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CHAPTER 1

Twenty-Second and Twenty-Third Lectures

We discussed some applications of the SVD.

1. Applications of the SVD

If we know the SVD of a matrix there is lots of useful information we can
deduce about the matrix A. Let A ∈ Cm×n and suppose that A has the SVD

A = UΣV ∗

Let us write p = min(m,n) so p is the number of singular values of A then let r ≤ p
denote the number of non-zero singular values. We denote by σ1 ≥ σ2 ≥ · · · ≥ σr >
0 the non-zero singular values of A and

U =
[
u1| · · · |um

]
and V =

[
v1| · · · |vn

]
the left and right singular vectors.

Theorem 1.1. The rank of A is r the number of non-zero singular values.

Proof. As Σ is diagonal, it is immediate that e1, . . . , er is a basis of R(Σ).
Since U, V are intertible one then has that Uei is a basis of R(A). �

A more refined result is the following:

Theorem 1.2. R(A) = span(u1, . . . ,ur) and N(A) = span(vr+1, . . . ,vn)

Proof. For a diagonal matrix R(Σ) = span(e1, . . . , er) while N(Σ) = span(er+1, . . . , en).
The range of A has a basis Uei = ui for 1 ≤ i ≤ r. Similarly, by solving V ∗x = ei

for r + 1 ≤ i ≤ n one obtains vectors in N(A). We see that the solutions to this
equation is V ei = vi. �

Remark 1.3. Notice that this actually gives an orthonormal basis ofof R(A).
Namely, u1, . . . ,ur. This is NOT necessarily the same as the one obtained via QR
factorization.

As a consequence, if one sets

Û =
[
u1| · · · |ur

]
then one has the matrix P = Û Û∗ giving orthogonal projection onto R(A). In
particular, we can use the SVD to solve least squares problems.

We can also use the SVD to compute 2-norms. Indeed,

Theorem 1.4. ||A||2 = σ1 and ||A||F =
√

σ2
1 + · · ·+ σ2

r .

Proof. To see this we note that both these norms are invariant under pre-
and post- multiplication by unitary maps, so ||A||2 = ||Σ||2 and ||A||F = ||Σ||F .
Since Σ is diagonal it is easy to compute the norms in this case. �
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4 1. TWENTY-SECOND AND TWENTY-THIRD LECTURES

One very important application is the SVD is that it allows one to get a good
approximations of a given matrix in terms of lower rank matrices. This is important
in trying to understand what the “dominant” part of the matrix is. It can also be
thought of in terms of how much “compression” can be applied to the matrix.

The basic idea is that can express A is the sum of r rank on matrices

A =
r∑

j=1

σjujv∗j

Which follows just by multiplying out the SVD. The point is there are lots of ways
to write A as a sum of rank one matrices for instance

A =
n∑

j=1

aje∗j

or

A =
m∑

i=1

n∑
j=1

aijeie∗j

. However, the sum given by the SVD has the property of having the kth partial sum
capturing as much “energy” of A as possible, that is of being the best approximation
possible in the induced 2-norm or Frobenius norm.

To make this precise

Theorem 1.5. For any k with 0 ≤ k ≤ r define

Ak =
∑

j = 1kσjujv∗j

so Ar = A. Then:

||A−Ak||2 = inf
B∈Cm×nrank(B)≤k

||A−B||2 = σk+1

Here if k = p = min(m,n) we set σk+1 = 0.

Remark 1.6. That is we have that Ak is the best (in terms of the induced 2
norm approximation of A by a rank k matrix).

Proof. Suppose one has a B ∈ Cm×n with rank(B) ≤ k and ||A − B||2 <
||A − Ak||2 = σk+1. By the rank-nullity theorem we see that there is a (n − k)-
dimensional space W in Cn so that for w ∈ W , Bw = 0. (i.e. W ⊂ N(B)). Now
for w ∈ W Aw = (A−B)w and so

||Aw||2 = ||(A−B)w||2 ≤ ||A−B||2||w||2 < σk+1||w||2
Thus W is an (n − k) dimensional subspace with ||Aw||2 < σk+1||w||2. However,
by considering W ′ = span(v1, . . . ,vk+1) one obtains a k + 1 dimensional space (all
vectors are orthogonal hence linearly independent) with ||Aw′||2 ≥ σk+1||w′||2 for
all w′ ∈ W ′. Now W ′ and W must have a non-zero vector in common (otherwise one
would get n+1 linearly independent vectors in Cn. But this is a contradiction. �

Notice when σk+1 is small this means that ||Ax − Akx||2 is small (at least
relative to ||x||2). I.e. mulitplication by A is well approximated by multiplication
by Ak. A similar result also holds for the Frobenius norm i.e.

