Quat. Aut. Reps.	Results	Trace Formulas	Discat-∞ TF	Tech. issues
0000	0000	000	000	00

Counting Level-1, Quaternionic Automorphic Representations on G_2

Rahul Dalal

Johns Hopkins University

August 20, 2022

Quat.	Aut.	Reps.	
0000			

Results 0000 Trace Formulas

Disc.-at-∞ TF 000 Tech. issues

Note on technical details

- Anything in gray is a technical detail not relevant to this particular topic
- Anything in orange is background material I will only explain intuitively and imprecisely due to time constraints

- Background: Quaternionic Representations on G₂
- Background: Trace Formulas
- Background: Simple Trace Formula
- Selected Technical Difficulties

Details in [Dal21], Counting Discrete, Level-1, Quaternionic Automorphic Representations on G_2 , ArXiv preprint

Results

Trace Formulas

Disc.-at-∞ TF 000 Tech. issues

Relevant Perspective

Definition

Let G be a reductive group over a number field F. A discrete automorphic representation π for G is an irreducible subrepresentation of $L^2(G(F) \setminus G(\mathbb{A}_F), \chi)$.

- π_S : local component of π at some finite set of places S.
- π_{∞} : qualitative type of representation (modular vs. Maass, cohomological/algebraic, etc.),
- π_v 's: specific representation of that type

Results 0000 Trace Formulas

Disc.-at-∞ TF 000 Tech. issues

Quaternionic G₂ reps

Question: Can we find nice examples of automorphic representations that don't correspond to forms which were discovered classically?

- Exceptional groups are good place to look
- Want to find nice class of π_∞ —analogues to modular forms, not Maass forms

Simplest new example: $G = G_2$, π a quaternionic discrete series

- Quaternionic: puts a nice differential equation condition on functions, second-best to holomorphic
- Discrete series: Relevance here: studyable with trace formula
- Technicality: minimal *K*-type not a character \implies automorphic forms are vector-valued functions
- One quaternionic discrete series π_k for each weight $k \ge 2$.

Quat. Aut. Reps. 00●0	Results 0000	Trace Formulas 000	Discat-∞ TF 000	Tech. issues 00 0
		Applications		

Where do these come up?

- Fourier coefficients encode information about cubic rings [GGS02]
- Partition functions in certain quantum models of black holes [FGKP18, Chap. 15]
- More in the future?

Question: How do we describe the quaternionic- G_2 automorphic representations? Example: Can we count them with some local conditions?

We can do both without too much trouble at level-1...

- level-1: π[∞] has a (necessarily 1d) subspace fixed by hyperspecial K[∞].
- ... in terms of compact form G_2^c
 - \cong G_2 over all finite places, compact over ∞ . In particular, $G_2^c(\mathbb{Z})$ defined.
 - V_λ: finite-dimensional rep of G^c₂(ℝ) with highest weight λ, matrix coefficients in L²(G^c₂(ℝ)).

Notation: β is the highest root of G_2

Formula

Theorem

Let k > 2. The number of discrete (equiv. cuspidal) level-1, quaternionic automorphic representations on G_2 of weight k is

 $|\mathcal{Q}_{n+2}(1)| =$

$$\frac{1}{12096} \frac{1}{120} (n+1)(3n+4)(n+2)(3n+5)(2n+3) + \frac{1}{216} \frac{1}{6} (n+1)(n+2)(2n+3) + \frac{5}{1928} \frac{1}{8} \begin{cases} (n+2)(3n+4) & n=0 \pmod{2} \\ -(n+1)(3n+5) & n=1 \pmod{2} \\ (ndd 2) \end{cases}$$

