Reedy fibrant simplicial object 𝑋• is a Segal space just when the induced map on weighted
limits

𝑋𝑛 ≅ limΔ[𝑛]𝑋 → limΛ𝑘[𝑛]𝑋
is a trivial fibration of simplicial sets for all 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛.⁴

⁴By Reedy fibrancy, the induced map is already a Kan fibration, so to demand that it is a trivial fibration is equivalent
to demanding that it is a weak homotopy equivalence. A priori, this definition is stronger than the usual Segal condition,
which requires that the map induced on weighted limits by the inclusion of the spine of the 𝑛-simplex for each 𝑛 ≥ 2 is
a trivial fibration. The spine inclusions are in the class cellularly generated by the inner horn inclusions, so by Exercise
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(iii) A Segal space 𝑋• is a complete Segal space, just when the induced map on weighted limits

lim𝕀𝑋 → limΔ[0]𝑋 ≅ 𝑋0

is a trivial fibration of simplicial sets, asserting that the “space of isomorphisms in 𝑋”⁵ is
equivalent to the space 𝑋0.⁶

The category of bisimplicial sets, as a presheaf category, is cartesian closed and hence enriched over

itself. Among the great supply of product-preserving functors 𝒮𝑒𝑡𝚫
op×𝚫op

→ 𝒮𝑒𝑡𝚫
op

that may be used

to convert this to a simplicial enrichment, there are two of particular interest: column0 ∶ 𝒮𝑒𝑡
𝚫op×𝚫op

→
𝒮𝑒𝑡𝚫

op

, which sends a bisimplicial set𝑋 to its space𝑋0 of 0-simplices and row0 ∶ 𝒮𝑒𝑡
𝚫op×𝚫op

→ 𝒮𝑒𝑡𝚫
op

,
which passes to set the set of vertices in each space in the simplicial object. As observed by Joyal and
Tierney [64], the former construction carries a complete Segal space to a Kan complex, while the latter
construction carries a complete Segal space to a quasi-category and will be used to prove:

E.2.2. Proposition. The full subcategory 𝒞𝒮𝒮 ↪ 𝒮𝑒𝑡𝚫
op×𝚫op

of complete Segal spaces defines a cartesian
closed∞-cosmos in which the functor space Fun(𝐴, 𝐵) is defined to be the underlying quasi-category, formed
by the vertices in each internal hom 𝐵𝐴. With respect to this∞-cosmos structure:

(i) The underlying quasi-category functor (−)0 ≔ row0 ∶ 𝒞𝒮𝒮 ∼ 𝒬𝒞𝑎𝑡 is a cosmological biequivalence.
(ii) A second cosmological biequivalence nerve ∶ 𝒬𝒞𝑎𝑡 ∼ 𝒞𝒮𝒮 carries a quasi-category 𝐴 to the bisim-

plicial set whose (𝑚, 𝑛)-simplices are simplicial maps Δ[𝑚] × 𝕀[𝑛] → 𝐴 indexed by the product of the
ordinal category with the ordinal groupoid.

Proof. By a theorem of Rezk, the complete Segal spaces form the fibrant objects in a cartesian
closed model structure borne by the category of bisimplicial sets in which all objects are cofibrant [100].
Precomposition with the adjoint pair of functors defined by 𝜋1([𝑚] × [𝑛]) ≔ [𝑚] and 𝜄0([𝑚]) ≔
[𝑚] × [0] induces an adjunction as below-right:

𝚫 𝚫 × 𝚫 𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚫
op×𝚫op

𝜄0
⊥
𝜋1

⇝
𝜋∗
1

⊥
𝜄∗0

(E.2.3)

Joyal and Tierney prove that this pair of functors defines a Quillen equivalence between the model
structure for quasi-categories and themodel structure for complete Segal spaces [64, 4.11]. By inspection,
the left adjoint preserves finite products, so Corollary E.1.4 applies to create a cartesian closed∞-cosmos
structure on the full subcategory 𝒞𝒮𝒮, as detailed in Proposition E.1.3, for which (−)0 ≔ row0 ≔ 𝜄∗0 is
a cosmological biequivalence.

A second adjunction between simplicial sets and bisimplicial sets pointing in the opposite direction
has a left adjoint defined as the left Kan extension of the functor

𝚫 × 𝚫 𝒮𝑒𝑡𝚫
op

[𝑚] × [𝑛] Δ[𝑚] × 𝕀[𝑛]

C.2.v applied to the two-variable adjunction involving the weighted limit, our condition clearly implies the classical Segal
condition. The proof of the converse is more subtle and can be found as [64, 3.4].

⁵Other weights may be used to define the “space of isomorphisms” such as the pushout of Δ[2]
𝛿0

Δ[1]
𝛿2

Δ[2].
See [100, §11] for a discussion.

⁶By the 2-of-3 property, this is equivalent to the arguably more natural condition that the map Δ∶ 𝑋0 → lim𝕀𝑋,
induced by ! ∶ 𝕀 → Δ[0] is a weak homotopy equivalence.
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along the Yoneda embedding 𝚫 × 𝚫 ↪ 𝒮𝑒𝑡𝚫
op×𝚫op

; here 𝕀[𝑛] is the nerve of the groupoid with 𝑛 + 1
objects and one exactly morphism in each hom-set, obtained by freely inverting the morphisms in
the ordinal category 𝕟+𝟙. The right adjoint is the corresponding “nerve” functor described in the
statement of (ii). Joyal and Tierney also prove that the adjunction

𝒮𝑒𝑡𝚫
op×𝚫op

𝒮𝑒𝑡𝚫
op

lan

⊥
nerve

is a Quillen equivalence with respect to the model structures for complete Segal spaces and quasi-
categories [64, 4.12]. To conclude from Corollary E.1.2 that nerve ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝒮𝒮 is a cosmological
biequivalence it remains only to show that this functor is simplicially enriched and preserves simpli-
cial cotensors, or equivalently, by Proposition A.4.6, that the adjunction lan ⊣ nerve is simplicially
enriched.

To verify this, we make use of the external product bifunctor:

𝒮𝑒𝑡𝚫
op

× 𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚫
op×𝚫op

(𝐴, 𝐵) (𝐴 𝐵)𝑚,𝑛 ≔ 𝐴𝑚 × 𝐵𝑛

Since any bisimplicial set 𝑋 may be recovered as a canonical colimit of representables, it suffices to
consider maps from a representable bisimplicial set Δ[𝑚] Δ[𝑛] to a simplicial set 𝐴. In the simplicial

enrichment of 𝒮𝑒𝑡𝚫
op×𝚫op

just defined, the simplicial set of maps from Δ[𝑚] Δ[𝑛] to nerve(𝐴) has
𝑘-simplices defined to be (𝑘, 0)-simplices in the bisimplicial set nerve(𝐴)Δ[𝑚]Δ[𝑛]. Now

(nerve(𝐴)Δ[𝑚]Δ[𝑛])𝑘,0 ≔ 𝒮𝑒𝑡𝚫
op×𝚫op

((Δ[𝑚] Δ[𝑛]) × (Δ[𝑘] Δ[0]), nerve(𝐴))

by the definition of the cartesian closed structure on bisimplicial sets, which is

≅ 𝒮𝑒𝑡𝚫
op×𝚫op

((Δ[𝑚] × Δ[𝑘]) Δ[𝑛], nerve(𝐴))

by the definition of the external product, which is

≅ 𝒮𝑒𝑡𝚫
op

(lan((Δ[𝑚] × Δ[𝑘]) Δ[𝑛]), 𝐴)

by adjunction. Joyal and Tierney prove in [64, 2.11] that the left Kan extension acts on the external
tensor product by lan(𝐵 Δ[𝑛]) ≅ 𝐵 × 𝕀[𝑛]. So we have

≅ 𝒮𝑒𝑡𝚫
op

((Δ[𝑚] × Δ[𝑘]) × 𝕀[𝑛], 𝐴)

≅ 𝒮𝑒𝑡𝚫
op

((Δ[𝑚] × 𝕀[𝑛]) × Δ[𝑘], 𝐴)

≅ 𝒮𝑒𝑡𝚫
op

(lan(Δ[𝑚] Δ[𝑛]) × Δ[𝑘], 𝐴)
≕ (𝐴lan(Δ[𝑚]Δ[𝑛]))𝑘

by the definition of the cartesian closed structure on simplicial sets. This proves that the adjunction
is compatible with the simplicial enrichments, so it follows from Corollary E.1.2 and [64, 4.12] that
nerve ∶ 𝒬𝒞𝑎𝑡 → 𝒞𝒮𝒮 is a cosmological biequivalence. �

A second model of (∞, 1)-categories is closely related.
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E.2.4. Definition (Segal categories). A Segal precategory is a bisimplicial set 𝑋• ∈ 𝑠𝒮𝑒𝑡𝚫
op

whose
space of 0-simplices 𝑋0 is 0-skeletal on the set 𝑋0,0 of its vertices. A Segal category is a Segal category
that is Reedy fibrant and satisfies the Segal condition of Definition E.2.1.

Definition E.2.4 is mildly stronger than the usual definition first introduced by Dwyer, Kan, and
Smith [38] and further developed by Hirschowitz and Simpson [56]. The usual convention defines
a Segal category to be a Segal precategory 𝑋• so that for each 𝑛 ≥ 2, the map induced on weighted
limits by the inclusion Γ[𝑛] ↪ Δ[𝑛] of the spine of the 𝑛-simplex

𝑋𝑛 ≅ limΔ[𝑛]𝑋 → 𝑋1 ×
𝑋0

⋯ ×
𝑋0

𝑋1 ≅ limΓ[𝑛] Δ[𝑛]

is a weak homotopy equivalence of simplicial sets – without requiring Reedy fibrancy. We prefer to
include Reedy fibrancy in our notion of Segal category so that the Segal categories are precisely the
fibrant objects in an appropriate model structure on the category 𝒫𝒞𝑎𝑡 of Segal precategories, which
then gives rise to an∞-cosmos.

Before we introduce the ∞-cosmos 𝒮𝑒𝑔𝑎𝑙, we explain how to transform a complete Segal space
into a Segal category.

E.2.5. Lemma. There is a functor disc ∶ 𝑠𝒮𝑒𝑡𝚫
op

→ 𝑠𝒮𝑒𝑡𝚫
op

called discretization defined by the pullback

disc(𝑋) 𝑋

cosk0(𝑋0,0) cosk0(𝑋0)

that lands in the subcategory of Segal precategories, and indeed is right adjoint to the inclusion𝒫𝒞𝑎𝑡 ↪ 𝑠𝒮𝑒𝑡𝚫
op

.
Moreover, the discretization of a Reedy fibrant Segal space is a Segal category.

Proof. Since the “vertex evaluation” map 𝑋 → cosk0(𝑋0) is bijective on the 0th column, the
pullback disc(𝑋) → cosk0(𝑋0,0) must be as well. Hence disc(𝑋)0 ≅ 𝑋0,0, which proves that disc(𝑋)
is a Segal precategory. To prove the adjointness, note that for any Segal precategory 𝑌 and bisimplicial
map 𝑓 ∶ 𝑌 → 𝑋, the component 𝑓0 ∶ 𝑌0 → 𝑋0 factors uniquely through 𝑋0,0 ↪ 𝑋0 by discreteness of
𝑌. This induces the required unique factorization of 𝑓 through disc(𝑋) ↪ 𝑋.

Finally, any simplicial space that is 0-coskeletal is automatically Reedy fibrant and a Segal space
since the maps of Definition E.2.1(i) and (ii) are both isomorphisms. When 𝑋 is Reedy fibrant, the map
𝑋𝑛 → cosk0(𝑋0)𝑛 ≅ 𝑋𝑛

0 is a Kan fibration, so the pullback that defines the simplicial set disc(𝑋)𝑛
is a homotopy pullback. Applying Lemma C.1.11 to Quillen’s model structure for Kan complexes on
simplicial sets, the Segal maps (ii) for 𝑋 pull back to define analogous weak homotopy equivalences for
disc(𝑋). �

E.2.6. Proposition. The full subcategory 𝒮𝑒𝑔𝑎𝑙 ↪ 𝒫𝒞𝑎𝑡 of Segal categories defines a cartesian closed
∞-cosmos in which the functor space Fun(𝐴, 𝐵) is defined to be the underlying quasi-category, formed by the
vertices in each internal hom 𝐵𝐴. With respect to this∞-cosmos structure:

(i) The underlying quasi-category functor (−)0 ≔ row0 ∶ 𝒮𝑒𝑔𝑎𝑙 ∼ 𝒬𝒞𝑎𝑡 is a cosmological biequivalence.
(ii) There is a cosmological biequivalence disc ∶ 𝒞𝒮𝒮 ∼ 𝒮𝑒𝑔𝑎𝑙 that “discretizes” a complete Segal space

into a Segal category.
(iii) Another cosmological biequivalence nerve ∶ 𝒬𝒞𝑎𝑡 ∼ 𝒮𝑒𝑔𝑎𝑙 carries a quasi-category 𝐴 to the bisim-

plicial set whose (𝑚, 𝑛)-simplices are simplicial maps Δ[𝑚] × Δ[𝑛] → 𝐴 whose components at each
vertex of Δ[𝑚] are constant.
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Proof. By Pellissier and Bergner [90, 12, 13], the (Reedy fibrant) Segal categories form the fibrant
objects in a cartesian closed model structure borne by the category of Segal precategories in which all
objects are cofibrant. The cartesian closed structure on 𝒫𝒞𝑎𝑡 can be defined explicitly, or deduced
from the observation that 𝒫𝒞𝑎𝑡 is a category of presheaves (see Exercise E.2.i).

The adjoint functors of (E.2.3) restrict to an adjunction between simplicial sets and Segal precate-
gories, which Joyal and Tierney show define a Quillen equivalence between the model structure for
quasi-categories and the model structure for Segal categories [64, 5.6]. Again by inspection, the left
adjoint preserves finite products, so Corollary E.1.4 applies to create a cartesian closed ∞-cosmos
structure on the full subcategory 𝒮𝑒𝑔𝑎𝑙 for which (−)0 ≔ row0 ≔ 𝜄∗0 is a cosmological biequivalence.

By a theorem of Bergner, the inclusion⊣ discretization adjunction of Lemma E.2.5 defines a Quillen
equivalence between the model structure for complete Segal spaces and the model structure for Segal
categories [13, §6]. To conclude from Corollary E.1.2 that disc ∶ 𝒞𝒮𝒮 → 𝒮𝑒𝑔𝑎𝑙 is a cosmological
biequivalence it remains only to show that this functor is simplicially enriched and preserves simplicial
cotensors, or equivalently, by Proposition A.4.6, that the adjunction is simplicially enriched. This
follows from the fact that this adjunction commutes with the underlying quasi-category adjunctions

for 𝒞𝒮𝒮 and 𝒮𝑒𝑔𝑎𝑙 (see Remark E.2.7). In particular, since the inclusion 𝒫𝒞𝑎𝑡 ↪ 𝑠𝒮𝑒𝑡𝚫
op

preserves
binary products, for any bisimplicial set 𝐶 and Segal precategory 𝑆, disc(𝐶𝑆) ≅ disc(𝐶)𝑆. A similar
argument shows that the simplicial cotensors are preserved. Passing to underlying quasi-categories,
this induces the desired simplicially enriched adjunction, which makes disc ∶ 𝒞𝒮𝒮 → 𝒮𝑒𝑔𝑎𝑙 simplicial
and hence cosmological.

A second adjunction between simplicial sets and Segal precategories pointing in the opposite
direction has left adjoint defined by restriction along the diagonal functor Δ∶ 𝚫op → 𝚫op × 𝚫op

and right adjoint, which we call “nerve,” given by right Kan extension along the same followed by
discretization. Joyal and Tierney also prove that this adjunction defines a Quillen equivalence with
respect to the model structures for complete Segal spaces and quasi-categories [64, 5.7]. As above, to
conclude that nerve ∶ 𝒬𝒞𝑎𝑡 → 𝒮𝑒𝑔𝑎𝑙 is a cosmological biequivalence it remains only to argue that this
adjunction is simplicially enriched. Since the functor nerve is the composite of the right adjoint to the

diagonal functor diag ∶ 𝒮𝑒𝑡𝚫
op×𝚫op

→ 𝒮𝑒𝑡𝚫
op

followed by discretization and we have already argued
that the latter adjunction is simplicially enriched, it suffices to show that diag ⊣ ran is simplicially
enriched.

To that end, consider a bisimplicial set 𝑋 and a simplicial set 𝐴. By definition

(ran(𝐴)𝑋)𝑘 ≔ (ran(𝐴)𝑋)𝑘,0 ≔ 𝒮𝑒𝑡𝚫
op×𝚫op

(𝑋 × (Δ[𝑘] Δ[0]), ran(𝐴))

≅ 𝒮𝑒𝑡𝚫
op×𝚫op

(diag(𝑋 × (Δ[𝑘] Δ[0])), 𝐴)

≅ 𝒮𝑒𝑡𝚫
op×𝚫op

(diag(𝑋) × Δ[𝑘], 𝐴) ≕ (𝐴diag(𝑋))𝑘,
which is what we wanted to show. �

E.2.7. Remark. This discretization functor commutes with the underlying quasi-category functors:

𝒞𝒮𝒮 𝒮𝑒𝑔𝑎𝑙

𝒬𝒞𝑎𝑡

disc

(−)0 (−)0

as can most easily be seen by considering the left adjoints to these functors at the level of model
categories. However, discretization does not commute with the nerve constructions on the nose, only
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up to equivalence. For a quasi-category 𝐴, nerve(𝐴) is the Segal category with (𝑚, 𝑛)-simplices given
by the set of simplicial mapsΔ[𝑚]×Δ[𝑛] → 𝐴 whose components at each vertex ofΔ[𝑚] are constant.
By contrast, disc(nerve(𝐴)) is the Segal category with (𝑚, 𝑛)-simplices given by the set of simplicial
maps Δ[𝑚] × 𝕀[𝑛] → 𝐴 whose components at each vertex of Δ[𝑚] are constant.

