Assignment 1: due Thursday February 12

1. Write up a complete proof of term-by-term differentiabilty, starting from:
 Let $\epsilon > 0$. We must find $\delta > 0$ such that $|w - z| < \delta$ implies
 \[
 \left| \frac{f(w) - f(z)}{w - z} - g(z) \right| < \epsilon.
 \]
 Here, $f(z) = \sum_0^\infty c_n z^n$ has radius of convergence $R > 0$, $|z| < R$, $|w| < R$, and $g(z)$ is given by the derived series.

2. Definition of ∂_ξ (and ∂_z). Among all expressions (vector fields in the plane with \mathbb{C}-valued coefficients) $L = \phi(x, y) \partial_x + \psi(x, y) \partial_y$, there is exactly one with
 a) $L(f) = 0$ wherever f is complex-differentiable,
 b) $L(\overline{\zeta}) = 1$.
 This L is ∂_ξ. Determine the coefficients $\phi(x, y)$ and $\psi(x, y)$.

3. Assume that $f(z) = \sum_0^\infty c_n z^n$ and $g(z) = \sum_1^\infty a_n z^n$ (so $g(0) = 0$) have positive radii of convergence R and r respectively.
 a) Determine the power series for $f \circ g$ in powers of z.
 b) Let $g(z) = \alpha z$ ($\alpha \in \mathbb{C}$). What is the radius of convergence of the series for $f \circ g$?
 c) Answer the question in b) for general g.

4. a) Show that for a sequence of real numbers q_n,
 \[
 \limsup_{n \to \infty} q_n = \lambda
 \]
 if and only if the following pair of statements hold:
 i) For every $\epsilon > 0$, the set of n for which $q_n \geq \lambda + \epsilon$ is a finite set.
 ii) There is a subsequence $\{q_{n(k)}\}$ of $\{q_n\}$ that converges to λ.
 b) Use this characterization of \limsup to derive the formula for the radius of convergence of a power series:
 \[
 R^{-1} = \limsup_{n \to \infty} |c_n|^{1/n}.
 \]

5. Suppose that $\sum_{n=0}^\infty c_n z^n$ has radius of convergence $R > 0$.
 a) If $|z_0| = r < R$, show that the double summation
 \[
 \sum_{n=0}^\infty c_n \sum_{m=0}^n \binom{n}{m} z_0^{n-m}(z - z_0)^m
 \]
 converges absolutely whenever $|z - z_0| < R - r$.
 b) Give a counterexample to the assertion: The radius of convergence of
 \[
 \sum_{m=0}^\infty \left\{ \sum_{n=m}^\infty c_n \binom{n}{m} z_0^{n-m} \right\} (z - z_0)^m
 \]
 is $R - r$.