Counting Level-1, Quaternionic Automorphic Representations on G_{2}

Rahul Dalal

Johns Hopkins University
August 20, 2022

Note on technical details

- Anything in gray is a technical detail not relevant to this particular topic
- Anything in orange is background material I will only explain intuitively and imprecisely due to time constraints

Outline

- Background: Quaternionic Representations on G_{2}
- Background: Trace Formulas
- Background: Simple Trace Formula
- Selected Technical Difficulties

Details in [Dal21], Counting Discrete, Level-1, Quaternionic Automorphic Representations on G_{2}, ArXiv preprint

Relevant Perspective

Definition

Let G be a reductive group over a number field F. A discrete automorphic representation π for G is an irreducible subrepresentation of $L^{2}\left(G(F) \backslash G\left(\mathbb{A}_{F}\right), \chi\right)$.

- π_{S} : local component of π at some finite set of places S.
- π_{∞} : qualitative type of representation (modular vs. Maass, cohomological/algebraic, etc.),
- π_{v} 's: specific representation of that type

Quaternionic G_{2} reps

Question: Can we find nice examples of automorphic representations that don't correspond to forms which were discovered classically?

- Exceptional groups are good place to look
- Want to find nice class of π_{∞} —analogues to modular forms, not Maass forms
Simplest new example: $G=G_{2}, \pi$ a quaternionic discrete series
- Quaternionic: puts a nice differential equation condition on functions, second-best to holomorphic
- Discrete series: Relevance here: studyable with trace formula
- Technicality: minimal K-type not a character \Longrightarrow automorphic forms are vector-valued functions
- One quaternionic discrete series π_{k} for each weight $k \geq 2$.

Applications

Where do these come up?

- Fourier coefficients encode information about cubic rings [GGS02]
- Partition functions in certain quantum models of black holes [FGKP18, Chap. 15]
- More in the future?

Main Question

Question: How do we describe the quaternionic- G_{2} automorphic representations?
Example: Can we count them with some local conditions?

Answers

We can do both without too much trouble at level-1...

- level-1: π^{∞} has a (necessarily 1d) subspace fixed by hyperspecial K^{∞}.
...in terms of compact form G_{2}^{c}
- $\cong G_{2}$ over all finite places, compact over ∞. In particular, $G_{2}^{c}(\mathbb{Z})$ defined.
- V_{λ} : finite-dimensional rep of $G_{2}^{c}(\mathbb{R})$ with highest weight λ, matrix coefficients in $L^{2}\left(G_{2}^{c}(\mathbb{R})\right)$.
Notation: β is the highest root of G_{2}

Formula

Theorem

Let $k>2$. The number of discrete (equiv. cuspidal) level-1, quaternionic automorphic representations on G_{2} of weight k is

