Applications of the Endoscopic Classification to Statistics of Cohomological Automorphic Representations on Unitary Groups

Rahul Dalal
(Joint work w/ Mathilde Gerbelli-Gauthier)

Johns Hopkins
April 5, 2023

Note on technical details

- Anything in gray is a technical detail not relevant to this particular topic
- Anything in orange I will only explain intuitively and imprecisely due to time constraints.

Outline

- Motivation: Understanding $\mathcal{A R}_{\text {disc }}$.
- Statement of Results
- Background: Arthur's Classification
- Background: Taïbi's Inductive Analysis
- Tricks for computation

See ArXiv for details.
WARNING: This work depends on Arthur's classification for non-quasisplit unitary groups! This uses unpublished/unwritten references

What is an Automorphic Representation?

Modular Forms:

- Functions on upper-half plane symmetric space $\mathrm{GL}_{2} \mathbb{R} / \mathrm{O}_{2} \mathbb{R}$
- $\mathrm{w} /$ symmetries translation by "arithmetic" lattice in $\mathrm{GL}_{2} \mathbb{R}$

Automorphic Representations: generalize beyond GL_{2}

- Exact generalization very non-obvious: black box for this talk
- Representations: notion of newform doesn't generalize, analog of space generated by newform

Why do we care?

Just like modular forms:

- They have a lot of handles to grab onto when studying
- representation theory of reductive groups
- harmonic analysis
- They mysteriously encode information about so much else:
- Number Theory: Galois representations (Langlands conjectures)
- Computer Science: expander graphs/higher-dimensional expanders
- Differential Geometry: spectra of Laplacians on locally symmetric spaces
- Combinatorics: identities for the partition function
- Finite Groups: representation theory of large sporadic simple groups (moonshine)
- Mathematical Physics: representations of infinite-dimensional Lie algebras, certain scattering amplitudes in string theory

Black-Box Defintion

Definition

Let G be a reductive group over a number field F. A discrete automorphic representation for G is an irreducible subrepresentation of $L^{2}\left(G(F) \backslash G\left(\mathbb{A}_{F}\right), \chi\right)$.

- Reductive group: algeberaic group with nice representation theory (root and weight theory works).
- ex. $\mathrm{GL}_{n}, \mathrm{SL}_{n}, \mathrm{U}_{n}, \mathrm{SO}_{n}, \mathrm{Sp}_{n}$.
- Non ex. Upper triangular matrices.
- L^{2} : square-integrable functions as a unitary representation of $G\left(\mathbb{A}_{F}\right)$ under right-translation.

$$
\mathbb{A}_{F}=\prod_{\text {places } v}^{\prime} F_{v} \quad\left(\mathbb{A}_{\mathbb{Q}}=\mathbb{R} \times \prod_{\text {primes } p}^{\prime} \mathbb{Q}_{v}\right)
$$

- Intuition: \mathbb{Z} is to \mathbb{R} as F is to \mathbb{A}_{F}.
- subrepresentation: analysis issue-infinite-dimensional

Perspective on Automorphic Representations

- What does G do?
- G_{∞} : determines symmetric space G_{∞} / K_{∞}
- G^{∞} : determines possible lattices Γ : "Levels"
- Factor into local components:

$$
\pi=\bigotimes_{v}^{\prime} \pi_{v}, \quad \pi_{v} \text { rep. of } G\left(F_{v}\right)
$$

- π_{∞} : "qualitative type" of the representation: modular vs. Maass, holomorphic, algebraic, cohomological.
- π^{∞} : information analogous to level and Hecke eigenvalues

Perspective cont.

Key Problem: Which combinations of π_{v} actually produce an automorphic representation?

- e.g. which combinations of Hecke eigenvalues do the modular forms of weight k and level N have?

Most Basic Version: counts/statistics w/ local restrictions

- e.g. what fraction modular forms of weight k have Hecke eigenvalue at p with norm bigger than something as level $N \rightarrow \infty$?