Recall from Digression D.4.21 that a 1-complicial set is a complicial set that is 1-trivial and saturated
(see Definitions D.1.9, D.1.16, and D.4.4). Theorem D.4.14 identifies quasi-categories with 1-complicial
sets – there called “naturally marked quasi-categories” – so unsurprisingly:

E.2.8. Proposition. The full subcategory 1-𝒞𝑜𝑚𝑝 ↪ 1-𝑠𝒮𝑒𝑡+ of 1-complicial sets defines a cartesian
closed ∞-cosmos in which the functor space Fun(𝐴, 𝐵) is defined to be the underlying quasi-category of
the internal hom 𝐵𝐴. With respect to this ∞-cosmos structure, both the underlying quasi-category functor

(−)0 ∶ 1-𝒞𝑜𝑚𝑝 ∼ 𝒬𝒞𝑎𝑡 and the natural marking functor (−)♮ ∶ 𝒬𝒞𝑎𝑡 ∼ 1-𝒞𝑜𝑚𝑝 are cosmological.
Proof. By independent theorems of Lurie [78, §3.1.3–4] and Verity [129, §6.5], the naturally marked

quasi-categories, which we call 1-complicial sets, form the fibrant objects in a cartesian closed model
structure borne by the category of marked simplicial sets in which all objects are cofibrant. There is an
adjunction

𝑠𝒮𝑒𝑡 1-𝑠𝒮𝑒𝑡+
(−)♭

⊥
(−)0

in which the right adjoint forgets the marking and the left adjoint assigns each simplicial set the
minimal 1-trivial marking, which Lurie proves is a Quillen equivalence between the model structure for
quasi-categories and the model structure for 1-complicial sets [78, 3.1.5.1]. By inspection, the left adjoint
preserves finite products,⁷ so Corollary E.1.4 applies to create a cartesian closed∞-cosmos structure
on the full subcategory 1-𝒞𝑜𝑚𝑝 so that the forgetful functor defines a cosmological biequivalence
(−)0 ∶ 1-𝒞𝑜𝑚𝑝 ∼ 𝒬𝒞𝑎𝑡 that coincides with the underlying quasi-category functor. The fact that the
model category of 1-complicial sets is enriched over the model structure for quasi-categories via this
construction is observed already in [78, 3.1.4.5].

For any quasi-categories 𝐴 and 𝐵, observe that there is a natural isomorphism Fun(𝐴, 𝐵) ≅
Fun(𝐴♮, 𝐵♮) between the functor quasi-category in𝒬𝒞𝑎𝑡 and the just-defined functor space in 1-𝒞𝑜𝑚𝑝
between their natural markings; the point is that simplicial maps 𝐴 → 𝐵 preserve isomorphisms and

hence the natural markings. Verity shows that the natural marking functor (−)♯ ∶ 𝒬𝒞𝑎𝑡 → 1-𝒞𝑜𝑚𝑝
creates the fibrations between fibrant objects [129, 114–118]. Since limits in𝒬𝒞𝑎𝑡 and 1-𝒞𝑜𝑚𝑝 are both
created in 𝑠𝒮𝑒𝑡, it follows that the functor (−)♮ ∶ 𝒬𝒞𝑎𝑡 → 1-𝒞𝑜𝑚𝑝 is a cosmological biequivalence,
and indeed an inverse isomorphism to (−)0 ∶ 1-𝒞𝑜𝑚𝑝 → 𝒬𝒞𝑎𝑡. �

Exercises.

E.2.i. Exercise. Joyal and Tierney identify the subcategory 𝒫𝒞𝑎𝑡 ↪ 𝒮𝑒𝑡𝚫
op×𝚫op

with the category
of presheaves indexed by the 1-categorical quotient 𝚫|2 of 𝚫 × 𝚫 defined by inverting the maps in
the image of the functor [0] × 𝚫 ↪ 𝚫 × 𝚫 [64, 5.4]. Redefine the three adjunctions between 𝒫𝒞𝑎𝑡,
𝒮𝑒𝑡𝚫

op×𝚫op

, and 𝒮𝑒𝑡𝚫
op

appearing in the proof of Proposition E.2.6 from this point of view.

E.2.ii. Exercise. Verify that the cosmological biequivalences nerve ∶ 𝒬𝒞𝑎𝑡 ∼ 𝒞𝒮𝒮 and nerve ∶ 𝒬𝒞𝑎𝑡 ∼

𝒮𝑒𝑔𝑎𝑙 each define sections of the respective underlying quasi-category functors.

⁷Note (Δ[1] × Δ[1])♭ ≠ Δ[1]♭ × Δ[1]♭ as marked simplicial sets so for the finite-product-preservation property to
hold it is essential that the minimal marking functor lands in the category of 1-trivial marked simplicial sets.
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E.3. ∞-Cosmoi of (∞, 𝑛)-Categories

In this section, we introduce a variety of∞-cosmoi whose objects are models of (∞, 𝑛)-categories
for 1 < 𝑛 ≤ ∞. These ∞-cosmoi describe the (∞, 2)-categories of ∞-categories, ∞-functors, and
∞-natural transformations, omitting higher-dimensional transformations, though generalized elements
and internal homs allow access to higher-dimensional noninvertible morphisms.

Because the combinatorics entailed in fully specifying a model of (∞, 𝑛)-categories can be rather
involved, to save space, we do not define every one of the higher categorical notions discussed here,
instead providing external references to where such definitions can be found.

A few of our models of (∞, 𝑛)-categories are defined as presheaves indexed by a 1-category𝚯𝑛 first
introduced by Joyal in an unpublished note [60], which we present in an equivalent form due to Berger
[10].

E.3.1. Definition. For 0 ≤ 𝑛 ≤ ∞, define a family of 1-categories𝚯𝑛 inductively as follows.

• 𝚯0 ≔ 𝟙 is the terminal category and 𝚯1 ≔ 𝚫 is the category of finite nonempty ordinals and
order-preserving maps.

• 𝚯𝑛 ≔ 𝚫≀𝚯𝑛−1, where𝚫≀−∶ 𝒞𝑎𝑡 → 𝒞𝑎𝑡 is the categorical wreath product construction. Explicitly,
for a 1-category 𝐶, 𝚫 ≀ 𝐶 is the category whose:
– objects are tuples [𝑛](𝑐1, … , 𝑐𝑛) where [𝑛] ∈ 𝚫 and 𝑐𝑖 ∈ 𝐶.
– morphisms (𝛼; 𝑓 ) ∶ [𝑛](𝑐1, … , 𝑐𝑛) → [𝑚](𝑐′1, … , 𝑐′𝑚) are given by a simplicial map 𝛼∶ [𝑛] →
[𝑚] ∈ 𝚫 together with morphisms 𝑓𝑖,𝑗 ∶ 𝑐𝑖 → 𝑐′𝑗 ∈ 𝐶 for all 0 < 𝑖 ≤ 𝑛 and 𝛼(𝑖 − 1) < 𝑗 ≤ 𝛼(𝑖).

The objects of 𝚯𝑛 define pasting diagrams of 𝑘-cells for 0 ≤ 𝑘 ≤ 𝑛 while the morphisms define
projection, composition, and degeneracy maps. The functor𝚯𝑛 ↪ 𝑛-𝒞𝑎𝑡 that sends a pasting diagram
to the free strict 𝑛-category that it generates is full and faithful [10, 3.7].

For instance, the morphism (𝛿2; (𝛿1, !, id)) ∶ [2]([1], [1]) → [3]([2], [0], [1]) in𝚯2 corresponds to
the 2-functor between the free 2-categories generated by the pasting diagrams

0 1 2 ↦ 0 1 2 3⇓ ⇓
⇓
⇓

⇓

that sends 0 to 0, 1 to 1, and 2 to 3, and sends the left 2-cell of the domain to the vertical composite of
the leftmost 2-cells of the codomain and the right 2-cell of the domain to the whiskered composite of
the rightmost 2-cell of the codomain with the central 1-cell.

E.3.2. Lemma. For any 1-category with a terminal element 𝑡, the adjunction below-left induces an adjunction
below-right:

𝟙 𝐶 𝚫 ≅ 𝚫 ≀ 𝟙 𝚫 ≀ 𝐶
𝑡
⊥
!

⇝
𝚫≀𝑡
⊥
𝚫≀!

Proof. The categorical wreath product defines a 2-functor 𝚫 ≀ −∶ 𝒞𝑎𝑡 → 𝒞𝑎𝑡. �

Ara introduced a model of (∞, 𝑛)-categories for each 1 ≤ 𝑛 < ∞ called 𝑛-quasi-categories
as presheaves on 𝚯𝑛 characterized by a particular right lifting property described in [3, §5]. Ara’s
1-quasi-categories coincide with the usual quasi-categories.

E.3.3. Proposition. For each 𝑛 ≥ 1, the full subcategory 𝑛-𝒬𝒞𝑎𝑡 ↪ 𝒮𝑒𝑡𝚯
op
𝑛 of 𝑛-quasi-categories defines a

cartesian closed∞-cosmos.
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Proof. Ara constructs a cartesian closed model structure on the category 𝒮𝑒𝑡𝚯
op
𝑛 , generalizing the

Joyal model structure in the case 𝑛 = 1, in which the fibrant objects are exactly the 𝑛-quasi-categories
and in which the cofibrations are the monomorphisms [3]; in particular, all objects are cofibrant. Hence,
to induce a cartesian closed∞-cosmos structure on the full subcategory 𝑛-𝒬𝒞𝑎𝑡 it suffices to find a
Quillen adjunction from this model structure to the model structure for quasi-categories whose left

adjoint 𝒮𝑒𝑡𝚫
op

→ 𝒮𝑒𝑡Θ
op
𝑛 preserves binary products.

To that end, note that [0] ∈ 𝚯𝑛−1 is terminal for all 𝑛 > 1, so Lemma E.3.2 provides an adjunction
as below-left and hence an adjunction as below-right

𝚫 𝚯𝑛 𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚯
op
𝑛

𝚫≀[0]
⊥
𝚫≀!

⇝
(𝚫≀!)∗

⊥
(𝚫≀[0])∗

The right adjoint𝚫≀[0] ∶ 𝚫 ↪ 𝚯𝑛 includes𝚫 as the subcategory of “pasting diagrams comprised of only

1-cells”; hence, restriction along this functor (𝚫 ≀ [0])∗ ∶ 𝒮𝑒𝑡𝚯
op
𝑛 → 𝒮𝑒𝑡𝚫

op

forgets higher-dimensional
cells. The other adjoint 𝚫≀! ∶ 𝚯𝑛 → 𝚫 projects onto the first component of the categorical wreath
product. Note that the corresponding restriction functor between presheaf categories has its own left
adjoint, defined by left Kan extension, and so clearly preserves products.

Indeed, for the same reason, the left adjoint preserves all limits and hence also preserves monomor-
phisms (which can be characterized as those maps whose kernel pair is given by identities). By a result
of Joyal and Tierney [64, 7.15], to prove that an adjunction is Quillen, it suffices to show that the left
adjoint preserves cofibrations, as we have just done, and the right adjoint preserves fibrations between
fibrant objects. By Lemma C.2.6, this means that we need only verify that the left adjoint carries the

inner horn inclusions {Λ𝑘[𝑛] ↪ Δ[𝑛]}𝑛≥2,0<𝑘<𝑛 and the map 𝟙 ↪ 𝕀 to trivial cofibrations in Ara’s
model structure. In fact, by [64, 3.5], it suffices to consider the spine inclusions {Γ[𝑛] ↪ Δ[𝑛]}𝑛≥2 in
place of the inner horn inclusions, which we shall.

To see this, it is helpful to note, as observed in [3, §6], that the left adjoint commutes with the
nerve embeddings of strict 1-categories and strict 𝑛-categories:

𝒞𝑎𝑡 𝑛-𝒞𝑎𝑡

𝒮𝑒𝑡𝚫
op

𝒮𝑒𝑡𝚯
op
𝑛(𝚫≀!)∗

In particular, the left adjoint carries the 1-categorical nerve of 𝟙 ↪ 𝕀 to the strict 𝑛-categorical
nerve of this map and, since the left adjoint also preserves colimits, it carries the inner horn inclusion
Γ[𝑛] ↪ Δ[𝑛] to the corresponding “spine inclusion” for the object [𝑛]([0], … , [0]) ∈ 𝚯𝑛. As both
types of maps are among Ara’s “localizer of 𝑛-quasi-categories” of [3, 5.17], they are certainly trivial
cofibrations. Hence, the adjunction is Quillen, as claimed, and Corollary E.1.4 applies to create a
cartesian closed∞-cosmos structure on 𝑛-𝒬𝒞𝑎𝑡. �

Another model of (∞, 𝑛)-categories, for 0 ≤ 𝑛 < ∞ is due to Rezk [101]. A𝚯𝑛-space is a simplicial
presheaf on𝚯𝑛-satisfying Reedy fibrancy, Segal, and completeness conditions analogous to those of
Definition E.2.1. A𝚯1-space is exactly a complete Segal space, while a𝚯0-space is just a Kan complex.
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E.3.4. Proposition. For each𝑛 ≥ 1, the full subcategory𝚯𝑛-𝒮𝑝 ↪ 𝑠𝒮𝑒𝑡𝚯
op
𝑛 of𝚯𝑛-spaces defines a cartesian

closed∞-cosmos for which the underlying complete Segal space functor 𝑈∶ 𝚯𝑛-𝒮𝑝 → 𝚯1-𝒮𝑝 ≅ 𝒞𝒮𝒮 is
cosmological.

Proof. Rezk constructs a cartesian closed model structure on the category 𝑠𝒮𝑒𝑡𝚯
op
𝑛 generalizing

his model structure for complete Segal spaces in the case 𝑛 = 1, in which the fibrant objects are exactly
the𝚯𝑛-spaces and in which the cofibrations are the monomorphisms [101]; in particular, all objects
are cofibrant. Hence, to induce a cartesian closed∞-cosmos structure on the full subcategory𝚯𝑛-𝒮𝑝,
it suffices to find a Quillen adjunction between this model structure and the model structure for

complete Segal spaces whose left adjoint 𝑠𝒮𝑒𝑡𝚫
op

→ 𝑠𝒮𝑒𝑡Θ
op
𝑛 preserves binary products. We then apply

Corollary E.1.4 to the composite of this adjunction with the adjunction (E.2.3).
As in the proof of Proposition E.3.3, we obtain the desired adjunction from Lemma E.3.2 applied

to the terminal object [0] ∈ 𝚯𝑛−1.

𝚫 𝚯𝑛 𝑠𝒮𝑒𝑡𝚫
op

𝑠𝒮𝑒𝑡𝚯
op
𝑛

𝚫≀[0]
⊥
𝚫≀!

⇝
(𝚫≀!)∗

⊥
(𝚫≀[0])∗

(E.3.5)

The left adjoint has a further left adjoint given by left Kan extension, and so preserves products.
It remains only to argue that this adjunction is Quillen. The model structure for𝚯𝑛-spaces – and,

by specialization, also the model structure for complete Segal spaces – is defined as a left Bousfield
localization of the injective (or, equivalently, Reedy) model structures on simplicial presheaves. In
the injective model structure, the cofibrations and trivial cofibrations are defined objectwise in 𝑠𝒮𝑒𝑡,
so the left adjoint is manifestly left Quillen with respect to these model structures. Consequently,
the adjunction is Quillen for the localized model structures if and only if the right adjoint, which
Rezk refers to as the “underlying simplicial space” functor, preserves fibrant objects, because in that
case the left adjoint preserves the new trivial cofibrations, which are defined in terms of these. A

functor 𝑋 ∈ 𝑠𝒮𝑒𝑡𝚯
op
𝑛 is fibrant if and only if it satisfies Reedy, Segal, and completeness conditions.

Since the adjunction (E.3.5) is Quillen for the injective/Reedy model structure, the Reedy fibrancy
condition is preserved, and Rezk proves that the Segal condition is preserved as well [101, 7.2]. The
completeness condition for 𝚯𝑛-spaces is created from the completeness condition for underlying
simplicial spaces [101, §7], so this is preserved as well. Hence, the right adjoint (E.3.5) restricts to a
functor 𝑈∶ 𝚯𝑛-𝒮𝑝 → 𝒞𝒮𝒮, which we call the underlying complete Segal space functor.

Corollary E.1.4 applies to create a cartesian closed∞-cosmos structure on𝚯𝑛-𝒮𝑝. By Lemma A.7.7,
the adjunction (E.3.5) is enriched over bisimplicial sets, and so Proposition E.1.3 can be used to prove
that the underlying complete Segal space functor is cosmological. �

There is another model for (∞, 𝑛)-categories that generalizes the complete Segal space model for
(∞, 1)-categories, which makes use of the notion of a Rezk object valued in a model category:

E.3.6. Definition. Letℳ be a model category.

(i) A simplicial object𝑋• ∈ ℳ𝚫op
is Reedy fibrant just when the induced map on weighted limits

𝑋𝑚 ≅ limΔ[𝑚]𝑋 → lim𝜕Δ[𝑚]𝑋 ≕ 𝑀𝑚𝑋
is a fibration for all 𝑚 ≥ 0.
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(ii) A Reedy fibrant simplicial object 𝑋• is a Segal object just when the induced map on weighted
limits

𝑋𝑛 ≅ limΔ[𝑛]𝑋 → limΛ𝑘[𝑛]𝑋
is a trivial fibration for all 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛.

(iii) A Segal object 𝑋• is a Rezk object, just when the induced map on weighted limits

lim𝕀𝑋 → limΔ[0]𝑋 ≅ 𝑋0

is a trivial fibration.

