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Note on technical details

• Anything in gray is a technical detail not relevant to this
particular topic

• Anything in orange I will only explain intuitively and
imprecisely due to time constraints.
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Outline

• Motivation: Understanding ARdisc.

• Statement of Results

• Background: Arthur’s Classification

• Background: Täıbi’s Inductive Analysis

• Tricks for computation

See ArXiv for details.
WARNING: This work depends on Arthur’s classification for
non-quasisplit unitary groups! This uses unpublished/unwritten
references
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What is an Automorphic Representation?

Modular Forms:

• Functions on upper-half plane symmetric space GL2R/O2R
• w/ symmetries translation by “arithmetic” lattice in GL2R

Automorphic Representations: generalize beyond GL2

• Exact generalization very non-obvious: black box for this talk

• Representations: notion of newform doesn’t generalize, analog
of space generated by newform
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Why do we care?

Just like modular forms:

• They have a lot of handles to grab onto when studying
• representation theory of reductive groups
• harmonic analysis

• They mysteriously encode information about so much else:
• Number Theory: Galois representations (Langlands

conjectures)
• Computer Science: expander graphs/higher-dimensional

expanders
• Differential Geometry: spectra of Laplacians on locally

symmetric spaces
• Combinatorics: identities for the partition function
• Finite Groups: representation theory of large sporadic simple

groups (moonshine)
• Mathematical Physics: representations of infinite-dimensional

Lie algebras, certain scattering amplitudes in string theory
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Black-Box Defintion

Definition
Let G be a reductive group over a number field F . A discrete
automorphic representation for G is an irreducible
subrepresentation of L2(G (F )\G (AF ), χ).

• Reductive group: algeberaic group with nice representation
theory (root and weight theory works).

• ex. GLn,SLn,Un,SOn,Spn.
• Non ex. Upper triangular matrices.

• L2: square-integrable functions as a unitary representation of
G (AF ) under right-translation.

•

AF =
∏′

places v

Fv

AQ = R×
∏′

primes p

Qv


• Intuition: Z is to R as F is to AF .

• subrepresentation: analysis issue—infinite-dimensional
representations can be direct integrals instead of direct sums

• discrete: There is a definition for non-discrete
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Perspective on Automorphic Representations

• What does G do?
• G∞: determines symmetric space G∞/K∞
• G∞: determines possible lattices Γ: “Levels”

• Factor into local components:

π =
⊗
v

′
πv , πv rep. of G (Fv )

• π∞: “qualitative type” of the representation: modular vs.
Maass, holomorphic, algebraic, cohomological.

• π∞: information analogous to level and Hecke eigenvalues



Motivation Results End. Class. Ind. Analysis Computation

Perspective cont.

Key Problem: Which combinations of πv actually produce an
automorphic representation?

• e.g. which combinations of Hecke eigenvalues do the modular
forms of weight k and level N have?

Most Basic Version: counts/statistics w/ local restrictions

• e.g. what fraction modular forms of weight k have Hecke
eigenvalue at p with norm bigger than something as level
N →∞?
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Complexity Ranking

Informal ranking of complexity based on qualitative type π∞:

• Discrete-at-∞: π∞ discrete inside L2(G (F∞)).

• Cohomological: π∞ regular, integral infinitesimal character

• Algebraic: π∞ integral infinitesimal character

• General: all π∞

Different application need different generality:

• Cohomology of locally symmetric spaces

• Galois Representations
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Example: Modular Forms

Fix G = GL2/Q
• Automorphic Representations on G ≈ classical modular and

Maass forms

• Discrete-at-∞: modular forms of weight ≥ 2

• Cohomological: add in the trivial rep, (there is more to add on
other groups)

• Algebraic: add in weight 1 modular and Maass forms

• General: add in other Maass forms
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Answering Key Question

How far can we go? Basic Version: use Arthur’s trace formula

• Discrete-at-∞: coarse info. [Art89], fine info. [Fer07].
• Need: orbital integrals, endoscopic transfers
• Exact counts: many, many results for low level on small rank
• Statistics: most powerful/general [ST16] coarse, [Dal22] fine

