1. Evaluate S.

$$S = \frac{10000^2 - 1}{\sqrt{10000^2 - 19999}}.$$

2. Starting on a triangular face of a right triangular prism and allowing moves to only adjacent faces, how many ways can you pass through each of the other four faces and return to the first face in five moves?

3. Given that

$$(a + b) + (b + c) + (c + a) = 18,$$

$$\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} = \frac{5}{9},$$

determine

$$\frac{c}{a + b} + \frac{a}{b + c} + \frac{b}{c + a}.$$

4. Find all primes p such that $2^{p+1} + p^3 - p^2 - p$ is prime.

5. In right triangle ABC with the right angle at A, AF is the median, AH is the altitude, and AE is the angle bisector. If $\angle EAF = 30^\circ$, find $\angle BAH$ in degrees.

6. For which integers a does the equation

$$(1 - a)(a - x)(x - 1) = ax$$

not have two distinct real roots of x?

7. Given that

$$a^2 + b^2 - ab - b + \frac{1}{3} = 0,$$

solve for all (a, b).

8. Point E is on side AB of the unit square $ABCD$. F is chosen on BC so that $AE = BF$, and G is the intersection of DE and AF. As the location of E varies along side AB, what is the minimum length of BG?

9. Sam and Susan are taking turns shooting a basketball. Sam goes first and has probability P of missing any shot, while Susan has probability P of making any shot. What must P be so that Susan has a 50% chance of making the first shot?

10. Quadrilateral $ABCD$ has $AB = BC = CD = 7, AD = 13, \angle BCD = 2\angle DAB$, and $\angle ABC = 2\angle CDA$. Find its area.