Automorphic Representations Trace Formulas TF w/ discrete series at ∞ Previous Results New Work 0000 000 000 000 000 000 000
--

Statistics of automorphic representations through simplified trace formulas

Rahul Dalal

UC Berkeley

December 3, 2020

Trace Formula

TF w/ discrete series at ∞ 000

Previous Result

New Work

Note on technical details

This subject has a lot of details that are distractions at the level of a 45 minute talk. Therefore,

- Feel free to ignore anything in gray if you aren't familiar with the subject.
- Anything in orange will be explained only intuitively and imprecisely.

Automorphic Representations Trace Formulas TF w/ discrete series at ∞ Previous Results New W 0000 0000 <	
--	--

Outline

- Background: Automorphic Representations
- Background: Trace Formulas
- Background: Simple Trace Formula
- Results of Shin-Templier
- New Work

Trace Formu

TF w/ discrete series at ∞ 000

Previous Result

New Work

Unmotivated Defintion

Definition

Let G be a reductive group over a number field F. A discrete automorphic representation for G is an irreducible subrepresentation of $L^2(G(F)\setminus G(\mathbb{A}_F),\chi)$.

- Reductive group: algeberaic group with nice representation theory (root and weight theory works).
 - ex. $\operatorname{GL}_n, \operatorname{SL}_n, \operatorname{U}_n, \operatorname{SO}_n, \operatorname{Sp}_n$.
 - Non ex. Upper triangular matrices.
- L^2 : square-integrable functions as a unitary representation of $G(\mathbb{A}_F)$ under right-translation.
- subrepresentation: analysis issue—infinite-dimensional representations can be direct integrals instead of direct sums
- discrete: There is a definition for non-discrete

Automorphic Representations	Trace Formulas	TF w/ discrete series at ∞	Previous Res
0000	0000	000	000

Motivation

Why do we care about such bizarre objects?

- They have a lot of handles to grab onto when studying
 - representation theory of reductive groups
 - Fourier analysis
- They mysteriously encode information about so much else:
 - Number Theory: Galois representations (Langlands conjectures)
 - Computer Science: expander graphs/higher-dimensional expanders
 - Differential Geometry: spectra of Laplacians on locally symmetric spaces
 - Combinatorics: identities for the partition function
 - Finite Groups: representation theory of large sporadic simple groups (moonshine)
 - Mathematical Physics: Scattering amplitudes in string theory, black hole partition functions

Automorphic Representations	Trace Formulas 0000	TF w/ discrete series at ∞ 000	Previous Results	New Work 0000000 0	
Example					

If $G=\mathrm{GL}_2/\mathbb{Q}$

{aut. reps. for G} \approx {new, eigen modular/Maass forms}

- This is NOT obvious
- Key step: If K^{∞} is a maximal compact subgroup at the finite places,

 $\mathrm{GL}_2(\mathbb{Q})\mathbb{R}^{\times}\backslash\mathrm{GL}_2(\mathbb{A})/\mathrm{SO}_2(\mathbb{R}){\mathcal K}^{\infty}=\Gamma_{{\mathcal K}^{\infty}}\backslash{\mathcal H}$

where $\Gamma_{\mathcal{K}^\infty}$ is some arithmetic subgroup of ${\rm SL}_2\mathbb{R}$ and $\mathcal H$ is upper-half plane

Trace Formul

TF w/ discrete series at ∞ 000

Previous Result

New Work

Flath Decomposition

Theorem

Let π be an automorphic representation for group G/F. Then π factors over places v of F:

$$\pi = \widehat{\bigotimes}' \pi_{\mathbf{v}}$$

where each π_v is an admissible, unitary representation of $G(F_v)$. For $G = GL_2/\mathbb{Q}$:

- π_∞ is the qualitative "type" of π : modular vs. Maass, weight
- π_p relates to the p^n th Fourier coefficients of π .

Key Question: Which combinations of π_v actually appear in L^2 ?

Motivation

First trick to try for decomposing a representation: look at traces.

• Assume for a moment

$$L^{2}(G(F)\setminus G(\mathbb{A}_{F}),\chi) = \bigoplus_{\pi \text{ d.a.}} \pi$$

• Then if R is an operator on L^2

$$\operatorname{tr}_{L^2} R = \sum_{\pi \text{ d.a.}} \operatorname{tr}_{\pi} R$$

• Choose R cleverly \implies information towards key question: distribution of fixed component π_v "in families"

Trace Formulas

TF w/ discrete series at ∞ 000

Previous Results

New Work

Test Functions Example

Idea: $f = \prod_{\nu} f_{\nu}$ so $\operatorname{tr}_{\pi}(f) = \prod_{\nu} \operatorname{tr}_{\pi_{\nu}}(f_{\nu})$.

