From the point of view of stable homotopy theory, twisted cohomology theories are represented by parametrized spectra. We will review this idea, and describe a way to implement it precisely using a monoidal model for A_∞ multiplications. We then add in a group of equivariance G and propose a general definition for G-equivariant twisted cohomology theories.

Let R be a ring spectrum and let $GL_1 R$ be the A_∞ space of units of R. We think of $GL_1 R$ as the space of equivalences of R-modules $R \rightarrow R$. The delooping $BGL_1 R$ classifies R-line bundles, meaning parametrized R-modules whose fibers admit equivalences to R. Starting from a map of spaces $\tau: X \rightarrow BGL_1 R$, we form the associated line R-bundle $L(\tau)$ over X by the formula:

$$L(\tau) = R \wedge^{GL_1 R} \Sigma \infty X P(\tau),$$

where $P(\tau) \rightarrow X$ is the “principal $GL_1 R$-bundle” associated to τ. The τ-twisted R homology and cohomology groups of X are defined by

$$R^*_\tau = \pi^* r_! L(\tau) \quad \text{and} \quad R^*_{-\tau} = \pi_*(-)_* L(\tau),$$

where $r_!$ and r_* are the left and right adjoints to the pullback functor r^* from spectra to parametrized spectra over X. The functor r_* admits a construction as the space of homotopy sections.

When $R = K$ is the complex K-theory spectrum, the space of units has the following homotopy type:

$$BGL_1 K \simeq K(\mathbb{Z}/2, 1) \times K(\mathbb{Z}, 3) \times BBSU\otimes_\emptyset.$$

Atiyah-Segal define twists of K-theory by realizing maps into the component $K(\mathbb{Z}, 3) = BP(\mathcal{H})$ as principal bundles with structure group the projective infinite unitary group $P(\mathcal{H})$ on a Hilbert space \mathcal{H}, then using such a bundle to twist the complex K-theory spectrum, modeled as a space of Fredholm operators.

In order to make this sketch precise, we need some sort of coherence machinery to make sense of the notion of a ‘principal Π-bundle’ when Π is an A_∞-space. The idea is to find a symmetric monoidal product \boxtimes on the category of spaces whose monoids are A_∞ spaces. If Π is a \boxtimes-monoid, we define a principal Π-fibration over a space X to be a Π-module $Y \rightarrow X$ over X (where X has the trivial Π-module structure) that is a Hurewicz fibration in the category of Π-modules and such that every fiber Y_x admits an equivalence of Π-modules to Π. We can mimic the classical theory of the classification of fibrations to prove that the space $B^{\boxtimes}\Pi$ built using the symmetric monoidal product \boxtimes as a two sided bar construction classifies principal Π-fibrations.

There are a few different options for the symmetric monoidal product \boxtimes, and each of them requires putting additional structure on the notion of topological space in use. One approach is the L-spaces of Blumberg and co.; these are spaces with an action of the first space $L(1)$ in the linear isometries operad. One them defines
the product \boxtimes in analogy with the EKMM smash product of spectra. Monoids under \boxtimes are the same thing as algebras over the (non-symmetric) linear isometries operad, and thus are A_{∞} spaces. Our model for spectra will be orthogonal spectra, not EKMM spectra, so we will use the following category instead. Let I be the category of real inner-product spaces and linear isometries $V \rightarrow W$. An I-space is a continuous functor from I to the category of spaces. We define the product $X \boxtimes Y$ of a pair of I-spaces as the left Kan extension of the external cartesian product $(V, W) \mapsto X(V) \times Y(W)$ along the direct sum functor $\oplus : I^2 \rightarrow I$. The functor $X \boxtimes Y$ is computed level-wise by the formula:

$$(X \boxtimes Y)(V) = \lim_{W \oplus W' \rightarrow V} X(W) \times Y(W').$$

Monoids under \boxtimes are essentially filtered algebras over the (non-symmetric) linear isometries operad, and (a slight variant of) the colimit functor takes a \boxtimes-monoid to an \mathcal{L}-space. There is also a version of diagram spaces that fits with symmetric spectra. These are functors from Bökstedt’s indexing category I of finite sets and injections into spaces.

One can then carry out the program of classifying principal Π-fibrations when Π is \boxtimes-monoid. The hard part is proving that the universal object $E^{\boxtimes}\Pi \rightarrow B^{\boxtimes}\Pi$ is a quasifibration of I-spaces.