A map 𝑝∶ 𝑋• → 𝑌• ∈ ℳ𝚫op
is a Rezk isofibration if the relative analogues of the maps appearing in

(i), (ii), and (iii) formed by the Leibniz weighted limit of 𝑝 with the appropriate maps of weights are,
respectively, fibrations, trivial fibrations, and a trivial fibration.

Our formulation of Definition E.2.1, which departs slightly from Rezk’s framing of his conditions,
is intended to make it clear that the complete Segal spaces are precisely the Rezk objects valued in
Quillen’s model structure for Kan complexes.

E.3.7. Proposition. Supposeℳ is a Cisinski model category.⁸ Then the full subcategoryℛ𝑒𝑧𝑘ℳ ↪ ℳ𝚫op

of Rezk objects defines an∞-cosmos.

Proof. We prove this result directly from Proposition E.1.1 by proving that a left Bousfield local-
ization of the Reedy model structure onℳ𝚫op

defines a Cisinski model structure that is enriched over
the model structure for quasi-categories in which the fibrant objects are exactly the Rezk objects.

To begin, observe that the categoryℳ𝚫op
is simplicially enriched, tensored, and cotensored, with

hom-spaces suggestively denoted by “Fun”

(⊗, {, },Fun) ∶ 𝑠𝒮𝑒𝑡 ×ℳ𝚫op → ℳ𝚫op

in such a way that the Leibniz tensors of monomorphisms of simplicial sets with (trivial) Reedy
cofibrations are (trivial) Reedy cofibrations [35, 4.4]. We apply Jeff Smith’s theorem [7] to prove that
ℳ𝚫op

admits a model structure in which

• the cofibrations are the monomorphisms,
• the fibrant objects are the Rezk objects,
• the fibrations between fibrant objects are the Rezk isofibrations, and
• weak equivalences are the Rezk weak equivalences, those maps 𝑤∶ 𝑈 → 𝑉 that induce equiva-

lences of quasi-categories 𝑤∗ ∶ Fun(𝑉,𝑋) → Fun(𝑈,𝑋) for all Rezk objects 𝑋.

Note that by adjunction, a map 𝑝∶ 𝑋 → 𝑌 ∈ ℳ𝚫op
is a Rezk isofibration if and only if for all

monomorphisms 𝑚∶ 𝐴 → 𝐵 ∈ ℳ, the induced map

Fun(𝐵, 𝑋) Fun(𝐴,𝑋) ×
Fun(𝐴,𝑌)

Fun(𝐵, 𝑌)
�Fun(𝑚,𝑝)

of simplicial sets is an isofibration of quasi-categories. By Corollary D.3.11 and Proposition D.5.2, this
is the case if and only if this map has the right lifting property with respect to maps in the set

𝙸×̂𝙹, where 𝙸 ≔ {𝜕Δ[𝑛] ↪ Δ[𝑛]}𝑛≥0 and 𝙹 ≔ {Λ𝑘[𝑛] ↪ Δ[𝑛]}𝑛≥2,0<𝑘<𝑛 ∪ {𝟙 ↪ 𝕀}.

⁸A Cisinski model structure is a combinatorial model structure on a Grothendieck topos in which the cofibrations
are exactly the monomorphisms. It follows that the Reedy model structure on ℳ𝚫op

coincides with the injective model
structure, and in particular that all objects are cofibrant [27, 15].
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By adjunction again, and Proposition C.2.9(i), 𝑝 is a Rezk isofibration if and only if it has the right
lifting property with respect to the sets of maps (𝑖×̂𝑗)∗̂𝑚 ≅ 𝑗⊗̂(𝑖∗̂𝑚) for all 𝑖 ∈ 𝙸, 𝑗 ∈ 𝙹, and 𝑚 among
the generating cofibrations inℳ, where ∗ denotes the pointwise tensor ∗ ∶ 𝑠𝒮𝑒𝑡 ×ℳ → ℳ𝚫op

. Since
by Proposition C.5.8 the Reedy cofibrations inℳ𝚫op

are generated by the set of maps 𝑖∗̂𝑚 for 𝑖 ∈ 𝙸
and as 𝑚 ranges over the generating cofibrations inℳ, we conclude by adjunction that 𝑝 is a Rezk
isofibration between Rezk objects if and only if

Fun(𝑉,𝑋) Fun(𝑈,𝑋) ×
Fun(𝑈,𝑌)

Fun(𝑉, 𝑌)
�Fun(𝑐,𝑝)

is an isofibration for all monomorphisms 𝑐 ∶ 𝑈 → 𝑉 inℳ𝚫op
.

Now it is easy to verify the conditions of Jeff Smith’s theorem. The Rezk weak equivalences are
accessible and satisfy the 2-of-3 property. We argue that the Rezk weak equivalences contain all Reedy
weak equivalences and hence the Reedy trivial fibrations, characterized by the right lifting property
against the monomorphisms. Transposing the observations already made in [35, 4.4] about the Reedy
model structure onℳ𝚫op

, we see that for any Reedy trivial cofibration 𝑤∶ 𝑈 → 𝑉 and Rezk object
𝑋, 𝑤∗ ∶ Fun(𝑉,𝑋) → Fun(𝑈,𝑋) is an equivalence of quasi-categories. By Ken Brown’s lemma C.1.10,
the same is true when 𝑤 is a mere Reedy weak equivalence. Note that a map 𝑤∶ 𝑈 → 𝑉 is both a
Rezk weak equivalence and a cofibration just when 𝑤∗ ∶ Fun(𝑉,𝑋) → Fun(𝑈,𝑋) is a trivial fibration
between quasi-categories. This characterization proves that the class of Rezk weak equivalences and
cofibrations is stable under pushout and transfinite composition. Jeff Smith’s theorem now implies
that the model structure for Rezk objects exists.

To see that the model structure for Rezk objects is enriched over the model structure for quasi-cat-
egories, we must verify the three conditions for

(⊗, {, },Fun) ∶ 𝑠𝒮𝑒𝑡 ×ℳ𝚫op → ℳ𝚫op

to define a Quillen two-variable adjunction (see Definition C.3.8). The cofibrations in the localized
model structure for Rezk objects are the same as the cofibrations for the Reedy model structure on
ℳ𝚫op

, so we already know that Leibniz tensors of cofibrations are cofibrations. To verify the remaining
2/3rds of this axiom, we appeal to a result of Dugger [35, 3.2], which tells us that in the presence of the
first 1/3rd, to verify that Leibniz tensors of monomorphisms of simplicial sets with trivial cofibrations
are trivial cofibrations, it suffices to show that the simplicial cotensor (−)𝐾 ∶ ℳ𝚫op → ℳ𝚫op

preserves
fibrations between fibrant objects. For left Bousfield localizations, Rezk isofibrations between Rezk
objects coincide with Reedy fibrations between Rezk objects [55, 3.3.16]. It is easy to verify directly
that (−)𝐾 preserves Rezk objects, and the preservation of Reedy fibrations is one of the facts we knew
already.

For the final 1/3rd of the Quillen two-variable adjunction, we use the second part of Dugger’s
[35, 3.2], which tells us that in the presence of the first 2/3rds, we need only verify that for all Rezk
objects 𝑍 and trivial cofibrations of simplicial sets 𝑗 ∶ 𝐽 → 𝐾, the map 𝑍𝑗 ∶ 𝑍𝐾 → 𝑍𝐽 is a Rezk weak
equivalence (assumingℳ𝚫op

is left proper, which is the case here since all objects are cofibrant). In
fact, we can show that this map is a trivial fibration, by checking the right lifting property against
the monomorphisms 𝑐 ∶ 𝑈 → 𝑉 ∈ ℳ𝚫op

. Transposing, we see that 𝑐 lifts against 𝑍𝑗 if and only if 𝑗
lifts against 𝑐∗ ∶ Fun(𝑉, 𝑍) → Fun(𝑈, 𝑍). But we verified already that 𝑐∗ is an isofibration between
quasi-categories, so the desired lifting property holds. �
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The model structure for Rezk objects onℳ𝚫op
remains a Cisinski model structure, so this con-

struction can be iterated. Barwick’s 𝑛-fold complete Segal space model of (∞, 𝑛)-categories is formed
by iterating the Rezk objects construction 𝑛 times [5]. Specializing Proposition E.3.7, we conclude that
for all 𝑛 ≥ 1, there exist∞-cosmoi 𝒞𝒮𝒮𝑛 of 𝑛-fold complete Segal spaces.

E.3.8. Remark. Ifℳ is a left proper combinatorial model category, the proof just given constructs
a model structure on ℳ𝚫op

whose fibrant objects are the Rezk objects that is enriched as a model
category over the model structure for quasi-categories. The only hitch is that without the Cisinski
condition, it is possible that not all fibrant objects are cofibrant. Nonetheless, this generalization can
be understood as defining an∞-cosmos in a weaker sense developed in [110, §2].

Verity constructs a general family of cartesian model structures on the category of marked simplicial
sets whose fibrant objects are complicial sets of various flavors and whose fibrations are the correspond-
ing notions of complicial isofibration [129, §9.3]. One of these model structures presents the∞-cosmos
of Proposition E.2.8. Here, we consider model structures whose fibrant objects, called 𝑛-complicial
sets, model (∞, 𝑛)-categories for 0 ≤ 𝑛 ≤ ∞, where the “∞-complicial sets” are the complicial sets of
Definition D.1.9 that are saturated in a sense alluded to in Digression D.4.21 and elaborated upon in the
proof. The definitions are arranged so that a 0-complicial set is a (maximally marked) Kan complex, a
1-complicial set is a (naturally marked) quasi-category, and a 𝑚-complicial set is an 𝑛-complicial set
whenever 𝑚 < 𝑛.

E.3.9. Proposition. For each 0 ≤ 𝑛 ≤ ∞, the category of 𝑛-complicial sets defines a cartesian closed
∞-cosmos 𝑛-𝒞𝑜𝑚𝑝. Moreover, whenever 𝑚 < 𝑛, the functor core ∶ 𝑛-𝒞𝑜𝑚𝑝 → 𝑚-𝒞𝑜𝑚𝑝 that discards all
simplices in dimension 𝑘 > 𝑚 that are not marked is cosmological.

Proof. For a suitable class of monomorphisms 𝙹, Verity defines a cartesian closed model structure
on the category of marked simplicial sets whose fibrant objects and fibrations between them are the
𝙹-complicial sets and 𝙹-complicial isofibrations, characterized by a right lifting property against 𝙹
[129, §9.3]. The cofibrations are the monomorphisms so in particular all objects are cofibrant. In more
detail, for the 𝑛-complicial sets, the class of monomorphisms is defined to be

𝙹𝑛 ≔ �Λ𝑘[𝑚] ↪𝑟 Δ𝑘[𝑚]�
𝑚≥1,𝑘∈[𝑚]

∪ �Δ𝑘[𝑚]′ ↪𝑒 Δ𝑘[𝑚]″�
𝑚≥2,𝑘∈[𝑚]

∪ {Δ[𝑟] ↪𝑒 Δ[𝑟]𝑡}𝑟>𝑛 ∪ �Δ[𝑗] ⋆ Δ[3]eq ⋆ Δ[𝑘] ↪ Δ[𝑗] ⋆ Δ[3]♯ ⋆ Δ[𝑘]�
𝑗,𝑘≥−1

The first set of maps are the complicial horn extensions (D.1.10) while the second set defines the
complicial thinness extensions (D.1.11). The third set imposes the condition that all simplices in
dimension greater than 𝑛 are marked (see Notation D.1.4), while the final condition is saturation,
which in the presence of the other conditions, implies that all equivalences are marked (see Exercise
D.4.iii and [105]). To apply Verity’s theorem, the sets 𝙹𝑛 must satisfy some technical conditions spelled
out in [129, 91–92], which have been verified in this case by Ozornova and Rovelli [89, 1.26]. By

construction, the 𝑛-complicial sets live in the subcategory 𝑛-𝑠𝒮𝑒𝑡+ of 𝑛-trivial marked simplicial sets,
with all simplices in dimension greater than 𝑛 marked, and we may restrict the cartesian closed model
structures to these subcategories.

The∞-cosmoi 0-𝒞𝑜𝑚𝑝 and 1-𝒞𝑜𝑚𝑝 are isomorphic to the∞-cosmoi𝒦𝑎𝑛 and𝒬𝒞𝑎𝑡, respectively,
so for now we consider 2 ≤ 𝑛 ≤ ∞. To define the ∞-cosmos 𝑛-𝒞𝑜𝑚𝑝, we apply Proposition E.1.3
to convert these self enrichments into an enrichment over quasi-categories via a string of Quillen
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adjunctions whose left adjoints preserve binary products:

𝑠𝒮𝑒𝑡 1-𝑠𝒮𝑒𝑡+ 2-𝑠𝒮𝑒𝑡+ ⋯ 𝑛-1-𝑠𝒮𝑒𝑡+ 𝑛-𝑠𝒮𝑒𝑡+ ⋯
(−)♭

⊥
(−)0

⊥
core1

⊥ ⊥ ⊥
core𝑛−1

In the limiting case, we also consider adjunctions

𝑛-𝑠𝒮𝑒𝑡+ 𝑠𝒮𝑒𝑡+⊥
core𝑛

where core𝑛𝑋 ↪ 𝑋 is the simplicial subset containing only those simplices whose faces in dimension
greater than 𝑛 are marked. By adjunction, these functors carry (𝑛 + 1)-complicial sets to 𝑛-complicial
sets (see Exercise D.1.v). Since the left adjoints preserve monomorphisms and products, this is enough
to verify that the adjunctions are Quillen. Corollary E.1.4 now induces the desired ∞-cosmoi and
Corollary E.1.2 supplies the cosmological core functors. �

Building on past work of Hirschowitz–Simpson [56] and Pellissier [90], Simpson iterates the
construction of the model structure for Segal categories [116, §19.2–4]. When the base model category
is taken to be Quillen’s model structure for Kan complexes, the 𝑛-th iteration defines the Segal 𝑛-
categories, though Simpson also considers more general model categorical bases. Under suitable
hypotheses, satisfied in the case of Segal 𝑛-categories, the model structure so produced is cartesian
closed and has all objects cofibrant, which strongly suggests that there exists an∞-cosmos spanned
by its fibrant objects: the Reedy fibrant Segal 𝑛-categories. We leave the confirmation of this as an
exercise for the interested reader.

Exercises.

E.3.i. Exercise. Given an explicit formulation of the “relative analogue” of the conditions (i), (ii), and
(iii) used in Definition E.3.6 to define the notion of Rezk isofibration.

E.3.ii. Exercise. Investigate potential∞-cosmos structures on the Segal 𝑛-categories of Hirschowitz
and Simpson [56].

E.3.iii. Exercise. Search for cosmological biequivalences between the∞-cosmoi constructed in this
section (and please share your discoveries with the authors).
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APPENDIX F

The Analytic Theory of Quasi-Categories

The aim in this final appendix is to prove that the synthetic theory of quasi-categories is compatible
with the analytic theory pioneered by André Joyal, Jacob Lurie, and many others. In §F.1, we prove an
equivalence between the synthetic and analytic definitions of a terminal element in a quasi-category.
In §F.2, we extend these results to an equivalence between the synthetic and analytic definitions of
limits of diagrams of arbitrary shape valued in a quasi-category.

In §F.3, we provided a new analytic characterization of those isofibrations between quasi-categories
that admit a right adjoint right inverse. This is used in §F.4 to compare the synthetic and analytic
definitions of cartesian fibrations of quasi-categories and cartesian arrows. Finally, in §F.5, we prove
that the synthetic and analytic definitions of an adjunction agree, despite their quite different forms.

F.1. Initial and Terminal Elements

In this section, we complete the argument sketched in Digression 4.3.14 and prove that the syn-
thetic definition of a terminal element in a quasi-category coincides with the analytic definition first
introduced by Joyal [61, 4.1]. We prove the equivalence between four synthetic definitions of a terminal
element – (i) which appeared first in Definition 2.2.1; (ii) which is Lemma 2.2.2; (iii) which appears as
Proposition 4.3.13; and (iv) which appears commonly in the literature (see, e.g., [88]) – and two analytic
definitions of a terminal element (v) and (vi), which Joyal proves are equivalent [61, 4.2].

F.1.1. Proposition. For a quasi-category 𝐴 and element 𝑡 ∶ 1 → 𝐴 the following are equivalent:

(i) The element 𝑡 defines a right adjoint to the unique functor:

1 𝐴
𝑡
⊥
!

(ii) There exists a natural transformation

𝐴 𝐴

1!
⇓𝜂

𝑡

so that the component 𝜂𝑡 is an isomorphism.
(iii) The domain projection functor

Hom𝐴(𝐴, 𝑡) 𝐴∼𝑝0

defines a trivial fibration.
(iv) For any element 𝑎 ∶ 1 → 𝐴, the mapping space Hom𝐴(𝑎, 𝑡) is contractible.
(v) The projection functor

𝐴/𝑡 𝐴∼
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whose domain is the slice of 𝐴 over 𝑡 is a trivial fibration.
(vi) Any sphere in 𝐴 whose final vertex is 𝑡 admits a filler:

1 𝜕Δ[𝑛] 𝐴

Δ[𝑛]

{𝑛}

𝑡

When these conditions hold, 𝑡 defines a terminal element of 𝐴.

Proof. Unpacking (i), all that is required to define an adjunction ! ⊣ 𝑡 is to define a unit natural
transformation 𝜂∶ id𝐴 ⇒ 𝑡! so that the component 𝜂𝑡 = id𝑡 is an identity. But as proven in Lemma
2.2.2, if 𝜂𝑡 is invertible then it is necessarily an identity. This proves the equivalence of (i) and (ii).

