
Solutions to Math 104 Final Exam — Dec. 10, 2010

1. (20 points) Consider the following matrices that depend on a parameter λ ∈ C:

Aλ =

1 0
2 0
λ −1


(a) For each λ, determine ||Aλ||F the Frobenius norm of Aλ.

(Note: technically λ ∈ C which complicates things). The Frobenius norm of Aλ is the square-
root of the sum of the squares (of the modulus) of the entries of AF .

||A||F =
√

12 + 22 + (−1)2 + |λ|2 =
√

6 + |λ|2

(b) For each λ, determine ||Aλ||2 the induced 2-norm of Aλ.

In order to compute the two norm of Aλ we compute the largest singular value σ1 of A. This
is because, by definition, ||Aλ||2 = σ1. We have established in class that the singular values
are the square roots of the eigenvalues of the matrix

Bλ = A∗λAλ =
[
5 + |λ|2 −λ̄
−λ 1

]
The characteristic polynomial of this matrix is pB(z) = det(B − zI) = z2 − (6 + |λ|2)z + 5 so
by the quadratic formula the eigenvalues are

α± =
6 + |λ|2 ±

√
|λ|4 + 12|λ|2 + 16

2

Hence, the largest singular value of A is

σ1 =

√
6 + |λ|2 +

√
|λ|4 + 12|λ|2 + 16

2
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2. (20 points) Let A ∈ Cm×m be hermitian (i.e. A = A∗). Let P ∈ Cm×m be the matrix representing
orthogonal projection onto N(A). Please show that X = A + P is invertible. (Hint: Think about the
four fundamental subspaces of A).

In order to show that X is invertible is suffices to show that N(X) = {0}. To that end we note
that R(P ) = N(A) by definition of P and that R(A) = R(A∗) as A is hermitian. Now suppose
that x ∈ N(X) so Xx = 0 then (A + P )x = 0 so that y = Ax = −Px. In other words, y ∈ R(A)
and y ∈ R(P ) and so y ∈ N(A) ∩ R(A∗). As N(A) and R(A∗) are complementary spaces this
means that y = 0. Hence, x ∈ N(A) and so x ∈ R(P ). But then x = Px = y = 0.
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3. (20 points) Let A ∈ R4×2 be the matrix

A =


1 −7
1 1
3 −7
5 −9


(a) Find a reduced QR factorization of A i.e. A = Q̂R̂.

To begin the QR factorization algorithm we normalize the first column of A this yields

q1 =
1
6


1
1
3
5


and r11 = 6 the length of the first column. We next compute the inner product between q1

and the second column to obtain r12 = −12 then subracting r12q1 from the second column
yields

q̂2 =


−5
3
−1
1


This has length 6 so that r22 = 6 and

q2 =
1
6


−5
3
−1
+1


Hence

Q̂ =
1
6


1 −5
1 3
3 −1
5 1


and

R̂ =
[
6 −12
0 6

]
and the reduced QR factorization of A is A = Q̂R̂.
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(b) Solve the following overdetermined system in the sense of least squares:

Ax =


1
0
1
0



By the QR factorization we know that orthogonal projection onto R(A) is given by Q̂Q̂∗. In
particular, since A = Q̂R̂ to solve Ax = b in the sense of least squares, we solve

Q̂R̂x = Q̂Q̂∗b

that is to solve
R̂x = Q̂∗b.

In our situation, the RHS is [
2/3
−1

]
and solving by back substitution gives

x =
[
−2/9
−1/6

]



Math 104, Fall 2010 Solutions to Final Exam — Dec. 10, 2010 Page 5 of ??

4. (30 points) Let A ∈ Cm×m be a square matrix. Order the singular values σi of A by σ1 ≥ σ2 ≥ . . . ≥
σm ≥ 0 and order the eigenvalues λi of A so |λ1| ≥ |λ2| ≥ . . . ≥ |λm| ≥ 0.

(a) Show that σ1 ≥ |λ1|.

Let x ∈ Cm be the eigenvector associated to λ1 so that Ax = λ1x. We may normalize x so
that ||x||2 = 1. We then have

||Ax||2 = ||λ1x||2 = |λ1|||x||2 = |λ1|

As a consequence,

|λ1| ≤ sup
x6=0

||Ax||2
||x||2

= ||A||2 = σ1

(b) Show that σm ≤ |λm| (Hint: Write xm, an eigenvector associated to λm, in terms of the right
singular vectors v1, . . . ,vm of A).

