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Preface

These are the notes from 6 lectures I gave at Kyoto University
in the spring of 1967. They deal with the algebraic problems
which arise in the determination of wvarious cobordism theories, especially
Spin, Pin, Spin®, and PL(both oriented and unoriented). The ideas
and results are taken from my published and unpublished joint work
with D. W. Anderson and E. H. Brown, W. Browder and A, Liulevicius,

D. Sullivan, and H. Toda.

F. P, Peterson
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§ 1, Introduction,

First we recall Thom's theory of cobordism. Let O be the orthogonal
group and G —> O a homomorphism (G(k) ——> O0O(k) are suitable
homomorphisms for each k): for example we consider the cases
G=0, SO, U, SU, Spin. There is a map g of the classifying space

BG(k) into BO(k) such that for the universal vector bundle over

7k
BO(k), g¥7, 1is a universal bundle over BG(k). We denote:

]

MG(k) = Thom space of the bundle &%7y

= one point compactification of the bundle space E
Esl/E____l.
Always we assume that the coefficient group is 22 and is omitted.

As is well known we have Thom's isomorphism
¢ @ B (BG(K))= 2 (Ma(K) ).
Whitney sum with a trivial line bundle defines a natural map
SMG(k) —» MG(k+1l), hence {MG(k)} forms a spectrum MG, (Mg)k = MG(k).

Then the Thom isomorphism becomes

e

H*(MG) = lim H*+k(MG(k)) (spectrum cohomology).
ke o0

H*(BG)
Now Thom's first theorem states

G .. _
Theorem(Thom) o = 1;mfa+k(MG(k)) = ﬂn(yg).

From now we shall use no geometry. To study homotopy theory of MG

for various G, the main tool is to study the structure of H¥(MG)




If G has Whitney sums, that is, there are mappings
BG(k) X BG(£) =————a BG(k+2)
with appropriate properties, then this defines mappings
MG(k) A MG(£) === MG(k+g)
and thus a map MG A MG -—» MG of spectrum. Therefore H¥(MG) is a
coalgebra. Here (L operates on H*(MG) ® H¥(MG) via the Cartan formula.
Case 1. G=0
We have the following

Thom's theorem

H*(MO) = free & -module
Therefore MO 1is equivalent to the wedges of K(Zg,k), the Eilenberg~MacLane
spectrum. (Thom gave a long calculational proof)
Case 2. G = 80

For this case we have the following

Wall's theorem

H*(MSO) = direct sum of Q/ &,(Sql) ® free ({ -module and further

he proved
MSO 3 wedges of K(Z,k) and E(Zg’k) .

Before we state the case 3 we give a simpler proof of these theorems.

Proof of Case 1.
Theorem 1. ILet M be a connected coalgebra with unit over [I_ » & Hopf
algebra, Define a homomorphism ¢ : (f ~~=» M by ¢(a) = a(l) . If
Ker ¢ = 0, then M is & free (] -module.(This is a theorem due to Milnor

Moore )



Proof. We denote by @ the positive dimensional elements of éz .

We set M= M/Q'M, then it is a graded vector space. lLet g: M —=pM

be a projection. Let {fﬁi} be a Zz-basis for M such that

dim. Ei < dim, ai+l' Choose a homomorphism g : M —s M such that
tg=1id and m, = g(ﬁi). We define 6 :l® M —>»M by o(a®m) = a-g(m).
Then this is a map of left (R -modules. The elements {mi} form a generating
set over Q for M. So it is obvious that it is epimorphic. We want to
prove that 6 is a monomorphism.
Put

Mn = M/ vector space spanned by Ei’ i < ne
We consider the compositions of the following maps:

A ® M 25 B “’>M®M&M®M—-—»M®ﬁn

(The last one is a natural projection)

Z gy v P’ . 3
Let . Z & ®m el® M be in Ker.6 with a # 0.

o
o>

5 : ” .
The element i< i ® m, is mapped by 6 to = asmg 0O in M. And then

1

s4s tt 11 11 '
it is mapped to T fa,'m! ® a,''m, by v . (w(ai) a; ' ® ai",xy(mi)

=5 Hi' ® Ei"). Then it is mapped to = 8‘1'&;3:_@ mi“(note that

deg m; < deg mn), finally to a.n(l)® m in M®M. Hence a.n(l) = 0
and so an=0 as Ker.¢ = 0.

This is a contradiction. q. e. d.

By using the same method (but more complicated) we can prove:

Theorem 2', Let M be a connected coalgebra over (. . Iet ¢ : (L ~> M

4

Assume Ker ¢ = /4 (Sql). Then M = direct sum of copies of &/ Q(Sql)e

free.



Once we prove this, this implies Wall's theorem. Theorem 2' is
a bad theorem, because it does not generalize to the case
kKer o= (] (Sql, Sqe) (this corresponds to the case MSpin).
We need some notations.
1f X is en (L -module, let Q = Sq € (@ , then e ? =o.
So Q‘o acts as differential on X. Then we may consider H(X : Q’o)'
Theorem 2, Assume given ' : &/ Q(Sql)® X =3 M (X is
a graded vector space), a map of left [/ -modules such that
ot s H(A/Q(sq") @ % : Q) — H(M; Q)
is an isomorphism. (M is connected coalgebra over Q s Ker ¢ = & (Sql)).

Then 6' is a monomorphism and M/ Im 6' is a free Q -module.,
Theorem 2 ==—=3 Theorenm 2°',

Lerme. If N is an (J -module then there exists o' : ({/{(sq*) ® X >N
which is an isomorphism on H( : Qo) ‘
( = Cz/ &(Sql) : Q,o) = Z, generated by Sq°,
Teke a basis for H(N : Q)

&/Q(Sql) —— each basis element . )

We set T = &/&(Sq_l) ®X and let w : M ==y M= M/[I-M be the projection.
We find ZC M such that =|Z is a monomorphism and
M =T(e'(T)) &(z). Let N=T® (AL ®2) and 6 : N ~—» 1,
6 |T=6' and 6(Z) = Z. Extend it to (] ® Z by linearity.
We prove that 6 is isomorphic. Set N(n) = sub &-module generated

by Ni, i < n. In general we have e(n) = N(n) i M(n). We prove that




G(n) is an isomorphism by induction on n, As before, e(n) is an
epimorphism (it is obvious by the choice),

9(0): Q/ Q(Sql) — 1(0) is an isomorphism by the assumption
that Ker ¢ = (7 (sql).