We will now weave in an action of a compact Lie group G into the story. Fix a G-universe U. We define the diagram category I_G as follows. The objects of I_G are G inner product spaces V that admit an isomorphism to some G-subspace of U. The morphisms in I_G from V to W are the (not necessarily equivariant) linear isometries $V \rightarrow W$. The group G acts on the morphism spaces $I_G(V, W)$ by conjugation, making the category I_G enriched in the category $G\mathcal{U}$ of G-spaces and G-maps. Passage to fixed points of morphism spaces defines the category $G\mathcal{I} = (I_G)^G$ with the same objects as I_G, but whose morphisms are G-equivariant linear isometries.

An I_G-space is a continuous G-functor $X : I_G \rightarrow \mathcal{U}_G$. Concretely, this means that we have a G-space $X(V)$ for every object V of I_G, along with G-equivariant maps

$$X : I_G(V, W) \rightarrow \mathcal{U}_G(X(V), X(W))$$

that encode the functoriality of X. Notice that left multiplication by an element $g \in G$ defines a linear isometry $\varphi_g : V \rightarrow V$ for any indexing space V in I_G, and thus an automorphism $X(\varphi_g)$ of the space $X(V)$. This action does not necessarily coincide with the pre-existing action of g on the G-space $X(V)$.

If E is an orthogonal G-spectrum, then the I_G-space

$$\Omega^*)E : V \mapsto \Omega^V E(V)$$

should be thought of as a model for the underlying G-equivariant infinite loop space of the spectrum E. If R is an orthogonal (commutative) ring G-spectrum, then $\Omega^*)R$ is a (commutative) \boxtimes-monoid, and we may form the group-like \boxtimes monoid $GL_1 R \subset \Omega^*)R$ of units of R by restricting to those components at each level which are invertible under the \boxtimes-multiplication.

We now seek to define a G-equivariant classifying space $B_G GL_1 R$ which will give rise to equivariant twists of R-theory. In the case where the bundle structure group Π is an honest topological group, this works in the following way. We construct the universal G-equivariant principal Π-bundle $E_G\Pi \rightarrow B_G\Pi$ as the quotient map
\[E(\mathcal{F}) \rightarrow E(\mathcal{F})/\Pi \text{ where } \mathcal{F} \text{ is the following family of subgroups of } \Gamma = \Pi \rtimes G: \]
\[\mathcal{F} = \{ H < \Gamma \mid H \cap \Pi = e \}. \]

Elements of \(\mathcal{F} \) are determined by a subgroup \(H < G \) and a 1-cocycle \(\varphi \in C^1(H; \Pi) \).

The data
\[(H, \varphi): \varphi: H \rightarrow \Pi, \quad \varphi(gh) = \varphi(g) \cdot \varphi(h) \]
corresponds to the subgroup
\[H = \{(\varphi(h), h) \in \Pi \times G \mid h \in H\} \in \mathcal{F}. \]

Then by definition \(E(\mathcal{F}) = B(\mathcal{F}, \mathcal{O}_\Gamma, S) \), where \(\mathcal{O}_\Gamma \) is the orbit category, \(\mathcal{F}(H) \) is a point for \(H \in \mathcal{F} \) and empty otherwise, and \(S \) is the “realization” functor with values in \(\Gamma \)-spaces defined by \(S(|\Gamma/H|) = \Gamma/H \) and similarly for morphisms.

In our setting, \(\Pi \) is not a \(G \)-equivariant group but a grouplike \(G \)-equivariant \(\boxtimes \)-monoid in \(I \)-spaces. Let \(\Gamma = \Pi \rtimes G \) be the \(\boxtimes \)-monoid defined by \(\Gamma(V) = \Pi(V) \times G \), with multiplication
\[\Pi(V) \times G \times \Pi(W) \times G \xrightarrow{G \text{ acts on } \Pi(W)} \Pi(V) \times \Pi(W) \times G \times G \rightarrow \Pi(V \oplus W) \times G, \]
where the second arrow is the multiplication of \(\Pi \) and \(G \).

