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CHAPTER 1

Fourth Lecture

In this lecture we reviewed Gaussian elimination. We focused on the difference
between row operations and column operations and how those could be used to
determine different information about (respectively) the null space of a matrix and
the column space.

1. Elementary Row and Column Operations

The basic tool we will use are a certain set of operations on the rows and
columns of a matrix. These will preserve important features of the matrix while
also simplifying the matrix.

Fix a matrix A ∈ Cm×n. We’ve already seen how to write A in terms of its
columns:

A =
(
a1 | . . . | an

)
here aj is vector in Cm or a m× 1 matrix. it is also helpful to write it in terms of
its rows

A =


c1

−
...
−
cm


where here the cj is a 1× n matrix (not a vector!).

Starting with A we define an elementary column operation to be one of the
following operations: a) Swapping two columns of A, b) scaling the first column by
a non-zero scaler and c) adding the second column to the first column. In general
we will be iteratively applying a sequence such operations to A.

More precisely, we take and produce a new m × n matrix A′ by doing one of
the preceding operations as follows:

A =
(
a1 | . . . | ai | . . . | aj | . . . | an

)
under the swapping operation, a), goes to

A′ =
(
a1 | . . . | aj | . . . | ai | . . . | an

)
.

Here we are free to choose any 1 ≤ i < j ≤ n we like. Ander the scaling operation,
b), one has A going to

A′ =
(
λa1 | . . . | ai | . . . | aj | . . . | an

)
where here λ 6= 0 is a scaler in C. Finally, under the addition operation, c), A goes
to

A′ =
(
a1 + a2 |a2| . . . | ai | . . . | aj | . . . | an

)
.
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Notice that by combining the swapping operation with the scaling operation, one
obtains an operation given by scaling any column by a non-zero scalar. Similarly, by
combining the swapping operation with the addition operation one gets an operation
wherein any column may be added to any other. This larger set of operations is
often refered to as elementary column operations.

The nice feature of elementary column operations is that they preserve the
range space of a matrix.

Theorem 1.1. Let A ∈ Cm×n. If A′ is obtained from A by a (finite) sequence
of elementary column operations then R(A) = R(A′)

Remark 1.2. In general N(A) 6= N(A′), though it is true that dimN(A) =
dimN(A′).

Proof. We verify this only when A′ is obtained from A by one elementary
column operation. The theorem then follows by induction. Lets first verify that
R(A′) = R(A) when A′ is obtained from A by swapping the ith and jth column.
Let v ∈ R(A) then there is a w ∈ Cn so that v = Aw. We may write w =
w1e1 + · · · + wiei + · · · + wjej + · · · + wnen where ek is the kth standard basis
vector. Now let A′ be obtained from A by swapping the ith and jth columns.
If we set w′ = w − wiei − wjej + wjei + wiej then one verifies that A′w′ = v.
Hence R(A) ⊂ R(A′). However, reversing the argument works just as well so
R(A) = R(A′).

Now suppose that A′ is obtained by A by scaling by λ 6= 0 the first column
of A. If v ∈ R(A) then v = Aw where w =

∑n
i=1 wiei then if we set w′ =

w1
λ e1 +

∑n
i=2 wiei then A′w′ = Aw = v. Hence in this case also R(A) ⊂ R(A′).

Again the argument is reversible so R(A) = R(A′).
Finally, suppose A′ is obtained from A by adding the second column to the

first. If v ∈ R(A) then v = Aw where w =
∑n

i=1 wiei. Now set w′ = w1e1 +(w2−
w1)e2 +

∑n
i=3 wiei. Then one has A′w′ = Aw = v so R(A) ⊂ R(A′). Again the

argument is reversible so R(A) = R(A′). �

In a corresponding way we may define the elementary row operations. Roughly
speaking, an elementary row operation is one of the following operations: a) swap-
ping two rows, b) scaling the first row by a non-zero scalar, or c) adding the second
row to the first row. More precisely, for a matrix A a new matrix A′ is obtained by
an elementary row operation applied from A if it is given by one of the following
formulas:

A =



c1

...
ci

...
cj

...
cm


, A′ =



c1

...
cj

...
ci

...
cm


, A′ =



λc1

...
ci

...
cj

...
cm


, A′ =



c1 + c2

...
ci

...
cj

...
cm


Unlike the elementary column operations, the elementary row operations pre-

serve the null space, though they change the column space.
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Theorem 1.3. Let A ∈ Cm×n be a matrix. If A′ is obtained from A by a
(finite) sequence of elementary row operations then N(A) = N(A′).