Complexity Ranking

Informal ranking of complexity based on qualitative type π_{∞} :

- Discrete-at- $\infty: \pi_{\infty}$ discrete inside $L^{2}\left(G\left(F_{\infty}\right)\right)$.
- Cohomological: π_{∞} regular, integral infinitesimal character
- Algebraic: π_{∞} integral infinitesimal character
- General: all π_{∞}

Different application need different generality:

- Cohomology of locally symmetric spaces
- Galois Representations

Example: Modular Forms

Fix $G=\mathrm{GL}_{2} / \mathbb{Q}$

- Automorphic Representations on $G \approx$ classical modular and Maass forms
- Discrete-at- ∞ : modular forms of weight ≥ 2
- Cohomological: add in the trivial rep, (there is more to add on other groups)
- Algebraic: add in weight 1 modular and Maass forms
- General: add in other Maass forms

Answering Key Question

How far can we go? Basic Version: use Arthur's trace formula

- Discrete-at- ∞ : coarse info. [Art89], fine info. [Fer07].
- Need: orbital integrals, endoscopic transfers
- Exact counts: many, many results for low level on small rank
- Statistics: most powerful/general [ST16] coarse, [Dal22] fine
- Cohomological: inductive arg. w/ endoscopic class. [Taï17]
- Need: orbital integrals, endoscopic transfers, stable transfers
- Exact counts: [Taï17] +Chenevier, Renard, Taïbi at level-1
- Statistics: [MS19] + Marshall, Gerbelli-Gauthier upper bounds, this work many exact asymptotics and more upper bounds
- Beyond: very hard—asymptotic counts not known even for weight-1 modular forms :'(

Classical Version

Consider:

- Symmetric space $X=U(p, q) /(U(p) \times U(q))$
- A specific type of tower of arithmetic lattices $\cdots \subseteq \Gamma_{2} \subseteq \Gamma_{1}$
- $h_{n}^{i}:=H^{i}\left(\Gamma_{n} \backslash X, V_{\lambda}\right)=H^{i}\left(\mathfrak{g}, K_{;} \mathcal{C}^{\infty}\left(\Gamma_{n} \backslash G(\mathbb{R})\right) \otimes V_{\lambda}\right)$ as reps of $U(p, q)$.
Problem: Given π_{0} unirrep of $G(R)$, understand asymptotics of count of $\pi_{0} \in h_{n}^{i}$ weighted by arbitrary moment of Satake parameters.
- Analogue: weight-2 modular forms in $H^{1}(\Gamma(N))$ weighted by power of Hecke eigenvalue
- Matsushima's formula: translate to counting $\pi \in \mathcal{A R}_{\text {disc }}(G)$ with $\pi_{\infty}=\pi_{0}$.

Main Result

Theorem

Let E / F be an unram. CM-extension and G an unram. inner form of $U_{E / F}(N)$. Fix π_{0} cohom. on G_{∞}. Let \mathfrak{n} be an ideal of \mathcal{O}_{F} only divisible by primes split in E / F and f_{S} an unram. test function at some set of places S not dividing \mathfrak{n}. Then for good π_{0}

$$
\begin{aligned}
|\mathfrak{n}|^{-R\left(\pi_{0}\right)} L_{\pi_{0}}(\mathfrak{n})^{-1} & \sum_{\substack{\pi \in \mathcal{A} \mathcal{R}_{\text {disc }}(G) \\
\pi_{\infty}=\pi_{0}}} \operatorname{dim}\left(\left(\pi^{\infty}\right)^{K(\mathfrak{n})}\right) \operatorname{tr}_{\pi_{S}} f_{S} \\
& =M\left(\pi_{0}\right) \mu_{S}^{\mathrm{pl}\left(\pi_{0}\right)}\left(f_{S}\right)+O\left(|\mathfrak{n}|^{-C} q_{S}^{A+B \kappa\left(f_{S}\right)}\right)
\end{aligned}
$$

- There are some strong conditions: E / F, level, and π_{0}
- Good π_{0} : Explicit: combinatorial data classifying π_{0}.

Main Result Cont.

$$
\left.\begin{array}{rl}
|\mathfrak{n}|^{-R\left(\pi_{0}\right)} L_{\pi_{0}}(\mathfrak{n})^{-1} & \sum_{\substack{\pi \in \mathcal{A} \mathcal{R}_{\text {disc }}(G) \\
\pi_{\infty}=\pi_{0}}} \operatorname{dim}\left(\left(\pi^{\infty}\right)^{K(\mathfrak{n})}\right) \operatorname{tr}_{\pi_{S}} f_{S} \\
& =M\left(\pi_{0}\right) \mu_{S}^{\mathrm{pl}\left(\pi_{0}\right)}\left(f_{S}\right)+O\left(|\mathfrak{n}|^{-C} q_{S} A+B \kappa\left(f_{S}\right)\right.
\end{array}\right)
$$