- Choose one test place v. Everything else is condition places.
- For lots of reasonable conditions on π_w , can find

$${\sf tr}_{\pi_w}(f_w) = egin{cases} 1 & {\sf condition at } w {\sf satisfied} \ 0 & {\sf else} \end{cases}$$

(In general: more complicated weights $tr_{\pi_w}(f_w) = a_w(\pi_w)$)

- Set family weight: $a_{\mathcal{F}}(\pi) = \prod_{w \neq v} a_w(\pi_w)$
- Choose probe function f_v

$$\sum \operatorname{tr}_{\pi}(f) = \sum a_{\mathcal{F}}(\pi) \operatorname{tr}_{\pi_{\nu}}(f_{\nu})$$

average over harmonic family of local statistic

Fantasy

How do we compute these traces?

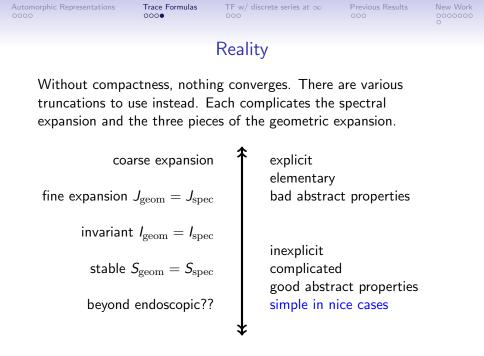
• Convolution operators: f compactly supported smooth on $G(\mathbb{A}_F)$:

$$R_f: \mathsf{v} \mapsto \int_{G(\mathbb{A}_F)} f(g) \mathsf{g} \mathsf{v} \, dg$$

• If
$$G(F) \setminus G(\mathbb{A}_F)$$
 is compact,

$$\operatorname{tr}_{L^{2}} R_{f} = \sum_{[\gamma] \in [G(F)]} \operatorname{Vol}(G(F)_{\gamma} \setminus G(\mathbb{A}_{F})_{\gamma}) \int_{G(\mathbb{A}_{F})_{\gamma} \setminus G(\mathbb{A}_{F})} f(g^{-1}\gamma g) \, dg$$

• conjugacy classes, volume term, orbital integral $O_{\gamma}(f)$



- Restrict attention to the nicest "qualitative type" of automorphic representations ↔ the nicest real representations
- Discrete series: appear discretely in $L^2(G(F_{\infty}))$.
- Classified into *L*-packets Π_{λ}
- $G = \operatorname{GL}_2/\mathbb{Q}$
 - L-packets singletons parameterized by $k \ge 2$.
 - $\pi_{\infty} \in \Pi_k$ means π a holomorphic modular form of weight k.
- The invariant trace formula dramatically simplifies when restricted to representations with discrete series at infinity.

Trace Formul

TF w/ discrete series at ∞ 000

Previous Result

New Work

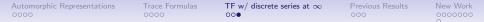
"Simple" trace formula

Theorem ([Art89])

Let G/F be a cuspidal reductive group and let Π_{λ} be a regular discrete series L-packet. Let \mathcal{A}_{λ} be the set of automorphic representations π of G with $\pi_{\infty} \in \Pi_{\lambda}$. Then for any compactly supported smooth test function f on $G(\mathbb{A}^{\infty})$

$$\sum_{\pi \in \mathcal{A}_{\lambda}} \operatorname{tr}_{\pi^{\infty}} f = \sum_{M \text{ std. Levi}} (-1)^{[G:M]} \frac{|\Omega_{M}|}{|\Omega_{G}|} \sum_{\gamma \in [M(F)]_{ell}} a_{\gamma} \Phi_{M}^{G}(\gamma) O_{\gamma}^{M,\infty}(f_{M})$$

- "Conjugacy classes" counted with principle of inclusion-exclusion
- "Volume term"
- "Orbital integral" factored into infinite and finite places



Some Ideas in Proof that May Come Up Later

- Discrete Series π come with pseudocoefficients φ_π. For ρ a basic representation, tr_ρ(φ_π) = 1_{π=ρ}
- η_{λ} Euler-Poincaré function

$$\eta_{\lambda} = rac{1}{|\Pi_{ ext{disc}}(\lambda)|} \sum_{\pi \in \Pi_{\lambda}} arphi_{\pi}$$

- When λ regular, for ρ any unitary representation: $\operatorname{tr}_{\rho}(\eta_{\lambda}) = |\Pi_{\operatorname{disc}}(\lambda)|^{-1} \mathbf{1}_{\pi \in \Pi_{\lambda}}$
- Use Euler-Poincaré's as infinite component of test function: $\eta_{\lambda} f^{\infty}$, the above computes spectral side
- Much more!