Let A = UΣV ∗ be a SVD of A. We let v1, . . . ,vm be the columns of V , i.e. the right singular
vectors. Now suppose that xm is a (non-zero) vector so that Axm = λmxm. We may normalize
so that ||xm||2 = 1. Writing xm in terms of the ONB given by the vi one has

xm =
m∑

i=1

civi

Note that since ||xm||2 = 1 one has
∑m

i=1 |ci|2 = 1 by the Pythagorean thereom. As a
consequence Axm =

∑m
i=1 σiciui. Hence by the Pythagorean theroem

|λm|2 = ||Axm||22 =
m∑

i=1

σ2
i |ci|2

Since σi ≥ σ1 one obtains

|λm|2 ≥
m∑

i=1

σ2
1|ci|2 = σ2

1.
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(c) Using part a), show that if ||A||2 < 1 then I +A is nonsingular. Here ||A||2 is the induced 2-norm
and

I =

1 0 0
0 1 0
0 0 1


is the 3× 3 identity matrix.

(Note that I should really bethe m×m identity otherwise the problem makes no sense.) Since
||A||2 < 1 we have that σ1 < 1 and so by part a) we have that |λ1| < 1. In particular, if
λ ∈ Λ(A) then |λ| < 1. Since λ ∈ Λ(I +A) if and only if λ−1 ∈ Λ(A) and 1 > |λ−1| ≥ 1−|λ|
we see that |λ| > 0. In other words no eigenvalue of I + A is zero. As a consequence
N(I + A) = {0} and so I + A is invertible.
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5. (20 points) Let A ∈ C3×3 be the matrix

A =

−1 3 −2
0 3 1
0 4 1


Find a unitary matrix Q ∈ C3×3 so that

QA =

1 ∗ ∗
0 ∗ ∗
0 0 ∗

 .

Here ∗ represents an unspecified number.

Notice that the first column of A is −e1 and of QA is e1. Hence, we must have Q(−e1) = e1. That
is the first column of e1 is −e1. For Q to be unitary it must have orthonormal columns and hence
Q has the form

Q =
[
−1 0
0 Q′

]
where Q′ ∈ C2×2 is untary. In addition, we want to have

Q′
[
3
4

]
=

[
x
0

]
Now for Q′ to be unitary it must preserve length. In particular, one must have |x| =

√
32 + 42 = 5.

We take x = 5.

We now have a number of choices we could make in finding Q′. In the spirit of the Householder
algorithm we take Q′ to be a reflection. In this, case we set

v =
[
3
4

]
−

[
5
0

]
=

[
−2
4

]
be the vector normal to the line midway between [3, 4]> and [5, 0]>. The orthononal projecteion
onto span(v) is given by

P =
vv∗

||v||22
=

1
5

[
1 −2
−2 4

]
Then we have (as we saw in class or can easily convince ourselves) that Q′ is given by

Q′ = I − 2P =
1
5

[
3 4
4 −3

]
Which we verify has the desired properties. Hence

Q =
1
5

−5 0 0
0 3 4
0 4 −3


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6. (30 points) (a) Let T ∈ Cm×m be upper triangular. Show that if T is unitary then T is diagonal.
(Hint: Use the fact that columns are orthogonal and induct on m).

We prove the result by induction on m. When m = 1 then any matrix is diagonal so we are
done. Assume the result is true for all m×m upper-triangular matrices. We wish to prove it
true for (m + 1)× (m + 1) upper-triangular matrices.
To that end we note that if T ∈ C(m+1)×(m+1) is upper triangular and unitary. Then the
first column of T must be of the form µe1 (as T upper triangular) and the length of the first
column is 1 (as T unitary) so |µ = 1. Since every other column of T is orthogonal to the first
column (as T is unitary) T has the form

T =
[
µ 0
0 T ′

]
.

Where T ′ ∈ Cm×m is upper triangular and unitary. In particular, by the induction hypthosis
T ′ is diagonal and hence so is T .

(b) Let

A =


a11 0 · · · 0
0 a22 · · · 0
...

. . .
...

0 · · · 0 amm

 ∈ Cm×m

be a diagonal matrix. Show that if A is unitary then |aii| = 1 for 1 ≤ i ≤ m.

Since the columns of a unitary matrix must be of unit length it is straightforward to see that
|aii| = 1.
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(c) Let X ∈ Cm×m be unitary, use parts a), b) and the Schur factorization to show that X is
unitarily diagonalizable (i.e. Cm has an orthonormal basis of eigenvectors) and that λ ∈ Λ(X)
implies |λ| = 1.

Write the Schur factorization of X as

X = QTQ∗

where Q ∈ Cm×m is unitary and T ∈ Cm×m is diagonal. For X to be unitary one has
X∗ = X−1. On the one hand

X∗ = (QTQ∗)∗ = (Q∗)∗T ∗Q∗ = QT ∗Q.

on the other
X−1 = (QTQ∗)−1 = (Q∗)−1T−1Q−1 = QT−1Q∗.