- Asymptotic in \mathfrak{n}, S, f_{S}
- \mathfrak{n} : Counting fixed vectors in aut. reps with component $\pi_{\infty}=\pi_{0}$ (i.e. aut. forms of level \mathfrak{n})
- f_{S} : averaging a Satake parameter over these forms (e.g. moment of Hecke eigenvalue)
- Constants: combo. param. of π_{0}, Plancherel equidistribution
- Constants: Inexplcit

Example: parallel $U(N-1,1)$

Assume $\operatorname{deg} F / \mathbb{Q}=d, G_{\infty} \cong U(N-1,1)^{d}$ (if possible) $\pi_{0} \cong \pi^{d}$

- Cohomological Reps of $U(N-1,1)$ at inf. char of trivial:
- ordered partitions $\left(a_{1}, \ldots, a_{k}\right)$ of N
- one marked index $1 \leq m \leq k, a_{i}=1$ for $i \neq m$.
- Discrete series: all $a_{i}=1$.
- "good" class: a_{m} is odd
- If π_{0} d.s. $R\left(\pi_{0}\right)=N^{2}, M\left(\pi_{0}\right)=1$. Otherwise:
$R\left(\pi_{0}\right)=\frac{1}{2}\left(N^{2}+\left(N-a_{m}\right)^{2}-a_{m}^{2}\right)+1$
$M\left(\pi_{0}\right)= \begin{cases}N^{-d} \operatorname{dim}\left(\pi_{a_{m} \lambda_{m-1}}\right) \tau^{\prime}(G) & d \text { even or } m \text { correct parity } \\ 0 & d \text { odd and } m \text { wrong parity }\end{cases}$
($\pi_{a_{m} \lambda_{m-1}}$: f.d. rep. of $\mathrm{GL}_{N-a_{m}}, \lambda_{i}$: ith fundamental weight)
- Vary m: different masses, growth rates

Main Result: other π_{0}

Remove conditions \Longrightarrow upper bound instead of exact asymptotic:
Theorem
Recall the setup for the main result except E / F can be ramified. Let S_{0} be a set of places containing all the ramified ones and disjoint from S and \mathfrak{n}. Let $\varphi_{S_{0}}$ be a test function on $G_{S_{0}}$. Then for all π_{0} :
$\sum_{\substack{\pi \in \mathcal{A} \mathcal{R}_{\text {discc }}(G) \\ \pi_{\infty}=\pi_{0}}} \operatorname{dim}\left(\left(\pi^{\infty}\right)^{K\left(\mathfrak{n}_{i}\right)}\right) \operatorname{tr}_{\pi_{S}} f_{S} \operatorname{tr}_{\pi_{S_{0}}} \varphi_{S_{0}}=O\left(\left|\mathfrak{n}_{i}\right|^{R\left(\pi_{0}\right)} q_{S_{1}}^{A+B \kappa\left(f_{S}\right)}\right)$.

Corollaries

This gives us many corollaries:

- Sato-Tate equidistribution in families
- GL_{2} version: Hecke eigenvalues over all primes over all of $S_{k}(N)$ follow semicircle rule
- Prove: expectation from interpreting π with $\pi_{\infty}=\pi_{0}$ as non-endoscopic functorial transfers from smaller group depending on π_{0}
- Sarnak density
- $R\left(\pi_{0}\right)$ achieves a certain bound depending on matrix coefficient decay of π_{0}, useful in analytic number theory applications
- Prove: for all cohomological π_{0} except a single rep. on $U(2,2)$
- Growth rates of $H^{p, q}$ of towers of locally symmetric spaces
- Exact asymptotics: e.g. every other degree for $U(N, 1)$ with certain towers of lattices

Overview

Goal: Parametrize discrete automorphic representations for G in terms of all automorphic representations on GL_{n}.
\Longrightarrow Known info on GL_{n} gives info on G

- Moeglin-Waldspurger classification in terms of cuspidals
- Local Langlands

Stated in terms of two key concepts:

- Parameters: ψ : reps on GL_{n} encoded in a way to emphasize known info
- Packets: $\psi \mapsto \Pi_{\psi}$: subsets of $\mathcal{A R}_{\text {disc }}(G)$ with determined structure of local components
G can be: SO_{n} or $\mathrm{Sp}_{2 n}$ (Arthur), q-split $U_{E / F}(N)$ (Mok), General unitary groups [KMSW14].