Assume that e(n'l) is an isomorphism. Consider the homomorphism

A a/nlo-l) m/m(n=1),

Letrma A | xR @ 70 g Sqlz? i monomorphism,

A induces an isomorphism on H( :Qo)s Here
Hy (/n(8-1) Q) =0 for q < n,

= X1 for q =n,

Therefore A[XR 4is a monomorphism, So if AMX, + 2Z,) = 0, then o(x, + Z,) ¢

M(n"l) « Therefore by the choice of Z, we have Z, = 0, and hence X, =0,
Finally if  A(Sa'%,) = 0, then o(sqlz,) ¢ (u(n-l)yntl , therefore
H(M(n"l):Qo) =0 in dimension n + 1 and p,
We have 0(Sa'z ) = sql(m)  for me (u(n=1)yn
m= 6(y) for y e (N(n-l))n
So Sqle(Zn + y) = 0, therefore 0(Zp + y) = m'y, m' ¢ M(n'l). By choice of
Z we obtain Z, = 0 and hence Squn = 0, (This is the same argument as

before, )

Conclusion of proof

We want to prove that A on N(n)/N(n'l) is a monomorphism,
Let {vi} be a basis for M eozle Squn. Then v ¢ N(n)/N(n'l) is

of the form



v =73 aivi with ai * &, (sq.l)

Assume v # 0, A(V) = O. Consider the compositions of the following

(n-1) n=1)

homomorphisms N/N —> M® M/M(

(n-1)

Then v is mapped to O in M/M and then to = a;(1) ® A(vy)

+ (terms in different dimensions) in M ® M/M(n-l).
Therefore ¢(a;) = a;(1) = 0. Hence ay ¢ Q (sqt) for all i, This
is a contradiction.
Let me state Theorem 3 without proof, One can prove the following
theorem by a similar but much more complicated method.
Theorem 3, Let M be a connected, coalgebra over Q o Assume
Ker ¢ = &, (Sql, S¢°). Let X and Y be graded vector spaces. Assume
that o' : A/ Q(sdt, s®)exeo (/A (s3) @) —> M
is an isomorphism on H( :Qy) and H( :Q1), then 6' is a monomorphism
end M/Im 6' is free, (Here Q; = Sq¢3 * sq®sq’ and @2 = 0).
Its application is for H¥(MSpin) = M.
This is not the most general theorem, but it works in the application.
From Theorem 3, one could calculate nx( MSpin) by applying the Adams

spectral sequence.

That is, one calculates

Ex'ba ( @/[{ (sql: Sqa): 2'2):
et 5 ((0/(0 (), 22),

and then show E, = E, (for algebraic reasons),

We find a spectrum X whose cohomology is Q / Q (Sq_l, qu)




and another spectrum Y whose cohomology is & / a (Sq3) 3

Mspin —> V X V ¥ V K(Z, )
Let BO <n> = BO(Nyeeey ©0) = (n=-l)-connective fibering of BO. We

have the map p : BO<n> ——> BO, Then

px:nx(BO <n> ) ——> nx(BO) is isomorphic if * > n,

is zero if ¥ < n.

By Bott we have BO = 98°°(BO).
One can find a Q-spectrum BO <n> with (BO <u>), = BO <n>. Then we
have

Theorem( Stong)

A/Q (sdd, )  if n
X/ @ (s43) if n

H*(_B_Q_ <n>) 0(8):

1]

2(8).

it



§ 2. Results about Spin cobordism.

Spin

I want to describe the Spin cobordism @, .
BSpin —> BSO is the 2-connective fibering. You take

ne(BSO) ~ Z_ . Kill it, then you get BSpin. Classically,

2
Spin(k) —> S0(k) is a 2-fold covering space. Then you have that
MSpin(k) forms spectrum MSpin and =, (MSpin) = Q*Spln .

The cohomology H*(BSpin) is easy to compute from the fibering

BSpin —> BSO and we obtain Easy Theorem

B*(BSpin) = Z,[w.], i #28 +1 as algebra
= Zétwh’WG’W7’w8’wio”"] .
But WoTLq is not necessarily zero, only decomposable. For example
=0
"5
w, =20
9

Wig = W tWyg F WoeW ot Vgt

W

33 has about 200 polynomial terms.

We have that
H*(BSpin) < H*(BSO)/Ideal generated by W, Sqlw2

2r-l r-l

2.1 2 1
Sq Sq Wyy e, Sq Sq' .+ 5q (wg),...

This is an isomorphism as an algebra over CZ .

(e.g. Sqlwl6 =7 = decomposable)

Before we state the main theorem we need some notations.

Let J= (Jyse++»J,) be a partition such that =j; = n(g) ,k >0




and Jg > 1.
Iet X be a graded vector space with one generator XJ in
dim. 4n(J) for each J with n(J) even.
Iet Y be a graded vector space with one generator Y

J
in dim.4n(J)-2 for each J with n(J) odd.

The Main Theorem

m(uspin) = ( B/ @ (sct, s®)ex) o ( B/ A(sP) @) @ (Ao 2)

as an Cz -module

where Z is a graded vector space.

Furthermore there exists elements n'e KO(MSpin). (These are images
of the KO-Thom isomorphism for Spin-bundles

K0° (BSO) —> K0°(BSpin) = KO(MSpin)

For reference, see " SU-cobordism, KO-characteristic numbers,

and the Kervarire invariant ", Ann. of Math,(1966).

For such an element J we have

7 = 191, 2., 1'% eﬁb(ggpin)

We have another theorem.

Theorem Filtration =° = kn(g) if =n(J) even

=4n(J) -2 if n(J) odd.

Therefore ﬂJ defines a map

10




e MSpin — BO <4n(J)>,

or BO <kn(J) -2>,
where BO<n> —> BO is (n = 1)-connective fibering. We have a map
F : MSpin— 'V Bockn(3)>VV B0 <in(3) - 2>vV K(Z,,..)
n(J) n(J)
even odd

and the map F induces

1% (MSpin) ;( A/R (s, s®)ex)e (/A (sP) e 1) e (Ao 2).

We will not discuss the KO-theory here, But we will discuss the
main theorem.

From this one reads off ﬂ*(yggggl);;,nipin . Let me give some examples
of J. The lowest dimensional J with n(J) even and all integers
in J not even is J = (3, 3), Un(J) = 24, Milnor, in his study of @, i ,
stopped at 23 because of this element.

We can describe the manifold representing each class except for these
of this type, that is, n(J) even and not all integers in J even.
There exists a manifold MQ)+ with wg(M2u) # 0. We cannot construct Mgh.
It would be interesting problem to find this large class of Spin-manifolds.
A1l other representative manifolds of cobordism classes are constructed

by using Dold's manifold etc.

Let me now state the corollaries of the main theorem.