$$+ \frac{1}{18} \begin{cases} \frac{2n}{3} + 1 & n=0 \pmod{3} \\ -\lfloor\frac{3}{2}\rfloor - 1 & n=1,2 \pmod{3} \end{cases} + \frac{1}{32} \begin{cases} \frac{3n}{2} + 10 & n=0 \pmod{4} \\ 6\lfloor\frac{3}{4}\rfloor - 4 & n=1 \pmod{4} \\ -2\lfloor\frac{3}{4}\rfloor - 2 & n=2,3 \pmod{4} \end{cases} + \frac{1}{24} \begin{cases} 3\lfloor\frac{3}{6}\rfloor + 5 & n=0,1 \pmod{6} \\ 3\lfloor\frac{3}{6}\rfloor - 2 & n=2,3 \pmod{6} \\ 3\lfloor\frac{3}{6}\rfloor + 3 & n=4,5 \pmod{6} \end{cases}$$

$$+ \frac{1}{7} \begin{cases} 1 & n=0 \pmod{7} \\ -1 & n=4 \pmod{7} \\ 0 & n=1,2,3,5,6 \pmod{7} \end{cases} + \frac{1}{4} \begin{cases} 1 & n=0 \pmod{8} \\ -1 & n=5 \pmod{8} \\ 0 & n=1,2,3,4,6,7 \pmod{8} \end{cases} + \begin{cases} \lfloor\frac{n+2}{4}\rfloor \binom{n+2}{4} - 1 \\ 2\frac{n+2}{4}\rfloor + 2\frac{n+2}{4} - 1 \end{pmatrix} = n=2,4,6,8,10 \pmod{12} \\ -\binom{n+2}{4} + \frac{n+2}{4} - 1 \end{pmatrix} = n=3,7 \pmod{12}$$

- $G_c^2(\mathbb{Z})$ -fixed space in V_{λ} —Weyl character formula
- Endoscopic correction: counts of classical modular forms

A Jacquet-Langlands-style result

Theorem

Let k > 2. If k is even:

the discrete (equiv. cuspidal) level-1, weight k quaternionic representations of G₂ are the exactly the unramified representations of G₂(A) with infinite component π_k and Satake parameters coming from weight (k − 2)β algebraic modular forms on G₂^c in addition to those coming from pairs of classical cupsidal newforms in S_{3k-2}(1) × S_{k-2}(1).

If k is odd:

 such representations of G₂ are the exactly those coming from weight (k − 2)β algebraic modular forms on G₂^c except for those also coming from pairs of classical cupsidal newforms in S_{3k-3}(1) × S_{k-1}(1).

Table: Counts of discrete, quaternionic automorphic representations of level 1 on G_2 .

k	$ \mathcal{Q}_k(1) $	k	$ \mathcal{Q}_k(1) $	<i>k</i>	$ \mathcal{Q}_k(1) $	k	$ \mathcal{Q}_k(1) $	k	$ \mathcal{Q}_k(1) $
3	0	13	5	23	76	33	478	43	1792
4	0	14	13	24	126	34	610	44	2112
5	0	15	8	25	121	35	637	45	2250
6	1	16	23	26	175	36	807	46	2619
7	0	17	17	27	173	37	849	47	2790
8	2	18	37	28	248	38	1037	48	3233
9	1	19	30	29	250	39	1097	49	3447
10	4	20	56	30	341	40	1332	50	3938
11	1	21	50	31	349	41	1412	51	4201
12	9	22	83	32	460	42	1686	52	4780

Quat. Aut. Reps.	Results	Trace Formulas	Discat-∞ TF	Tech. issues
0000	0000	•00	000	00

Method

First trick to try for studying subreps: look at traces

• Assume for a moment

$$L^2(G(F)\backslash G(\mathbb{A}_F),\chi) = \bigoplus_{\pi \text{ d.a.}} \pi$$

• Then if R is an operator on L^2

$$\operatorname{tr}_{L^2} R = \sum_{\pi \text{ d.a.}} \operatorname{tr}_{\pi} R$$

