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FALL 2004

Closed book, no calculators. Fully justify your answer for all six questions.

Question 1. (10 points). Prove that

(a/2 + b/2)10 ≤ a10/2 + b10/2

for any real numbers a and b.

You can do this with the binomial theorem, but that is messy. The easy way is to observe
that the function f(x) = x10 has f ′′ ≥ 0 and, hence, sits above any of its secant lines.

Question 2. (10 points). Prove that the function g(x) = 1/(1+x2) is uniformly continuous
on all of R.

Notice first that |g′| is bounded:

|g′(x)| = 2|x|/(1 + x2)2 ≤ 1 .

By the MVT, this bound implies that g is Lipshitz:

|g(x)− g(y)| = |x− y| |g′(z)| ≤ |x− y| .
This implies uniform continuity (we can even take δ = ε).

Question 3. (20 points). Let f(x) be the function defined for x > 0 by

f(x) =
∫ x

1

dt

t
.

(A) Compute the Taylor series for f about the point x = 1.
(B) Compute the radius of convergence of this Taylor series.

For (A): Just start differentiating:

• By the FTC, we have f ′(x) = 1/x.
• Then f ′′(x) = −x−2.
• Iterating this gives f (n)(x) = (−1)n−1 (n− 1)! x−n.

Plugging this in gives the power series

(x− 1)− (x− 1)2/2 + (x− 1)3/3− . . .

For (B):
The general term an is given by an = (−1)n−1/n. Using that n1/n → 1 (we proved this in
class), we see that

1/R = lim sup
n→∞

|an|1/n = 1 .
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Hence, the radius of convergence R is one.

Question 4. (20 points). Suppose that f is a continuous function defined on [0, 1]. Show
that for any ε > 0, there exists a constant M so that for every x and y we have

|f(x)− f(y)| ≤ ε + M |x− y| .

Fix some ε > 0. We have to find an M that works.
Since f is continuous on the compact set [0, 1], we know that

• f is uniformly cts: There exists δ > 0 so that |f(x)− f(y)| ≤ ε if |x− y| ≤ δ.
• f is bounded: There exists B so that |f(x)− f(y)| ≤ B for any x and y in [0, 1].

It now follows that for any x and y we have

|f(x)− f(y)| ≤ ε + (B/δ) |x− y| .
To see this, use the first dot when |x− y| ≤ δ and use the second dot when |x− y| > δ.

Question 5. (20 points). Suppose that f : R → R is a C1 function satisfying f(0) = 0 and
f ′(x) > f(x) for every x ∈ R. Prove that f(x) > 0 for every x > 0.

We will argue by contradiction. Choose x > 0 to be the first zero of f ; i.e., set

x = inf{y > 0 | f(y) = 0} .

This inf exists because the set is bounded below by 0. Moreover, since f is cts, the set of
zeros is closed and, hence, the inf is in the set — i.e., f(x) = 0.

Note that x > 0. To see this, use f ′(0) > 0 to show that f is strictly increasing at 0.
We have arranged that f(0) = 0 and f(x) = 0, but f - and hence also f ′ - is positive on

(0, x). This gives a contradiction by the MVT: There must be some y in (0, x) with

0 =
f(x)− f(0)

x− 0
= f ′(y) > 0 .

Question 6. (20 points). Let fj be a sequence of C1 functions on [0, 1]. Suppose that
limj→∞ fj(x) = 0 for every x ∈ [0, 1] and |f ′j(x)| ≤ 1 for every x ∈ [0, 1]. Prove that

lim
j→∞

∫ 1

0
fj(x) dx = 0 .

We proved that we can interchange limits and integrals if the functions converge uniformly
and the integral is over a compact set. Therefore, we must show uniform convergence of the
fj’s to zero.

Pick a big N . Since fj(k/N) → 0 for each k, there exists Mk so that

|fj(k/N)| < 1/(2N) for every j ≥ Mk .

Set M = max Mk (this is finite since there are only N + 1 of them). For j ≥ M , we know
that fj ≤ 1/(2N) at each of the points k/N . We will use the derivative bound to control
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fj at nearby points. Namely, if x is any point in [0, 1], then we can choose a k so that
|x− k/N | ≤ 1/(2N). The MVT then gives

|fj(x)− fj(k/N)| = |x− k/N | |f ′j(y)| ≤ 1/(2N) .

The triangle inequality then gives

|fj(x)| ≤ |fj(k/N)|+ |fj(x)− fj(k/N)| =≤ 1/(2N) + 1/(2N) = 1/N .

Since this holds for any x and for any j ≥ M , this gives uniform convergence.


