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CHAPTER 1

Sixteenth and Eighteenth Lectures

We discuss alternate methods of computing the QR factorization. These are
better suited for implementation on a computer.

1. Modified Gram-Schmidt

We have seen how to compute the QR factorizations using the Gram-Schmidt
algorithm and this is perfectly fine from a theoretical point of view. Practically
however, the algorithm handles rounding errors very poorly (mainly an issue when
the initial basis contains vectors that are nearly parallel). To see how to get around
this we first give a variant of Gram-Schmidt that is better behaved.

Lets think for a moment about what Gram-Schmidt itself does. Let {a1, . . . ,an}
be a of linearly independent vectors in Cm. The Gram-Schmidt algorithm produces,

q1 =
P1a1

||P1a1||2
,q2 =

P2a2

||P2a2||2
, . . . ,qk =

Pkak

||Pkak||2

where here P1 is the identity matrix and for j ≥ 2 each Pj ∈ Cm×m is orthogonal
projection onto span(q1, . . . ,qj−1)⊥. As the qi are an orthonormal set of vectors
we can write:

Q̂j−1 =
[
q1| · · · |qk

]
and then Q̂j−1Q̂

∗
j−1 gives projection onto span(q1, . . . ,qj−1). Thus Pj projection

onto the orthogonal complement is given by

Pj = I − Q̂j−1Q̂
∗
j−1

Notice that each Pj is of rank m − (j − 1). An important observation is that
one can factorize the Pj in terms of rank m − 1 orthogonal projectors:

Pj = P⊥qj−1 · · ·P⊥q2P⊥q1I

This follows by noting that Pj = I −
∑j

i=1 qiq∗i and P⊥qi
= I − qiq∗i and taking a

product. I leave the details as an exercise. This gives another algorithm which is
less sensitive to rounding errors.

Idea of the algorithm: Start with aj set v(1)
j = aj . One iteratively computes

as follows: At the ith step, set vj = v(j)
j , rii = ||vi||2 and qi = r−1

ii vi and set

v(i+1)
j = P⊥qi

v(i)
j .

Another way to think about this is that there are upper triangular matrices
R1, R2, . . . , Rn (in Cn×n) so that[
q1 · · · |qj−1 |v(j)

j | · · · |v(j)
n

]
Rj =

[
q1 · · · |qj |v(j+1)

j+1 | · · · |v(j+1)
n

]
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We refer to Trefethen and Bau Lecture 8 for the exact form of the Rj . Then one
has

AR1R2 . . . Rn = Q̂

One can check that the product of upper triangular matrices is still upper triangular
and one of your homework exercises was to show the inverse was upper triangular
so with

R̂ = (R1R2 . . . Rn)−1

one obtains a reduced QR factorization:

A = Q̂R̂

2. Householder Reflections

So we saw how to determine a (reduced) QR factorization by repeated multi-
plications by upper triangular matrices that in the end produces a unitary matrix.
Another approach is to use unitary matrices to produce an upper triangular matrix.
This is known as the Householder algorithm.

Basic idea is to write
A =

[
a1| · · · |an

]
we want to find a Q1 ∈ Cm×m that is unitary and so that

Q1A =
[
r11e1 |a(2)

2 | · · · |a(2)
n

]
Then find a Q2 ∈ Cm×m that is unitary and so that

Q2Q1A =
[
r11e1 |r12e1 + r22e2 |a(3)

3 | · · · |a(3)
n

]
and so on. The end result will be Q1, . . . , Qn all unitary so that

QnQn−1 . . . Q1A = R

where R ∈ Cm×n is upper triangular. We get the QR factorization by setting

Q = (QnQn−1 . . . Q1)
∗

where we use that the product of unitary matrices is still unitary as is the adjoint
of a unitary matrix. We leave this fact to you to check.

We now discuss how to find such unitary matrices. The first property that we
want is for the Qk to preserve the first k− 1 columns of Qk−1 · · ·Q1A. To do so we
may take Qk to be of the form

Qk =
[
Ik−1 0

0 F

]
where Ik−1 ∈ C(k−1)×(k−1) is the identity and F ∈ C(m−k+1)×(m−k+1). This works
as the first k−1 columns of Qk−1 · · ·Q1A are upper triangular so the F term doesn’t
effect those columns. For Qk to be unitary it must have orthonormal columns and
hence F must have orthonormal columns and so also be unitary.

Let x ∈ C(m − k + 1) denote the vector obtained from a(k)
k ∈ Cm by omitting

the first k − 1 entries. One has

Qka
(k)
k =

[
∗

Fx

]
where ∗ represents m − k − 1 entries. In particular, to to find F (and hence Qk it
suffices to ensure Fx = rkke1.
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As unitary matrices preserve distance, one needs |rkk| = ||x||2 and so we start
by taking rkk = ||x||2. One geometric way to do this would be by rotation. This
is not optimal from a pratical point of view. Instead, reflection is a better choice.
Namely, let v+ = ||x||2e1 −x and let E+ = span(v+) and H+ = E⊥

+ . We can then
take F to be reflection across H+. As it will then be a unitary matrix with the
desired mapping property. (Note: this geometric intrepretation works best over the
reals).

Lets figure out the matrix for the reflection. Let Pv+ denote orthogonal pro-
jection onto E+ and PH+ denote orthgonal projection onto H+, i.e they are com-
plementary orthogonal projectors. One verifes then that F = I − 2PE+ is unitary
and has the desired behavior. In other words:

F = I − 2
v+v∗+
||v+||22

Notice there are other choices. For instance one could try and make Fx =
−||x||2e1. Here we let v− = −||x||2e1 −x and work as above then we are reflecting
across the hyperplane H− which is orthgonal to v−. Mathematically both choices
are equivalent (i.e. lead to the same answer) however, numerically it turns out to
be better to choose the sign so that Fx is as far as possible from x. It is easy
to see that this is equivalent to choosing rkk = −sign(x1)||x||2 where x1 is first
component of x and sign(x1) = 1 if x1 ≥ 0 and = −1 if x1 < 0. One way to see
why this might be the case is to consider the real case when the dimension is 3 or
larger, i.e. where F ∈ Rn×n for n ≥ 3. When this is the case, if x is near ||x||2e1

and one trys to reflect x to ||x||2e1 a very small perturbation of x could cause F to
change a lot (think what happens if you rotation x around the e1 axis by 90◦–the
reflecting plane also rotates by 90◦). On the other hand in this case reflecting to
−||x||2e1 is not very sensitive to small perturbations (the plane will always be near
the one perpendicular to e1.