Theorem 1.7. For any k with 0 ≤ k ≤ r one has

||A−Ak||F = inf
B∈Cm×nrank(B)≤k

||A−B||F =
√

σ2
k+1 + · · ·+ σ2

r
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Notice that when
√

σ2
k+1 + · · ·+ σ2

r is small all of the entries of A are close
to the entries of Ak. That is the array of numbers making up A are all well
approximated by the array of numbers making up Ak. Notice that A takes mn
numbers to determine (i.e. each entry) while Ak takes (m + n + 1)k to represent
(i.e. the left and right singular vector and the singular value). If k is small relative
to p = min(m,n) this is a significant savings.

2. Least squares via SVD: NIC

As we’ve seen the SVD of a matrix A gives a orthonormal basis of R(A). More
than that it gives an approach to solving least squares problems.

Assume that A ∈ Cm×n with m > n. We assume also that N(A) = {0} though
this isn’t neccesary. We want to solve the overdetermined problem

Ax = b

in a least squares sense using the SVD. To that end, let A have reduced SVD

A = Û Σ̂V ∗

with
Û =

[
u1| · · · |un

]
∈ Cm×n

Now orthogonal projection onto R(A) is given by P = Û Û∗. Hence to solve the
equation in the least squares sense it is enough to solve

Ax = Pb

but this leads to
Û Σ̂V ∗x = Û Û∗b

since the columns of Û are linearly independent this is equivalent to solving

Σ̂V ∗x = Û∗b

But this consists just of solving a diagonal system and multiplying by a unitary
matrix.





CHAPTER 2

Twenty-Fourth Lecture

In this lecture we recall some definitions related to the study of eigenvectors
and eigenvalues. This will allows us to compute the SVD of a matrix by solving a
related eigenvalue problem (which is slightly more algebraically tractable).

1. Eigenvalues and Eigenvectors

We review some the very imporant linear concept of eigenvectors and eigenval-
ues. It is helpful to compare and contrast these with singular vectors and singular
values.

Recall that for A ∈ Cm×m we say that λ ∈ C is an eigenvalue and 0 6= v ∈ Cm

is an eigenvector if

Av = λv

that is multiplication of v by A scales v by λ. We call the set of all eigenvalues of
A, Λ(A) the spectrum of A. We point out that if A is singular then 0 ∈ Λ(A) and
any non-zero vector in N(A) is then an eigenvector (with eigenvalue 0).

When everything is real – i.e. both the matrix A and the eigenvalue λ and
eigenvectors x– then one can geometrically understand this as saying A scales x by
|λ| (and possible reverses its direction if λ < 0. However, it is possible for A to be
real and for λ and v to be complex. This contrasts with much of what we have
seen previously and should be kept in mind. For instance the matrix

A =
[
0 −1
1 0

]
which geometrically rotates by 90◦ has eigenvalues ±

√
−1 = ±I. Roughly speaking,

for real matrices, complex eigenvalues correspond geometrically to such a “rotation”
(possible also with a scaling) while real eigenvalues correspond to pure scaling.

How do we find eigenvalues and eigenvectors? We can recast the question
slightly and see that we are trying to find non-trivial solutions to

(A− λI)x = 0

That is we try to find λ so that N(A − λI) 6= {0} and then in this case try and
find elements in the null space. The latter problem is easy (as it is just solving a
linear system) and the difficulty arises mostly in the former. Indeed, determining
the spectrum Λ(A) is an essentially non-linear problem.

Phrase things in a manner that is amenable to algebraic investigation we must
recall the determinant. This is a function:

det : Cm×m → C

7



8 2. TWENTY-FOURTH LECTURE

defined by

det
[
a b
c d

]
= ad− bc

and inductively by

detA =
m∑

i=1

(−1)ia1i det A1i.