Trace Formu

TF w/ discrete series at ∞ 000

Previous Results

New Work

Prototypical Result

This allows us to get good enough error bounds on statistics over these families for applications. The shape of the result is:

Theorem (prototype)

Fix G. Let \mathcal{F}_k be a sequence of increasing-size families of aut. reps. of G with regular discrete series at infinity. Then for any unramified test function φ_v at large enough place v:

$$\frac{1}{|\mathcal{F}_k|} \sum_{\pi \in \mathcal{F}_k} \mathsf{a}_{\mathcal{F}_k} \operatorname{tr}_{\pi_v}(\varphi_v) = \mu^{\operatorname{pl}}(\varphi_v) + O(\|\varphi_v\|_{\infty} q_v^{\mathcal{A}+\mathcal{B}_{\mathcal{K}}} |\mathcal{F}_k|^{-\mathcal{C}}).$$

- Families: set of aut. reps weighted by $a_{\mathcal{F}}$, total weight is $|\mathcal{F}|$.
- μ^{pl} : average over space of representations
- κ : measure of size of support of unramified φ .

Automorphic	Representations
0000	

Trace Formu 0000 TF w/ discrete series at ∞ 000

Previous Results

New Work

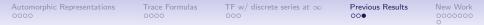
Which Families?

Shin-Templier '16:

• \mathcal{F}_k : Level condition on π^∞ and π_∞ in a fixed discrete series L-packet

$$a_{\mathcal{F}_k}(\pi) = \mathbf{1}_{\pi_\infty \in \Pi_{\mathrm{disc}}(\lambda)} \mathrm{dim}((\pi^{v,\infty})^{U^{v,\infty}})$$

- $k \to \infty$: level $\to \infty$ or if G has trivial center, weight of L-packet $\to \infty$
- Applications:
 - Automorphic Sato-Tate—equidstribution of unramified π_v over all v.
 - Distributions of low-lying zeros of L-functions in families
- Error bound essential for applications!
- Proof-of-concept that detailed information can be computed



Computing terms

Reasonably general reductive groups, but terms somewhat explicit!

$$\sum_{\pi \in \mathcal{A}_{\lambda}} \operatorname{tr}_{\pi^{\infty}} f = \sum_{M \text{ std. Levi}} (-1)^{[G:M]} \frac{|\Omega_{M}|}{|\Omega_{G}|} \sum_{\gamma \in [M(F)]_{ell}} a_{\gamma} \Phi_{M}^{G}(\gamma) O_{\gamma}^{M,\infty}(f_{M})$$

- Sums: reductive group theory, Steinberg-Hitchen base?
- Φ : Weyl character formula + more root combinatorics
- O_γ: Counting points moved some amount by automorphisms of Bruhat-Tits buildings
- *f_M*: The *p*-adic integrals are easier OR branching laws + Kato-Lusztig formula
- a_{γ} : *L*-functions of Gross motives for red. groups

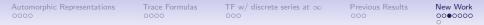
We want to compute detailed information about families that distinguish representations with π_{∞} in the same *L*-packet:

$$a_{\mathcal{F}_{\pi_0}}(\pi) = \mathbf{1}_{\pi_{\infty} = \pi_0} \dim((\pi^{\nu,\infty})^{U^{\nu,\infty}})$$

[Dal19]: Develop the necessary techniques and generalize Shin-Templier's results as a proof-of-concept.

Different members of the *L*-packet are the same for Galois Representation applications so why do we care about distinguishing them?

- Ex. $G = SL_2$: one member holomorphic, one antiholomorphic
- Ex. $G = \operatorname{Sp}_{2n}$: one member holomorphic
- Ex. G exceptional: one member quaternionic
- When λ non-regular, some members may be "entangled" with non-tempered reps at infinity when trying to pick them out with the trace formula



Spectral Side

Strategy: plug $arphi_{\pi_0} f^\infty$ into the trace formula

Lemma

If π_0 is a regular discrete series representation of G_{∞} , then for all unitary representations of G_{∞} , tr_{ρ} $\varphi_{\pi_0} = \mathbf{1}_{\rho=\pi_0}$.

Proof.

(Idea) Expand ρ as a sum of basic representations in the Grothendieck group. All of π_0 's *L*-packet has the same sign.

Corollary

$$I_{\mathrm{spec}}(\varphi_{\pi_0}f^{\infty}) = \sum_{\pi \in \mathcal{AR}_{\mathrm{disc}}(\mathcal{G})} m_{\mathrm{disc}}(\pi) a_{\mathcal{F}_{\pi_0}}(\pi) \operatorname{tr}_{\pi_{\mathcal{S}}}(f_{\mathcal{S}})$$

Geometric Side: Endoscopy and Stabilization Goal:

- Rational conjugacy is too complicated, work with stable conjugacy instead
- \implies want a trace formula with stably-invariant terms: *SO*'s

How?