• Cohomological: inductive arg. w/ endoscopic class. [Täı17]
• Need: orbital integrals, endoscopic transfers, stable transfers
• Exact counts: [Täı17] +Chenevier, Renard, Täıbi at level-1
• Statistics: [MS19] + Marshall, Gerbelli-Gauthier upper bounds,

this work many exact asymptotics and more upper bounds

• Beyond: very hard—asymptotic counts not known even for
weight-1 modular forms :’(
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Classical Version

Consider:

• Symmetric space X = U(p, q)/(U(p)× U(q))

• A specific type of tower of arithmetic lattices · · · ⊆ Γ2 ⊆ Γ1

• hin := H i (Γn\X ,Vλ) = H i (g,K ; C∞(Γn\G (R))⊗ Vλ) as reps
of U(p, q).

Problem: Given π0 unirrep of G (R), understand asymptotics of
count of π0 ∈ hin weighted by arbitrary moment of Satake
parameters.

• Analogue: weight-2 modular forms in H1(Γ(N)) weighted by
power of Hecke eigenvalue

• Matsushima’s formula: translate to counting π ∈ ARdisc(G )
with π∞ = π0.
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Main Result

Theorem
Let E/F be an unram. CM-extension and G an unram. inner form
of UE/F (N). Fix π0 cohom. on G∞. Let n be an ideal of OF only
divisible by primes split in E/F and fS an unram. test function at
some set of places S not dividing n. Then for good π0

|n|−R(π0)Lπ0(n)−1
∑

π∈ARdisc(G)
π∞=π0

dim((π∞)K(n))trπS fS

= M(π0)µ
pl(π0)
S (fS) + O(|n|−CqA+Bκ(fS )

S ).

• There are some strong conditions: E/F , level, and π0

• Good π0: Explicit: combinatorial data classifying π0.
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Main Result Cont.

|n|−R(π0)Lπ0(n)−1
∑

π∈ARdisc(G)
π∞=π0

dim((π∞)K(n)) trπS fS

= M(π0)µ
pl(π0)
S (fS) + O(|n|−CqSA+Bκ(fS )).

• Asymptotic in n, S , fS

• n: Counting fixed vectors in aut. reps with component
π∞ = π0 (i.e. aut. forms of level n)

• fS : averaging a Satake parameter over these forms (e.g.
moment of Hecke eigenvalue)

• Constants: combo. param. of π0 , Plancherel equidistribution

• Constants: Inexplcit



Motivation Results End. Class. Ind. Analysis Computation

Example: parallel U(N − 1, 1)

Assume deg F/Q = d , G∞ ∼= U(N − 1, 1)d (if possible) π0
∼= πd

• Cohomological Reps of U(N − 1, 1) at inf. char of trivial:
• ordered partitions (a1, . . . , ak) of N
• one marked index 1 ≤ m ≤ k , ai = 1 for i 6= m.
• Discrete series: all ai = 1.

• “good” class: am is odd

• If π0 d.s. R(π0) = N2, M(π0) = 1. Otherwise:

R(π0) =
1

2
(N2 + (N − am)2 − a2

m) + 1

M(π0) =

{
N−d dim(πamλm−1)τ ′(G ) d even or m correct parity

0 d odd and m wrong parity

(πamλm−1 : f.d. rep. of GLN−am , λi : ith fundamental weight)

• Vary m: different masses, growth rates
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Main Result: other π0

Remove conditions =⇒ upper bound instead of exact asymptotic:

Theorem
Recall the setup for the main result except E/F can be ramified.
Let S0 be a set of places containing all the ramified ones and
disjoint from S and n. Let ϕS0 be a test function on GS0 . Then for
all π0:∑
π∈ARdisc(G)

π∞=π0

dim((π∞)K(ni )) trπS fS trπS0
ϕS0 = O(|ni |R(π0)q

A+Bκ(fS )
S1

).
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Corollaries

This gives us many corollaries:

• Sato-Tate equidistribution in families
• GL2 version: Hecke eigenvalues over all primes over all of

