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Note on technical details

• Anything in gray is a technical detail not relevant to this
particular topic

• Anything in orange is background material I will only explain
intuitively and imprecisely due to time constraints
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Outline

• Background: Quaternionic Representations on G2

• Background: Trace Formulas

• Background: Simple Trace Formula

• Selected Technical Difficulties

Details in [Dal21], Counting Discrete, Level-1, Quaternionic
Automorphic Representations on G2, ArXiv preprint
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Relevant Perspective

Definition
Let G be a reductive group over a number field F . A discrete
automorphic representation π for G is an irreducible
subrepresentation of L2(G (F )\G (AF ), χ).

• πS : local component of π at some finite set of places S .

• π∞: qualitative type of representation (modular vs. Maass,
cohomological/algebraic, etc.),

• πv ’s: specific representation of that type
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Quaternionic G2 reps

Question: Can we find nice examples of automorphic
representations that don’t correspond to forms which were
discovered classically?

• Exceptional groups are good place to look

• Want to find nice class of π∞—analogues to modular forms,
not Maass forms

Simplest new example: G = G2, π a quaternionic discrete series

• Quaternionic: puts a nice differential equation condition on
functions, second-best to holomorphic

• Discrete series: Relevance here: studyable with trace formula

• Technicality: minimal K -type not a character =⇒
automorphic forms are vector-valued functions

• One quaternionic discrete series πk for each weight k ≥ 2.
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Applications

Where do these come up?

• Fourier coefficients encode information about cubic rings
[GGS02]

• Partition functions in certain quantum models of black holes
[FGKP18, Chap. 15]

• More in the future?
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Main Question

Question: How do we describe the quaternionic-G2 automorphic
representations?
Example: Can we count them with some local conditions?
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Answers

We can do both without too much trouble at level-1...

• level-1: π∞ has a (necessarily 1d) subspace fixed by
hyperspecial K∞.

...in terms of compact form G c
2

• ∼= G2 over all finite places, compact over ∞. In particular,
G c

2 (Z) defined.

• Vλ: finite-dimensional rep of G c
2 (R) with highest weight λ,

matrix coefficients in L2(G c
2 (R)).

Notation: β is the highest root of G2



Quat. Aut. Reps. Results Trace Formulas Disc.-at-∞ TF Tech. issues

Formula

Theorem
Let k > 2. The number of discrete (equiv. cuspidal) level-1,
quaternionic automorphic representations on G2 of weight k is

|Qn+2(1)| =

1
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.

• G 2
c (Z)-fixed space in Vλ—Weyl character formula

• Endoscopic correction: counts of classical modular forms
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A Jacquet-Langlands-style result

Theorem
Let k > 2. If k is even:

• the discrete (equiv. cuspidal) level-1, weight k quaternionic
representations of G2 are the exactly the unramified
representations of G2(A) with infinite component πk and
Satake parameters coming from weight (k − 2)β algebraic
modular forms on G c

2 in addition to those coming from pairs
of classical cupsidal newforms in S3k−2(1)× Sk−2(1).

If k is odd:

• such representations of G2 are the exactly those coming from
weight (k − 2)β algebraic modular forms on G c

2 except for
those also coming from pairs of classical cupsidal newforms in
S3k−3(1)× Sk−1(1).
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Table

Table: Counts of discrete, quaternionic automorphic representations of
level 1 on G2.

k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)|

3 0 13 5 23 76 33 478 43 1792
4 0 14 13 24 126 34 610 44 2112
5 0 15 8 25 121 35 637 45 2250
6 1 16 23 26 175 36 807 46 2619
7 0 17 17 27 173 37 849 47 2790
8 2 18 37 28 248 38 1037 48 3233
9 1 19 30 29 250 39 1097 49 3447

10 4 20 56 30 341 40 1332 50 3938
11 1 21 50 31 349 41 1412 51 4201
12 9 22 83 32 460 42 1686 52 4780

.
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Method
First trick to try for studying subreps: look at traces

• Assume for a moment

L2(G (F )\G (AF ), χ) =
⊕
π d.a.