Hence T is unitary and so by a) and b) is diagonal with entries on the diagonal all of length
1. In all cases the diagonal entries of T are the eigenvalues of X and in this case the columns
of Q are the eigenvectors of X and so we have proved the claim.
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7. (30 points) Let A ∈ R3×3 be the matrix

A =

−3 2 −2
0 1 0
2 −1 2


(a) Find the eigenvalues of A and give their algebraic multiplicity.

By expanding along the middle column we see that the characteristic polynomial of A is:

pA(z) = det(zI −A) = (z − 1) ((z + 3)(z − 2)− 2(−2)) = (z − 1)(z2 + z − 6 + 4).

By inspection (or using the quadratic formula) this can be factored as

pA(z) = (z − 1)(z − 1)(z + 2).

Thus, the eigenvalues are λ = −2 with algebraic multiplicity 1 and λ = 1 with algebraic
multiplicity 2.

(b) Verify that A is diagonalizable and find a basis of eigenvectors.

As

A− (−2)I =

−1 2 −2
0 3 0
2 −1 4


we can do Gaussian elimination to see that an eigenvector associated to λ = −2 is

x1 =

−2
0
1


Similarly, as

A− I =

−4 2 −2
0 0 0
2 −1 1


Gaussian elimination shows that one has (linearly independent) eigenvectors

x2 =

1
2
0

 ,x3 =

0
1
1


one verifies that x1,x2,x3 form a linearly independent set and since dimC3 = 3 they must
form a basis.



Math 104, Fall 2010 Solutions to Final Exam — Dec. 10, 2010 Page 11 of ??

(c) Determine the matrices X and Λ so that X is non-singular and Λ is diagonal and so one has a
factorization:

A = XΛX−1

If we let

X =

1 0 −2
2 1 0
0 1 1

 .

Using Gaussian elimination one computes

X−1 =
1
3

−1 2 −2
2 −1 4
−2 1 −1


Hence using the fact that the columns of X are eigenvectors of A one has

A =
1
3

1 0 −2
2 1 0
0 1 1

1 0 0
0 1 0
0 0 −2

−1 2 −2
2 −1 4
−2 1 −1



(d) Compute Ane1 for n ≥ 1 an integer. Please simplify your answer as much as possible. Here

e1 =

1
0
0



As A = XΛX−1 one computes that

An = XΛnX−1.

That is

An =
1
3

1 0 −2
2 1 0
0 1 1

1 0 0
0 1 0
0 0 (−2)n

−1 2 −2
2 −1 4
−2 1 −1


Hence,

Ane1 =
1
3

1 0 −2
2 1 0
0 1 1

 −1
2

(−2)n+1


=

1
3

−1 + (−2)n+2

0
2 + (−2)n+1


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8. (30 points) Let A ∈ R2×2 be the following matrix

A =
[
3 2
1 −2

]
Let Sp =

{
x ∈ R2 : ||x||p = 1

}
. Let ASp =

{
Ax ∈ R2 : x ∈ Sp

}
. Here 1 ≤ p ≤ ∞ and || · ||p is the

p-norm on R2.

(a) Compute µ1 = ||A||1 the induced 1-norm of A and µ∞ = ||A||∞ the induced ∞-norm of A.
Remember to justify your computation.

For a vector x ∈ S1 let us write x = αe1 + (1− α)e2 where we assume 0 ≤ α1 (so we assume
x in first quadrant, by symmetry this is enough). Then Ax = (2 + α)e1 + (−2 + 3α)e2 then
||Ax||1 = |2 + α|+ | − 2− 3α|. When α > 2/3 this is equal to 2 + α− 2 + 3α = 4α, while for
α ≤ 2/3 this is equal to 2 + α + 2− 3α = 4− 2α. Notice that this is maximized for α = 0 or
α = 1 and has maximum value µ1 = 4.
For a vector y ∈ S∞ let us write y = xe1 + ye1 where x = 1 and 0 ≤ yleq1 or y = 1 and
0 ≤ x < 1 (so again we are in the first quadrant). Then Ay = (3x + 2y)e1 + (x − 2y)e2.
Then ||Ay||∞ = max {|3x + 2y|, |x− 2y|}. By inspection one sees that the maximum value is
µ∞ = 5.

(b) Determine all vectors x1 ∈ S1 and x∞ ∈ S∞ so that ||Ax1||1 = µ1 and ||Ax∞||∞ = µ∞.

In the previous problem we see that x1 can be any of the following and no other vectors:[
1
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0
−1

]
In the previous problem we see that x∞ can be any of the following and no other vectors:[

1
1

]
,

[
−1
−1

]
,
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(c) Sketch S1 and AS1 and indicate the vectors x1 and Ax1 on your picture.

(d) Sketch S∞ and AS∞ and indicate the vectors x∞ and Ax∞ on your picture.