Corollary of the main theorem

1. Iet [M] e0iP™™, Then
[M] = 0 if and only if all KO-characteristic numbers and all

Stiefel-Whitney numbers vanish. (This is easy from the second theorem. )




2. Im (Qf}’m——; 7T,) = all [M] all of whose Stiefel-Whitney

numbers involving w; or W, vanish,

(I will discuss the proof in details later)
Milnor showed that M(Qipin—? 72_ *) = squares of oriented manifolds
in dim. < 23. 1In general, Im(Q;fPln—-,W *) D squares of oriented manifolds
# in dim. 2k,
3. Im(szrfir e Qipin) = 7, n=1,2 (8),
o) otherwise,
The representative manifold is [M8]k X Sl, [M8]k x S xS,
(This is not difficult corollary.)
Cfe p =1 My = (80,21 ,1} Iy = {86’2"’“k-1]
end u — DFTF x &%,
k, (Corollary of 3) The Kervaire-Arf invariant

? ﬂ8k+2($) —> 2, is zero if k >1.
Outline of proof:

“exra(8) —> Ogrp — %
§(([M8]k 5 Sl) s¢ Sl) - §(N8k+l st Sl)
- §(Z8k+1 ” sl)
- §(z8k+2) _—
Now we discuss the algebra needed in the proof of the main theorem.

Iet M be a left(right) (7 -module ( (f: Steenrod algebra).



Then M¥

I

Hom(M;,Z,) is a right(left) ( -moaule by

i

ca(m*) = (mla)-m*. The operators of @ 1over

(m*)a~m,

*.
m a(ml), m,

degrees, & itself is a left and a right Q -module by multiplication.

Therefore Q* is a right and left & -module,

k
*2
By Milnor's notation, let ;k e& =% o Milnor proved that

&* = 22[ }l’ 32,--.] as an algebra.

*
Proposition & is a left and a right algebra over @ , (Cartan formula

2
holds) and Sq(gk) = gk + Ek-l
]
($)(sa) =3, + 3, , vhere Sa= 5 Sq' .
i>o0
Proof Exercise for the reader. N ;&



§ 3. Outline of the proof of the main theorem in § 2.

In order to prove the main theorem we must study & / & (Sql, Sq2)

end a1so H( (0 / ( (sa',54%), @), #( @ / (@ (sa*,54), Q). Consider

R(sq") @ R(s¢%)
aeQ - 0 — A/ A s,58) —>o.

Dualizing

L(sq") ® L(S%)
R* o Ax e— @xe— ( @/ @ (5, 58°) e o.
Applying
R(Sq") @ R(Sq%)

Q*  Q* o @* «— x( 0/ @ (sa*,52) e o.

Tel A= zgtgll*,gg,g?)...] e =,

We have (§,)8a =0 unless k=1
(§1)Sql - Eo ik
(3,)8¢% =0 wnless k = 2
(35" = %,

Also note : (;i)Sq2 Eg =1,

It is easy to prove that
AC Ker.(R(S¢Y) + R(S8¢2))
* 2 2
& = free A-module on generators 1, 31, ;l, 52’ }i, 5133’ §l§2 .

Therefore the kernel has nothing more tha®, A,

14



Theorem  x( & /&(Sql, qu))* = Zo[ EL{, Eg, 23,...].

Theorem
@/ Q(saty se®) : Qs) i=0,1
= H(x( U/ @ (s, sa®)) : qy)

zo[ % l{] with respect to

E( Es, ?%, ;E,...) with respect to

Therefore you can read off

[

Theorem A basis for H( (1 / (f (s, Sa), Qo) is x(5a*%).

Similarly
(] 16T (] /@ (s43) —>o.
= L) @* <— (A /@ (s®))* «— o.
P ’Sql)(z* — WA/ (53

You come up with

Theorem x( @ /(P (8a3))* = a free A-module with generators

1, 31’ Zi 33%"’ 8 o Eliz'

15

Q = a3 + sa®sa’.



Theorem H( x( @ / a (Sq3))* : Qo) =%‘]2_ . Z2[ il{] *

Rx( @/ @ (s2)" 1) =32 - m(32,32,..0).

In order to apply the techniques of the last time we must study
H(H*(MSpin) : Qi) (i=0,1) .
Remember the Thom isomorphism that
¢ : H*(BSpin) — H*(MSpin)
is a map of Q, and Q’l modules, because QO(U) = Q,l(U) = 0,
Let B =H*(BSpin) for simplicity.,

We recall that

B = Z,[w,] i #2¥+1
Qlps) =wpy 1 Qg 4 1) = O

o1 21
Define X.e B by ¢(Xi) = x(Sq° )(e (1)) .

Then X, = w,; + decomp. Furthermore Q,O(Xi) =,O.

Now we have

. r . P
B=22[Xi,wJ.] Jf 2, j#2° +1.
Furthermore
. r
Qy(%,) = 0

16



We have
2 .
H(B:Qy) = 20X, ()1, 3427,

where (Wej)2 = pj is a Pontrjagin class. Similarly for Ql -case,

but H(B:Ql) is more complicated.
Remember the theorem of last time:

If given 6': &/ 14 (Sql,qu) D &/ a (Sq3) ® Y —> H*(MSpin)
such that 6) is isomorphic on H( : Qi)’ i=0,1, then §' is

monomorphic and cokernel 6' is free (¥ -module.

Two difficulties yet arise ; that is,
1. To find 6'!

2. To show that 6} is isomorphic.

Let X be a graded vector space over XJ .

We would like to send

lp. -o'oclop. °

0(X.)=P_=p,
J R S Iy

Py = (Wéj) , So Sq (Pj) = Q..

Sqa(wzj)2 = (w2'j ", 1)2 # 0.

Q(py) = 0, @ (2,) = 0.

The results of KO-theory computations show that for n(J) even,

there is an element XJ such that XJ

]

PJ mod QOQl’ that is,

2
{X;}=(P;} in H( : ), 1=0,1, eand Sql(XJ) -0, sd®(x,) =o.

17



If n(J) is odd, there is a class Y, such that ng(Yj) = P,

(Hence Sq3(YJ) = 0,)

: 1 ] -
Define 6! by 6 (xJ) X

9'(YJ) = YJ.

To show that 6', is isomorphic, we need four more pages of

computation.

From the theorem of the last time we obtain the main theorem.

18



§ 4. The mixed homology.