Proposition 4.3.13 establishes the equivalence of (i) and (iii) in any∞-cosmos. By Corollaries 12.2.13
and 5.5.14, the domain projection functor is a trivial fibration if and only if its fibers Hom𝐴(𝑎, 𝑡) are
contractible, proving the equivalence of (iii) and (iv).

By Corollary D.6.6, for any vertex 𝑡 in a quasi-category, there is an equivalence

𝐴/𝑡 Hom𝐴(𝐴, 𝑡)

𝐴

∼

𝑝0

between the canonical projection from the slice construction of Proposition 4.2.5 and the domain
projection isofibration. Consequently, by the 2-of-3 property, one isofibration is an equivalence if and
only if the other is, proving the equivalence of (iii) and (v).

By Definition 1.1.25, the projection 𝐴/𝑡 ↠ 𝐴 is a trivial fibration if and only if the following right
lifting property holds for all 𝑛 ≥ 0

𝜕Δ[𝑛] 𝐴/𝑡

Δ[𝑛] 𝐴

𝑢

𝑣

𝑤

Via the adjunction

𝑠𝒮𝑒𝑡 Δ[0]/𝑠𝒮𝑒𝑡
−⋆Δ[0]
⊥
−/−

the sphere 𝑢∶ 𝜕Δ[𝑛] → 𝐴/𝑡 transposes into a map Λ𝑛+1[𝑛 + 1] → 𝐴 with final vertex 𝑡, with the
simplex 𝑣∶ Δ[𝑛] → 𝐴 providing a filler for the open face of the horn. Thus, the lifting problem
transposes to define a sphere 𝜕Δ[𝑛+1] → 𝐴 with final vertex 𝑡. The desired lift𝑤∶ Δ[𝑛] → 𝐴/𝑡 exists
just when this transposed sphere admits a filler. In this way, we see that the right lifting properties

𝜕Δ[𝑛] 𝐴/𝑡 1 𝜕Δ[𝑛] 𝐴

Δ[𝑛] 𝐴 Δ[𝑛]
∀𝑛 ≥ 0 ↭

{𝑛}

𝑡

∀𝑛 ≥ 1

are transposes, proving the equivalence of (v) and (vi). �
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There is a relative extension of Joyal’s characterization (vi):

F.1.2. Lemma. Suppose 𝐸 and 𝐵 are quasi-categories which possess a terminal element and 𝑝∶ 𝐸 ↠ 𝐵 is an
isofibration which preserves them: if 𝑡 is terminal in 𝐸 then 𝑝𝑡 is terminal in 𝐵. Then any lifting problem of the
following form has a solution

1 𝜕Δ[𝑛] 𝐸

Δ[𝑛] 𝐵

{𝑛}

𝑡

𝑢
𝑝

𝑣

Proof. Using the universal property of the terminal object 𝑡 in 𝐸 and Proposition F.1.1(vi), we
may extend the sphere 𝑢 to a map 𝑤∶ Δ[𝑛] → 𝐸. This defines two maps 𝑝𝑤, 𝑣 ∶ Δ[𝑛] → 𝐵 with a
common boundary 𝑝𝑢∶ 𝜕Δ[𝑛] → 𝐵, which we may use to define a sphere ℎ∶ 𝜕Δ[𝑛 + 1] → 𝐵 with
ℎ𝛿𝑛+1 = 𝑝𝑤 and ℎ𝛿𝑛 = 𝑣 by starting with the degenerate simplex 𝑝𝑤𝜎𝑛 ∶ Δ[𝑛 + 1] → 𝐵, restricting
to its boundary, and then replacing the 𝑛th face in this sphere with 𝑣∶ Δ[𝑛] → 𝐵. By construction, ℎ
maps the vertex {𝑛 + 1} to 𝑝𝑡 which is terminal in 𝐵, so it follows that we may fill this sphere to define
a simplex 𝑘 ∶ Δ[𝑛 + 1] → 𝐵.

We construct a horn 𝑔∶ Λ𝑛[𝑛+1] → 𝐸 by restricting the degenerate simplex𝑤𝜎𝑛 ∶ Δ[𝑛+1] → 𝐸.
This pair of maps defines a factorization of the commutative square of the statement:

𝜕Δ[𝑛] 𝐸 𝜕Δ[𝑛] Λ𝑛[𝑛 + 1] 𝐸

Δ[𝑛] 𝐵 Δ[𝑛] Δ[𝑛 + 1] 𝐵

𝑢

𝑝 =

𝛿𝑛 𝑔

𝑝

𝑣 𝛿𝑛 𝑘

ℓ

Since the central vertical map of this commutative rectangle is an inner horn inclusion and its right
hand vertical is an isofibration of quasi-categories, it follows that the lifting problem on the right has
a solution ℓ ∶ Δ[𝑛 + 1] → 𝐸 as marked, and now it is clear that the map ℓ𝛿𝑛 ∶ Δ[𝑛] → 𝐸 provides a
solution to the original lifting problem. �

Exercises.

F.1.i. Exercise. Prove that if 𝐴 and 𝐵 are quasi-categories which possess a terminal element and
𝑓 ∶ 𝐴 → 𝐵 is a functor, not necessarily an isofibration, which preserves terminal elements, then given
any lifting problem as below-left in which 𝑡 is terminal in 𝐴

1 𝜕Δ[𝑛] 𝐴 𝜕Δ[𝑛] 𝐴

Δ[𝑛] 𝐵 Δ[𝑛] 𝐵

{𝑛}

𝑡

𝑓 ⇝
⇓≅ 𝑓

there exists a lift as above-right so that the upper-left triangle commutes up to natural isomorphism
and the bottom-right triangle commutes on the nose.

F.1.ii. Exercise. State and prove the equivalence between various synthetic and analytic definitions of
an initial element in a quasi-category.

555



F.2. Limits and Colimits

In this section, we expand Proposition 4.3.2 to prove that the synthetic definition of a limit
of a diagram indexed by a simplicial set and taking values in a quasi-category coincides with the
analytic definition first introduced by Joyal [61, 4.5]. We prove the equivalence between four synthetic
definitions of a limit cone – (i) the original Definition 2.3.8; (ii) appearing in Proposition 4.3.4; (iii)
appearing as Definition 9.4.7 and in Proposition 9.4.8; and (iv) from Proposition 4.3.2 – and one analytic
one (v) which is Joyal’s. In this case, by the results just cited and Proposition F.1.1, there is nothing left
to do but state the result and provide references for its components.

F.2.1. Proposition. Consider a functor 𝑑∶ 𝐽 → 𝐴 between quasi-categories and a cone 𝜆∶ Δℓ ⇒ 𝑑. The
following are equivalent:

(i) The pair (ℓ, 𝜆) defines an absolute right lifting diagram

𝐴

1 𝐴𝐽
⇓𝜆

Δℓ

𝑑

(ii) The cone 𝜆∶ 1 → 𝐴𝐽 defines an absolute right lifting diagram

𝐴𝐽

1 𝐴𝐽

=

res𝜆

𝑑

(iii) The cone 𝜆∶ ℓ! ⇒ 𝑑 defines a pointwise right extension diagram

𝐽 𝐴

1

𝑑

! ℓ

⇑𝜆

(iv) The quasi-category of cones Hom𝐴𝐽(Δ, 𝑑) admits a terminal element 𝜆∶ 1 → Hom𝐴𝐽(Δ, 𝑑), repre-
senting a cone 𝜆∶ Δℓ ⇒ 𝑑.

(v) The quasi-category𝐴/𝑑 admits a terminal element 𝜆∶ 1 → 𝐴/𝑑, transposing to define an extension of 𝑑
to a diagram

𝐽

𝐽 𝐴

𝑑

𝜆
When these conditions hold, the data variously labeled (ℓ, 𝜆) or 𝜆 defines the limit cone over 𝑑.

Note that any diagram 𝑑′ ∶ 𝐽 ′ → 𝐴 indexed by a simplicial set and valued in a quasi-category can
be extended along an inner anodyne extension to a weakly equivalent diagram 𝑑∶ 𝐽 → 𝐴 between
quasi-categories. Alternatively, there is also no cost in the settings of (i), (ii), and (iv), and (v) to working

with the original diagram, as the quasi-categories of diagrams 𝐴𝐽 ≃ 𝐴𝐽′ and cones Hom𝐴𝐽(Δ, 𝑑) ≃
Hom𝐴𝐽′(Δ, 𝑑′) and 𝐴/𝑑 ≃ 𝐴/𝑑′ are equivalent.
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Proof. The equivalence of (i) and (ii) is proven in Proposition 4.3.4 for any ∞-category 𝐴 and
simplicial set 𝐽; the simplicial set 𝐽 ≔ 𝟙 ⋆ 𝐽 is the join from Definition 4.2.4. The equivalence of (i)
and (iii) is proven in Proposition 9.4.8 for any cartesian closed∞-cosmos. Proposition 4.3.2 proves the
equivalence between (i) and (iv) for any diagram valued in any∞-category.

Finally, the equivalence between (iv) and (v) is a consequence of the equivalence of quasi-categories
Hom𝐴𝐽(Δ, 𝑑) ≃ 𝐴/𝑑 over 𝐴 of Proposition D.6.4, which provides two models for the quasi-category of
cones over 𝑑. The final ingredient is Lemma 2.2.7, which proves that if one of these quasi-categories
has a terminal element, they both do, as terminal elements are preserved by equivalences. �

Exercises.

F.2.i. Exercise. State and prove the equivalence between various synthetic and analytic definitions of
the colimit of a diagram valued in a quasi-category.

F.3. Right Adjoint Right Inverse Adjunctions

To our knowledge, right adjoint right inverse adjunctions between quasi-categories have not been
given much attention. Nonetheless, we pause to establish a useful analytic characterization of such
adjunctions, which will help us compare various other synthetic and analytic definitions.

F.3.1. Lemma. An isofibration 𝑓 ∶ 𝐵 ↠ 𝐴 of quasi-categories admits a right adjoint right inverse if and only if
for every element 𝑎 ∶ 1 → 𝐴, there exists an element 𝑢𝑎∶ 1 → 𝐵 with 𝑓 𝑢𝑎 = 𝑎 that has the property that any
lifting problem of the following form with 𝑛 ≥ 1 has a solution.

1 𝜕Δ[𝑛] 𝐵

Δ[𝑛] 𝐴

{𝑛}

𝑢𝑎

𝑓 (F.3.2)

Proof. If 𝑓 ∶ 𝐵 ↠ 𝐴 is an isofibration of quasi-categories admitting a right adjoint right inverse,
then by Lemma 3.6.9 its right adjoint 𝑢may be chosen to that the counit 𝜖 ∶ 𝑓 𝑢 = id𝐴 is the identity and
the adjunction is fibered over𝐴. In this case, the induced fibered equivalence 𝜖 ∘ 𝑓 (−) ∶ Hom𝐵(𝐵, 𝑢) ∼

Hom𝐴(𝑓 , 𝐴) of Proposition 4.1.1 is represented by the map induced by 𝑓 between the comma ∞-
categories defined in Proposition 3.4.5.

Hom𝐵(𝐵, 𝑢) 𝐵𝟚

Hom𝐴(𝑓 , 𝐴) 𝐴𝟚

𝐴 × 𝐵 𝐵 × 𝐵

𝐴 × 𝐵 𝐴 × 𝐴

𝜖∘𝑓 (−)

𝑓 𝟚

𝑢×𝐵

𝑓 ×𝑓
𝑓 ×𝐴

By that result – or alternatively, by Proposition C.1.12, on which its proof relies – we see that the
induced map between comma ∞-categories is also an isofibration. Combining these facts, we see
that 𝜖 ∘ 𝑓 (−) ∶ Hom𝐵(𝐵, 𝑢) ∼ Hom𝐴(𝑓 , 𝐴) is a trivial fibration over 𝐴 × 𝐵. This trivial fibration
pulls back over any vertex 𝑎 ∶ 1 → 𝐴 to define a trivial fibration Hom𝐵(𝐵, 𝑢𝑎) ∼ Hom𝐴(𝑓 , 𝑎) over
𝐵. By Corollary D.6.6, the domain and codomain are equivalent to Joyal’s slices, so the isofibration
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𝑓 ∶ 𝐵/𝑢𝑎 ↠ 𝑓/𝑎 induced by 𝑓 is also a trivial fibration between quasi-categories. The defining lifting

property of Definition 1.1.25

𝜕Δ[𝑛 − 1] 𝐵/𝑢𝑎

Δ[𝑛 − 1] 𝑓/𝑎

∼ 𝑓

for 𝑛 ≥ 1 transposes to the lifting property of (F.3.2).
Conversely, the lifting property (F.3.2) can be used to inductively define a section 𝑢∶ 𝐴 → 𝐵 of 𝑓

extending the choices of elements 𝑢𝑎∶ 1 → 𝐵 lifting each 𝑎 ∶ 1 → 𝐴. The inclusion sk0𝐴 ↪ 𝐴 can
be expressed as a countable composite of pushouts of coproducts of maps 𝜕Δ[𝑛] ↪ Δ[𝑛] with 𝑛 ≥ 1,
and each intermediate lifting problem required to define a lift

1 sk0𝐴 𝐵

𝐴 𝐴

𝑎

𝑢𝑎

𝑢
𝑓𝑢

has the form of (F.3.2). To show that 𝑢 is a right adjoint right inverse to 𝑓, it suffices, by Lemma B.4.2
to define a 2-cell 𝜂∶ id𝐵 ⇒ 𝑢𝑓 that whiskers with 𝑢 and with 𝑓 to isomorphisms. We construct a
representative for 𝜂 by solving the lifting problem

𝐵 ⊔ 𝐵 𝐵

𝐵 × Δ[1] 𝐵 𝐴

id𝐵 ⊔𝑢𝑓

𝑓𝜂

𝜋 𝑓

which is again permitted by (F.3.2); note that the inclusion 𝐵 ⊔ 𝐵 ↪ 𝐵 × Δ[1] is bijective on vertices,
and note further that every simplex of the codomain that is missing from the domain has its final vertex
in the image of 𝑢. By construction 𝑓 𝜂 = id𝑓 is certainly invertible.

To show that 𝜂𝑢 is an isomorphism it suffices, by Corollary D.4.19, to check that each of its
components 𝜂𝑢(𝑎) ∶ 𝑢𝑎 → 𝑢𝑓 𝑢𝑎 = 𝑢𝑎 are isomorphisms in 𝐴. Inverse isomorphisms to these
components can be found by elementary applications of the lifting property (F.3.2), whose details we
leave to the reader. �

Exercises.

F.3.i. Exercise. Verify the final statement made in the proof of Lemma F.3.1.

F.3.ii. Exercise. Formulate an analogous lifting property to characterize those isofibrations 𝑓 ∶ 𝐵 → 𝐴
that admit left adjoint right inverses.

F.4. Cartesian and Cocartesian Fibrations

The aim in this section is to establish the equivalence between synthetic and analytic characteriza-
tions of those isofibrations 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories that define cartesian or cocartesian
fibrations. We start by considering 𝑝-cartesian arrows, proving the equivalence between the three syn-
thetic definitions of Theorem 5.1.7 and three analytic ones, which appear as [78, 2.4.1.1, 2.4.1.4, 2.4.1.8].
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Then we prove a similar comparison between synthetic and analytic characterizations of cartesian
fibrations and use this to strengthen the lifting properties associated with cartesian fibrations. We
conclude by demonstrating that the discrete cocartesian fibrations coincide with Joyal’s left fibrations,
while the discrete cartesian fibrations coincide with right fibrations.

In §5.1, the appellation “cartesian arrow” referred to a generalized element 𝜓∶ 𝑋 → 𝐸𝟚 or equally

to the natural transformation 𝑋 𝐸
𝑒′

𝑒
⇓𝜓 it represents. In the∞-cosmos of quasi-categories, an

𝑋-shaped arrow is cartesian if and only if its components 𝜓𝑥 at each element 𝑥∶ 1 → 𝑋 are cartesian
(see Proposition 12.2.9), so to simplify the following discussion, we only consider arrows 𝜓∶ 1 → 𝐸𝟚,
or equally 1-simplices in 𝐸, that we depict with simplified notation as 𝜓∶ 𝑒′ → 𝑒.