• Source of *R*? Convolution: f cmpct. support smooth/ $G(\mathbb{A})$:

$$f(v) := R_f(v) = \int_{G(\mathbb{A})} f(g)g \cdot v \, dg$$

Results 0000 Trace Formulas

Disc.-at-∞ TF 000 Tech. issues

Test Functions Example

Want: f such that

 $tr_{L^2}(f) = \#\{G_2-quat, lv. 1, wt. k\}$

Idea: $f = \prod_{v} f_{v}$ so $\operatorname{tr}_{\pi}(f) = \prod_{v} \operatorname{tr}_{\pi_{v}}(f_{v})$ • Find f_{∞} so that

 ${\sf tr}_{\pi_\infty}({\it f}_\infty)={f 1}_{\pi_\infty}$ is the weight-k, quaternionic discrete series

• If K^∞ is a maximal compact in $G_2(\mathbb{A}^\infty)$ note that

 ${\sf tr}_{\pi^\infty}(\mathbf{1}_{{\cal K}^\infty})={\sf vol}({\cal K}^\infty)\mathbf{1}_{\pi^\infty}$ is unramified

Therefore, plug in $f = f_{\infty} \mathbf{1}_{K^{\infty}}$

Quat. Aut. Reps.	Results	Trace Formulas	Discat-∞ TF	Tech. issues
0000	0000	00•	000	00

Trace Formula

How do we compute $tr_{L^2}(f)$?

• Tool: Arthur-Selberg trace formula

$$\sum_{\pi \in \mathcal{AR}(G)} m_{\pi} \operatorname{tr}_{\pi}(f) \approx \sum_{\gamma \in [G(F)]} \operatorname{Vol}(G_{\gamma}(F) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(g^{-1} \gamma g) \, dg$$

- Interested in spectral side $I_{\rm spec}$: averages over aut. reps.
- Try to compute geometric side $I_{
 m geom}$
 - rational conjugacy classes, volumes of adelic quotients, orbital integrals

Reps.	Results	Trace Formulas	Discat-∞ TF	Tech.
	0000	000	•00	00

Discrete Series

Infinite component discrete series \implies make the \approx explicit:

- Discrete series: appear discretely in $L^2(G(F_{\infty}))$.
- Classified into L-packets Π_{λ}
- $G = \operatorname{GL}_2/\mathbb{Q}$
 - L-packets singletons parameterized by $k \ge 2$.
 - Regular when k > 2.
 - $\pi_{\infty} \in \Pi_k$ means π a holomorphic modular form of weight k.
- $G = G_2$
 - L-packets are triples parameterized by dominant weights λ of ${\cal G}_2$
 - Regular if λ is
 - Π_{(k-2)β} for β the highest root contains the (sole) quaternionic discrete series π_k of weight k (the one with minimal K-type trivial on one SU₂-component)

Quat. Aut. Reps.	Results	Trace Formulas	Discat- ∞ TF	Tech. issues
0000	0000	000	000	00

"Simple" trace formula

Theorem ([Art89])

Let G/F be a cuspidal reductive group and let Π_{λ} be a regular discrete series L-packet. Let \mathcal{A}_{λ} be the set of automorphic representations π of G with $\pi_{\infty} \in \Pi_{\lambda}$. Then for any compactly supported smooth test function f on $G(\mathbb{A}^{\infty})$

$$\sum_{\pi \in \mathcal{A}_{\lambda}} \operatorname{tr}_{\pi^{\infty}} f = \sum_{M \text{ std. Levi}} (-1)^{[G:M]} \frac{|\Omega_{M}|}{|\Omega_{G}|} \sum_{\gamma \in [M(F)]_{ell}} a_{\gamma} \Phi_{M}^{G}(\gamma) O_{\gamma}^{M,\infty}(f_{M})$$

- "Conjugacy classes" counted with principle of inclusion-exclusion
- "Volume term"
- "Orbital integral" factored into infinite and finite places

Test Function At Infinity

- Discrete Series π come with pseudocoefficients φ_π. For ρ a basic representation, tr_ρ(φ_π) = 1_{π=ρ}
- η_{λ} Euler-Poincaré function

$$\eta_{\lambda} = \frac{1}{|\mathsf{\Pi}_{\mathrm{disc}}(\lambda)|} \sum_{\pi \in \mathsf{\Pi}_{\lambda}} \varphi_{\pi}$$