Parameters

Some details:
Definition
An elliptic A-parameter for $U_{E / F,+}(N)$ is a formal sum

$$
\psi=\bigoplus_{i} \tau_{i}\left[d_{i}\right]
$$

where each τ_{i} is a conjugate self-dual cuspidal automorphic representation of $\mathrm{GL}_{t_{i}} / E$ and $\sum_{i} t_{i} d_{i}=N$ and each τ_{i} has the appropriate parity.

- ψ determines local paramters ψ_{v} by $\operatorname{LL}+$ lots of work

$$
\psi_{v}: L_{F_{v}} \times \mathrm{SL}_{2} \rightarrow{ }^{L} U_{E / F}(N): \bigoplus_{i} L L\left(\tau_{i, v}\right) \boxtimes\left[d_{i}\right]
$$

Packets

Some details:
Theorem (KMSW classification)
Let G be an extended pure inner form of $G^{*}=U_{E / F}(N)$. To each elliptic parameter ψ of $U_{E / F}(N)$, there is an associated packet $\Pi_{\psi}^{G} \subseteq \mathcal{A} \mathcal{R}_{\text {disc }}(G)$ such that for any test function f on $G(\mathbb{A})$:

$$
\operatorname{tr}_{\mathcal{A} \mathcal{R}_{\mathrm{disc}}(G)}(f)=\sum_{\psi \in \Psi_{\mathrm{ell}}\left(G^{*}\right)} I_{\psi}(f):=\sum_{\psi \in \Psi_{\mathrm{ell}}\left(G^{*}\right)} \sum_{\pi \in \Pi_{\psi}^{G}} \operatorname{tr}_{\pi}(f)
$$

- Π_{ψ} is a subset of a restricted product of local packets $\Pi_{\psi_{v}}$ determined by a multiplicity formula

Stable Multiplicity

I_{ψ} : summands of Arthur's $I_{\text {disc }} \rightarrow S_{\psi}$: summands of $S_{\text {disc }}$

- Stabilization: $I_{\psi}^{G}=\sum_{H, \psi^{H}} S_{\psi^{H}}^{H}, H$ smaller endoscopic groups

Formula:

$$
S_{\psi}^{H}(f)=\epsilon_{\psi} C_{\psi} \operatorname{tr}_{\psi}(f)
$$

- very difficult sign attached to ψ
- easy constant attached to ψ
- Stable trace $\sum_{\pi \in \Pi_{\psi}} \pm \operatorname{tr}_{\pi}(f)$.
- related to trace of a rep π_{ψ} on some twisted GL_{n}
- π_{ψ} explicitly described as Langlands quotient of $\pi_{\tau_{i}}$ with very complicated twist

AJ-packets

We care about a special kind of packet at ∞ :

- Parameters ψ_{∞} at ∞ have associated infinitesimal characters
- If the infinitesimal character is regular integral, then $\Pi_{\pi_{\infty}}$ is an Adams-Johnson packet \Longrightarrow explicit combinatorial description of elements
- Exactly that packets that contain cohomological representations
- Key property: for cohom. π_{0}, there exists pseudocoefficient φ such that among the π that share an A-packet with π_{0} :

$$
\operatorname{tr}_{\pi} \varphi=\mathbf{1}_{\pi=\pi_{0}}
$$

Shapes

The inductive analysis depends on a key definition:
Definition
The refined shape Δ of A-parameter

$$
\psi=\bigoplus_{i} \tau_{i}\left[d_{i}\right]
$$

is $\Delta=\left(T_{i}, d_{i}, \lambda_{i}, \eta_{i}\right)_{i}$ where

- T_{i} is the dimension of τ_{i}
- λ_{i} is the infinitesimal character of $\tau_{i, \infty}$.

Key Property: Δ determines ψ_{∞} among AJ-params if λ_{i} regular integral

Step 1: Induction Setup

Let $\psi_{i, \infty}$ be list of AJ-parameters such that $\pi_{0} \in \Pi_{\psi_{i, \infty}}$. Let $\Delta\left(\pi_{0}\right)$ be the set of Δ that determine ψ_{∞} to be one of the $\psi_{i, \infty}$:

$$
\sum_{\substack{\pi \in \mathcal{A} \mathcal{R}_{\text {disc }}(G) \\ \pi_{\infty}=\pi_{0}}} \operatorname{tr}_{\pi} \infty\left(f^{\infty}\right)=\sum_{\Delta \in \Delta\left(\pi_{0}\right)} I_{\Delta}\left(\varphi f^{\infty}\right)
$$

where

$$
I_{\Delta}(f):=\sum_{\psi \in \Delta} I_{\psi}(f)=\sum_{\psi \in \Delta} \sum_{\pi \in \Pi_{\psi}} \operatorname{tr}_{\pi}(f)
$$