F.4.1. Proposition. Fix an isofibration of quasi-categories 𝑝∶ 𝐸 ↠ 𝐵. The following are equivalent and
characterize when a 1-simplex 𝜓∶ 𝑒′ → 𝑒 in 𝐸 is 𝑝-cartesian:

(i) The isofibration induced by the inclusion 𝛿∶ ↪ 𝟛 with image 0 → 2 ← 1

𝐸𝟛 𝐵𝟛 ×
𝐵

𝐸

𝐸𝟚

𝛿�⋔𝑝

𝑝12 𝑝12

pulls back to define a trivial fibration on the fiber over 𝜓.
(ii) The commutative triangle defines an absolute right lifting diagram:

𝐸𝟚

1 Hom𝐵(𝐵, 𝑝)

= 𝑖1�⋔𝑝
𝜓

𝑝𝜓

where

𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

𝑝1

𝑖1�⋔𝑝

𝑝𝟚

𝑝1

𝜙

𝑝1

𝑝

(iii) There is an absolute right lifting diagram with 𝑝1𝜖 = 𝜓 and 𝑝0𝜖 = id𝑝𝑒′

𝐸

1 Hom𝐵(𝐵, 𝑝)
⇓𝜖

Δ𝑝𝑒′

𝑝𝜓

where

𝐸 𝐸𝟚

Hom𝐵(𝐵, 𝑝) 𝐵𝟚

𝐸 𝐵

Δ𝑝

Δ
𝑝𝟚

𝑝1

𝜙

𝑝1

𝑝

(iv) The induced map to the pullback in the square

𝐸/𝜓 𝐸/𝑒

𝐵/𝑝𝜓 𝐵/𝑝𝑒

𝑝 𝑝
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is a trivial fibration 𝐸/𝜓 ∼ 𝐵/𝑝𝜓 ×𝐵/𝑝𝑒 𝐸/𝑒.
(v) Any lifting problem of the following form for 𝑛 ≥ 2 has a solution:

Δ[1] Λ𝑛[𝑛] 𝐸

Δ[𝑛] 𝐵

𝜓

{𝑛−1,𝑛}
𝑝 (F.4.2)

(vi) Any lifting problem of the following form for 𝑛 ≥ 1 has a solution:

Δ[1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} 𝐸

Δ[𝑛] × Δ[1] 𝐵

𝜓

{𝑛}×id

𝑝 (F.4.3)

Proof. Theorem 5.1.7 proves the equivalence of conditions (i), (ii), and (iii) in any∞-cosmos.
By Lemma 5.1.2, the map in (i) is isomorphic to the induced map to the pullback in a square that

very similar to the square appearing in (iv).¹ We will demonstrate that these squares are equivalent
by constructing a natural equivalence displayed below-left between the top-horizontal maps in each
weakly cartesian square:

𝐸/𝜓 𝐸/𝑒 Δ[𝑛 + 2] Δ[𝑛 + 1]

𝐸⫽𝜓 Hom𝐸(𝐸, 𝑒) Δ[𝑛] × Δ[2] Δ[𝑛] × Δ[1]

∼

∼ ⇜

𝛿𝑛+1

𝜋

id×𝛿1

𝜌

The maps in this diagram are most easily described in terms of their actions on 𝑛-simplices: each map is
given by restriction along the corresponding functor in the commutative square displayed above-right,
where 𝜋 and 𝜌 are both defined by the formula:

𝜌(𝑖, 𝑗) ≔ 𝜋(𝑖, 𝑗) ≔ �
𝑖 𝑗 = 0
𝑛 + 𝑗 𝑗 > 0

Propositions D.6.3 and D.6.4 prove that the left-hand vertical map is an equivalence, while Corollary
D.6.6 demonstrates that the right-hand vertical map is an equivalence. Thus, the two squares are
equivalent and, by Lemma 5.1.2, (i) is equivalent to (iv).

¹Indeed, the initial object in the square (5.1.3) is a quasi-category we denote by 𝐸/𝜓 because it is equivalent (though
not isomorphic) to Joyal’s slice quasi-category (see Warning 4.2.10). To avoid confusion here, we write 𝐸⫽𝜓 for that quasi-

category and reserve the notation 𝐸/𝜓 for the slice quasi-category of Definition 4.2.4.
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By the adjunction of Proposition 4.2.5, the lifting property that characterizes the trivial fibration
of (iv) transposes to the lifting property of (v)

𝜕Δ[𝑛] 𝐸/𝜓 Δ[1] Λ𝑛+2[𝑛 + 2] 𝐸

Δ[𝑛] 𝐵/𝑝𝜓 ×
𝐵/𝑝𝑒

𝐸/𝑒 Δ[𝑛 + 2] 𝐵

𝜓

{𝑛+1,𝑛+2}

↭ 𝑝 for 𝑛 ≥ 0

proving that (iv) is equivalent to (v).
Now we argue that the lifting properties (F.4.2) and (F.4.3) are equivalent. One implication holds

on account of the retract diagram

Δ[1] Λ𝑛+1[𝑛 + 1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} Λ𝑛+1[𝑛 + 1]

Δ[𝑛 + 1] Δ[𝑛] × Δ[1] Δ[𝑛 + 1]

{𝑛,𝑛+1}

{𝑛}×id

𝜄 𝜌

(F.4.4)

in which 𝜌 is the map defined above and 𝜄 is its unique section. By Lemma C.2.3 it is now clear that the
lifting property (F.4.3) implies the lifting property (F.4.2).

For the converse, we show that the lifting property assumed in (v) suffices to solve this lifting
problem presented by (vi). Our task is to find lifts along 𝑝 for each of the 𝑛+ 1 shuffles of Δ[𝑛] ×Δ[1].
We number these shuffles 0,… , 𝑛 starting from the closed end of the cylinder. Proceeding inductively

for 𝑘 < 𝑛, we choose a lift for the 𝑘th shuffle by filling a Λ𝑘+1[𝑛 + 1]-horn, which can be done
since 𝑝 is an isofibration between quasi-categories. To lift the 𝑛th shuffle, we are required to fill a
Λ𝑛+1[𝑛 + 1]-horn whose final {𝑛, 𝑛 + 1} edge is 𝜓, which can be done with the lifting property (F.4.2).
This demonstrates that (v)⇔(vi). �

Our next result compares the three synthetic definitions proven equivalent in Theorem 5.2.8 and a
fourth synthetic definition of Proposition 5.2.11 with two analytic definitions due to Lurie [78, §2.4.1-2].

F.4.5. Proposition. For an isofibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories, the following are equivalent and
define what it means for 𝑝 to be a cartesian fibration:

(i) Every natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 as below-left admits a lift 𝜒∶ 𝑒′ ⇒ 𝑒 as below-right:

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

⇑𝛽 𝑝 =

𝑒

𝑒′
⇑𝜒

𝑝

with the property that:
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• induction: Given any functor 𝑓 ∶ 𝑌 → 𝑋 and natural transformations 𝑌 𝐸
𝑒″

𝑒𝑓
⇓𝜏 and

𝑌 𝐵
𝑝𝑒″

𝑝𝑒′𝑓
⇓𝛾 so that 𝑝𝜏 = 𝑝𝜒𝑓 ⋅𝛾, there exists a lift 𝑌 𝐸

𝑒″

𝑒′𝑓
⇓�̄� of𝛾 so that 𝜏 = 𝜒𝑓 ⋅�̄�.

• conservativity: Any fibered endomorphism of a restriction of 𝜒 is invertible: if 𝑌 𝐸
𝑒′𝑓

𝑒′𝑓
⇓𝜁 is

any natural transformation so that 𝜒𝑓 ⋅ 𝜁 = 𝜒𝑓 and 𝑝𝜁 = id𝑝𝑒′𝑓 then 𝜁 is invertible.
(ii) Every natural transformation 𝛽∶ 𝑏 ⇒ 𝑝𝑒 as below-left admits a lift 𝜒∶ 𝑒′ ⇒ 𝑒 as below-right:

𝑋 𝐸 𝑋 𝐸

𝐵 𝐵

𝑒

𝑏

⇑𝛽 𝑝 =

𝑒

𝑒′
⇑𝜒

𝑝

with the property that the induced map is a trivial fibration:

𝐸/𝜒 ∼ 𝐵/𝛽 ×
𝐵/𝑝𝑒

𝐸/𝑒

(iii) The functor Δ𝑝 ∶ 𝐸 → Hom𝐵(𝐵, 𝑝) admits a right adjoint over 𝐵.
(iv) The functor 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) admits a right adjoint right inverse.
(v) Any 1-simplex 𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 so that any lifting problem for 𝑛 ≥ 1

Δ[1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} 𝐸

Δ[𝑛] × Δ[1] 𝐵

𝜒

{𝑛}×id

𝑝

has a solution.
(vi) Any 1-simplex 𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 so that any lifting problem for 𝑛 ≥ 2

Δ[1] Λ𝑛[𝑛] 𝐸

Δ[𝑛] 𝐵

𝜒

{𝑛−1,𝑛}
𝑝

has a solution.

Condition (vi) appears to be mildly stronger than [78, 2.4.2.1], which only requires that 𝑝 is an inner
fibration with the lifting property (F.4.2), but it follows easily that any such 𝑝 must be an isofibration
(see Exercise F.4.i).
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Proof. The equivalence of (i) and (iii) is proven in Proposition 5.2.11, using the equivalence of
(i) is equivalent to (iv) in Proposition F.4.1 to identify the equivalence that characterizes 𝑝-cartesian
arrows, while the equivalence of (ii), (iii), and (iv) is proven in Theorem 5.2.8.

It remains to verify the equivalence between any of these synthetic conditions and the corresponding
analytic ones. We will demonstrate that (iv)⇔(v) and (v)⇔(vi).

By Lemma F.3.1, the isofibration 𝑖1 �⋔ 𝑝 admits a right adjoint right inverse if and only if any
1-simplex 𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 with the lifting property

1 𝜕Δ[𝑛] 𝐸𝟚

Δ[𝑛] Hom𝐵(𝐵, 𝑝)

{𝑛}

𝜒

𝑖1�⋔𝑝

for 𝑛 ≥ 1. This lifting property is equivalent to the transposed lifting property

Δ[1] 𝜕Δ[𝑛] × Δ[1] ∪
𝜕Δ[𝑛]×{1}

Δ[𝑛] × {1} 𝐸

Δ[𝑛] × Δ[1] 𝐵

𝜒

{𝑛}×id

𝑝

again for 𝑛 ≥ 1, proving the equivalence between (iv) and (v).
Finally, Proposition F.4.1(v)⇔(vi) demonstrates the equivalence between (vi) and (v). �

We now extend the notion of cartesian arrow to define a notion of “cartesian cylinder” to describe
a variant of the lifting properties appearing in Proposition F.4.1.

F.4.6. Definition (cartesian cylinders). Suppose that 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration of quasi-
categories and that 𝑋 is any simplicial set. We say that a cylinder 𝑒 ∶ 𝑋 × Δ[1] → 𝐸 is pointwise
𝑝-cartesian if and only if for each 0-simplex 𝑥 ∈ 𝑋, 𝑒 maps the 1-simplex (𝑥𝜎0, id[1]) ∶ (𝑥, 0) → (𝑥, 1)
to a 𝑝-cartesian arrow in 𝐸.

F.4.7. Lemma. Let 𝑝∶ 𝐸 ↠ 𝐵 be a cartesian fibration of quasi-categories. A cylinder 𝑒 ∶ 𝑋 × Δ[1] → 𝐸 is
pointwise 𝑝-cartesian if and only if 𝑒 ∶ Δ[1] → 𝐸𝑋 defines a 𝑝𝑋-cartesian arrow for the cartesian fibration
𝑝𝑋 ∶ 𝐸𝑋 ↠ 𝐵𝑋.

Proof. First note that Corollary 5.3.5 implies that 𝑝𝑋 ∶ 𝐸𝑋 ↠ 𝐵𝑋 is a cartesian fibration, while
Proposition 5.6.2 proves that restriction along any 𝑓 ∶ 𝑌 → 𝑋 defines a cartesian functor of cartesian
fibrations:

𝐸𝑋 𝐸𝑌

𝐵𝑋 𝐵𝑌

𝑝𝑋

𝐸𝑓

𝑝𝑌

𝐵𝑓

In particular, 𝑝𝑋-cartesian arrows are pointwise 𝑝-cartesian. Conversely, any pointwise 𝑝-cartesian
cylinder factors through a 𝑝𝑋-cartesian arrow via a pointwise isomorphism. By Corollary 1.1.22, a

563



pointwise isomorphism is in fact an isomorphism, so by isomorphism stability of 𝑝𝑋-cartesian arrows,
any pointwise 𝑝-cartesian cylinder is a 𝑝𝑋-cartesian arrow. �

The following lifting property is used to prove Proposition 12.2.4.

F.4.8. Lemma. Let 𝑋 ↪ 𝑌 be a simplicial subset of a simplicial set 𝑌.
(i) Any lifting problem for 𝑛 ≥ 0

𝑋 × Δ[1] ∪ 𝑌 × {1} 𝐸

𝑌 × Δ[1] 𝐵

𝑒

𝑝

𝑏

�̄�

with the property that the cylinder 𝑋 × Δ[1] ⊆ 𝑋 × Δ[1] ∪ 𝑌 × {1}
𝑒

⟶ 𝐸 is pointwise 𝑝-cartesian
admits a solution �̄� which is also pointwise 𝑝-cartesian.

(ii) Any lifting problem for 𝑛 ≥ 1

𝑋 × Δ[𝑛] ∪ 𝑌 × Λ𝑛[𝑛] 𝐸

𝑌 × Δ[𝑛] 𝐵

𝑒

𝑝

𝑏

�̄�

in which the cylinder𝑌 × Δ{𝑛−1,𝑛} ⊆ 𝑋 × Δ[𝑛] ∪ 𝑌 × Λ𝑛[𝑛]
𝑒

⟶ 𝐸 is pointwise 𝑝-cartesian admits
a solution �̄�.

Proof. The Leibniz tensor with 𝑋 ↪ 𝑌 defines a functor 𝑠𝒮𝑒𝑡𝟚 → 𝑠𝒮𝑒𝑡𝟚 that preserves the
retract diagram (F.4.4), so the lifting property (ii) follows from (i). In turn, the lifting property (i) follows
inductively from Proposition F.4.1(vi) combined with the fact that any monomorphism 𝑋 ↪ 𝑌 can be
decomposed as a sequential composite of pushouts of coproducts of inclusions 𝑖𝑛 ∶ 𝜕Δ[𝑛] ↪ Δ[𝑛], and
by Proposition C.2.9(vii), the pushout product with {1} ↪ Δ[1] is then similarly a sequential composite
of pushouts of coproducts of the pushout products 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} ↪ Δ[𝑛] × Δ[1]. �

A final result demonstrates that discrete cocartesian and discrete cartesian fibrations between
quasi-categories coincide with the classes of left fibrations and right fibrations introduced by Joyal [61].

F.4.9. Proposition. For an isofibration 𝑝∶ 𝐸 ↠ 𝐵 between quasi-categories, the following are equivalent and
define what it means for 𝑝 to be a discrete cartesian fibration:

(i) The map 𝑝∶ 𝐸 ↠ 𝐵 is a cartesian fibration whose fibers are Kan complexes.
(ii) Every 2-cell 𝛽∶ 𝑏 ⇒ 𝑝𝑒 in the homotopy 2-category of quasi-categories has an essentially unique lift:

given 𝜒∶ 𝑒′ ⇒ 𝑒 and𝜓∶ 𝑒″ ⇒ 𝑒 so that 𝑝𝜒 = 𝑝𝜓 = 𝛽, then there exists an isomorphism 𝛾∶ 𝑒″ ⇒ 𝑒′
with 𝜒 ⋅ 𝛾 = 𝜓 and 𝑝𝛾 = id.

(iii) The induced functor 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) is a trivial fibration.
(iv) The functor 𝑝∶ 𝐸 ↠ 𝐵 is a right fibration, with the lifting property:

Λ𝑘[𝑛] 𝐸

Δ[𝑛] 𝐵

𝑝 for 𝑛 ≥ 0 and 0 < 𝑘 ≤ 𝑛.
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Proof. The first characterization (i) is a reinterpretation of the original Definition 5.5.3 using
Proposition 12.2.3, which says that an isofibration 𝑝∶ 𝐸 ↠ 𝐵 defines a discrete object in 𝒬𝒞𝑎𝑡/𝐵 if and
only if its fibers are Kan complexes. The equivalence of (i) with (ii) is proven in Proposition 5.5.6, while
the equivalence of (i) with (iii) is proven in Proposition 5.5.8.

We conclude by demonstrating the equivalence of (iii) and (iv). By adjunction, 𝑖1 �⋔ 𝑝 is a trivial
fibration if and only if the lifting problem below-right has a solution

𝜕Δ[𝑛] 𝐸𝟚 𝜕Δ[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} 𝐸

Δ[𝑛] Hom𝐵(𝐵, 𝑝) Δ[𝑛] × Δ[1] 𝐵
∼ 𝑖1�⋔𝑝 ↭ 𝑝

By Proposition D.3.8, if 𝑝∶ 𝐸 ↠ 𝐵 is a right fibration, satisfying condition (iv), then the lifting problem

above-right admits a solution and hence 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝) is a trivial fibration proving (iii).

Conversely, for 0 < 𝑘 ≤ 𝑛 the horn inclusion Λ𝑘[𝑛] ↪ Δ[𝑛] is a retract

Λ𝑘[𝑛] Λ𝑘[𝑛] × Δ[1] ∪ Δ[𝑛] × {1} Λ𝑘[𝑛]

Δ[𝑛] Δ[𝑛] × Δ[1] Δ[𝑛]

Λ𝑘[𝑛]×{0} 𝑟

Δ[𝑛]×{0} 𝑟

where
𝑟(𝑖, 0) = 𝑖

𝑟(𝑖, 1) = �
𝑖 𝑖 ≠ 𝑘 − 1
𝑘 𝑖 = 𝑘 − 1

Thus, to solve the lifting problem postulated by (iv), it suffices to show that 𝑝 lifts against the pushout

products (Λ𝑘[𝑛] ↪ Δ[𝑛])×̂({1} ↪ Δ[1]), which transposes to a lifting problem between the mono-

morphism Λ𝑘[𝑛] ↪ Δ[𝑛] and 𝑖1 �⋔ 𝑝∶ 𝐸𝟚 ↠ Hom𝐵(𝐵, 𝑝). If (iii) holds and 𝑖1 �⋔ 𝑝 is a trivial fibration,
then this constructs the desired lift. �

Exercises.

F.4.i. Exercise. Suppose 𝑝∶ 𝐸 → 𝐵 is an inner fibration between quasi-categories so that any 1-simplex
𝛽∶ 𝑏 → 𝑝𝑒 in 𝐵 admits a lift 𝜒∶ 𝑒′ → 𝑒 in 𝐸 so that any lifting problem for 𝑛 ≥ 2

Δ[1] Λ𝑛[𝑛] 𝐸

Δ[𝑛] 𝐵

𝜒

{𝑛−1,𝑛}
𝑝

has a solution. Show that 𝑝 is an isofibration.

F.4.ii. Exercise. State and prove the equivalence between various synthetic and analytic definitions of

(i) a cocartesian fibration between quasi-categories,
(ii) a cocartesian arrow in a quasi-category, and
(iii) a discrete cocartesian fibration between quasi-categories.