Let da.= [Sqo, Sql, qu} be the subalgebra of C?. So QO, Qle (Z&,

where Ql = Sq3 b SqQSql, QO = Sql. If M is an C?lqmodule, we can

define H(M;Q,), i =0,1.
i 2 L)

We want to define the mixed homology. I also define:

r‘
(Ker Q5 N Ker Q;)/(In oy N I o ) 15, H(M3Q, ) i=0,1

Definition M has isomorphic homologies if 7:i is isomorphism for

i= 0,1,

Theorem  (Wall)
If H(M : Q) =0, then M= free @l-module.

A generalization of this is the following

Theorem If M has isomorphic homologies, then M is isomorphic to the

direct sums of four types of é?l-modules, le’ é?l/ C?l(Sq3),

Ay Q(sa's0d), 2,

The reason I give this theorem is that it is useful in the KO-theory

computations which show the existence of X; and Y5, H*(BSO) has

isomorphic homologies, so this gives the é?l-structure of H*(BSO).

19



Remember
0
B, = (50,Q,%) = Ba,a)c &, c (.

The following is easy to prove.

Proposition M, an 6qumodule, has isomorphic homologies

& M

a free El-module ® a trivial El-module.

=R

1

Let me outiline the proof.
Let M(n) = sub &l-module generated by Mi, i<n.
The proof is done by induction on n.
For M(O), the theorem is true by one page of easy calculation, Consider

the sequence 0 —> M(n'l)___, M —s M/M(n'l) o.

(n-1)

First we prove that M/M has isomorphic homologies using the

alternative definition of isomorphic homologies as El-modules (the five

lemma does not work, because the degrees of the two differentials are
different). Now look at the sequence

(n-1)

o — u N yln) o ym)plnl) o

where M(n)/M(n-l) = (M/M(n-l))(n). Here M(n)/M(n-l) satistfies the

conclusion by the same proof as for M(o) M(n-l)

, sSo does , and one must
prove that the extension is trivial. (This takes the 1%'- pages of

computation).

20



Let me make one remark : We want the filtration of elements in KOO(BSO).
(KOO(BSO)is known.) One studies the so-called Atiyah-Hirzebruch spectral

sequence from H¥(BSO : KO¥(pt)) to KOO(BSO).

The differentials d2, d3, dh’ d5 are all primary operations in (Zl. So
knowing H*¥(BSO) as an C?l-module and ED allows you to compute the
filtrations. (Later I'll say more of Ckl-modules.)

Now I want to discuss the problem related to

In( 0, 2"~ ) = In(x, (MSpin) —> r,(10)).

21



§ 5. General theory on maps of spectra.

Let £:X —» Y De a map of spectra.

Assume always that Y=V .IS_(ZE,.....).
Question is to describe Im(r, (X) .é» wh L) )s
Let G, be a subset of =, (Y) defined by
Go={g:8 —> Y| gfu) =0 for all ue H¥(Y) with ue Ker £},
In general, Im £, C G,.
When is Im f, = Gy ?
Definition X has a property P
== given u e H¥(X) such that 0 # u e H¥(X)/ f.H*(X) then there
exists ge w,(X) such that g*(u) # 0.

(For example, Y has property P.)

Theorem Assume that Ix : m*(Y) ~—> H*(X) is epimorphic, then Im £, = G

if and only if X has a property P.

Proof (& ) Let g:8 —> Y and ge G,-Imf,.
That means there exists u e H¥(Y) such that g¥(u) # 0, (g g')*¥(u) =0
for ell g' e m.(X).

Therefore g'*(£*(u)) = 0 for all g'.

So £(u) e (1 -H*(X), whence g¥(u) = a.p¥(v) dim. a >0

for u + av e Ker f%.

22



So g*(u + av) = 0 = g*¥(u). This is a contradiction.

/

(= ) ILet 0 Fue )/ @ B(X) . If (g")*(u)=0

for' all g', u= f*(v), v ¢ E-H*(g_), then there exists g e n,(Y)

such that g*(v) # 0 and g*(Ker f£*) = 0.

Therefore g € G,- Im f,: contradiction.

Below we give some corollaries of this theorem., Before it, we need a

Proposition If g : § —> MO, g*(U:(ideal generated by
then g*(U:(ideal over (f generated by Wy
Proof Let g : § —» MO such that g*(U.wj.w) =0 for
want to prove g*(U.a.(wJ.)-w) =0 for all a and w.

This is done by induction on dim.a.

By the Cartan formula we have

L

and wz)) = O,

i=1, 2.

and w2)) = 0,

We

U-a(wj)-w = a(U-wJ. W) + zU-a.'(wj).w' , where dim.a' < dim.a .

By induction hynothesis

g*(U-a(wy)w) = g(a(Uswyew) + 2U a’(v,) ') = O.

Now we get

Theorem  Im( Qipin_’_, ?52 x) = &ll cobordism classes all of whose

Stiefel-Whitney numbers involving w

12 Or W = 0.

2

23




Proof  The part Im( 0l in___? 22 S BB g 48 clear,
Let g: 8§ —> MO, then g(Ker £%) = o
then ge G, .
So we must prove that X = MSpin has a property P in order to apply

the theorem,

Lemma If E, = E, in the Adams spectral sequence for g (X), then X

has a Property P,

We have E2 = Eco in the case X = MSpin .

Therefore Gy, = Im £*,
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§ 6.  The bordism group.

We also have the bordism " homology " groups.,

€.8, %*(K)={(M,f)’f:1"fn——7 K]/,\/
where (Ml’ fl) ~ (Me, fe) if and only if there exists s cobordism

W between M, and M, and amap F such that FIMl=fl and F[M2=f2 .

Then n*(poin’c) = 72* .
We have another definition due to G. W. Whitehead
+
PR (%) = ny (K A w0) .

We have characteristic numbers for bordism groups. Let wu ¢ H® -k(K)

and w ¢ H'k (BO), then we define
<f*(u). y*(w), [M]> ¢ Z,.

These are called the characteristic numbers of (M, f). It is easy to prove

that [(M, £)] = 0 if ang only if all characteristic numbers are zero.,
Theorem [Im(o, (k) _"22 «(K)) = all bordism classes all of whose
characteristic numbers (of the map) involving W, vanish] holds if and

only if H,(K : Z) has no L -torsion.

The proof depends on the fact that K A MSO has a property P if and

only if H(K : Z) has no L-torsion. (This is easy to prove, )
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Theorem  There exists a PL-manifold M9 such that all characteristic

numbers if M9 involving w.,, are zero but M9/7(/orientable PL-manifold.

l’
Spin ?2 b :

Theorem [Im( 0, (X) —* 4( (K)) =all bordism classes all of whose

characteristic numbers involving Wy or W, vanish] holds if and only

if XA MSpin has a property P.