π

• Then if R is an operator on L2

trL2 R =
∑
π d.a.

trπ R

• Source of R? Convolution: f cmpct. support smooth/G (A):

f (v) := Rf (v) =

∫
G(A)

f (g)g · v dg



Quat. Aut. Reps. Results Trace Formulas Disc.-at-∞ TF Tech. issues

Test Functions Example

Want: f such that

trL2(f ) = #{G2-quat, lv. 1, wt. k}

Idea: f =
∏

v fv so trπ(f ) =
∏

v trπv (fv )

• Find f∞ so that

trπ∞(f∞) = 1π∞ is the weight-k, quaternionic discrete series

• If K∞ is a maximal compact in G2(A∞) note that

trπ∞(1K∞) = vol(K∞)1π∞ is unramified

Therefore, plug in f = f∞1K∞
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Trace Formula

How do we compute trL2(f )?

• Tool: Arthur-Selberg trace formula∑
π∈AR(G)

mπ trπ(f ) ≈

∑
γ∈[G(F )]

Vol(Gγ(F )\Gγ(A))

∫
Gγ(A)\G(A)

f (g−1γg) dg

• Interested in spectral side Ispec: averages over aut. reps.

• Try to compute geometric side Igeom
• rational conjugacy classes, volumes of adelic quotients, orbital

integrals
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Discrete Series

Infinite component discrete series =⇒ make the ≈ explicit:

• Discrete series: appear discretely in L2(G (F∞)).

• Classified into L-packets Πλ

• G = GL2/Q
• L-packets singletons parameterized by k ≥ 2.
• Regular when k > 2.
• π∞ ∈ Πk means π a holomorphic modular form of weight k.

• G = G2

• L-packets are triples parameterized by dominant weights λ of
G2

• Regular if λ is
• Π(k−2)β for β the highest root contains the (sole) quaternionic

discrete series πk of weight k (the one with minimal K -type
trivial on one SU2-component)
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“Simple” trace formula

Theorem ([Art89])

Let G/F be a cuspidal reductive group and let Πλ be a regular
discrete series L-packet. Let Aλ be the set of automorphic
representations π of G with π∞ ∈ Πλ. Then for any compactly
supported smooth test function f on G (A∞)∑
π∈Aλ

trπ∞ f =
∑

M std. Levi

(−1)[G :M] |ΩM |
|ΩG |

∑
γ∈[M(F )]ell

aγΦG
M(γ)OM,∞

γ (fM)

• “Conjugacy classes” counted with principle of
inclusion-exclusion

• “Volume term”

• “Orbital integral” factored into infinite and finite places



Quat. Aut. Reps. Results Trace Formulas Disc.-at-∞ TF Tech. issues

Test Function At Infinity

• Discrete Series π come with pseudocoefficients ϕπ. For ρ a
basic representation, trρ(ϕπ) = 1π=ρ

• ηλ Euler-Poincaré function

ηλ =
1

|Πdisc(λ)|
∑
π∈Πλ

ϕπ

• When λ regular, for ρ any unitary representation:
trρ(ηλ) = |Πdisc(λ)|−11π∈Πλ

• Simple trace formula: use Euler-Poincaré’s as infinite
component of test function: ηλf

∞, the above computes
spectral side, geometric side harder
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This doesn’t quite work for us

Problem 1: counts all reps with π∞ ∈ Π(k−2)β instead of all with
π∞ = πk

• Solution Idea: Use pseudocoefficient at ∞ instead of
EP-function.

• Geometric side doesn’t simplify nicely then!

• Stabilization resolves this

Problem 2: (k − 2)β not regular!

• Spectral side may not simplify nicely w/ f∞ = η(k−2)β or ϕπk .

• Solution: Facts from real representation theory =⇒ not an
issue for specifically quaternionic ds

Problem 3: Terms on geometric side explicit but very hard

• Solution: Chenevier/Täıbi have tricks to simplify—only level 1
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Summary of full solution

Let H be the endoscopic group SO4
∼= SL2 × SL2/± 1:

IG2(ϕπk1K∞) = IG
c
2 (η

G c
2

(k−2)β1K∞
Gc

2

)− 1

2
IH((η

G c
2

(k−2)β)H1K∞
H

)

− 1

2
IH((ϕπk )H1K∞

H
)

• IG2 term : The count we want by problem 2 solution

• IG
c
2 term: G c

2 compact =⇒ #G c
2 (Z)-fixed vectors in Vλ.

• (η
G c

2
λ )H terms: endoscopic transfers, explicit linear

combinations of EP-functions

• IH(ηλ) terms: H isogenous to SL2 × SL2 so products of
counts of modular forms at level 1, weights from above
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