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Plan |

Goal: prove a x (b+ ¢) = (a x b) + (a x ¢) for any natural numbers
a, b, and c. by taking a tour of some deep ideas from category theory.

Step |: categorification

Step 2: the Yoneda lemma

Step 3: representability

Step 4: the proof

Epilogue: what was the point of that?
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Step |: categorification



The idea of categorification

The first step is to understand the equation
ax(b+c)=(axb)+ (axc)

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

ax((b+c)=(axb)+(axc)?

Q: What is the role of the natural numbers a, b, and ¢?




Categorifying natural numbers |

Q: What is the role of the natural numbers a, b, and ¢? J

A: Natural numbers define the cardinalities, or sizes, of finite sets.

Natural numbers «, b, and ¢ encode the sizes of finite sets A, B, and C.
a=]4, b=|B, c=|q. J




Categorifying equality 4

Natural numbers «, b, and ¢ encode the sizes of finite sets A, B, and C.
a=]4, b=|B, c=|q. }

Q: What is true of A and Bifa = b?

A:ra = bifand only if A and B are isomorphic, which means there exist
functions f: A — Band g: B — A that are inverses in the sense that
go f=idand fo g =id. Inthis case, we write A = B,

Fora:=|A|and b:=|B,
the equation a = b asserts the existence of an isomorphism A = B. J

Eugenia Cheng: "All equations are lies.”

Categorification: the truth behind a = bis A = B.



Categorification progress report 4

Q: What is the deeper meaning of the equation

ax (b+c)=(axb)+(axec)?

The story so far:

® The natural numbers a, b, and ¢ encode the sizes of finite sets A, B,
and Ct
a:=|A], b:=|B], c:=|C|.

® The equation “=" asserts the existence of an isomorphism "=".

Q: What is the deeper meaning of the symbols “+" and "“x"?




Categorifying + é

Q:If b:=|B| and ¢ := |C| what set has b + ¢ elements?

A: The disjoint union B + C'is a set with b + ¢ elements.




Categorifying x

Q:lfa:=|A] and b := | B| what set has a x b elements?

A: The cartesian product A x B'is a set with a x b elements.

f (%,
A={x* *}, B:{b}, AxB:{(*,b)
b (%, 5)




Categorifying cardinal arithmetic '

In summary:
® Natural numbers define cardinalities: there are sets A, B, and C'so
that a := |A|, b:=|B|, and ¢ := |C].
® The equation a = b encodes an isomorphism A = B.
® The disjoint union B + C'is a set with b + ¢ elements.
® The cartesian product A x Bis a set with a x b elements.

Q: What is the deeper meaning of the equation

ax (b+c)=(axb)+(axc)?

A It means that the sets A x (B + C) and (A x B) + (A x C) are
isomorphic!

Ax (B+C)=(AxB)+ (AxC(C)



Summary of Step | .
Q: What is the deeper meaning of the equation

ax(b+c)=(axb)+(axc)?
A:Thesets A x (B+ C') and (A x B) + (A x C) are isomorphic!

B
:’ : (5,8) (x,0) (x,84) (x,Q)

) (<*’i)) (ii)) ~ (,0) (50) (%)
(*Z@) (*:Q?) T ) (b)) (k.8 (%,9)
(*70) (*,<>) (*7h> (*7<>) (*,*)

L (x, ) (x,é)

R

Ax (B+(C) = (Ax B)+ (AxC)

By categorification:

Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
~» we'll instead show that A x (B4 C) = (A x B) + (A x C)J

~—
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Step 2: the Yoneda lemma



The Yoneda lemma ‘

The Yoneda lemma. Two sets A and B are isomorphic if and only if

e for all sets X, the sets of functions
Fun(A,X):={h: A— X} and Fun(B,X):={k: B— X}

are isomorphic and moreover

® the isomorphisms Fun(A, X) = Fun(B, X)) are “natural” in the
sense of commuting with composition with any function £: X — Y.