Leter I will prove that BSO A MSpin and RP- A MSpin have

property P. So this is true for K = BSO and K = RF.
. < Spin
We discuss the methods for computing @, (K), KO.(K) etc.
Recall

ofPi(g) = 1, (K : MSpin) = n, (K" A MSpin).

One method for computing H,(K : M) is the usual spectral sequence :
¥ =R A (L0 —> E°
e M e A 8L VL s

Another method is to compute =, (K A MSpin) = Q*Spln(K) using the
Adams spectral sequence. That is, one must compute H*(K/\ MSpin) as a
module over Q , and then apply the Adams spectral sequence.

Here we have

R

H*(K) ® H*(MSpin)
mx(x) ® (= @/ A(sq*,5d°) @ = A/ (I(s°) @ = ).

H*(K A MSpin)

IR

So it is enough to study the (] -module structure of M® ay/ @(Sql, Sq2),

M® &/&(Sé) and M® & for some given M.
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M® @ v &(Sql, Sq_2) is the tensor product in the category of
& -modules, so by the Cartan formula we have

a(m® b) = sa'm® a''b,
Theorem M® & is a free a -module.

Proof We need some notations :

M = underlying Z,-vector space of M as trivial

& -module : Sqo = id, Sqi =0 for i>0.
We can form M ®& by defining
a(m® b) =m® ab for dim a > 0.
Let us define
L M@ —> M (@
by £(m® 1) =m® 1 and extend as an (¢ -map, that is, 4(m ® a)
=fan® 1) = y(m® 1) = a(m® 1) = za'(m) ® a''., This is an (Z -map.
We prove that £ is an isomorphism.
Note that m® 1€ Tm. 4. Assume m® a ¢ Im, £ . with dim.a minimal.
Then a(m® 1) =zam® a'' =sa'(n)® a'' +mQ® a
dim a'' < dim a!
where a(m® 1), za'(m)® a'" € Im¢ 4. Hence m® a ¢ Im. 4. Therefore
£ is an epimorphism. £ is a monomorphism, since M® [Z and M® a
are both vector space and one can count the basis. Therefore

2 ﬁ@& —> M® (! is an isomorphism,



The a -structure of M® a depends on M as graded vector space.

(For the other casses, e.g., M® &/Q(Sql, Sqe), this is not true.)

M® ( is a right ( -module by
(m® a)a=mnQ® aa
Define the right C? -module structure on ﬁ@ Q via g :

m®a)a=4" ((tm® a))a).

Theorem This right &-module structure on ﬂ ® & is given by the

Cartan formula :
m® a)a = z(m)a' @ aa'’,

where (m)a = y(2)(m), x : the canonical anti-automorphism of the

Steenrod algebra.
This is the key lemma.

Proof Consider the diagram :

ool — uede el — nNede Ao
1®v 1©@ 76 1

—> e — ueld .
2® 0 Y/

By chasing this diagram we have
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S om

n® a®b —n® a®b'@Db'" — MO b'R® a® b

—s x(0')(m) ® &b’ — ab'' (x(b')m® 1)

a((p!")'x(b')(m) ® (b**)'?)

a((e")x((0")*")(m) ® b'")

a(m® b)
=a'm® a''b,
Next consider the other diagram :

Mol o@ —> MOA®[N —> Mo (.
2 ® 1 1®0

Similarly we have

n® a®b —»a(m®1)®b=am@a'*"®b — a'(m)  a''b,
From this we get the following.

Theorem Let M be an (f -module and N be a fixed B -module, where

B is a Hopf subalgebra of (f . Then M® ( (! ® N) depends as an [[ -module

only on the Kg -module structure of M,

If £:M —> M, is an isomorphism as @ -module, then the followings

are isomorphisms as & ~modules




g'l

®1
MO (@ en) — (e )N —s (M ® 7 )®N
1 8 1 & = &

f®1®1 £®1
S (IVIE®(Q)?5N——7 (M2®&)gm—>M2®(&®N).

Theorem If M and N are &5 -modules, then

@e@)®n= ({ ® M®N) as ( -modules.” )

Proof m® a®n — a® m® n,
We have to show that m® 2 ® bn and mb'QR 2b''® n have the same
images under this map.

We have that

mb'® ab'' ®n —> ab'"' @ X(b')m® n

a® (b")’x(b')m® (b")"n

a® m® bn.,

|

m® a® bn — a® m® bn,
Let us write the corollaries.

Corollary ILet M be a left (] -module and N a left {3 -module.

Let MD----o:)M[l]D--o-- be a filtration of N as @-module.
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Ao otilem

Then an Cz -filtration of M® ( X ® N) is give by
(%)

with quotients isomorphic as (! -modules to (I ® (M[i]/M[i-l] ® N).
8

63=al’

Let us write the corollaries in our applications.
3
N=2, oo (/@ (s0°)

gl aonyusats cerfle

Theorem Assume M =
e Q.1
1

Then M® @/&(Sql, ng) E Ea/a(Ji).

&

Assume M@ E&l/ (?l(Ji), Jic Q?l.

Theorem
Then M® & /Q(Sq?’) = sum of cyclic ({ -modules, if no Ji are the
following :

>

2 1 3 2.1 I 5.1 1
{Sq”, 8a78q"} , {Sq”, Sa8q} , {Sq  Sq) , {(Sq¢"Sq,Sq” + Sq Sq°} ,

oAl L
[Sq3Sql, qu + 8q Sq7} , (qu + Sq Sql]-

Let me give a corollary of this theorem,

BSO A MSpin has property P.

Corollauy




Proof #¢(BS0) = = ({;/ (I(s®) e = @ @ = Z,s
@
correspond to J = Sq3, J=40

where &l/ &l(ng’), &1 and Z,

and J = Q 1 respectively,

Therefore we have

H*(BSO) ® H*(MSpin) sum of cyclic (I -modules.

C_g

We have E2 = Eoo in Adems spectral sequence by inspection.

Another important example is M = H*(RF°). We will describe

mEE) e /[0 (sah, s, BEP)e @/ @ (s3) ama mEF)e 2,

because this gives E?IH(RPw) = Qfln




§ 7. The Pin cobordism.

Spin is a universal covering group of SO, Pin is a universal covering
group of O, The component of identity in Pin is Spin.
BPin —> BO is constructed by killing W So a manifold has a Pin
structure if wz(v) = 0, where vy is a normal bundle.
In the Spin case, we('C) =0 if and only if we(v)= 0, since
== + . 3
w,(T) =w,(v) +w (T) - w(v)
Pin 5
Note that @ is not a ring, because
Wz(vl G V2) = we(vl) + Wl(vl) * Wl(V2) + wg(Vﬁ)‘
But it is a cobordism theory.