Remark 1.4. In general R(A) 6= R(A′), though it is true that dimR(A) =
dimR(A′). We will prove this later.

2. Reduced Echelon Form and Gaussian elimination

Elementary row operations and elementary column operations can be applied
to a matrix A to produce new matrices A′ and A′′ that are “simpler” in a certain
sense. In order to make this precise, we need a notion of what a “simple” matrix
should be.

We make the following defintions:

Definition 2.1. Let A ∈ Cm×n and write

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn


we say A is in row reduced echelon form (rref) if

(1) A is upper triangular, i.e. if aij = 0 when i > j.
(2) The first non-zero entry of each row of A is 1 (note some rows may be all

zeros). This entry is called a pivot.
(3) The only non-zero entry in a column containing a pivot is the pivot entry.

Definition 2.2. Let A ∈ Cm×n and write

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn


we say A is in column reduced echelon form (cref) if

(1) A is lower triangular, i.e. if aij = 0 when i < j.
(2) The first non-zero entry of each column of A is 1 (note some columns may

be all zeros). This entry is called a pivot.
(3) The only non-zero entry in a row containing a pivot is the pivot entry.

The point about the echelon forms is that (as well discuss below) they are easier
to extract information about the range and null space from. The point is that that
one can always obtain a matrix A′ which is in rref from A by elementary row
operations. I won’t discuss the details the algorithm to do this – namely Gaussian
elimination – as you learned it in Math 51. In a similar manner, and by essentially
the same algorithm for any matrix A one can obtain a matrix A′ from A by column
operations and so that A′ is in cref.

The existence of such the Gaussian elimination algorithm is then a proof of the
following theorems which we will use in this class.

Theorem 2.3. For any matrix A ∈ Cm×n there is a unique matrix A′ obtained
by a finite number of elementary row operations from A so that A′ is in rref. We
write A′ = rref(A).

Similarly, there is a unique matrix A′′ obtained by a finite number of elementary
column operations from A and so that A′′ is in cref. We write A′′ = cref(A).
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3. Pivots

The pivots of cref(A) and rref(A) allow one to determine (respectively) the
range or the null space of A more easily. For instance one can check that the set
of columns of cref(A) containing a pivot forms a basis of R(cref(A)) = R(A).
Thus, dimR(A) is the number of pivots in cref(A). A more involved argument
shows that, in rref(A) looking at the null space, non-pivot columns correspond
to “free variables” while pivot columns correspond to“pivot variables” that are
determined by the free variables. In particular, one expects the dimension of the
N(rref(A)) = N(A) to be the number of “free variables”.

4. Examples

I’ll illustrate some of the preceding with an example. Let

A =

2 3 0
0 1 1
1 2 1


column operation steps2 3 1

0 1 1
1 2 1

 →

 1 0 0
0 1 1

1/2 1/2 1/2

 →

 1 0 0
0 1 0

1/2 −1/2 0


so A has rank 2 and the range is spanned by the vectors 1

0
1/2

 ,

 0
1

−1/2


Notice that A′ = cref(A) has nullity 1 and null space spanned by e2 which is NOT
in the null space of A. Row operations give:2 3 1

0 1 1
1 2 1

 →

1 3/2 1/2
0 1 1
0 1/2 1/2

 →

1 0 −1
0 1 1
0 0 0


It is straightforward to see that for A′ = rref(A), Null(A′) is spanned by

 1
−1
1


and hence so is Null(A). In particular as expected the nullity is 1. I leave it to you
to see that theR(A) is not the same as R(A′).

5. Column and row operations as matrix multiplications

We claim (we will come back to this later in the course that there are n × n
(non-singular) matrices Sij , Mλ and C (corresponding to elementary row column
operations a), b) and c) respectively) so that multiplication of A on the right by
the matrix produces A′, i.e. A′ = AC. Where A′ is obtained from A by one of the
elementary column operations.

Similarly, there are m×m (non-singular) matrices so that multiplication of A
on the left by these matrices yields the elementary row operations.



CHAPTER 2

Fifth Lecture

We present some (selected) proofs of important linear algebra facts.

