\[\nabla f(x, y) = \begin{bmatrix} 2x + 2 \\ 2y \end{bmatrix} \]
\[\nabla f(0, 0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \]
\[\sqrt{1^2 + 2^2} = \sqrt{5} \]
\[\nabla f(0, 0) \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1}{\sqrt{5}} (2 \cdot 1 + 0 \cdot 2) = \frac{2}{\sqrt{5}} \]
\[z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) \]
\[z - 1 = 2x \]
\[f(0, 0) = 1 \]
\[f(x, y) = 1 \]
\[(x + 1)^2 + y^2 = 1 \text{ is a circle centered at } (-1, 0) \text{ with radius 1.} \]
\[\frac{\partial f}{\partial x} = 2x + 2 = 0 \text{ and } \frac{\partial f}{\partial y} = 2y = 0 \implies x = -1 \text{ and } y = 0. \text{ Thus there's a critical point at } (-1, 0). \]

The Hessian of \(f \) is \(\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \).

The boundary of \(D \) is given by \(p(t) = (2 \cos \theta, 2 \sin \theta) \).

Method 1:
\[F(\theta) = f(2 \cos \theta, 2 \sin \theta) = 4 + 4 \cos \theta + 1 = 5 + 4 \cos \theta \]
Then \(\frac{dF}{d\theta} = -4 \sin \theta = 0 \). Then \(\theta = k\pi \) for any integer \(k \). These solutions correspond to the points \((-2, 0)\) and \((2, 0)\).

We compare the values at the critical points:
\[f(-1, 0) = 0 \]
\[f(-2, 0) = 1 \]
\[f(2, 0) = 9 \]

We conclude \(f \) has an absolute minimum at \((-1, 0)\) and an absolute maximum at \((2, 0)\).

Method 2:
\[g(x, y) = x^2 + y^2 - 4 \]
\[\nabla f = \lambda \nabla g \text{ gives the equations} \]
\[2x + 2 = \lambda 2x \text{ and } 2y = \lambda 2y \]

There are different ways to solve this.

One way gives \(2xy + 2y = \lambda 2xy = 2xy \). Then \(y = 0 \). Then using the constraint \(x^2 + y^2 = 4 \), we conclude \(x = \pm 2 \). We complete the problem as in Method 1.

Intuitively, we look for the furthest point in \(S \) away from the center \((-1, 0)\) of the paraboloid. This occurs equally at two of the corners: \((4, 4)\) and \((4, -4)\).