Let G = Pin. We have the map

BO(1) x BSG(k) —> BG(K + 1)

This induces the isomorphism on H¥( : Zz) in dim. < k., Taking the
Thom space, we obtain the map

MO(1) A MSpin(k) —> MPin(k + 1),
which induces a mod 2 isomorphism,
Note that MO(1) ~ S(RF°). Therefore
—Spin, _ o Pin
nip (RP) = 0y .

We will study B(RF) ® (1) [ (s, sd®), @) e @/ A (se)

and T*(RF°)® (@ . Let me state the answers first.
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Remember

m(uspin) = (@ / QA (sasP)ex)e (/R (sP)ev)e (2@ 2z).

Each term H*(RPOo @ 2 / Q (Sql, Sq2) contributes the following homotopy to Q)l:l o,

Z, i=0,1 (8)
Tf* = 0 is=s 3, )‘l', 5’ T (8)
Zg, Zyg Zqpg e i=2, 6 (8)
where
x 03 b T 8 L LI2

For example, it turns out that

gl = Zg , the representative manifold is the Klein bottle.

Each term H*(RF) ® &_ / & (Sq3) contributes the following homotopy to Q}?‘ o

Q

Z, i=1,2,5,7 (8)
Z, ® Z, i=6 (8)
Ty -
0 i=3 (8)
22, Z}_“ 232 ete 1 = )+,v (8)
where
T ’ 2 22 25 26 29 210
ot 0 i 8 12 16 20
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For example, p_-jl_%n =~ 2128 ® Zg & 22 and the representative manifold of
Zg is QP2 x (Klein bottle).

8 Spi 10 i
There exist manifolds M ¢ @ L and M ¢ QPln such that

M8 x 8! x ¢! represents in Zp in QSpin but &([Mlo]) = [M8 x 81 % 811
in O,Pin.
Let us state some theorems about Pin cobordism. ILet R:‘L = ﬁi+1 (rRP?)

as an Q -module.

Proposition As an CZ 1-modu.le, R has a filtration

RD ----- RIS glki-2l o glel ) plo] )

where i is an -1 e generated by j J<i an
h gl 4-modul ted by RY, j< a

ROl - @y @ (s, ’BIROT - A @ sy, WOV - R/ @S

1 5 L1 1
Extension is given by Sq(r)4,,) = (Sg + Squ)(rhi_z), Sq(ry) =

Sg.é(ro)-

Proof is straightforward.
So then we have

Theorem R® (§ /(A (Scji‘, ﬁ) has a filtration as & -modules
e b T - pli+2) - p(ki-2) B ey

with F(4+2)p(H-2) = @7 G sy, #(2)/p(0) = (1 / @ (si) ena
rO) = @ /@ ().
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Proof Corollary of the previous theorem.
A little more complicated is the other case:

Theorem R® & o Q (Sé) has a filtration as &, -modules
- T ,

P G(l+i+2)/(}(l+i+1) -q, G(ui+3)/G(l+i+2) -0

G(hi+h)/G(l+i+3) = &/ Q(Sc]i_), G(Lti+5 )/G(4i+l+) -0

and ¢/ =, o© =@ /0 (3s3).

Proof Corollary of the above theorem (One should calculate

Qe EHAAe R,/ 0,6,
1

We want to study
1 .2
Ext& (re @ /@ (s3, s3), 25)

by knowing the filtration of R® & /& (S&, Sa)).
Intuitively we assume

R @ /@ (58, ) = airect sums of w(+1*2)/p(Hi-2)
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1

5
e -] it — s m— | tw
* ‘ . 2 2
i_ . r o w \ w .
: ,
i z ]
- i o o e
kT W |
hol | T (RN N
2
‘ﬁ ) ‘0 L : L {0 L ‘Kﬂ’d e
1
1 Xy 2 | 13 4-5
To obtain the correct Ep put d4 :E,Ia"b — 211 ye need the

following theorem of Adams;

Theorem of Adams

If H(M, Qy) = O, then there are no elements of o -height

_in Ext , M, z5).

(This is not difficult to prove)

Note:
are @ /A (s§ s2), Q@) = HER, o) ® 5 &/ & (sg $7), %);

where H(R, Qp) = O. Hence the Ep-term is
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3
. o 24
- 2
ﬁoll 'ﬁg 1.
2
‘d\ ﬁdll 011
'{\ il 12 £~S

because d4(T) = h%x1, aq(w) = hl(;xa, ete.
Note that hy(hSw) # 0. We will show d, =0 for r >2. If

dS(X3) = h_-%w, Then O = d5(hlx3) = hl(h%r) # 0. This is a contradiction.

I

So dp =0 for r >2. Therefore the homotopy groups can be read off from
the table.
Zo i=0,1 (8)

=3, 4, 5,7 (8)

A
il
o
[
Il

78, 216, 2108 ete. i=g 6 (8)

Next, we assume R® (] /A (Sa) = direct sums of G(i)/G(i'l).

w || & | T
Lo
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d; 1is similar to the above. Note that E, = E, in the Adams spectral

sequence., Therefore MPin has property P. So we have

Theorem  Im(oEi® — N %) = all cobordism classes all of whose

Stiefel-Whitney numbers involving wy(v) vanish.

§ 8. The Spinc-cobordism.

Let me now state some results about Spinc-cobordism.
SpinC = complex spin group.

BSpJ‘.nC ——>, BSO 1is obtained by killing W3, that is,

BSpinC path space
* L
5 o)

BSO = K(Z, 3)

*
where & (‘”2) is the image of the Bockstein operator of wy.

SpinC is a natural theory for K-theory because a bundle is orientable
with respect to K-theory &——» the bundle has a Spinc-structu.re.
The methods for calculating MSpin work for _MSpinC and are much

easier. Let me state the answers. They are

Theorem

#( mspin®) = (A/Q Qo @)@ %) @ (Z ® 2)

Cc
Theorem Let [M] ¢ qfpin , then [M] =0

<> all mod 2 and all integral characteristic numbers vanish.
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(One needs no K-theory)

SpinC - awien
Theorem  Im(Qy —_— %) = all cobordism classes all of whose

Stiefel-Whitney numbers involving w3 and w3 vanish.

One might

)

. ¢ : :
Conjecture : ofPInY  i5 generated as a ring by Im(SPIN — SPIn

o
and Im(oY —> oSPinT),

This is true in dim. < 30 Spin —>  Spin®

but it is false in dim,3L. /

U
One could consider PinC and the same methods again work well.
For some pages let p be odd. Let me discuss the structure of BSO
and BU ignoring all primes but p. The main theorem is that BSO is
decomposable in the classical sense. For this we develop some machinery.