$$
\begin{aligned}
& \left|\mathcal{Q}_{n+2}(1)\right|= \\
& \frac{1}{12096} \frac{1}{120}(n+1)(3 n+4)(n+2)(3 n+5)(2 n+3)+\frac{1}{216} \frac{1}{6}(n+1)(n+2)(2 n+3)+\frac{5}{192} \frac{1}{8}\left\{\begin{array}{ll}
(n+2)(3 n+4) & n=0(\bmod 2) \\
-(n+1)(3 n+5) & n=1
\end{array}(\bmod 2)\right. \\
& +\frac{1}{18}\left\{\begin{array}{ll}
\frac{2 n}{3}+1 & n=0 \quad(\bmod 3) \\
-\left\lfloor\frac{n}{3}\right\rfloor-1 & n=1,2(\bmod 3)
\end{array}+\frac{1}{32}\left\{\begin{array}{lll}
\frac{3 n}{2}+10 & n=0 & (\bmod 4) \\
6\left\lfloor\frac{n}{4}\right\rfloor-4 & n=1 & (\bmod 4) \\
-2\left\lfloor\frac{n}{4}\right\rfloor-2 & n=2,3 & (\bmod 4)
\end{array}+\frac{1}{24}\left\{\begin{array}{lll}
3\left\lfloor\frac{n}{6}\right\rfloor+5 & n=0,1 & (\bmod 6) \\
3\left\lfloor\frac{n}{6}\right\rfloor-2 & n=2,3 & (\bmod 6) \\
3\left\lfloor\frac{n}{6}\right\rfloor+3 & n=4,5 & (\bmod 6)
\end{array}\right.\right.\right. \\
& +\frac{1}{7}\left\{\begin{array}{lll}
1 & n=0 & (\bmod 7) \\
-1 & n=4 & (\bmod 7) \\
0 & n=1,2,3,5,6 & (\bmod 7)
\end{array}+\frac{1}{4}\left\{\begin{array}{lll}
1 & n=0 & (\bmod 8) \\
-1 & n=5 & (\bmod 8) \\
0 & n=1,2,3,4,6,7
\end{array}(\bmod 8) \quad+ \begin{cases}\left\lfloor\left\lfloor\frac{n+2}{4}\right\rfloor\left(\left\lfloor\frac{n+2}{12}\right\rfloor-1\right)\right. & n=0 \quad(\bmod 12) \\
\left\lfloor\frac{n+2}{4}\right\rfloor\left\lfloor\frac{n+2}{12}\right\rfloor & n=2,4,6,8,10 \quad(\bmod 12) \\
-\left(\left\lfloor\frac{3 n+5}{12}\right\rfloor-1\right)\left(\left\lfloor\frac{n+3}{12}\right\rfloor-1\right) & n=11 \quad(\bmod 12) \\
-\left(\left\lfloor\frac{3 n+5}{12}\right\rfloor-1\right)\left\lfloor\frac{n+3}{12}\right\rfloor & n=3,7(\bmod 12) \\
-\left\lfloor\frac{3 n+5}{12}\right\rfloor\left\lfloor\frac{n+3}{12}\right\rfloor & n=1,5,9(\bmod 12)\end{cases} \right.\right.
\end{aligned}
$$

- $G_{c}^{2}(\mathbb{Z})$-fixed space in V_{λ}-Weyl character formula
- Endoscopic correction: counts of classical modular forms

A Jacquet-Langlands-style result

Theorem
Let $k>2$. If k is even:

- the discrete (equiv. cuspidal) level-1, weight k quaternionic representations of G_{2} are the exactly the unramified representations of $G_{2}(\mathbb{A})$ with infinite component π_{k} and Satake parameters coming from weight $(k-2) \beta$ algebraic modular forms on G_{2}^{c} in addition to those coming from pairs of classical cupsidal newforms in $\mathcal{S}_{3 k-2}(1) \times \mathcal{S}_{k-2}(1)$.
If k is odd:
- such representations of G_{2} are the exactly those coming from weight $(k-2) \beta$ algebraic modular forms on G_{2}^{c} except for those also coming from pairs of classical cupsidal newforms in $\mathcal{S}_{3 k-3}(1) \times \mathcal{S}_{k-1}(1)$.

Table

Table: Counts of discrete, quaternionic automorphic representations of level 1 on G_{2}.

k	$\left\|\mathcal{Q}_{k}(1)\right\|$								
3	0	13	5	23	76	33	478	43	1792
4	0	14	13	24	126	34	610	44	2112
5	0	15	8	25	121	35	637	45	2250
$\mathbf{6}$	$\mathbf{1}$	16	23	26	175	36	807	46	2619
7	0	17	17	27	173	37	849	47	2790
8	2	18	37	28	248	38	1037	48	3233
9	1	19	30	29	250	39	1097	49	3447
10	4	20	56	30	341	40	1332	50	3938
11	1	21	50	31	349	41	1412	51	4201
12	9	22	83	32	460	42	1686	52	4780

Method

First trick to try for studying subreps: look at traces

- Assume for a moment

$$
L^{2}\left(G(F) \backslash G\left(\mathbb{A}_{F}\right), \chi\right)=\bigoplus_{\pi \text { d.a. }} \pi
$$

- Then if R is an operator on L^{2}

$$
\operatorname{tr}_{L^{2}} R=\sum_{\pi \text { d.a. }} \operatorname{tr}_{\pi} R
$$