<
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Proof of the Yoneda lemma

The Yoneda lemma. A and B are isomorphic if and only if for any X the
sets of functions Fun(A, X) and Fun(B, X') are “naturally” isomorphic. J

Proof («): Suppose Fun(A, X) = Fun(B, X) for all X. Taking X = A
and X = B, we use the bijections:

W w W W
— g fe———1idp

Fun(A,A) = Fun(B,A) Fun(A,B) = Fun(B,B)

to define functions g: B — A and f: A — B. By naturality:

idy r g
S
Fun(4, 4)=Fun(B, A and S|m||ar|>/
fo=l Lo =idy. -
Fun(A, B)=Fun(B, B)

2
fi iy = f




Summary of Steps | and 2 ‘

By categorification:

Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
~» we'll instead show that A X (B+ C) = (A x B) + (A x C). J

By the Yoneda lemma:

Step 2 summary: Toprove A X (B+C) = (A x B)+ (A x C)
» we'll instead define a “natural” isomorphism
Fun(Ax (B+C),X) =2Fun((A x B)+ (A x O), X).
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Step 3: representability



The universal property of the disjoint union ‘

Q: Forsets B, C, and X, what is Fun(B + C, X)?
Q: What is needed to define a function f: B+ C — X?

A: For each b € B, we need to specify f(b) € X, and for each ¢ € C,
we need to specify f(c) € X. So the function f: B+ C — X'is
determined by two functions fgz: B — X and fo: C' — X.

By “pairing”
Fun(B+C,X) = Fun(B,X) x Fun(C,X)
w

w
f e (fB?fC)




A universal property of the cartesian product ‘

Q: Forsets A, B, and X, what is Fun(A x B, X)?

Q: What is needed to define a function f: A x B — X?

A: Foreach b € B and a € A, we need to specify an element
f(a,b) € X. Thus, for each b € B, we need to specify a function

f(=,b): A — X sending ato f(a,b). So, altogether we need to
define a function f: B — Fun(A, X).

By “currying”

2

Fun(Ax B,X) = Fun(B,Fun(4,X))
w w
fiAxB—>X <« f:B—Fun(A4,X)




Summary of Steps I, 2, and 3 ‘

By categorification:

Step | summary: To prove a X (b+c¢) = (a X b) + (a X ¢)
~» we'll instead show that A x (B+ C) = (A x B) + (A x C). J

By the Yoneda lemma:

Step 2 summary: Toprove A x (B+C) = (Ax B)+ (A xC)
> we'll instead define a “natural” isomorphism
Fun(Ax (B+C),X) =2Fun((A x B) + (A x C), X).

By representability:

Step 3 summary:
® Fun(B+ C,X) = Fun(B, X) x Fun(C, X) by “pairing” and
® Fun(A x B, X) = Fun(B, Fun(A, X)) by “currying.”
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Step 4: the proof



The proof “

Theorem. For any natural numbers a, b, and ¢,
X (b+c¢)=(axb)+(axc). J

Proof: To prove a x (b+¢) = (a x b) + (a x ¢):
e pick sets A, B, and C'so that a := |A|, and b := |B|, and ¢ := |C]|
® andshowthat A x (B+C) = (A x B)+ (A x C).
® By the Yoneda lemma, this holds if and only if, “naturally,”
Fun(Ax (B+(C),X) =Fun((A x B)+ (A x O), X).
® Now
Fun(A x (B4C), X) = Fun(B 4 C,Fun(A, X)) by “currying”
= Fun(B, Fun(A, X)) x Fun(C,Fun(A, X)) by “pairing”
=~ Fun(A x B, X) x Fun(A4 x C, X)) by “currying”
=~ Fun((A x B) + (A x C), X) by “pairing.” O



O

Epilogue: what was the point of that!



Generalization to infinite cardinals “

Note we didn't actually need the sets A, B, and C to be finite.

Theorem. For any cardinals o, 3, 7,
a x (B+7) = (@x )+ (ax 7). J

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

adPr=af xa? and (aP)7 =7 = (o)



Generalization to other mathematical contexts “

In the discussion of representability or the Yoneda lemma, we didn't
need A, B, and C'to be sets at all!

Theorem.
® For vector spaces U, V, W,

U (VeW)=UV)s(UW).

® For nice topological spaces X, Y, Z,

Xx(YUZ) =(XxY)U(X x 2).

® For abelian groups A, B, C,
AR, (B®C) =2 (A®; B)® (A®,C).

Proof: The one we just gave.



The real point

The ideas of
® categorification (replacing equality by isomorphism),

® the Yoneda lemma (replacing isomorphism by natural
isomorphism),

® representability (characterizing maps to or from an object),

® |imits and colimits (like cartesian product and disjoint union), and
® adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!
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