- G has elliptic endoscopic groups $H \in \mathcal{E}_{ell}(G)$ if G^{der} simply connected
 - (H, s, η) : $\widehat{H} = Z_{\widehat{G}}(s), \eta : {}^{L}H \hookrightarrow {}^{L}G$
- f on G has a transfer f^H on H
 - κ -orbital integral identity locally: $O_{\gamma_G}^{\kappa_H}(f) = SO_{\gamma_H}(f^H)$
- For *S*_{*} stably-invariant:

$$I^{G}_{\star}(f) = \sum_{H \in \mathcal{E}_{\rm ell}(G)} \iota(G, H) S^{H}_{\star}(f^{H})$$

Automorphic Representations	Trace Formulas 0000	TF w/ discrete series at ∞ 000	Previous Results	New Work 0000●00 ○

How to compute I_{geom} ?

- $I_{\text{geom}}(f_{\infty}f^{\infty})$ simplifies if f_{∞} linear combination of η_{λ} 's.
- Try: write $I_{
 m geom}(arphi_{\pi_0} f^\infty)$ in terms of $I_{
 m geom}(\eta_\lambda f^\infty)$'s

Lemma

If $\pi_0 \in \Pi_{\text{disc}}(\lambda)$, φ_{π_0} has the same stable orbital integrals as η_{λ} . Furthermore, all endoscopic transfers $(\varphi_{\pi_0})^H$'s can be taken to be linear combinations of η_{λ} 's.

• Therefore stabilization will help!

Trace Formu 0000 TF w/ discrete series at ∞ 000

Previous Results

New Work

Hyperendscopy Outline

Trick from [Fer07]:

• Rearrange the stabilization of the spectral side

$$S^{G^*}_{\mathrm{disc}}(f^{G^*}) = I^G_{\mathrm{disc}}(f) + \sum_{H \in \mathcal{E}_{\mathrm{ell}}(G)} (-\iota(G,H)) S^H_{\mathrm{disc}}(f^H)$$

- Inductively continue expanding each of the $S^H_{\rm disc} \to$ a linear combination of $I^H_{\rm disc}$'s that is stable
- Forward substitution terminates at tori: $I_{\star}^{T} = S_{\star}^{T}$
- Set this equal for f, f' with the same stable orbital integrals:

$$I_{\text{disc}}^{\mathcal{G}}(f) = I_{\text{disc}}^{\mathcal{G}}(f') + \sum_{\mathcal{H} \in \mathcal{HE}_{\text{ell}}(\mathcal{G})} \iota(\mathcal{G}, \mathcal{H}) I_{\text{disc}}^{\mathcal{H}}((f' - f)^{\mathcal{H}})$$

Trace Formula

TF w/ discrete series at ∞ 000

Previous Results

New Work

Hyperendoscopy Application Outline

We use this with $f = \varphi_{\pi_0} f^\infty$ and $f' = \eta_\lambda f^\infty$:

 $I_{\rm disc}^{G}(f) = I_{\rm disc}^{G}(f') + \sum_{\mathcal{H} \in \mathcal{HE}_{\rm ell}(G)} \iota(G, \mathcal{H}) I_{\rm disc}^{\mathcal{H}}((f'-f)^{\mathcal{H}})$

- These are linear combinations of η_{λ} 's
- I_{disc} should therefore be computable by just applying Shin-Templier

Issues:

- Sum: which terms appear depend on f^∞
- This: needs to be bounded
- \mathcal{HE}_{ell} : Major technical issue coming from precise definition, extend Arthur/Shin-Templier to arbitrary center

Automorphic Representations	Trace Formulas 0000	TF w/ discrete series at ∞ 000	Previous Results	New Work ○○○○○○○ ●

Trace Formul

TF w/ discrete series at ∞ 000

Previous Result

New Work

Papers Mentioned

- James Arthur, *The L²-Lefschetz numbers of Hecke operators*, Invent. Math. **97** (1989), no. 2, 257–290. MR 1001841
- Rahul Dalal, Sato-tate equidistribution for families of automorphic representations through the stable trace formula, arXiv preprint arXiv:1910.10800 (2019).
- Axel Ferrari, Théorème de l'indice et formule des traces, Manuscripta Math. 124 (2007), no. 3, 363–390. MR 2350551
- Sug Woo Shin and Nicolas Templier, Sato-Tate theorem for families and low-lying zeros of automorphic L-functions, Invent. Math. 203 (2016), no. 1, 1–177, Appendix A by Robert Kottwitz, and Appendix B by Raf Cluckers, Julia Gordon and Immanuel Halupczok. MR 3437869
 Contact info: dalal@berkeley.edu