- Source of R ? Convolution: f cmpct. support smooth $/ G(\mathbb{A})$:

$$
f(v):=R_{f}(v)=\int_{G(\mathbb{A})} f(g) g \cdot v d g
$$

Test Functions Example

Want: f such that

$$
\operatorname{tr}_{L^{2}}(f)=\#\left\{G_{2} \text {-quat, Iv. } 1, \text { wt. } k\right\}
$$

Idea: $f=\prod_{v} f_{v}$ so $\operatorname{tr}_{\pi}(f)=\prod_{v} \operatorname{tr}_{\pi_{v}}\left(f_{v}\right)$

- Find f_{∞} so that

$$
\operatorname{tr}_{\pi_{\infty}}\left(f_{\infty}\right)=\mathbf{1}_{\pi_{\infty}} \text { is the weight- } k, \text { quaternionic discrete series }
$$

- If K^{∞} is a maximal compact in $G_{2}\left(\mathbb{A}^{\infty}\right)$ note that

$$
\operatorname{tr}_{\pi^{\infty}}\left(\mathbf{1}_{K^{\infty}}\right)=\operatorname{vol}\left(K^{\infty}\right) \mathbf{1}_{\pi^{\infty}} \text { is unramified }
$$

Therefore, plug in $f=f_{\infty} \mathbf{1}_{K^{\infty}}$

Trace Formula

How do we compute $\operatorname{tr}_{L^{2}}(f)$?

- Tool: Arthur-Selberg trace formula

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{A R}(G)} m_{\pi} \operatorname{tr}_{\pi}(f) \approx \\
& \quad \sum_{\gamma \in[G(F)]} \operatorname{Vol}\left(G_{\gamma}(F) \backslash G_{\gamma}(\mathbb{A})\right) \int_{G_{\gamma}(\mathbb{A}) \backslash G(\mathbb{A})} f\left(g^{-1} \gamma g\right) d g
\end{aligned}
$$

- Interested in spectral side $I_{\text {spec }}$: averages over aut. reps.
- Try to compute geometric side Igeom
- rational conjugacy classes, volumes of adelic quotients, orbital integrals

Discrete Series

Infinite component discrete series \Longrightarrow make the \approx explicit:

- Discrete series: appear discretely in $L^{2}\left(G\left(F_{\infty}\right)\right)$.
- Classified into L-packets Π_{λ}
- $G=\mathrm{GL}_{2} / \mathbb{Q}$
- L-packets singletons parameterized by $k \geq 2$.
- Regular when $k>2$.
- $\pi_{\infty} \in \Pi_{k}$ means π a holomorphic modular form of weight k.
- $G=G_{2}$
- L-packets are triples parameterized by dominant weights λ of G_{2}
- Regular if λ is
- $\Pi_{(k-2) \beta}$ for β the highest root contains the (sole) quaternionic discrete series π_{k} of weight k (the one with minimal K-type trivial on one SU_{2}-component)

"Simple" trace formula

Theorem ([Art89])
Let G / F be a cuspidal reductive group and let Π_{λ} be a regular discrete series L-packet. Let \mathcal{A}_{λ} be the set of automorphic representations π of G with $\pi_{\infty} \in \Pi_{\lambda}$. Then for any compactly supported smooth test function f on $G\left(\mathbb{A}^{\infty}\right)$
$\sum_{\pi \in \mathcal{A}_{\lambda}} \operatorname{tr}_{\pi} \infty f=\sum_{M \text { std. Levi }}(-1)^{[G: M]} \frac{\left|\Omega_{M}\right|}{\left|\Omega_{G}\right|} \sum_{\gamma \in[M(F)]_{\text {ell }}} a_{\gamma} \Phi_{M}^{G}(\gamma) O_{\gamma}^{M, \infty}\left(f_{M}\right)$

- "Conjugacy classes" counted with principle of inclusion-exclusion
- "Volume term"
- "Orbital integral" factored into infinite and finite places