Let Bp be a space like BSO with

0 if0 (&)

“i(Bp) i Z i=0 (&)

and all k-invariants of order power of p.

Lo



First theorem is

Theorem Let K be a space such that

0 i
15 (K) =

Hhi+l

and (K:Z) € Cp. Then there

£0  (4)

mod ep

o (4)

exists a map f:K —> Kp which is mod p

homotopy equivalence i.e., £* is isomorphism on H*( :Zp).

Proof Given a space K we form the Postnikov system

K( i-1) e

point

with keinveriants kD) (k) € m*l(x(

determine the fibrations.

path space

!

K(xy (K), i+1)

i'l)::ti(K)). These k-invariants

LA ]



Consider the diagram Bp
%

//’ 5§ut)

4
/," L()ht.n)

et ems
i

1:K = K(Z, )'l')

Inductively we 1lift the map fq.

Assume we have fy_.j1:K —> B:g”?-l*)

Béht)

P
G (241

fia1

K(Z, bt+l)

The obstruction to finding fy is f:_l(kht"‘l(Bp)) e H)*t"'l(K:Z).

Since k4t+1(ap) is of order power of D, f:_l(k4t+1(3b)) - 0

We set £ = :K —?B.. We must, however, show that f(l”‘)* is
2 ?

isomorphism on H¥( :Zp) for f(ht):K(ht)——-, Bp(ut). If we do this,

£% 1is also an isomorphism on H¥( :2?).
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We have the following diagram:

K(Z, 4t) ;7 K(Z, 4t)
L o(4t) l
k(4t) —_— Bp(h't)
L ottt ) l
g (Bt=l) (%) o k(z, bt+1)

(4t=lt )5

We assume f is an isomorphism on H¥( :Zp). So we have

Hl"t"'l(Bl()ut"h) sZ) i Z0 (t) with a generator x = kut"'l(Bp).
Therefore
}l)+t+1(K()'"t',+):Z) — Z6 (t) which is mapped by f(h't"u)*.

The k-invariant of K is sx = kut"'l(K)

Then we have
s#0 (p) or H)‘Lt"'l(K, z) ¢ CP.

which implies s #0 (p).

For the generator . € }I)"'t(z, 4t) we have

g*(1) = at.
By naturality x=a s x. So a #0 (p). Therefore g* is isomorphism on
H*( :Zp). Hence f(l"t)* is isomorphism on H¥(  :Zp). This finishes
the induction.

This argument works for x # O.

(bt) _ - (ht-b)

x K(z, 4t),

Bp

and we should change f(ut) and extend to new f. QoEeDo

If x =0, that is Zg(t) = 0, then By
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Let K -—-—7K(i'l) be a fibration with a fibre K(j) such that
‘J'[j(K(i)) =0 for j<i.

The better and more useful theorem is the following

Theorem Let K be a space such that
0 i#0 (&)
z i=0 (+)

and the first k-invariant of X(u4) in Hu“ep'l(xétﬁep"&:z) = 3z

P
is B @1, A#0 (p). Then there exists a map
f:k —> Bp

which is a mod p homotopy equivalence.

Proof

Ly




(Inductive hypothesis) Assume fi.1 exist such that f‘ght h) ()+t-1+)

_— B}()ht-h-) is an isomorphism on H*( :Zp). Therefore Hht"'l(K(ut"l"):Z)

Lo (t) with a generator x.
We will prove that the k~invariant k t+l(K) =sx with s #0 (p).

For, if s = 0 (p), then consider the map th::g;_a) —_— K(ut- ) inducing

the homomorphism Zg6 (t) — Z, which maps sx to a non-zero element.
Hence s # O (p). Therefore we obtain H t+l(K :7) ¢ er Now we follow

the same proof as of the previous theorem.

Theorem There exists a space Yp such that

0 i#0 (2p=2)
fci(Yp) =
A 1=0 (2p-2)
; ; " L t+2p-1 (ht) " . 1
and the first k-invariant in H (Y ht): = Z, is )\pg , AN #0 (p)e

This is proved next time, Assume this for the moment, then we have

Corollary P-4 1
-

BSO ~ I gl‘iyp.
P (=0

P-2 .
B~ T oy,
P <=0

These are mod p H-space equivalences.,
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This is seen by inspection. This theorem is useful for some calculations

of BSPL.

S 9.  The cobordism with singularities.

Let me start today by describing "Cobordism with singularities".

This is a theory of D. Sullivan,

We start with of. Let C=[Cle . We £ix C for a while.

Consider a manifold W® such that 3Wl Lx (. We form

W=W>\/1L X cone C along boundary.

\Y

Loxi

These are "closed manifolds" of new theory. The bounding manifolds

in new theory are W'l such that w2l ~ Lx C A along 3L x C

(We also have an identification dA =L x ( ).

Sulliven proves that one can form a bordism theory (}E (K) which is
& generalized homology theory,

xC
ol S

One can relate the coefficient groups:

x(

— Qg--c-l — QTf{-]_ —_— -~ e

It is easy to check that this is an exact sequence,

We know the
ring QE=Z[CJ_, ouooo-]

y Cy € QinT. So, if € # 0, then multiplication
x{ isa monomorphism, that is, we have

¢
s Qg-cx"’ QH

— gy —— 0
whence .Qg= 2leyy ceenddd /().

ke



Repeating this process on QC

o fixing d ¢ Qg , one obtains another

exact sequence:

C xd ¢ ¢
- g — % —> W —> Opg1 —>-—- .

If we choose X7, Xpy... such that =xi47 is not zero divisor of

QU/(xl,..., x;), then
Q;_xc_l,ﬁct, i+l = QU/(X]_,"', xi+l)o

Here again one obtains & generalized homology theory.

Example 1 = n points. Then one obtains QE(@ Z .
SEAne = n
Example 2  Xjyeeey Xjpees = Clyeeey Cipees, then one obtains Hy( :Z)

the ordinary homology theory, because the coefficients are

Zlc1yeea] / (Clyeeses) = Z.

Example 3 Xy, Xpy.. = Cpy Cgyes.. (first choose generators c; such that
Todd gemus T(cg) =0 if i >1). i.e., you kill off c; except c.

Then one obtains K-theory Ky(pt). Note Ky(pt) = Z[cql.

Example L' Choose xj,.... = cj, C3, Cl4, C5y.... (leaving out cp) generators
cp; chosen such that index I(epi) =0 (cp = GP?), then one obtains a

theory Vi( ) Now Vx( )= ﬂ*(S[') = Z[co], where V is a spectrum.