Sk(N) follow semicircle rule
• Prove: expectation from interpreting π with π∞ = π0 as

non-endoscopic functorial transfers from smaller group
depending on π0

• Sarnak density
• R(π0) achieves a certain bound depending on matrix coefficient

decay of π0, useful in analytic number theory applications
• Prove: for all cohomological π0 except a single rep. on U(2, 2)

• Growth rates of Hp,q of towers of locally symmetric spaces
• Exact asymptotics: e.g. every other degree for U(N, 1) with

certain towers of lattices
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Overview

Goal: Parametrize discrete automorphic representations for G in
terms of all automorphic representations on GLn.
=⇒ Known info on GLn gives info on G

• Moeglin-Waldspurger classification in terms of cuspidals

• Local Langlands

Stated in terms of two key concepts:

• Parameters: ψ: reps on GLn encoded in a way to emphasize
known info

• Packets: ψ 7→ Πψ: subsets of ARdisc(G ) with determined
structure of local components

G can be: SOn or Sp2n (Arthur), q-split UE/F (N) (Mok), General
unitary groups [KMSW14].
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Parameters

Some details:

Definition
An elliptic A-parameter for UE/F ,+(N) is a formal sum

ψ =
⊕
i

τi [di ]

where each τi is a conjugate self-dual cuspidal automorphic
representation of GLti/E and

∑
i tidi = N and each τi has the

appropriate parity.

• ψ determines local paramters ψv by LL + lots of work

ψv : LFv × SL2 → LUE/F (N) :
⊕
i

LL(τi ,v ) � [di ]
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Packets

Some details:

Theorem (KMSW classification)

Let G be an extended pure inner form of G ∗ = UE/F (N). To each
elliptic parameter ψ of UE/F (N), there is an associated packet

ΠG
ψ ⊆ ARdisc(G ) such that for any test function f on G (A):

trARdisc(G)(f ) =
∑

ψ∈Ψell(G∗)

Iψ(f ) :=
∑

ψ∈Ψell(G∗)

∑
π∈ΠG

ψ

trπ(f )

• Πψ is a subset of a restricted product of local packets Πψv

determined by a multiplicity formula
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Stable Multiplicity

Iψ: summands of Arthur’s Idisc→ Sψ: summands of Sdisc

• Stabilization: IGψ =
∑

H,ψH SH
ψH , H smaller endoscopic groups

Formula:
SH
ψ (f ) = εψCψ trψ(f )

• very difficult sign attached to ψ

• easy constant attached to ψ

• Stable trace
∑

π∈Πψ
± trπ(f ).

• related to trace of a rep πψ on some twisted GLn

• πψ explicitly described as Langlands quotient of πτi with very
complicated twist
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AJ-packets

We care about a special kind of packet at ∞:

• Parameters ψ∞ at ∞ have associated infinitesimal characters

• If the infinitesimal character is regular integral, then Ππ∞ is
an Adams-Johnson packet =⇒ explicit combinatorial
description of elements

• Exactly that packets that contain cohomological
representations

• Key property: for cohom. π0, there exists pseudocoefficient ϕ
such that among the π that share an A-packet with π0:

trπ ϕ = 1π=π0
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Shapes

The inductive analysis depends on a key definition:

Definition
The refined shape ∆ of A-parameter

ψ =
⊕
i

τi [di ]

is ∆ = (Ti , di , λi , ηi )i where

• Ti is the dimension of τi

• λi is the infinitesimal character of τi ,∞.

Key Property: ∆ determines ψ∞ among AJ-params if λi regular
integral
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Step 1: Induction Setup

Let ψi ,∞ be list of AJ-parameters such that π0 ∈ Πψi,∞ . Let ∆(π0)
be the set of ∆ that determine ψ∞ to be one of the ψi ,∞:∑

π∈ARdisc(G)
π∞=π0

trπ∞(f∞) =
∑

∆∈∆(π0)

I∆(ϕf∞)

where
I∆(f ) :=

∑
ψ∈∆

Iψ(f ) =
∑
ψ∈∆

∑
π∈Πψ

trπ(f )

• Stabilization + hyperendoscopy: Can switch freely between
I∆(ϕf∞),S∆(EPλf

∞) by adding lower order terms in ni

• Goal: Understand S∆(EPλf
∞) for shapes ∆.
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Induction: Base Case

What is the base case at the bottom?