Theorem 0.1. Every vector space E ⊂ Cn admits a basis.

Proof. This is such a fundamental result that it can be a bit difficult to prove
and so we don’t do it here. �

Lemma 0.2. If A is a m×n matrix and m < n (i.e. A is short and wide) then
there is a non-zero vector v ∈ Cn so Av = 0. (i.e. N(A) is non-trivial).

Proof. Let A′ = rref(A). We verified last time that N(A′) = N(A), so we
just need to find a non-zero vector in N(A′). Write

A′ =
[
a′1| · · · |a′n

]
so a′i are the columns of A′. Since there is only one pivot (at most) in each column
and row) and m < n there must be a column a′j0 without a pivot. Write

ai0 =

a1j0
...

amj0


Let

v =

v1

...
vn


where

vi =


−aij0 if a′i has a pivot and i < j0

0 if a′i has no pivot and i < j0
1 if i = j0
0 if i > j0

Notice that v 6= 0 and A′v = 0 hence v ∈ N(A). �

Theorem 0.3. If v1, . . . ,vk is a basis of E ⊂ Cn and w1, . . .wl is also a basis
for E then k = l.

Proof. We argue by contradiction. Up to a relabelling we may assume that
k > l. The fact that the wi are a basis means there are cij so that vj =

∑k
i=1 cijwi.

Now let V be the n × k matrix whose columns are vj and W be the n × l matrix
whose columns are the wi. Let C be the l × k matrix with entries cij . Then we
have

V = WC

7
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Now C is a l × k matrix and l < k so by Lemma 0.2 there is a non-trival x so
that Cx = 0 but then V x = 0 but this implies the columns of V (i.e. the vjs) are
linearly dependent. A contradiction. �

Lemma 0.4. Let v1, . . . ,vl be linearly independent vectors in E. Then dim(E) ≥
l.

Proof. This is very similar to the previous argument. We argue by contra-
diction. Suppose that dim(E) = k < l. By Theorem 0.1, there is a basis of E and
by Theorem 0.3 we may write it as w1, . . . ,wk. As before writing the vj in terms
of the wi yields a contradiction to Lemma 0.2 Hence dim(E) = k ≥ l. �

Theorem 0.5. Any set of linearly independent vectors v1, . . . ,vl in a vector
space E can be extended to a basis v1, . . . ,vk where k = dim(E) ≥ l.

Proof. Set m = k− l i.e. the difference between number of linear inependent
vectors v we start with and the number we want to end up with. By Lemma
0.4 m ≥ 0. By Theorems 0.1 and 0.3 and Lemma 0.4 when m = 0 then the
vectors we started with form a basis. To really see this just need to verify that
v1, . . . ,vl generate E. To that end pick any w ∈ E. If w 6∈ Span {v1, . . . ,vl} then
{w, . . . ,v1, . . . ,vl} is linearly independent, then Lemma 4 implies dimE ≥ l + 1
contradiction m = 0.

We now prove the theorem by induction on m. That is fix m ≥ 0: suppose that
we know that for any vector space E′ and lin indep vectors a1, . . . ,al′ in F with
dim(E′) = k′ satisfies k′ − l′ = m then a1, . . . ,al′ can be extended to a basis of F
a1, . . . ,ak′ . (i.e. we added m new vectors) We want to conclude that for any other
vector space E′′ with lin indep vectors b1, . . . ,bl′′ so that dim(E′′) = k′′ satisfies
k′′− l′′ = m+1 then b1 . . . ,bl′′ extends to a basis b1, . . . ,bk′′ (i.e. we added m+1
new vectors). We see this as follows: By Theorem ?? the b1, . . . ,bl′ cannot span
E′′ as otherwise they would form a basis but m + 1 > 0. Hence pick any vector w
in E′′ not in the span of the b1, . . . ,bl′ . Now if set bl′′+1 = w then the new set
of vectors b1, . . . ,bl′′ ,bl′′+1 is a) Linearly independent in F ′′ and hence together
with F ′′ satisfies the induction hypotheses.

This proves the theorem. �

Remark 0.6. If you are having problems with this think about the case m = 1
and m = 2.

Some applications to matrices.