We may now make a “cocycle” description of the family \(\mathcal{F} \). Let \(H < G \) be a subgroup of \(G \). A 1-cocycle \(\varphi \in C^1(H; \Pi) \) is a map of \(I \)-spaces
\[\varphi_V: H \rightarrow \Pi(V) \]
satisfying the cocycle condition
\[\varphi_V(gh) = \varphi_V(g) \cdot \varphi_V(h) \]
\[\varphi_V \mid_H \text{ is the restriction of the action of } G \text{ on } \Pi(W) \text{ to } H. \]

Coboundaries involve inverses, which is NOT rigidly presented in the data of a grouplike \(\boxtimes \)-monoid. One could perhaps make use of the existence of up to homotopy inverse to define the cohomology groups \(H^*(G; \Pi) \), but I have not pursued this idea very far.

Still, we can make sense of the orbit category \(O_\mathcal{F} \) associated to the family \(\mathcal{F} \). The data \((H, \varphi) \) determine a sub \(\boxtimes \)-monoid
\[H(V) = \{(\varphi_V(h), h) \in \Pi(V) \times G \mid h \in H\} \subset (\Pi \times G)(V) \]
The multiplication of \(H \) induces a (right) action of \(H \) on the \(I \)-space \(\Pi \rtimes G \), and we can form the quotient \(I \)-space
\[(\Pi \rtimes G)/H = (\Pi \rtimes G) \boxtimes_H \ast. \]
The quotient $(\Pi \times G)/H$ is a $(\Pi \times G)$-module. Let $\mathcal{O}_\mathcal{F}$ be the category whose objects are the $(\Pi \times G)$-modules of the form $(\Pi \times G)/H$ for some (H_0, φ) as above, and whose morphisms are maps of $(\Pi \times G)$-modules.

The category $\mathcal{O}_\mathcal{F}$ is enriched in \mathcal{I}-spaces, and there is an enriched functor $S: \mathcal{O}_\mathcal{F} \to (\mathcal{I}$-spaces) that sends $(\Pi \times G)/H$ to its underlying \mathcal{I}-space. We may now form the two sided bar construction $B^\otimes(*, \mathcal{O}_\mathcal{F}, S)$ with respect to the \otimes product. In other words, $B^\otimes(*, \mathcal{O}_\mathcal{F}, S)$ is the \mathcal{I}-space arising as the geometric realization of the simplicial \mathcal{I}-space with q-simplices the \mathcal{I}-space

$$\bigoplus_{(H_0, \ldots, H_q)} [(\Pi \times G)/H_{q-1}, (\Pi \times G)/H_q] \mathcal{I} \cdots \mathcal{I} [(\Pi \times G)/H_0, (\Pi \times G)/H_1] \mathcal{I} ((\Pi \times G)/H_0$$

Here $[-, -]$ denotes the \mathcal{I}-space hom in the category $\mathcal{O}_\mathcal{F}$ and the coproduct is over sequences of data $H = (H, \varphi)$ determining an object of \mathcal{F}.

The upshot is that $E_G \Pi = E\mathcal{F} = B^\otimes(*, \mathcal{O}_\mathcal{F}, S)$ makes sense (as an \mathcal{I}-space), and we may form the quotient \mathcal{I}-space

$$E_G \Pi \to E_G \Pi /\Pi = B_G \Pi.$$

When G is trivial, this looks like

$$E_G \Pi = B^\otimes(*, \Pi, \Pi) \to B(*, *, *) = B\Pi,$$

recovering the non-equivariant universal Π-quasifibration discussed earlier.

One question: we’d like $B_G \Pi$ to be an equivariant delooping of the grouplike \otimes-monoid Π, but it’s not clear exactly what this means. The non-trivial one-dimensional representation spheres are those of the form S^σ, where $\sigma: G \to \{\pm 1\}$ is a sign representation of G. Can we find deloopings $B_\sigma \Pi$ of Π in each “σ-direction” within $B_G \Pi$?

From here, we can define G-equivariant (in fact, RO(G)-graded) twists of R-theory. Letting $\Pi = GL_1 R$ with the induced \otimes monoid structure coming from R, a map $\tau: X \to B_G GL_1 R$ gives rise to the pullback bundle $P(\tau) = \tau^* E_G GL_1 R$ over X (perhaps after an approximation by a fibration). Then the homotopy sections of the G-equivariant parametrized spectrum

$$R \land_{\Sigma_\infty^{GL_1 R}} \Sigma_X^\infty P(\tau)$$

give the τ-twisted R-cohomology of X. In future work, I intend to check if this agrees with the definitions of Hopkins-Freed-Teleman in the case of equivariant K-theory.