Here A1i is the matrix in C(m−1)×(m−1) obtained by omitting the first row and
ith column. In other words, we have defined the determinant by expanded along
the first row. The determinant has many properties that allow one to compute it
in other ways. We refer to Strang for instance for more detailed discussion. You
should be able to compute the determinant of small matrices (i.e. 2× 2 and 3× 3).

There is a big theory of determinants. The main property we will need is the
fact that A is non-singular when and only when det(A) 6= 0. Using this fact and
an expansion of the determinant we see that λ ∈ Λ(A) when and only when λ is a
root of the polynomial

pA(z) = det(zI −A) = zm + cm−1z
m−1 + . . . + c0

is a degree m polynomial. We call this the characteristic polynomial of A. The
coefficients ci are determined by the entries of A in an explicit (but non-linear) way.

This is one place that working over C greatly simplifies things. Indeed, the
fundamental theorem of algebra tells us that over C. pA(z) has exactly m roots
(counting multiplicity). That is we can factor

pA(z) = (z − λ1)m1 . . . (z − λk)mk

where k ≤ m, mi ≥ 1 and
∑

i mi = m. We call the value mi = mλi
the alge-

braic multiplicity of the eigenvalue λi. Notice one cannot always produce such a
factorization over R.

For a λ ∈ Λ(A) we say the eigenspace associated λ is the vector space

Eλ = N(λI −A)

this is always a non-empty vector space all the non-zero vectors of Eλ are eigen-
vectors with eigenvalue λ. We let gλ = dimEλ and call this number the geometric
multiplicity of λ. One always has 1 ≤ gλ ≤ mλ (for a proof we refer to Trefethen-
Bau Lecture 24). We say A is non-defective if gλ = mλ for all λ ∈ Λ(A).

The point above is that for a non-defective A ∈ Cm×m one has the dimensions
of the eigenspaces summing up to m (since the algebraic multiplicites have this
property). In this case there is a set x1, . . . ,xm a basis of Cm where each xi is an
eigenvector of A. In particular, there is a non-singular matrix

X =
[
x1| · · · |xm

]
so that

A = XΛX−1

where Λ is diagonal. Notice that unlike the SVD we have only one set of vectors,
they are not neccesarily orthogonal, we must start with a square matrix, the diago-
nal matrix may have complex or negative entries and we aren’t guarenteed of such
a decomposition existing.

One important result we will need is the following:
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Theorem 1.1. Let A ∈ Cm×m be hermitian, i.e. A∗ = A. Then A is non-
defective, all the eigenvalues of A are real and one may choose a orthonormal basis
of eigenvectors.

Corollary 1.2. There is a Q ∈ Cm×m that is unitary so that

A = QΛQ∗

where Λ is diagonal with real entries.

We will prove this later. The point is that hermitian matrices are rather nice
from an eigenvalue point of view.

2. Eigenvalues and the SVD

Despite the differences noted above, there is a clear important relationship
between eigenvalues and singular values. Indeed, for hermitian matrices they are
(practically) the same. One thing that is useful about this is that eigenvalues and
eigenvectors can be found algebraically (though this is not an easy problem for
large matrices). This allows one to find singular values in an algebraic manner:

Theorem 2.1. Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the non-zero singular values of
A ∈ Cm×n. Then σ2

i are precisely the non-zero eigenvalues of A∗A and of AA∗ (i.e
these matrices have the same non-zero eigenvalues).

Proof. : Let A have SVD A = UΣV ∗ then

A∗A = (UΣV ∗)∗(UΣV ∗) = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗ = V Σ2V ∗

This says exactly that A∗A has eigenvalues σ2
1 , . . . , σ2

r with associated eigenvectors
v1, . . . ,vr. Of course there may be more eigenvalues but these must all be zero.
Similarly,

AA∗ = (UΣV ∗)(UΣV ∗)∗ = UΣV ∗V Σ∗U∗ = UΣΣ∗U∗ = UΣ2U∗

This says that AA∗ has eigenvalues σ2
1 , . . . , σ2

r with associated eigenvectors u1, . . . ,ur.
As above there may be more eigenvalues but they are zero. �

It is imporatant to note that this given the eigenvalues of A∗A one gets the
singular values by taking the (positive) square root. More over, by taking the
associated eigenvectors of A∗A one gets the right singular vectors of A.