Theorem 0.7. Let A be a m ×m matrix . Then A is full rank if and only if
the columns of A form a basis of Cm

Proof. ⇒. We need to check that the columns are a basis that is the generate
and are linearly independent. We know that A has full rank implies the dimension of
R(A) is n which implies by Theorems 0.1 and 0.3 that R(A) has basis w1, . . . ,wm ∈
Cm. As the wis are linearly indpendet, by Theorem 5 we can extend w1, . . . ,wm to
a basis of Cm but by Theorem 0.3 this extension must be trival hence R(A) = Cm

and since the columns spance R(A) they span Cn. We check that the columns
are linearly indendent as follows: if they failed to be linearly independent then one
could remove one of the columns and have m−1 vectors spanning Cn. In particular,
there would be a m × (m − 1) matrix A′ with R(A′) = Cm. In particular, if ei is
the standard basis of Cm we can find ci ∈ Cm−1 so that ei = A′ci. Let C be the
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m− 1×m matrix with columns ci then Id = A′C, but C is short and wide and so
by Lemma 2 there is a non-trival x ∈ Cm so that Cx = 0. Since Idx = x 6= 0 this
is a contradiction.

⇐. Since the columns form a basis their span has dimension m. Hence
dimR(A) = n and hence A has full rank. �

Corollary 0.8. If A is an m ×m matrix with linearly independent columns
then A has full rank.

Proof. As the columns are linearly independent and there are m of them,
they must span Cm hence they are a basis. �





CHAPTER 3

Sixth Lecture

In this lecture we discussed how to interpret matrices as systems of linear
equations. We also discussed non-singular matrices.

1. Systems of Linear Equations

We disucss one of the classic applications of linear algebra. Namely solving
systems of linear equations. We’ve already seen these sorts of questions in other
guises.

The basic set up is let A ∈ Cm×n be a m × n matrix. We can interpret this
matrix as a system of m linear equations in n unknowns by letting x ∈ Cn be a
vector of variables and b ∈ Cm be fixed and try and look for solutions to:

Ax = b

Two important and natural questions immediately arise. Is there always a solution?
And if so is it unique? In general both anwers are false so it is a good idea to be
able to quantify them. Of course one would also like to find a solution if it exists,
but that is a more computational question.

It follows from the definitions pretty much directly that our system has a solu-
tion when and only when b ∈ R(A). On the other hand if x = v is a solution and
v′ ∈ N(A) then it is also clear x = v +v′ is also a solution. Similarly, if x = v and
xw are two solutions then v −w ∈ N(A). In other words the null space precisely
characterizes how solutions fail to be unique while the range characterizes which
inputs lead to solutions.

We point out that thinking about the A as a linear transformation leads to
some important (and equivalent) notions. Namely, that of surjective and injective
maps. Consider the linear map Â associated to A from Cn to Cm given by

Â : Cn → Cm

x 7→ Ax

We say that Â is surjective (or onto) precisely when for all b ∈ Cm there is an
a ∈ Cn so Â(a) = b that is one can always solve Ax = b for any b. We say Â is
injective (or 1-1) when Â(x) = Â(y) implies that x = y that is there is at most one
solution to Ax = b (there may be none).

We note the following equivalent properties for A ∈ Cm×n: A is surjective as
a linear map, Ax = b always has a solution, R(A) = Cm, the columns of A span
Cm. Similiarly: A is injective: Ax = b has at most one solution, N(A) = {0}, the
columns of A are linearly independent.

11
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2. Non-Singular Matrices

We won’t at present discuss further the mechanics of solving systems. The
standard approach to this is Gaussian elimination a topic that should have been
covered in great depth in Math 51. Rather we will specialize to a very special case.
Namely when A is surjective and injective, i.e. R(A) = Cn and N(A) = Cm.