F.5. Adjunctions

The comparison between the analytic and synthetic definitions of adjunction between quasi-cate-
gories is somewhat more subtle than for the other categorical notions considered in this appendix, as
these are typically presented with different data. The synthetic definition of an adjunction, originally
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due to Joyal [63], involves two specified functors 𝑓 ∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵, together with specified
maps 𝜂∶ 𝐵×Δ[1] → 𝐵 and 𝜂∶ 𝐴×Δ[1] → 𝐴 up to homotopy in 𝐵𝐵 or𝐴𝐴, together with 2-simplices
in the quasi-categories 𝐵𝐴 and 𝐴𝐵 that witness the triangle equalities. By contrast, the analytic notion
of an adjunction between𝐴 and 𝐵, due to Lurie [78, 5.2.2.1], is defined to be an isofibration²𝑀 ↠ Δ[1]
that is both a cartesian fibration and a cocartesian fibration, called a correspondence, with equivalences
𝑀1 ≃ 𝐴 and𝑀0 ≃ 𝐵 identifying the quasi-categories 𝐴 and 𝐵 with the fibers over the endpoints of
the 1-simplex

Since Proposition 2.1.13 demonstrates that the synthetic notion of adjunction is equivalence-invari-
ant, we simplify our notation somewhat and let 𝐵 and𝐴 denote the fibers over 0 and 1, respectively, of
the isofibration𝑀 ↠ Δ[1]. Our aim in this section is to show that from a cocartesian and cartesian
fibration 𝑀 ↠ Δ[1], one can extract an adjunction between 𝐵 and 𝐴, with the adjoint functors
determined uniquely up to isomorphism, and conversely from a 2-categorical adjunction, one can
construct a corresponding correspondence𝑀 ↠ Δ[1], which is unique up to fibered equivalence. As
the proof is more involved, we break the argument up into several intermediate steps.

F.5.1. Proposition. Let𝑀 be a quasi-category equipped with a map𝑀 ↠ Δ[1] that is both a cocartesian
fibration and cartesian fibration. Then

• the fibers 𝐵 ≔ 𝑀0 and 𝐴 ≔ 𝑀1 and
• the functors 𝑓 ∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵 defined by the cocartesian and cartesian lift, respectively, of the
generic arrow in Δ[1]

define an adjunction

𝐴 𝐵
𝑢
⊥
𝑓

Proof. This is a special case of Proposition 5.4.7. We recall the construction of 𝑓 and 𝑢 and leave
the rest of the details to that result and Remark 5.2.7. Let 𝜒 denote a cocartesian lift of the generic
arrow in Δ[1] whose domain is the inclusion 𝐵 ↪ 𝑀 of the fiber over 0. The codomain of this lifted
arrow lands in the fiber over 1 and thus factors uniquely through the inclusion 𝐴 ↪ 𝑀 of that fiber:

𝐵 𝑀 𝐵 𝑀

𝐴

1 Δ[1] 1 Δ[1]

= 𝑓

⇓𝜒

0

1

⇓

1

This factorization defines the functor 𝑓 ∶ 𝐵 → 𝐴. Since cocartesian lifts of a fixed arrow and adjoints
to a fixed functor are each unique up to isomorphism, this construction is suitably well-defined. The
construction of the right adjoint 𝑢∶ 𝐴 → 𝐵 is dual, involving a cartesian lift of the generic arrow in
Δ[1]. �

The converse makes use of something we call the quasi-categorical collage construction.

²The nitpickermight note that Lurie only requires an inner fibration, but any inner fibration overΔ[1] is automatically
an isofibration. In fact, so long as𝑀 is a quasi-category, any simplicial map𝑀 → Δ[1] is automatically an isofibration.
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F.5.2. Definition (the quasi-categorical collage construction). For any cospan 𝐵
𝑔

𝐶
𝑓

𝐴 of
quasi-categories, define a simplicial set col(𝑓 , 𝑔) by

col(𝑓 , 𝑔)𝑛 = ��Δ[𝑖]
𝑎
𝐴,Δ[𝑗]

𝑏
𝐵,Δ[𝑛]

𝑐
𝐶� � 𝑐|{0,…,𝑖} = 𝑓 (𝑎),

𝑐|{𝑛−𝑗,…,𝑛} = 𝑔(𝑏),
𝑖, 𝑗 ≥ −1,

𝑖 + 𝑗 = 𝑛 − 1. �

with the convention that conditions indexed byΔ[−1] are empty (or that each simplicial set is terminally
augmented). There are evident inclusions that fit into a commutative diagram:

𝐵 col(𝑓 , 𝑔) 𝐴

{1} Δ[1] {0}

𝜌

The map 𝜌 sends an 𝑛-simplex (𝑎 ∶ Δ[𝑖] → 𝐴, 𝑏 ∶ Δ[𝑗] → 𝐵, 𝑐 ∶ Δ[𝑛] → 𝐶) to the 𝑛-simplex [𝑛] → [1]
that carries 0,… , 𝑖 to 0 and 𝑖 + 1,… , 𝑛 to 1. Note that the fiber of 𝜌 over 0 is isomorphic to 𝐴 while
the fiber of 𝜌 over 1 is isomorphic to 𝐵

As is our custom for two-sided fibrations and modules, we write 𝐵 + 𝐴 ↪ col(𝑓 , 𝑔) for the
inclusions of the fibers over 1 and 0 – with the fiber over 1 on the left and the fiber over 0 on the
right. This positions the covariantly acting quasi-category on the “left” and the contravariantly acting
quasi-category on the “right.”

F.5.3. Lemma. The map 𝜌∶ col(𝑓 , 𝑔) → Δ[1] is an inner fibration. In particular, the simplicial set col(𝑓 , 𝑔)
is a quasi-category.

Proof. Since the fibers of 𝜌 over 0 and 1 are the quasi-categories 𝐴 and 𝐵, it suffices to consider
inner horns

Λ𝑘[𝑛] col(𝑓 , 𝑔)

Δ[𝑛] Δ[1]

𝜌

𝛼
for which 𝛼∶ [𝑛] → [1] is a surjection. Suppose 𝛼 carries 0,… , 𝑖 to 0 and 𝑖 + 1,… , 𝑛 to 1. Note that

for any 0 < 𝑘 < 𝑛, the faces {0, … , 𝑖} and {𝑖 + 1,… , 𝑛} of Δ[𝑛] belong to the hornΛ𝑘[𝑛]. In particular,

the map Λ𝑘[𝑛] → col(𝑓 , 𝑔) identifies simplices 𝑎 ∶ Δ[𝑖] → 𝐴 and Δ[𝑛 − 𝑖 − 1] → 𝐵 together with a

horn Λ𝑘[𝑛] → 𝐶 whose initial and final faces are the images of these simplices under 𝑓 ∶ 𝐴 → 𝐶 and
𝑔∶ 𝐵 → 𝐶. Since 𝐶 is a quasi-category this horn admits a filler 𝑐 ∶ Δ[𝑛] → 𝐶 and the triple (𝑎, 𝑏, 𝑐)
defines an 𝑛-simplex in col(𝑓 , 𝑔) solving the lifting problem. �

We write col(𝑓 , 𝐵) for the collage of 𝑓 ∶ 𝐴 → 𝐵 with the identity on 𝐵.

F.5.4. Lemma. For any 𝑓 ∶ 𝐴 → 𝐵, the map 𝜌∶ col(𝑓 , 𝐵) → Δ[1] is a cocartesian fibration.

Proof. By Proposition F.4.5(vi), to prove the claim, we need only specify cocartesian lifts of the
non-degenerate 1-simplex of Δ[1] and demonstrate that these edges have the corresponding universal
property. To that end, for any vertex 𝑎 ∈ 𝐴0, let 𝜒𝑎 ∶ Δ[1] → col(𝑓 , 𝐵) be the 1-simplex

𝜒𝑎 ∶= (𝑎 ∶ Δ[0] → 𝐴, 𝑓 𝑎 ∶ Δ[0] → 𝐵, 𝑓 𝑎𝜎0 ∶ Δ[1] → 𝐵),
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defined by the degenerate edge at 𝑓 𝑎 ∈ 𝐵0 lying over the 1-simplex in Δ[1]. To show that 𝜒𝑎 is
𝜌-cocartesian, we must construct fillers for any left horn

Δ[1] Λ0[𝑛] col(𝑓 , 𝐵)

Δ[𝑛] Δ[1]

𝜒𝑎

{0,1}
𝜌

𝛽

whose initial edge is 𝜒𝑎. Note that this condition implies that the bottom map 𝛽∶ [𝑛] → [1] carries 0
to 0 and the remaining vertices to 1. The map Λ0[𝑛] → col(𝑓 , 𝐵) defines a horn Λ0[𝑛] → 𝐵 in the
quasi-category 𝐵 whose first edge is degenerate. By Proposition 1.1.14, this “special outer horn” admits
a filler 𝑏 ∶ Δ[𝑛] → 𝐵 and the triple

(𝑎 ∶ Δ[0] → 𝐴, 𝑏𝛿0 ∶ Δ[𝑛 − 1] → 𝐵, 𝑏 ∶ Δ[𝑛] → 𝐵)
defines an 𝑛-simplex in col(𝑓 , 𝐵) that solves the lifting problem. �

F.5.5. Proposition. For any 𝑓 ∶ 𝐴 → 𝐵 between quasi-categories, the collage col(𝑓 , 𝐵) defines the oplax
colimit of 𝑓 in 𝒬𝒞𝑎𝑡. That is col(𝑓 , 𝐵) defines a cone under the pushout diagram

𝐴 𝐵

𝐴 × Δ[1] 𝑃

col(𝑓 , 𝐵)

𝑓

id×𝛿0

ℎ

𝑖1�⋔𝑝

so that the induced map 𝑘 is inner anodyne, and in particular a weak equivalence in the Joyal model structure.

Proof. The map 𝑘 is a quotient of the map ℎ, which has the following explicit description. For
each 𝑛-simplex (𝑎, 𝛼) ∶ Δ[𝑛] → 𝐴 × Δ[1] define 𝑖 ≔ |𝛼−1(0)| − 1, so that −1 ≤ 𝑖 ≤ 𝑛. Then ℎ carries
(𝑎, 𝛼) to the 𝑛-simplex of col(𝑓 , 𝐵) corresponding to the triple

(𝑎|{0,…,𝑖} ∶ Δ[𝑖] → 𝐴, 𝑓 𝑎|{𝑖+1,…,𝑛} ∶ Δ[𝑛 − 𝑖 − 1] → 𝐵, 𝑓 𝑎 ∶ Δ[𝑛] → 𝐵).
Note that the composite 𝜌ℎ∶ 𝐴 × Δ[1] → Δ[1] is the projection.

It remains to present 𝑘 as a sequential composite of pushouts of coproducts of inner horn inclusions.
To do so, first note that

col(𝑓 , 𝐵)𝑛 = 𝐴𝑛 ⨿𝐴𝑛−1 ×𝐵𝑛−1 𝐵𝑛 ⨿⋯⨿𝐴0 ×𝐵0 𝐵𝑛 ⨿ 𝐵𝑛

where each map 𝐵𝑛 → 𝐵𝑖 is the initial face map corresponding to {0, … , 𝑖} ↪ Δ[𝑛]. From the
perspective of this decomposition, 𝑃𝑛 is the subset containing the sets 𝐴𝑛 and 𝐵𝑛 and the subset of
𝐴𝑖 ×𝐵𝑖 𝐵𝑛 whose component in 𝐵𝑛 is in the image of 𝑓. The 𝑛-simplices of col(𝑓 , 𝐵) that remain to be
attached correspond to elements of𝐴𝑖 ×𝐵𝑖 𝐵𝑛, for 0 ≤ 𝑖 < 𝑛, that are not in the image of 𝑓 in the sense
just discussed. Note in particular that the map on vertices 𝑘 ∶ 𝑃0 ↪ col(𝑓 , 𝐵)0 is an isomorphism and
𝑘 ∶ 𝑃𝑛 ↪ col(𝑓 , 𝐵)𝑛 is an injection for all 𝑛 ≥ 1.

To enumerate our attaching maps, we start with the collection of non-degenerate 𝑛-simplices of
col(𝑓 , 𝐵) for 𝑛 ≥ 1 that are not in the image of 𝑓 and remove also those elements of 𝐴𝑖 ×𝐵𝑖 𝐵𝑛 whose
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components 𝑏 ∈ 𝐵𝑛 are in the image of the degeneracy map 𝜎𝑖 ∶ 𝐵𝑛−1 → 𝐵𝑛. Partially order this
set of simplices first in the order of increasing 𝑛 and then in order of increasing index 𝑖; that is we
lexicographically order the collection of pairs (𝑛, 𝑖) with 𝑛 ≥ 1 and 0 ≤ 𝑖 < 𝑛. We filter the inclusion
𝑃 ↪ col(𝑓 , 𝐵) as

𝑃 ↪ 𝑃(1,0) ↪ 𝑃(2,0) ↪ 𝑃(2,1) ↪ 𝑃(3,0) ↪ ⋯ ↪ 𝑃(𝑛,𝑖) ↪ ⋯ ↪ colim ≅ col(𝑓 , 𝐵)
where the simplicial set 𝑃(𝑛,𝑖) is built from the previous one by a pushout of a coproduct of inner horns
indexed by the set of 𝑛-simplices (𝑎, 𝑏) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛 with 𝑏 not in the image of 𝑓 or 𝜎𝑖. The filler for
the horn indexed by (𝑎, 𝑏) will attach this 𝑛 simplex to 𝐵𝑛 as the missing face of the horn and also the
𝑛 + 1 simplex (𝑎, 𝑏𝜎𝑖) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛+1.

Consider a simplex (𝑎, 𝑏) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛 with 𝑏 not in the image of 𝑓 or 𝜎𝑖. Define a horn

Λ𝑖+1[𝑛 + 1] 𝑃(𝑛,𝑖)

Δ[𝑛 + 1] col(𝑓 , 𝐵)
(𝑎,𝑏𝜎𝑖)

For each 0 ≤ 𝑗 < 𝑖 + 1, the 𝛿𝑗-face of the 𝑛 + 1 simplex (𝑎, 𝑏𝜎𝑖) is the 𝑛-simplex (𝑎𝛿𝑗, 𝑏𝜎𝑖𝛿𝑗), which
lies in 𝑃(𝑛,𝑖−1) or in 𝐵 ↪ 𝑃 in the case 𝑖 = 0. For each 𝑖 + 1 < 𝑗 ≤ 𝑛 + 1, the 𝛿𝑗-face of the 𝑛 + 1
simplex (𝑎, 𝑏𝜎𝑖) is the 𝑛-simplex (𝑎, 𝑏𝜎𝑖𝛿𝑗) = (𝑎, 𝑏𝛿𝑗−1𝜎𝑖) ∈ 𝐴𝑖 ×𝐵𝑖 𝐵𝑛, which was previously attached

to 𝑃(𝑛−1,𝑖). So the horn Λ𝑖+1[𝑛 + 1] indeed maps to 𝑃(𝑛,𝑖), permitting an inductive construction of the
next simplicial set in this sequence as the pushout

∐
∼
Λ𝑖+1[𝑛 + 1] 𝑃(𝑛,𝑖)

∐
∼
Δ[𝑛 + 1] 𝑃(𝑛,𝑖)+1

where 𝑃(𝑛,𝑖)+1 is 𝑃(𝑛+1,0) in the case 𝑖 = 𝑛 − 1 and 𝑃(𝑛,𝑖+1) otherwise. �

Putting these results together, we are now able to prove the desired equivalence between the
synthetic and analytic notions of adjunction.

F.5.6. Proposition. For a pair of functors between quasi-categories 𝑓 ∶ 𝐵 → 𝐴 and 𝑢∶ 𝐴 → 𝐵, the following
are equivalent and define what it means to have an adjunction

𝐵 𝐴
𝑓

⊥
𝑢

(i) There are natural transformations 𝜂∶ id𝐵 ⇒ 𝑢𝑓 and 𝜖 ∶ 𝑓 𝑢 ⇒ id𝐴 satisfying the triangle equalities:
𝑢𝜖 ⋅ 𝜂𝑢 = id𝑢 and 𝜖𝑓 ⋅ 𝑓 𝜂 = id𝑓.

(ii) The functor 𝑓 defines an absolute left lifting of id𝐵 through 𝑢:

𝐴

𝐵 𝐵
⇑𝜂

𝑢
𝑓
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(iii) The functor 𝑢 defines an absolute right lifting of id𝐴 through 𝑓:

𝐵

𝐴 𝐴
⇓𝜖

𝑓𝑢

(iv) There is a pointwise left extension diagram that is absolute:

𝐵 𝐵

𝐴

𝑓 𝑢
⇓𝜂

(v) There is a pointwise right extension diagram that is absolute:

𝐴 𝐴

𝐵

𝑢
𝑓

⇑𝜖

(vi) The modules Hom𝐴(𝑓 , 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢) are equivalent over 𝐴 × 𝐵.
(vii) The collages col(𝑓 , 𝐴) and col(𝐵, 𝑢) are equivalent under 𝐴 + 𝐵 and over Δ[1], in which case

col(𝑓 , 𝐴) ↠ Δ[1] or equivalently col(𝐵, 𝑢) ↠ Δ[1] defines both a cocartesian and a cartesian
fibration.

Proof. The equivalence between (i) and (ii) or (iii) is proven in Lemma 2.3.7, while the equivalence
with (iv) or (v) is proven in Proposition 9.4.1. The equivalence between (i) and (vi) is proven in
Proposition 4.1.1. We conclude by showing that (i) is equivalent to (vii).