Test Function At Infinity

- Discrete Series π come with pseudocoefficients φ_{π}. For ρ a basic representation, $\operatorname{tr}_{\rho}\left(\varphi_{\pi}\right)=\mathbf{1}_{\pi=\rho}$
- η_{λ} Euler-Poincaré function

$$
\eta_{\lambda}=\frac{1}{\left|\Pi_{\mathrm{disc}}(\lambda)\right|} \sum_{\pi \in \Pi_{\lambda}} \varphi_{\pi}
$$

- When λ regular, for ρ any unitary representation: $\operatorname{tr}_{\rho}\left(\eta_{\lambda}\right)=\left|\Pi_{\text {disc }}(\lambda)\right|^{-1} \mathbf{1}_{\pi \in \Pi_{\lambda}}$
- Simple trace formula: use Euler-Poincaré's as infinite component of test function: $\eta_{\lambda} f^{\infty}$, the above computes spectral side, geometric side harder

This doesn't quite work for us

Problem 1: counts all reps with $\pi_{\infty} \in \Pi_{(k-2) \beta}$ instead of all with $\pi_{\infty}=\pi_{k}$

- Solution Idea: Use pseudocoefficient at ∞ instead of EP-function.
- Geometric side doesn't simplify nicely then!
- Stabilization resolves this

Problem 2: $(k-2) \beta$ not regular!

- Spectral side may not simplify nicely $w / f_{\infty}=\eta_{(k-2) \beta}$ or $\varphi_{\pi_{k}}$.
- Solution: Facts from real representation theory \Longrightarrow not an issue for specifically quaternionic ds
Problem 3: Terms on geometric side explicit but very hard
- Solution: Chenevier/Taïbi have tricks to simplify—only level 1

Summary of full solution

Let H be the endoscopic group $\mathrm{SO}_{4} \cong \mathrm{SL}_{2} \times \mathrm{SL}_{2} / \pm 1$:

$$
\begin{aligned}
& I_{2}^{G_{2}}\left(\varphi_{\pi_{k}} 1_{k \infty}\right)=I^{G_{2}^{c}}\left(\eta_{(k-2) \beta}^{G_{2}^{c}} \mathbf{1}_{G_{G_{2}^{c}}^{\infty}}\right)-\frac{1}{2} I^{H}\left(\left(\eta_{(k-2) \beta}^{G_{2}^{c}}\right)^{H} \mathbf{1}_{K_{H}^{\infty}}\right) \\
&-\frac{1}{2} I^{H}\left(\left(\varphi_{\pi_{k}}\right)^{H} \mathbf{1}_{K_{H}^{\infty}}\right)
\end{aligned}
$$

- ${ }^{G_{2}}$ term : The count we want by problem 2 solution
- I^{c} term: G_{2}^{c} compact $\Longrightarrow \# G_{2}^{c}(\mathbb{Z})$-fixed vectors in V_{λ}.
- $\left(\eta_{\lambda}^{G_{2}^{c}}\right)^{H}$ terms: endoscopic transfers, explicit linear combinations of EP-functions
- $I^{H}\left(\eta_{\lambda}\right)$ terms: H isogenous to $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ so products of counts of modular forms at level 1 , weights from above

Tech. issues

\bigcirc

Papers Mentioned

James Arthur, The L²-Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257-290. MR 1001841

Gaëtan Chenevier and David Renard, Level one algebraic cusp forms of classical groups of small rank, Mem. Amer. Math. Soc. 237 (2015), no. 1121, v+122. MR 3399888

Rahul Dalal, Counting discrete, level-1, quaternionic automorphic representations on g2, 2021.
Philipp Fleig, Henrik P. A. Gustafsson, Axel Kleinschmidt, and Daniel Persson, Eisenstein series and automorphic representations, Cambridge Studies in Advanced Mathematics, vol. 176, Cambridge University Press, Cambridge, 2018, With applications in string theory. MR 3793195

Wee Teck Gan, Benedict Gross, and Gordan Savin, Fourier coefficients of modular forms on G_{2}, Duke Math. J. 115 (2002), no. 1, 105-169. MR 1932327

Sam Mundy, Multiplicity of eisenstein series in cohomology and applications to gsp p_{4} and $g_{2}, 2020$.
Contact info: dalal@jhu.edu