One easy to see fact about A in this case is that A is m×m i.e. square. This
follows as each column is an m vector and there are n of them in m × n matrix.
Injective implies the columns of A are linearly-independent while surjective implies
they span Cn. That is they form a basis of Cm and so m = n. We call such a
matrix A Non-Singular. A m×m matrix that is not non-singular is called singular.
Notice that by Theorem 0.7 and Corollary 0.8 any m ×m matrix is non-singular
provided that either columns linearly-independent or span

Let A be a m×m non-singular matrix. One of the most imporant facts about
such A is that there exists another matrix which we denote by A−1 so that AA−1 =
I. We see this as follows: Let ai be the unique solution to Ax = ei. Then one has:

A−1 =
[
a1 | . . . | am

]
Then we check that AA−1 = I. A−1 is the inverse and so also say that A is
invertible

We list some useful facts and indicate an rough idea of the proofs.
• A−1 is non-singular. To see this note that N(A−1) = {0}. Indeed, if

x ∈ N(A−1) then x = AA−1x = A0 = 0. Hence, A−1 is non-singular.
• A−1A = I. To see this, we note that A−1 = A−1I = A−1AA−1. Hence,

I = A−1(A−1)−1 = A−1AA−1(A−1)−1 = A−1A. Here (A−1)−1 exists as
A−1 is non-singular.

• If BA = Id or AB = Id then A is non-singular and B = A−1. To see this
multiply (on the right or left) by A−1.

• (A−1)−1 = A.
• If A, B non-singular then so is AB and (AB)−1 = B−1A−1. Conversely,

if AB is non-singular then both A and B are.
We are going to see non-singular matrices again and again. This is because and

this is really important the columns of a non-singular matrix form a basis and a
basis gives a non-singular matrix by taking them as columns! More precisely, given
a basis ai of Cm we can write some vector

b =

 b1

...
bm

 =
m∑

i=1

biei = Ib

as

b =
m∑

i=1

ciai = Ac

Here A is m×m matrix with colums ai. The ci are the coefficients of b in the basis
ai. We say that the cis (equvialently the c) are the coefficients of b with respect to
the basis {ai}

The point is the matrix A tells us how to determine the coefficients of b with
respect to the standard basis in terms of the coefficients c. On the other hand,
multiplying by A−1 we have A−1b = c in other words A−1 tells us how to write
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the ci in terms of the bi. In other words how to write the coefficients of b in terms
of the basis a in terms of the coefficients of the standard basis. For this reason
non-singular matrices are sometimes said to give a change of basis.

Why is changing basis good? Well some problems are easier to understand
in a given basis. More importantly a matrix X often has a natural basis (usually
different form the standard basis) on which it behaves particularly simple. For
example, let us write

v1 =

1
1
0

 ,v2 =

0
2
0

 ,v3 =

−1
0
1


We claim that the three vectors form a basis of C3. Now let us try and write

w =
[
2, 3, 1

]
in terms of this basis. That is find c1, c2, c3 so that w = c1v1 + c2v2 + c3v3 This
amounts to looking at 2

3
1

 =

1 0 −1
1 2 0
0 0 1

c1

c2

c3


Then we have 1 0 −1

1 2 0
0 0 1

−1 2
3
1

 =

c1

c2

c3


computing out  1 0 1

−1/2 1/2 −1/2
0 0 1

2
3
1

 =

3
0
1

 =

c1

c2

c3


3. How to tell if A is non-singular

There are a number of ways to recognize that an m×m matrix A is non-singular
we won’t discuss all of them. When A ∈ Cm×m then A is nonsingular is equivalent
to...

• N(A) = {0} equivalently the columns of A are linearly independent equiv-
alently for all b, Ax = b has at most one solution.

• R(A) = Cm equivalently the columns span Cm equivalently for all b
Ax = b has a solution.

• There is a m×m matrix B so AB = I or BA = I
• det(A) 6= 0

The last condition is that the determinant of the matrix. We won’t discuss this
much further as it is a concept that while useful theoretically, almost never gets
used in the algorithms we will study. As I consequence, I’ll defer defining the
determinant till we use it (if ever).

Lets see another example. Lets say I tell you that v1,v2,v3 is a basis of C3.
Then I define w1 = v1 − 2v2 + v3, w2 = v2 − v3 and w3 = v1 + v3. How can
we determine if wis are a basis of C3? To answer this lets rewrite this as a matrix
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problem. [
w1 |w2| w3

]
=

[
v1 |v2| v3

]  1 0 1
−2 1 0
1 −1 1


I.e. for each column multiplying by V replaces standard basis by basis vi. For wi

to be a basis W needs to be non-singular. V is non-singular so it is enougth that
the right hand side is non-singular. Row reducing shows that it is.

Now how do we write vi’s in terms of the wi’s?

[
w1 |w2| w3

]  1 0 1
−2 1 0
1 −1 1

−1

=
[
v1 |v2| v3

]