Assume V is an o-spectrum, QVi4p = Vj

1> then mx(Vy) = Z[ep] (cf. Brown

or Whitehead's paper). Using surgery, one can prove Vg ~~ F/PL for
all primes except 2.
Example 5 ChOOSE Xjjeees = Cyece, 8p_l,.... s then one obtains

Vi(pt) = Z[cp.1], where dimcp.y =2p -2 and p is an odd prime.
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/
Let Y, = Vi, n'*(Yp) =2 [cp_l] . I want to claim that \/  is periodic

of period 2p = 2, roughly speaking

2/ /
P2V AV

We have a map
F2NY — VAV — Y/;
and hence the associate map
V' —s P2y
Considering the induced homomorphism on wy, this sends (cp_l)t to

(c .1 )‘b+l

« Therefore it is an isomorphism on mx, because ﬂ*(Yb) is a
polynomial ring on one generator.

Finally note that the first k-invariant of SCI is not zero, Proof
is to compare with spectrun MU —> V' . (We know the first k-invarient

of MU and by naturality one can check it).

Theorem There exists & space Yp such that
% i=0 (2p=2)
ﬂi(YP) =
0 i#0 (2p~2)

and the first k-invariant of Yp(i(2p—2)) is nonzero,

Proof is by the construction of example 5,

Corollary
F/PL /3\/ BSO.
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Proof F/PL ~_ Vo=Y3 .~ BSO,
P 3

where p is any odd prime.

I state the following theorem without proof,

Theorem of Sullivan

F/PL ~—~— BSO for any odd prime.

It seems reasonable to construct Yp directly.

§ 10, The PL-cobordism,

Now we discuss PLe-cobordism., There is an important theory of Williamson:
PL -
ik == E,m g (MPLy ) = 1ty ( |MPL).

So the question is how to compute this. There is a classifying space BPLj

and some limiting process BPL; — BPL., Moreover we have a diagram

BPL4 —— BPL
BOy —_— BO

So we have the homomorphism

6 :H*(BPL:Zp) ——> H¥(B0:Z3) = Zplwy,eeeecle
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By definition of wy, w?" can be defined in Hi(BPL:ZQ) such that

o (wil) = wy.
Define ¢ :H*(BO:Z,) —> H*(BPL:Z,) by ¢(w;) = wi', then o is a map
of algebras. One obtains

by the usual proof. Therefore ¢ is a map of Hopf algebras.
Recall the definition of WiPL:WEL = q)-lStJi(U).
The question is if the equality

i, PL PL PL
Sq(wJ- =13 ( Woew

hold, Using the Cartan formula, the Adem relations and induction, one
can prove
S?i(ng) = some polynomial in w?" Se

Therefore it is equal to the correct polynomial, because under 6 it goes

into the correct polynomial.

Lemma ¢ is a map of Hopf algebra over Q_ o Define
¢ = H*(BPL)/¢ (H*(BO). H*(BPL),

where I* means the elements of positive degree. Then C is a Hopf

algebra over @ °

Applying Milnor=Moore theory one gets
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Theorem The composition
Y’ 6w
H*(BPL) —— H*(BPL) ® H¥(BPL) ——> H¥(BPL) ® C,

where =  is projection, gives an isomorphism of Hopf algebra over Q o

Theorem As an algebra,

NE = Nyeocx,

where C is a Hopf algebra as preceding theorem and C¥* is a dual of C.

Remember that
¢
B*(BG) ——> H*( MG) is an isomorphism of coalgebras for G = 0

and PL. One can define a right operation on H¥(BO) by

(h)a = “x(a)( P (m).

We have that h: 7?* —> H,( MO) is a monomorphism and that

h*:B*( MO) —> ( MRy)* is an epimorphism with kernel (f+H*( MO).
Using the Thom isomorphism, one gets that
B (B0) —> H¢(MO) —> (L x)*

is an epimorphism with kernel H*(B0)* @ and this is a map of coalgebras.
I want to consider those S (W) = §, such that w has no members

of the form o1 . 1. Let S = vector space spanned by such elements
in H*(BO).

lemma S — ( 9’2*)* is an isomorphism of coalgebras.

51




Proof The isomorphism is given by Thom. We have

and note that Wy and W, are of the above type. Therefore S is closed

under the diagonal map.

The composition
(72*)* ®C —» S® C —> H¥(BO) ® C = H*(BPL) —> (%P,I;)*

is a map of coalgebras and one can check that it is an isomorphism as
vector space.

PL
So, dually, ?/2 * E%* ® C* as algebra. This has some corollaries.

Corollary If MY —% (®-manifold and N is a C¥-menifold, N 7% 0,
then M X N ¢ (P-manifold. The following results are known on the

structure of C.

Theorem Cf =0 for i<8.
C8 = 220

Ci #0 for i>2k,

One is also interested in the orientable case
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The same methods prove that
H*(BSPL) 2= H*(BSO)® C

with the same C as unoriented case.

And the same proof shows that
H*( MSPL) = H¥( MSO) ® C as coalgebra.
From this one can prove that
w( MSPL) = = (1 / @ (s3) ® free (} -module as (! -module.

Technical lemme

It M is a spectrum with
(M) = sA/ A ez R .

then M /2\, V_I_((Z,o..)VE(Zer,...).

(Note: w¥( K(Zg, 0)) = @/ @ (sh) e (€] A(sh))

This means that in g,%PL for p =2 every manifold can be detected
with characteristic classes with coefficients in Z and Z21"

For p:odd, what is the structure of H*(BSPL:ZP) ?

Using H*(BSF:ZP) = Zp[qi] ® E(qu) ® C (proved recently upstairs)

and direct computation, one can prove
H*(BSPL:ZP) = H*(BSO:ZP) ® C

in dimensions < (p2 +p+1)(2p - 2) - 1,
Therefore one can try to compute H*( M.SPL:ZP) as modules over

Here C 1is known explicitly up to 2p(2p-2).
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Some pages later we see, for example, that

m¥( MSPL:Z3) = £ ( /(B) ® free in dim < 27,
where

Q)= @/ A (ag, 9y, Qyeees).

The part Lz/(p) comes from 050 and the free part comes from

PL - , but not C®-manifolds.

Note that CP2, CPA, CP6..... are generators and new things are

a1 Z3

19 Z3

22 Z3

23 Z3 @ Z3 @ Z3

27 Z9 (1% ( MSPL, Z3) is no longer free)

Note, for example, that Mt X PP = 0, which is different from EL.

The End .
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