• Arthur’s simple trace formula: Euler-Poincaré function EPλ

IH(EPλf
∞) =

∑
π∈ARdisc(H)

inf. char. π∞=λ

L(π∞) trπ∞(f∞)

(similar result holds for pseudocoefficient ϕ).

• Shin-Templier’s analysis: geometric expression for IH(EPλf
∞)

can be bounded very explicitly (error terms as in main
theorem)

• f∞ = 1K(ni )fS1 =⇒ trπ∞(f∞) = dim((π∞)K(ni )) trπS1
fS1 .

• Recall: we don’t care SH vs. IH
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The Induction: Heuristic Dream

Trivial Shape: Σλ,η = (T , 1, λ, η), cuspidal parameters on GLn:

SH
Σλ

(EPλf
∞) = SH(EPλf

∞)−
∑

∆ 6=Σλ
inf. char. ∆=λ

SH
∆(EPλf

∞)

• “Just” need to reduce SH
∆ to SHi

Σ for smaller Hi .

• Step 1: “Stable transfer” ε tr⊕
i τi [di ]

f =
∏

i trτi [di ] fi

• Step 2: “Speh transfer” trτi [di ] fi = trτi f
′
i

Total:

SH
(Ti ,di ,λi )i

(EPλf
∞) =

∏
i

SHi

(Ti ,1,λi )
(EPλi (f

∞)′i )
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The Induction: Reality

Stable transfer and Speh transfer are hard, open problems in
general :(

• Main work in analysis: Find an easy special case where you
can compute them!

• General idea: use relation to twisted representations on GLn

and Langlands quotients

• ∆max(π0): shapes with dominant-in-|ni | contribution, need
transfers computed exactly here

• The rest of ∆(π0): error term, only need upper bounds here.

• Rest of talk: explaining which easy special case we use
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The ε-sign: εψCψ trψ f

For upper bounds:

• If ψ has one summand, then εψ = 1 and the signs in trψ are
all +1.

• =⇒ if trπ∞(f∞) ≥ 0 always, can take absolute value and get
upper bound

tr⊕
i τi [di ]

f =
∏
i

trτi [di ] fi =⇒ SH⊕
i τi [di ]

(f ) ≤
∏
i

SHi

τi [di ]
(fi )

For exact computation:

• If all the di are odd, then εψ = 1.

• Restriction : ∆max(π0) can only have shapes with all di odd.
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Unramified Places: εψCψtrψ f

At places v where fv unramfied:

• Πψv has at most one unramified member πurψv
. This always has

coefficient +1 in trψv .

• =⇒ trψv fv = trπur
ψv

fv

• Its Satake parameters are determined explicitly by those of the
unramified members in Πτi,v .

=⇒ can compute stable and Speh transfers of fv dual to transfer
of Satake parameters through Satake isomorphism (analogy—full
fundamental lemma).
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Split Places: εψCψtrψ f

At split v , Gv
∼= GLN(F )

• Check: stable transfer = constant term (=end. trans.)

• Check: Πψv singleton: from πψv from before on GLN(E ).

Speh transfer upper bounds: If trπv (fv ) ≥ 0:

• Can bound trace aganst Langlands quotient trπτ [d ]
fv by trace

against parabolic induction

• =⇒ constant term integral upper bounds

Speh transfer exact computation

• If Ti = 1, then πτ [d ] is a character =⇒ Speh transfer is

integration against Gder.

• Restriction : ∆max(π0) can only have shapes where all
summands have either Ti = 1 or di = 1.
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Conclusion

These are the only cases we needed with our setup:

• f∞ is only ramified at split places

The “good” class of π0 becomes π0 such that for ∆ ∈ ∆max(π0)

• All summands have di odd

• All summands have Ti = 1 or di = 1

• There is a relatively simple equivalent combinatorial condition

Last Technicality: Need slightly stronger upper bounds of
Marshall-Shin for di = 2, 3 to get that those terms are truly errors
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