- When λ regular, for ρ any unitary representation: $\operatorname{tr}_{\rho}(\eta_{\lambda}) = |\Pi_{\operatorname{disc}}(\lambda)|^{-1} \mathbf{1}_{\pi \in \Pi_{\lambda}}$
- Simple trace formula: use Euler-Poincaré's as infinite component of test function: η_λf[∞], the above computes spectral side, geometric side harder

Quat.	Aut.	Reps.	
0000			

Results 0000 Trace Formulas

Disc.-at-∞ TF 000 Tech. issues

This doesn't quite work for us

Problem 1: counts all reps with $\pi_{\infty} \in \Pi_{(k-2)\beta}$ instead of all with $\pi_{\infty} = \pi_k$

- Solution Idea: Use pseudocoefficient at ∞ instead of EP-function.
- Geometric side doesn't simplify nicely then!
- Stabilization resolves this

Problem 2: $(k-2)\beta$ not regular!

- Spectral side may not simplify nicely w/ f_∞ = η_{(k-2)β} or φ_{πk}.
- Solution: Facts from real representation theory \implies not an issue for specifically quaternionic ds

Problem 3: Terms on geometric side explicit but very hard

• Solution: Chenevier/Taïbi have tricks to simplify—only level 1

Results 0000 Trace Formulas

Disc.-at-∞ TF 000 Tech. issues

Summary of full solution

Let H be the endoscopic group $SO_4 \cong SL_2 \times SL_2/\pm 1$:

$$I^{G_{2}}(\varphi_{\pi_{k}}\mathbf{1}_{K^{\infty}}) = I^{G_{2}^{c}}(\eta^{G_{2}^{c}}_{(k-2)\beta}\mathbf{1}_{K^{\infty}_{G_{2}^{c}}}) - \frac{1}{2}I^{H}((\eta^{G_{2}^{c}}_{(k-2)\beta})^{H}\mathbf{1}_{K^{\infty}_{H}}) - \frac{1}{2}I^{H}((\varphi_{\pi_{k}})^{H}\mathbf{1}_{K^{\infty}_{H}})$$

- I^{G_2} term : The count we want by problem 2 solution
- $I^{G_2^c}$ term: G_2^c compact $\Longrightarrow \# G_2^c(\mathbb{Z})$ -fixed vectors in V_{λ} .
- (η_λ^{G₂})^H terms: endoscopic transfers, explicit linear combinations of EP-functions
- *I^H*(η_λ) terms: *H* isogenous to SL₂ × SL₂ so products of counts of modular forms at level 1, weights from above

Quat. Aut. Reps.	Results	Trace Formulas	Discat-∞ TF	Tech. issues
0000	0000	000	000	00
				•

Results

Trace Formulas

Disc.-at-∞ TF 000 Tech. issues

Papers Mentioned

- James Arthur, The L²-Lefschetz numbers of Hecke operators, Invent. Math. **97** (1989), no. 2, 257–290. MR 1001841
- Gaëtan Chenevier and David Renard, *Level one algebraic cusp forms of classical groups of small rank*, Mem. Amer. Math. Soc. **237** (2015), no. 1121, v+122. MR 3399888

Rahul Dalal, Counting discrete, level-1, quaternionic automorphic representations on g2, 2021.

Philipp Fleig, Henrik P. A. Gustafsson, Axel Kleinschmidt, and Daniel Persson, *Eisenstein series and automorphic representations*, Cambridge Studies in Advanced Mathematics, vol. 176, Cambridge University Press, Cambridge, 2018, With applications in string theory. MR 3793195

- Wee Teck Gan, Benedict Gross, and Gordan Savin, Fourier coefficients of modular forms on G_2 , Duke Math. J. **115** (2002), no. 1, 105–169. MR 1932327
- Sam Mundy, Multiplicity of eisenstein series in cohomology and applications to gsp4 and g2, 2020.

Contact info: dalal@jhu.edu