First suppose that col(𝑓 , 𝐴) ≃ col(𝐵, 𝑢) under𝐴+𝐵 and overΔ[1]. By Lemma F.5.4 and Corollary
5.3.1 this means that the map col(𝑓 , 𝐴) → Δ[1] is both a cocartesian and a cartesian fibration. By
Proposition F.5.1 it follows that the 1-arrow in Δ[1] from 0 to 1 induces an adjunction between the
fibers 𝐵 and 𝐴. By inspection of that proof, the left adjoint functor so-constructed in the case of the
bifibration col(𝑓 , 𝐴) → Δ[1] is 𝑓; substituting the equivalent bifibration col(𝐵, 𝑢) → Δ[1], we see
that the right adjoint is equivalent to 𝑢. Thus (vii) implies (i).

For the converse, we work in the opposite ∞-cosmos 𝒬𝒞𝑎𝑡op, an ∞-cosmos in which “not all
objects are cofibrant,” as described in [110]. In that context, Proposition F.5.5 proves that col(𝑓 , 𝐴) and
col(𝐵, 𝑢) construct the contravariant and covariant comma objects associated to the functors 𝑓 and 𝑢.
If 𝑓 ⊣ 𝑢 in𝒬𝒞𝑎𝑡 then these functors are also adjoint in 𝒬𝒞𝑎𝑡op and Proposition 4.1.1 then proves that
the commas col(𝑓 , 𝐴) and col(𝐵, 𝑢) are equivalent under 𝐴+ 𝐵. By construction, this equivalence also
lies over Δ[1]. Alternatively, if the reader prefers not to dualize, col(𝑓 , 𝐴) and col(𝐵, 𝑢) can be shown
to define “weak cocomma objects” in the homotopy 2-category 𝔥𝒬𝒞𝑎𝑡, satisfying the 1-categorical duals
of the weak universal properties of Proposition 3.4.6. Using these weak universal properties, the proof of
Proposition 4.1.1 can be repeated in the dual to construct the desired equivalence col(𝑓 , 𝐴) ≃ col(𝐵, 𝑢)
under 𝐴 + 𝐵 and over Δ[1]. So (i) implies (vii), completing the proof. �

Exercises.

F.5.i. Exercise. Construct a correspondence that encodes the adjunction that expresses the universal
property of a terminal element.
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Glossary of Notation

(−)co, 424
(−)coop, 424
(−)op, 26, 360, 361, 424
(−)−, 9, 16, 25, 50, 112, 394, 402, 405
(−)∘, 360
(−)♭, 486
(−)♮, 544
(−)♯, 486
(−)0, 28, 395
=, 6
⇛, 428
⇒, 421
∗, 401, 422
⊥, 40, 109, 429
⧄, 454
, 469
⋅, 401, 422

, 198
≅, 33
⊣, 40, 429
⊣𝐵, 95
⋄, 107, 497
↠, 9, 15, 444, 461
⨰, 193
⋆, 108, 493, 494, 500
�⊗, 457
�⋔, 10, 140
⊧, 343
⊕, 132, 493
⊗, 112, 251, 405, 456
, 57, 113
, 113

⋔𝐵, 24
, 315, 318
, 316, 320

↣, 461

∼, 488
≃, 10, 35, 488
≃𝐵, 71
⊡, 113
×𝐵, 24⨰
, 249

⊤, 109
∼ , 11, 15, 444
∼ , 10, 15, 29, 35, 444, 461
�{, }, 457
{, }, 456

1, 28
𝟙, 4
𝟚, 4
𝟛, 4
𝟜, 4
𝕟, 4
[𝑛], 4, 493

𝐴 𝐴 , 242

𝐴𝟚, 68
𝒜, 469
𝒜𝑎, 469
𝒜𝑎, 469
𝐴/𝑑, 108, 110, 495
𝑑/𝐴, 108, 110, 495
�𝒜, 467
�̂�, 273
�⃖�, 263
𝛼, 33, 69, 78
𝛼∗, 263
𝛼∗, 263
�𝒜, 467
𝐴≃, 8

𝛽∗𝑒, 147
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𝛽∗𝑒, 161
𝛽∗, 136, 150

𝒞𝑎𝑟𝑡(𝒦), 206
𝒞𝑎𝑟𝑡(𝒦)/𝐵, 206
𝒞𝑎𝑡, 4, 32
𝙲, 461
𝜒, 149
𝜒𝛽, 161
𝜒𝛽, 147
𝑐𝑜𝒞𝑎𝑟𝑡(𝒦), 206
𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵, 206
cofib, 124
colim𝑊𝐺, 410
colim𝑊 𝑔, 289
column0, 540
𝑛-𝒞𝑜𝑚𝑝, 550
1-𝒞𝑜𝑚𝑝, 544
core, 363, 365, 486
core∗𝒦, 363
core𝑛, 491
𝒞𝒮𝒮, 540
𝒞(𝑥, 𝑦)0, 397

𝜕𝒜𝑎, 470
𝜕𝒜𝑎, 470
𝐷𝒞𝑎𝑡, 340
𝐷2-𝒞𝑎𝑡, 340
𝜕Δ[𝑛], 4
𝜕ℐ(𝑖, −), 450
𝜕𝑖𝑋, 450
dec𝑙, 494
dec𝑟, 494
Δ[𝑛]𝑡, 486
𝚫, 4
Δ, 50
𝚫⊥, 54
𝚫 ≀ 𝐶, 545
⋅𝛿𝑖, 4
Δ𝑘[𝑛], 487
Δ𝑘[𝑛]′, 489
Δ𝑘[𝑛]″, 489
Δ[𝑛], 4
𝚫+, 54
Δ𝑝, 140

𝚫⊤, 54
disc, 542
𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦), 208
𝒟𝑖𝑠𝑐𝒞𝑎𝑟𝑡(𝒦)/𝐵, 208
𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦), 208
𝒟𝑖𝑠𝑐𝑐𝑜𝒞𝑎𝑟𝑡(𝒦)/𝐵, 208

𝐴
𝑞
𝐸

𝑝
𝐵, 218

𝐴
𝐸

𝐵, 237
𝐸(𝑏, 𝑎), 245
𝐸−
𝑛 , 511

𝐸+
𝑛 , 511

𝐸/𝜓, 137
𝐸2-𝒞𝑎𝑡, 340
ev, 398

�⃗�, 249

ℱ𝑎𝑐𝑡𝑓, 468
ℱ𝑎𝑐𝑡≤𝑛𝑓, 468
𝙵, 443, 461
𝙵 ∩ 𝚆, 443
fib, 124

𝐴\ℱ𝑖𝑏(𝒦)/𝐵, 226
Fun, 15
Fun𝐵, 24
Funcart

𝐵 , 174
Fun𝑓 ×𝑔, 240
Fun𝒦, 15

ℎ𝛼𝑘, 423
hFun, 33
(𝔥𝒦)/𝐵, 94
𝔥(𝒦/𝐵), 94
𝔥𝒦⫽𝐵, 174
(𝔥𝒦) , 187
𝔥(𝒦 ), 187
𝔥𝒦 , 175
𝔥𝒦⊡, 175
h, 6, 37
hom, 456
Hom𝐴, 246
Hom𝐴(𝑓 , 𝑔), 76
Hom𝐴(𝑥, 𝑦), 80
Hom𝐵(𝐵, 𝑓 ), 82
Hom𝐵(𝑓 , 𝐵), 82
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�hom, 457
Hom𝐿

𝐴(𝑥, 𝑦), 532
Hom𝑅

𝐴(𝑥, 𝑦), 532

ℐ𝒞𝑎𝑡, 339
id𝑓, 422
idid𝑎 , 422
𝕀, 8
𝕀[𝑛], 523, 541
ℐ2-𝒞𝑎𝑡, 339
ℐ𝑣𝒟𝑏𝑙𝒞𝑎𝑡, 348
ℐ𝒱ℰ, 350

⧄𝙹, 454
𝙹⧄, 454
𝙹-cell, 455
𝙹-cof, 455
𝐽 , 109
𝐽 , 109

𝒦, 15
𝒦/𝐴×𝐵, 227
𝒦𝑎𝑛, 19
𝜅, 68
𝒦/𝐵, 24
𝒦⊥, 202
𝒦co, 26
𝒦 , 186
𝒦⊥,𝐽, 205
𝒦⊤,𝐽, 205
𝒦 , 209
𝒦 , 209
𝒦∗, 202
𝒦≃, 188
𝒦≃

/𝐵, 188
𝒦⊤, 199
𝒦

∼

, 188
𝑥 ∶ 𝐾, 341
𝐾⟨𝑥𝑝⟩, 341

𝙻[𝒜], 476
𝐿𝑎, 471
ℓ 𝑎, 471
�ℓ 𝑎𝑓, 471
Λ𝑘[𝑛], 4, 489

lan, 112, 290
ℒ𝑎𝑟𝑖(𝒦), 204
ℒ𝑎𝑟𝑖(𝒦)/𝐵, 202
lim𝑊 𝐹, 410
lim𝑊 𝑓, 289

𝑀𝐴, 471
𝑚𝑎, 471
�𝑚𝑎𝑓, 471
𝑚𝑖, 451
�𝑚𝑖, 451
𝕄od(𝒦), 243
𝐴\ℳ𝑜𝑑(𝒦)/𝐵, 234
Μ𝐶, 340
Μ𝒞, 340

nerve, 540
Ν𝒞, 340

Ω, 121
𝝎, 195

𝑝0, 68, 76
𝑝1, 68, 76
𝒫𝒞𝑎𝑡, 542
𝜙, 76
Π𝑓, 379

𝑄(−), 462
𝒬𝒞𝑎𝑡, 17
𝑛-𝒬𝒞𝑎𝑡, 545

𝑅(−), 462
𝚁[𝒜], 476
ran, 112, 290
ℛ𝑎𝑟𝑖(𝒦), 204
ℛ𝑎𝑟𝑖(𝒦)/𝐵, 202
�̇�, 338
ℛ𝑒𝑧𝑘ℳ, 548
𝜌, 245
𝜌, 120
row0, 540

𝒮𝑒𝑔𝑎𝑙, 542
Σ, 121
Σ𝑓, 379

⋅𝜎𝑖, 4
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sk𝑛, 469
Sp𝐴, 210
𝑠𝒮𝑒𝑡, 4
𝑠𝒮𝑒𝑡+, 486
𝑛-𝑠𝒮𝑒𝑡+, 491
𝑠𝒮𝑒𝑡+, 493
𝒮𝑡𝑎𝑏(𝒦), 208

𝑡𝚫, 486
𝚯𝑛, 545

𝚯𝑛-𝒮𝑝, 546
trv𝑛, 491

𝑊⨰, 193
𝚆, 443, 461
𝑊←, 195

𝜉, 120

∗, 120
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Index

0-arrow, 16
1-category

as an∞-cosmos, 536
1-cell, 421
1-cell induction

for arrow∞-categories, 69
for comma∞-categories, 78
for pullbacks, 73

1-complicial set, see also naturally marked
quasi-category

∞-cosmos of -, 544
1-saturated, 511
2-category, 421

3-category of -, 428
as an∞-cosmos, 537
cartesian closed -, 34
co-dual, 424
coop-dual, 424
op-dual, 424

2-category of 1-categories
as a homotopy 2-category, 37
duals as∞-cosmoi, 537

2-cell, 421
conjugates, 430
horizontal composite, 422
invertible -, 34, 425
mates, 429
pasted composite, 423–424
vertical composite, 422
whiskered composite, 422

2-cell conservativity
for arrow∞-categories, 70
for comma∞-categories, 78
for pullbacks, 74

2-cell induction
for arrow∞-categories, 70
for comma∞-categories, 78

for pullbacks, 73
2-functor, 316, 427
2-natural transformation, 427
2-of-3 property, 21, 443
2-of-6 property, 23
2-product, 34
2-terminal object, 34
3-category, 428

of 2-categories, 428

absolute lifting
pointwise, 371

absolute lifting diagram, 51, 269
equationally witnessed, 435
exact transformation, 439
model invariance, 309
representably defined -, 440

accessible∞-cosmos, 538
additive category, 133
adjoint equivalence, 45

half -, 14, 511, 515, 526
adjoint functor theorem, 105
adjunction, 281, 429

as fibered equivalence, 104–105
as fiberwise equivalence, 376
between∞-categories, 39–47
between quasi-categories

as a correspondence, 569
change-of-base -, 417
enriched -, 404, 407
fibered -, 95
left adjoint left inverse -, 87, 432
left adjoint right inverse -, 87, 432
minimal - data, 43
model invariance, 309
of weak factorization systems, 456
preserves limits and colimits, 58, 62
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Quillen -, 462
representably defined -, 438
right adjoint left inverse -, 87, 432
right adjoint right inverse -, 87, 432
two-variable -, 394

Leibniz -, 460
admissible simplex, 487
anodyne extension, 496

left, right, or inner -, 496
marked -, 490

elementary -, 489
arrow

1-category of -, 64
in an∞-category, 68
∞-category of -, 68

atomic formula in FOLDS, 342
augmented simplicial set, 493

terminally -, 494
vs unaugmented, 494

Beck–Chevalley
for absolute lifting diagrams, 440
for exact squares, 388
for pushforward, 381

biadjoint, 380
bicategorical Yoneda lemma, 442
biequivalence

of∞-cosmoi, 29
of 2-categories, 308
pseudofunctorial -, 317
quasi-pseudofunctorial -, 319

bifibration, 162–163
boundary

of a representable functor, 450, 470
Brown factorization, 23

cartesian
on the left, 221
on the right, 219–221

cartesian arrow, 137–147
between quasi-categories, 559
conservativity, 146, 154
induction, 146, 154
lift, 144

cartesian cell, 245
cartesian closed

∞-cosmos, 25
2-category, 34
category of simplicial sets, 9
model category, 464

cartesian cylinder, 563
cartesian fibration, 135, 147–156, 161–162

as a cocartesian fibration, 296
between quasi-categories, 561
discrete -, 164

∞-cosmos of -, 208
internal characterization, 165

equivalence invariance of -, 147, 157
exponentiable, 379–380
fiberwise equivalence of -, 375
∞-cosmos of -, 206
model invariance, 309

cartesian functor, 156–160
between two-sided fibrations, 224

cartesian lift, 145
generic -, 149

cartesian transformation, see also cartesian
arrow

categorical wreath product, 545
category

additive -, 133
as a quasi-category, 5
cartesian closed -, 394
double -, 426
enriched -, 397

free -, 398
isomorphism in an -, 402
underlying category of-, 397

internal -, 425
of arrows, 64
symmetric monoidal -, 396
triangulated -, 133

category of fibrant objects, 443
fibration in a -, 444
right proper, 444
trivial fibration in a -, 444
weak equivalence in a -, 444

cell complex, 455
change-of-base

2-functor, 416
adjunction, 417
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change-of-model functor, see also cosmological
biequivalence

Cisinski model structure, 548
co-dual, 424
cocartesian arrow, 161
cocartesian cell, 246

weakly -, 257
cocartesian fibration, 135

as a cartesian fibration, 296
between quasi-categories, 561
discrete -, 164

∞-cosmos of -, 208
internal characterization, 165

exponentiable, 379–380
∞-cosmos of -, 206
model invariance, 309

cocone, see also cone
cofiber, 124
cofibrant

constants, 481
object in a model category, 462
replacement, 462

cofibration
in a model category, 461

cofinal, see also final
colimit, 284

as a left Kan extension, 112
as a representation, 111
as an initial cone, 111
cone, 53
conical -, 408
connected -, 495
enriched, see also weighted colimit
functor, 50
having all -, 372
in a cartesian closed∞-cosmos, 284
in a quasi-category, 556
in an∞-category, 50–57
model invariance, 309, 314
weighted -, 410–412

comma∞-category, 76–82
as flexible weighted limit, 191
cone, 77, 82
model invariance, 301, 309
oplax maps between -, 80

representable -, 82–92
strict maps between -, 77

commutative square, 113
compatible sequence of modules, 243
complete Segal space, 539