- Stabilization + hyperendoscopy: Can switch freely between $I_{\Delta}\left(\varphi f^{\infty}\right), S_{\Delta}\left(E P_{\lambda} f^{\infty}\right)$ by adding lower order terms in \mathfrak{n}_{i}
- Goal: Understand $S_{\Delta}\left(E P_{\lambda} f^{\infty}\right)$ for shapes Δ.

Induction: Base Case

What is the base case at the bottom?

- Arthur's simple trace formula: Euler-Poincaré function EP_{λ}

$$
I^{H}\left(\mathrm{EP}_{\lambda} f^{\infty}\right)=\sum_{\begin{array}{c}
\pi \in \mathcal{A R} \mathcal{R}_{\text {disc }}(H) \\
\text { inf. char. } \pi_{\infty}=\lambda
\end{array}} \mathcal{L}\left(\pi_{\infty}\right) \operatorname{tr}_{\pi^{\infty}}\left(f^{\infty}\right)
$$

(similar result holds for pseudocoefficient φ).

- Shin-Templier's analysis: geometric expression for $I^{H}\left(\mathrm{EP}_{\lambda} f^{\infty}\right)$
can be bounded very explicitly (error terms as in main theorem)
- $f^{\infty}=\mathbf{1}_{K\left(\mathfrak{n}_{i}\right)} f_{S_{1}} \Longrightarrow \operatorname{tr}_{\pi^{\infty}}\left(f^{\infty}\right)=\operatorname{dim}\left(\left(\pi^{\infty}\right)^{K\left(\mathfrak{n}_{i}\right)}\right) \operatorname{tr}_{\pi_{S_{1}}} f_{S_{1}}$.
- Recall: we don't care S^{H} vs. I^{H}

The Induction: Heuristic Dream

Trivial Shape: $\Sigma_{\lambda, \eta}=(T, 1, \lambda, \eta)$, cuspidal parameters on GL_{n} :

$$
S_{\Sigma_{\lambda}}^{H}\left(E P_{\lambda} f^{\infty}\right)=S^{H}\left(E P_{\lambda} f^{\infty}\right)-\sum_{\substack{\Delta \neq \Sigma_{\lambda} \\ \text { inf. char. } \Delta=\lambda}} S_{\Delta}^{H}\left(E P_{\lambda} f^{\infty}\right)
$$

- "Just" need to reduce S_{Δ}^{H} to $S_{\Sigma}^{H_{i}}$ for smaller H_{i}.
- Step 1: "Stable transfer" $\epsilon \operatorname{tr}_{\oplus_{i} \tau_{i}\left[d_{i}\right]} f=\prod_{i} \operatorname{tr}_{\tau_{i}\left[d_{i}\right]} f_{i}$
- Step 2: "Speh transfer" $\operatorname{tr}_{\tau_{i}\left[d_{i}\right]} f_{i}=\operatorname{tr}_{\tau_{i}} f_{i}^{\prime}$

Total:

$$
S_{\left(T_{i}, d_{i}, \lambda_{i}\right)_{i}}^{H}\left(E P_{\lambda} f^{\infty}\right)=\prod_{i} S_{\left(T_{i}, 1, \lambda_{i}\right)}^{H_{i}}\left(E P_{\lambda_{i}}\left(f^{\infty}\right)_{i}^{\prime}\right)
$$

The Induction: Reality

Stable transfer and Speh transfer are hard, open problems in general :(

- Main work in analysis: Find an easy special case where you can compute them!
- General idea: use relation to twisted representations on GL_{n} and Langlands quotients
- $\Delta^{\max }\left(\pi_{0}\right)$: shapes with dominant-in- $\left|\mathfrak{n}_{i}\right|$ contribution, need transfers computed exactly here
- The rest of $\Delta\left(\pi_{0}\right)$: error term, only need upper bounds here.
- Rest of talk: explaining which easy special case we use

The ϵ-sign: $\epsilon_{\psi} C_{\psi} \operatorname{tr}_{\psi} f$

For upper bounds:

- If ψ has one summand, then $\epsilon_{\psi}=1$ and the signs in tr_{ψ} are all +1 .
- \Longrightarrow if $\operatorname{tr}_{\pi^{\infty}}\left(f^{\infty}\right) \geq 0$ always, can take absolute value and get upper bound

$$
\operatorname{tr}_{\oplus_{i} \tau_{i}\left[d_{i}\right]} f=\prod_{i} \operatorname{tr}_{\tau_{i}\left[d_{i}\right]} f_{i} \Longrightarrow S_{\oplus_{i} \tau_{i}\left[d_{i}\right]}(f) \leq \prod_{i} S_{\tau_{i}\left[d_{i}\right]}^{H_{i}}\left(f_{i}\right)
$$

For exact computation:

- If all the d_{i} are odd, then $\epsilon_{\psi}=1$.
- Restriction : $\Delta^{\max }\left(\pi_{0}\right)$ can only have shapes with all d_{i} odd.

Unramified Places: $\epsilon_{\psi} C_{\psi} \operatorname{tr}_{\psi} f$

At places v where f_{v} unramfied:

- $\Pi_{\psi_{v}}$ has at most one unramified member $\pi_{\psi_{v}}^{\mathrm{ur}}$. This always has coefficient +1 in $\operatorname{tr}_{\psi_{v}}$.
- $\Longrightarrow \operatorname{tr}_{\psi_{v}} f_{v}=\operatorname{tr}_{\pi_{\psi_{v}}^{\mathrm{ur}}} f_{v}$
- Its Satake parameters are determined explicitly by those of the unramified members in $\Pi_{\tau_{i, v}}$.
\Longrightarrow can compute stable and Speh transfers of f_{V} dual to transfer of Satake parameters through Satake isomorphism (analogy-full fundamental lemma).

Split Places: $\epsilon_{\psi} C_{\psi} \operatorname{tr}_{\psi} f$

At split $v, G_{v} \cong \mathrm{GL}_{N}(F)$

- Check: stable transfer $=$ constant term (=end. trans.)
- Check: $\Pi_{\psi_{v}}$ singleton: from $\pi_{\psi_{v}}$ from before on $\mathrm{GL}_{N}(E)$.

Speh transfer upper bounds: If $\operatorname{tr}_{\pi_{v}}\left(f_{v}\right) \geq 0$:

- Can bound trace aganst Langlands quotient $\operatorname{tr}_{\pi_{\tau[d]}} f_{v}$ by trace against parabolic induction
- \Longrightarrow constant term integral upper bounds

Speh transfer exact computation

- If $T_{i}=1$, then $\pi_{\tau[d]}$ is a character \Longrightarrow Speh transfer is integration against $G^{\text {der }}$.
- Restriction : $\Delta^{\max }\left(\pi_{0}\right)$ can only have shapes where all summands have either $T_{i}=1$ or $d_{i}=1$.

Conclusion

These are the only cases we needed with our setup:

- f^{∞} is only ramified at split places

The "good" class of π_{0} becomes π_{0} such that for $\Delta \in \Delta^{\max }\left(\pi_{0}\right)$

- All summands have d_{i} odd
- All summands have $T_{i}=1$ or $d_{i}=1$
- There is a relatively simple equivalent combinatorial condition

Last Technicality: Need slightly stronger upper bounds of
Marshall-Shin for $d_{i}=2,3$ to get that those terms are truly errors

Papers Mentioned

James Arthur, The L²-Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257-290. MR 1001841

Rahul Dalal, Sato-Tate equidistribution for families of automorphic representations through the stable trace formula, Algebra Number Theory 16 (2022), no. 1, 59-137. MR 4384564

Axel Ferrari, Théorème de l'indice et formule des traces, Manuscripta Math. 124 (2007), no. 3, 363-390. MR 2350551

Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James White, Endoscopic classification of representations: inner forms of unitary groups, arXiv preprint arXiv:1409.3731 (2014).

Simon Marshall and Sug Woo Shin, Endoscopy and cohomology in a tower of congruence manifolds for $U(n, 1)$, Forum Math. Sigma 7 (2019), e19, 46. MR 3981603

Sug Woo Shin and Nicolas Templier, Sato-Tate theorem for families and low-lying zeros of automorphic L-functions, Invent. Math. 203 (2016), no. 1, 1-177, Appendix A by Robert Kottwitz, and Appendix B by Raf Cluckers, Julia Gordon and Immanuel Halupczok. MR 3437869

Olivier Taïbi, Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 269-344. MR 3621432

Contact info: dalal@jhu.edu