∞-cosmos of -, 540
𝑛-fold -, 550
underlying -, 547

complicial
horn extensions, 489
inner - fibration, 512
isofibration, 490
thinness extensions, 489

complicial set, 489
equivalence between -, 491
saturated -, 511, 519, 550
strict -, 490

composite of modules, 250
strong -, 251

cone, 107
vertex, 109

congruence, 6, 13
conical co/limit, 408

as weighted co/limit, 413
conjugate, 430
connected colimit, 495
conservative functor, 65
constant diagram functor, 50
context in FOLDS, 341
contravariant embedding, 264
coop-dual, 424
coproduct

in an∞-category, 50
correspondence, 566

encodes an adjunction, 566
cosimplicial object, 54

coaugmented -, 54
split coaugmented -, 54
totalization of -, 55

cosmological biequivalence, 29
2-of-6 property, 32
as change-of-model functor, 308–314
in nature, 534
induced biequivalence, 308

cosmological embedding, 198
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cosmological functor, 28, 300–303
in nature, 534
restricted -, 300
underlying quasi-category -, 28

cosmological limit, 15, 185
preservation by cosmological functors, 28

cosmos
a la Bénabou, 396
a la Street, 396

cospan, 57, 113
cotensor, 405

as flexible weighted limit, 190
as weighted limit, 413
in an∞-category, 112
preservation -, 407
simplicial -, 16
vs exponential, 309

cotensored enriched category, 405–407
counit, 429

as universal arrow, 371
of an adjunction, 40
universal property of -, 105

covariant embedding, 264
create co/limit, 58

décalage, 494
degeneracy operator, 4
degree

decreasing, 450, 467
increasing, 467
of an arrow, 468
of an object, 467

dependent product, 111
diagram

family of -, 53
fibrant -, 451
in an∞-category, 50
∞-category, 50

direct sum, 132
discrete

∞-category, 38
discrete∞-category, 26

∞-cosmos of -, 188
model invariance, 28, 309

discrete co/cartesian fibration, 164

between quasi-categories, 564
internal characterization, 165
model invariance, 309
with contractible fibers, 375

discrete isofibration, 164
discrete fibers, 368

discretization
of a complete Segal space, 542

double category, 426
virtual, 241

dual∞-cosmos, 26, 27

element, 47
generalized -, 47
initial -, 47–49
terminal -, 47–49

elementary marked anodyne extension, 489
enriched

adjunction, 404, 407
category, 397

free -, 398
isomorphism in an -, 402

co/completeness, 414
co/limit, see also weighted co/limit
equivalence of categories, 404
functor, 398
model category, 464
natural isomorphism, 401
natural transformation, 400

horizontal composition, 401
object of -, 402
vertical composition, 401

representable functor, 403
Yoneda lemma, 402

entire inclusion of marked simplicial sets, 486
equivalence

2-of-3 property, 21
2-of-6 property, 23
adjoint -, 45

half -, 14, 511, 515, 526
as homotopy equivalence, 20
equivalence between notions of -, 35
fibered -, 71, 95
in a 2-category, 35, 424
in a complicial set, 510
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in a quasi-category, see also isomorphism
in an∞-cosmos, 15
marked homotopy -, 492
model invariance, 28, 30, 309
of complicial sets, 491
of enriched categories, 404
of quasi-categories, 10
preserves, reflects, and creates co/limits, 59
representably defined -, 437
retract of -, 21

equivalence of structures in FOLDS, 345
essential image, 433
evaluation in FOLDS, 343
exact

functor, 134
square, 125
triangle, 125

exact square
between adjoint functors, 204
for pointwise extensions, 273

exponentiable fibration, 379
exponential, 25

vs cotensor, 309
extension

along an adjoint functor, 282
in a 2-category, 266
of modules, 266
stable under pasting, 278

external vs internal, 28

face operator, 4
family of co/points, 120
fat join, 107, 109, 497

vs join, 498
fiber, 124
fibered adjunction, 95
fibered equivalence, 71, 95

vs fiberwise equivalence, 373
fibered initial or terminal element, 96
fibered isomorphism, 70
fiberwise equivalence

of cartesian fibrations, 375
of modules, 376
vs fibered equivalence, 373

fiberwise surjection in FOLDS, 344

fibrant
constants, 481
diagram, 451
natural transformation, 451
object in a model category, 462
replacement, 462

fibrant object
category of -, 443

fibration
in a category of fibrant objects, 444
in a model category, 461
Kan, left, right, or inner -, 496
two-sided -, 221–226

final functor, 60–62, 286, 287
first-order logic with dependent sorts, see also

FOLDS
flat fibration, see also exponentiable fibration
flexible weight, 190

homotopical properties, 191
flexible weighted limit, 190

in∞-cosmoi, 191
FOLDS, 337

atomic formula, 342
equivalence, 345
evaluation of a context, 343
fiberwise surjection, 344
formula, 343
invariance under equivalence, 346
kind, 338
language for model independent∞-category

theory, 357
relation symbol, 338
satisfaction, 343
sentence, 343
signature, 338

for 2-categories, 339
for categories, 339
for virtual double categories, 348
for virtual equipments, 350

sort, 341
structure, 340
variable, 341

formula in FOLDS, 343
free category

on a reflexive directed graph, 6
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full on positive-dimensional arrows, 197
fully faithful∞-functor, 57, 85, 282

pointwise -, 376
reflects co/limits, 61

functor, see also∞-functor
conservative -, 65
enriched -, 398
initial or final -, 60–62
tensor product, 479

functor space, 15
fundamental theorem of (∞, 1)-category

theory, 376

generalized element, 47
generic arrow, 68
geometric realization, 55, 482

half adjoint equivalence, 14, 511, 515, 526
homotopy

coherent, 64
commutative, 64
relation between 1-simplices, 6

homotopy 2-category, 32
homotopy category

of a quasi-category, 7
of a simplicial set, 6
of an∞-category, 37

homotopy coherent isomorphism, 8, 14, 511
homotopy colimit, 481
homotopy equivalence as equivalence, 20
homotopy limit, 481
horizontal composition, 422
horn, 4

inclusion, 496
inner -, 4
left, right, or inner -, 496
special outer -, 8, 9

hypercube pullback lemma, 138

(∞, 1)-category
fundamental theorem of - theory, 376

(∞, 1)-core
of an∞-cosmos, 363

(∞, 1)-category
∞-cosmos of -, 26, 30, 303

∞-category, 15, 32

comma -, 76–82
oplax maps between -, 80
representable -, 82–92
strict maps between -, 77

discrete -, 26, 38
of arrows, 68
of diagrams, 50
of spaces

universal property, 296
pointed -, 120
stable, 127
stable -, 124

∞-cosmos, 15
1-category as an -, 536
2-category as an -, 537
accessible -, 538
cartesian closed -, 25
cosmologically embedded -, 198
dual -, 26, 27
flexible weighted limits, 191
full sub -, 188
functor of -, 28
homotopy 2-category of -, 32
in nature, 533, 535, 536
(∞, 1)-core of -, 363
of 1-complicial sets, 544
of co/cartesian fibrations, 206
of complete Segal spaces, 540
of discrete∞-categories, 188
of discrete co/cartesian fibrations, 208
of (∞, 1)-categories, 26, 30, 303

duality in -, 362
weakly cartesian closed, 309

of∞-categories with a terminal element, 199
of∞-categories with a zero element, 202
of∞-categories with an initial element, 202
of∞-categories with co/limits, 205
of isofibrations, 186
of Kan complexes, 19
of left adjoint right inverse adjunctions, 202,

204
of modules, 234
of 𝑛-complicial sets, 550
of 𝑛-quasi-categories, 545
of quasi-categories, 17
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of Rezk objects, 548
of right adjoint right inverse adjunctions,

202, 204
of Segal categories, 542
of stable∞-categories, 208
of𝚯𝑛-spaces, 546
of trivial fibrations, 188
of two-sided fibrations, 226–227
of two-sided isofibrations, 227
replete subcategory of -, 197
right proper, 74
simplicial model category as -, 538
sliced -, 24

∞-cosmos of (∞, 1)-categories, 26, 30, 303
duality in -, 362
weakly cartesian closed, 309

∞-functor, 15, 32
left representation, 82
right representation, 82

∞-groupoid
core, 363–365

∞-natural isomorphism, 33
∞-natural transformation, 32, 33
initial element, 47–49, 118

as a colimit, 53
as limit, 286
fibered -, 96
in a quasi-category, 553

initial functor, 60–62, 286, 287
injective model structure, 464
inner complicial fibration, 512
internal category, 425
internal vs external, 28
inverse category, 450

simple -, 338
inverse limit, 443

as an iso-tower, 196
iso-comma, 193

as a flexible weighted limit, 193
as a weak pullback, 194
cone, 194

iso-tower, 195
as a flexible weighted limit, 195
as a weak inverse limit, 196

isofibration

between quasi-categories, 9
as a complicial isofibration, 520

complicial -, 490
discrete -, 164
in a 2-category, 36
in an∞-cosmos, 15
∞-cosmos of -, 186
of categories, 18
preservation by cosmological functors, 28
stability, 15
two-sided -, 218

isomorphism
homotopy coherent -, 8, 14, 511
in a quasi-category, 7, 510–520
in an enriched category, 402
in an exponentiated quasi-category, 519

join, 108, 109, 493, 494
antisymmetry, 500
as a dependent product, 111
fat -, 107, 109, 497
of marked simplicial sets, 500
vs fat join, 498

Joyal model structure, 12

Kan complex, 4, 12, 517
∞-cosmos of -, 19
maximal sub - in a quasi-category, 8, 29
weak, see also quasi-category

Kan extension, see also extension
as adjoint to restriction, 386
existence, 385
pointwise -, 277–280

Kan fibration, 19
Ken Brown’s lemma, 447
kind in FOLDS, 338

latching
map, 471
object, 471
relative - map, 471

lax slice 2-category, 174
left adjoint, 40

preserves colimits, 58, 62
preserves weighted colimits, 291

left adjoint right inverse adjunction
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between quasi-categories, 557
∞-cosmos of -, 204

left comma cone, 82
left extension

in a 2-category, 266
of modules

as right hom, 382, 384
nonexistence of -, 267

stable under pasting, 278
left fibration, 564
left hom between modules, 382, 384
left lifting

in a 2-category, 266
of modules

nonexistence of -, 267
left lifting property, 454
left Quillen functor, 462
Leibniz

bifunctor, 459
construction, 457
cotensor, 457
exponential, 10
product, 457
property, 459
tensor, 457
two-variable adjunction, 460
why -, 501

lifting
in a 2-category, 266
of modules, 266

lifting diagram
absolute -, 51

lifting problem, 454
lifting property, 454

transpose, 456
limit, 284

as a right Kan extension, 112
as representation, 111
as terminal cone, 111
cone, 53
conical -, 408
enriched -, see also weighted limit
functor, 50
having all -, 372
in a cartesian closed∞-cosmos, 284

in a quasi-category, 556
in an∞-category, 50–57
model invariance, 309, 314
simplicially enriched -, 16
weighted -, 410–412

loops functor, 121
loops-suspension adjunction, 121, 127

mapping space, 532
in an∞-category, 80
is discrete, 80

marked anodyne extension, 490
marked homotopy, 492

equivalence, 492
marked simplex, 486

category, 486
marked simplicial set

entire inclusion of -, 486
𝑛-trivial -, 490
regular inclusion of -, 486

marking
maximal -, 486
minimal -, 486

matching
map, 451, 471
object, 451, 471
relative - map, 471

mates, 429
calculus of -, 430

maximal marking, 486
middle-four interchange, 422
minimal marking, 486
model category, 461

cartesian closed -, 464
enriched -, 464

model independence
formal language, 357

model structure, 461
Cisinski -, 548
injective -, 464
Joyal -, 12
projective -, 464
Reedy -, 479
Verity -, 492

modification, 428

588



module, 233
𝑛-ary map of -, 243
calculus of -, 237–239, 245, 246, 248, 382
compatible sequence of -, 243
composition, 249–258
contravariantly represented, 235
covariantly represented, 235
fibered map of -, 239
fiberwise equivalence, 376
∞-cosmos of -, 234
left and right homs, 382, 384
map of -, 240
model invariance, 309
representable -, 258–264, 371

model invariance, 309
restriction of -, 246
strong composite of -, 251
unit -, 246
virtual double category of -, 243
virtual equipment of -, 248
Yoneda lemma for -, 235

module map, 240
𝑛-ary, 243

𝑛-complicial set, 519, 550
∞-cosmos of -, 550

𝑛-core, 491
𝑛-coskeleton, 471, 473
𝑛-fold complete Segal space, 550
𝑛-quasi-category, 545

∞-cosmos of -, 545
𝑛-skeleton, 469, 471, 473
𝑛-trivial, 490
𝑛-arrow, 16
natural isomorphism, see∞-natural

isomorphism33
enriched -, 401
pointwise -, 367

natural marking, 511
natural transformation, see also∞-natural

transformation
enriched -, 400

horizontal composition, 401
object of -, 402
vertical composition, 401

fibrant -, 451
pseudo-, 316
quasi-pseudo -, 320

nerve
general - construction, 12
of a 1-category, 4

nullhomotopy, 124

odd dual, 491
𝜔-category

strict -, 490
op-dual, 424
opposite

∞-category, 361
quasi-category, 360
simplicial set, 360

ordinal sum, 493

𝑝-cartesian arrow, see also cartesian arrow
𝑝-cocartesian arrow, see also cocartesian arrow
pasting diagram, 423–424
path object, 27, 444
pointed∞-category, 120
pointwise extension, 277–280
pointwise isomorphism, 367
pointwise left extension

as weighted colimit, 290
colimit formula, 285

pointwise right extension
as weighted limit, 290
limit formula, 285

preserve co/limit, 58
product

2-, 34
as flexible weighted limit, 190
in an∞-category, 50

projective cell, 190
complex, 190

projective model structure, 464
pseudo-comma

2-category, 346
pseudofunctor, 315

quasi-categorically enriched -, 318
pseudonatural equivalence, 317, 327
pseudonatural transformation, 316

quasi-categorically enriched -, 320
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pullback, 113
as an absolute lifting diagram, 115
as an iso-comma, 194
equivalence invariance, 75
non-flexible, 190
square, 113
weak -, see also weakly cartesian
weak universal property, 73

pushout, 113
square, 113

quasi-categorical collage, 566
quasi-categorically enriched pseudofunctor, see

also quasi-pseudofunctor
quasi-category, 4

∞-cosmos of -, 17
as a 1-complicial set, 517
equivalence of -, 10
Kan complex core, 8, 29
model structure for -, 12
𝑛-, 545
naturally marked -, 8, 511

quasi-pseudofunctor, 318
biequivalence, 319

quasi-pseudonatural
equivalence, 322
transformation, 320

Quillen
adjunction, 462
bifunctor, 464
equivalence, 463
functor, 462
two-variable adjunction, 464

Reedy
factorization, 468
model structure, 479
weak factorization system, 476

Reedy category, 467
as a cell complex, 470

Reedy category theory
all in the weights, 471

Reedy structure, 467
reflect co/limit, 58
regular inclusion of marked simplicial sets, 486
relation symbol in FOLDS, 338

relative latching map, 471
relative matching map, 451, 471
replete, 197
representable functor

boundary of -, 470
enriched -, 403

representable module, 258–264, 371
restriction

of modules, 246
retract, 445
retract argument, 461
Rezk

isofibration, 548
object, 548

∞-cosmos of -, 548
weak equivalence, 548

right adjoint, 40
preserves limits, 58, 62
preserves weighted limits, 291

right adjoint right inverse adjunction, 87
between quasi-categories, 557
∞-cosmos of -, 204

right comma cone, 82
right extension

in a 2-category, 266
of modules, 266

as left hom, 382, 384
stable under pasting, 278

right fibration, 564
right hom between modules, 382, 384
right lifting

in a 2-category, 266
of modules, 266

right lifting property, 454
right proper, 74, 444
right Quillen functor, 462

satisfaction in FOLDS, 343
saturated complicial set, 511, 519, 550
Segal

category, 542
∞-cosmos of -, 542

𝑛-category, 551
object, 548
precategory, 542
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space, 539
complete -, 539

Segal category, 426
sentence in FOLDS, 343
shuffle, 503
simplex

admissible - , 487
standard -, 4

simplex category, 4
marked -, 486

simplicial category, 16
simplicial cotensor, 16
simplicial model category

as∞-cosmos, 538
simplicial object, 54

augmented -, 54
geometric realization of -, 55
in 𝒞𝑎𝑡, 16
split augmented -, 54

simplicial set, 4
augmented -, 493

terminally -, 494
exponential, 9
marked -, 486
underlying reflexive directed graph of -, 6
vs augmented, 494

simplicial sphere, 4
simplicially enriched category, see also

simplicial category
simplicially enriched limit, 16
slice, 108, 495

vs cones, 530
vs hom, 532

sliced∞-cosmos, 24
smothering

2-functor, 93
lifts adjunctions, 96
lifts equivalences, 94

functor, 65–68
sort in FOLDS, 341
span, 57, 113
spine of a simplex, 5
split fiber homotopy equivalence, 524
square, 113

exact -, 125

stable∞-category, 124, 127
∞-cosmos of -, 208
model invariance, 309

strict
𝜔-category, 490
complicial set, 490

strong composite of modules, 251
structure in FOLDS, 340
suspension functor, 121
symmetric monoidal category, 396

tensor, 405
as weighted colimit, 413
in an∞-category, 112
preservation -, 407

tensored enriched category, 405–407
terminal element, 47–49, 118

as a limit, 53
as colimit, 286
fibered -, 96
in a quasi-category, 553

terminal object
2-, 34

𝚯𝑛-space, 546
∞-cosmos of -, 546

thin simplex, see also marked simplex
topological space as a quasi-category, 4
totalization, 55, 482
tower, 443
triangle, 124

exact -, 125
triangulated category, 133
trivial fibration

between quasi-categories, 11
in a category of fibrant objects, 444
in an∞-cosmos, 15
∞-cosmos of -, 188
of quasi-categories, 524
preservation by cosmological functors, 28
split fiber homotopy equivalence, 22
stability, 20

two-sided fibration, 221–226
cartesian functor, 224
∞-cosmos of -, 226–227
model invariance, 309
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represented, 230
Yoneda lemma, 230, 232

two-sided isofibration, 218
fibered map of -, 239
∞-cosmos of -, 227
map of -, 240

two-variable adjunction, 394
Leibniz -, 460
Quillen -, 464

underlying
category, 397
quasi-category, 28
set, 395
space, 173

unit, 429
as universal arrow, 371
of an adjunction, 40
universal property of -, 105

unit module, 246

𝒱-, see also enriched -
variable in FOLDS, 341

compatible family, 341
depends on, 341

Verity model structure, 492
vertical composition, 422
virtual double category, 241

FOLDS signature, 348
of modules, 243

virtual equipment, 248
FOLDS signature, 350
homs, 384
of modules, 248

weak equivalence
in a category of fibrant objects, 444
in a model category, 461

weak factorization system, 455
adjunction of -, 456

weakly cartesian, 74
weakly cocartesian cell, 257
weighted

co/limit, 410, 411
limit and colimit, 412

weighted colimit
as a Quillen bifunctor, 465
as left extension, 291
by a module, 289
model invariance, 314

weighted limit
as a Quillen bifunctor, 465
as right extension, 291
by a module, 289
model invariance, 314

whiskering, 422

Yoneda lemma, 174
bicategorical -, 442
dependent -, 173
discrete -, 173
enriched -, 402
for modules, 235
generalized -, 181
two-sided -, 230

one-sided form of -, 232

zero element, 120
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