
TheStateofHighSchool
Textbooks

Guershon Harel and W. Stephen Wilson

Do textbooks matter? According to Education
Market Research [1], in 2001–2002, K–12 school
districts spent more than $4 billion on textbooks,
and in mathematics an estimated $1.95 billion was
spent nationwide in 2008 on mathematics instruc-
tional materials—a robust 25.8 percent increase
from 2005. Tyson-Bernstein & Woodward [3] found
that, while textbooks are a dominant part of teach-
ing and learning in all subjects, in mathematics
the reliance on textbooks is even greater. Text-
books are the primary source for planning daily
mathematics instruction by teachers, according to
Weiss et al. [4].

Given the high expenditure on mathematics
textbooks and the central role they play in math-
ematics instruction, evaluating their quality and
effectiveness would seem necessary. Recently, we
had the opportunity to review the high school
textbook series from four different publishers [2],
[5]. We found the experience an enlightening but
depressing one. We found an interesting combi-
nation of mathematical errors, obliviousness to
basic foundational work, and a deliberate avoid-
ance of symbolic manipulation in algebra and of a
coherent postulate-based approach to geometry.

Our examination focused on two topics in al-
gebra, forms of linear functions and equations
and forms of quadratic functions and equations,
and one topic in geometry, parallel lines and the
triangle sum theorem. These topics were cho-
sen because they are viewed as central to the
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high school curriculum. The examination was to
ensure that they are coherently developed, com-
pletely covered, and mathematically correct, and
provide solid foundation for further study in

mathematics.1

Linear Functions
The algebraic concepts and skills associated with
linear functions are crucial for the rest of the study
of algebra and beyond. Appropriate definitions and
justifications for concepts such as slope provide
the basis for understanding linear functions and
equations. These issues were carefully examined,
as were the presence of all forms of linear functions
and equations, how these are connected to each
other, and the opportunities given to apply them
to solve problems.

Understanding linear functions is fundamen-
tal to a good Algebra 1 course. The connection
between the graph of a linear function and the
algebraic version is important. We were disap-
pointed. No program produced the basics here.
Slope, although defined, is never shown to be well
defined. It is never shown that the graph of an
algebraic linear function really is a line in the
coordinate plane, and it is never shown that a
line in the coordinate plane really is the graph of
an algebraic linear function. The worst aspect of
this was that it seemed the textbook authors were
unaware that something was missing. There are no

1We are, of course, not the first to notice mathematical

problems with high school texts. For example, in the Na-

tional Mathematics Advisory Panel final report in 2008,

Foundations for Success, in Appendix B of the Concep-

tual Knowledge and Skills Task Group Report, Chapter 3,

pages 63–65, there is a very nice summary of problems in

high school algebra texts.
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comments such as “it can be shown.” They don’t
always even state these things clearly. A typical
sequence is:

“A function whose graph forms a straight line
is called a linear function.”

“A function is linear if it is described by a linear
equation. A linear equation is any equation that
can be written in the standard form shown below:

Ax+ By = C

where A, B, and C are real numbers and A and B
are not both 0.”

Ignoring the little detail that if B = 0 we don’t
have a function, there is the rather large leap
of faith: straight line graphs come from linear
equations. There is no attempt to show this. For
that matter, there seems to be no awareness that
it should be shown. The worst part is that this is
as good as it gets, because they actually tell you
that functions that give lines come from linear
equations.

From another book that is less sure of itself,
we have: “A linear equation is an equation that
forms a line when it is graphed. Linear equations
are often written in the form Ax + By = C.” (Our
emphasis.) Again, no attempt to show that the
equation gives rise to a line or to explain what
equations give lines “not so often”. But, it gets
worse when they try to be more specific:

“The standard form of a linear equation isAx+
By = C, where A ≥ 0, A and B are not both zero,
andA, B, and C are integers with greatest common
factor of 1.”

Gone are real numbers. However, just when
you think things can’t get worse, open up another
book and, after using a calculator to recursively
plot points, you get:

“The points you plotted in the example showed
a linear relationship between floor numbers and
their heights.”

This is it for the definition of linear relationship
for this program.

For our final example, we have “linear func-

tions—those with straight-line graphs, data pat-
terns showing a constant rate of change in the
dependent variable, and rules like y = a + bx.”
They explain why they use y = a + bx instead
of y = mx + b: “Statisticians prefer the general
form y = a+bx.” Mathematicians use y =mx+b.
This is made explicit in the text and that is the
explanation for the choice.

At best the relationship between a linear equa-
tion and the graph of a linear function as a line is
assumed. At worst, it is murky. A real mathematical
connection is never made, though.

Slope
In general, the slope of a line in the coordinate
plane is defined as the change in y divided by
the change in x, or the rise divided by the run.

The problem, of course, is that the definition only

involves two points on the line, and you really

want to get the same answer (slope) if you use two
different points. This is shown to be the case using

similar triangles. However, texts never seem to see

the need to show that slope is well defined, so we
never see a proof. Obviously this must get pointed

out to some authors, but they don’t always know
what to make of it. So an alternative definition of

slope is that it is the rise divided by the run for

“any two points on the line”. They didn’t quite get
the message, though. Now you have to show that

this is the same number for all pairs of points,
just like before.

Linear equations and functions can be written in

many forms, for exampleAx+By = C, y =mx+b,
y − y0 =m(x− x0), and y − y1 =

y2−y1

x2−x1
(x− x1).

The letter “m” in y = mx + b is assumed to

be the slope, but this connection is rarely made
mathematically.

Not all texts introduce all of these forms, and

even when they do, they don’t always do the
general algebraic version. So a text might show

how to find the equation for a line with slope 3
that goes through the point (2,1) but won’t show

how to find the equation for a line with slope “m”

that goes through the point (x0, y0) or show how
to rewrite y − y0 = m(x − x0) or Ax + By = C,

B ≠ 0, in the form y =mx+ b.

There seems to be a general tendency to avoid
algebraic manipulation if at all possible. The clos-

est any book comes to proving that slope is well
defined is “You’ve probably noticed by now that

the rate of change of a linear function is constant.”

Quadratic Functions
The ability to put quadratic functions in vertex

form allows access to symmetry and finding the
maximum or the minimum of the function. This

opens up a new world of problems that can be

solved, namely max/min problems. The approach
to max/min problems is examined for both the

basic algebra and the conceptual development,

which includes a coherent definition of a quadratic
function and how the line of symmetry is explained

and justified.
Core to Algebra 2 is a complete understanding

of quadratic functions. Problems similar to those

found for linear functions also occur here. The
texts tend to love the symmetry of quadratic

functions, and we’ll now take a look at how they

deal with it.
Our first book actually shows the symmetry

for y = x2. It then immediately states that “This
shows that parabolas are symmetric curves. The

axis of symmetry is the line through the vertex

of a parabola that divides the parabola into two
congruent halves.” Of course this makes you want

to back up a few pages and find out what a parabola
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is. We are told that the graph of y = x2 is a curve
called a parabola.

Next they show how to do vertical and hori-
zontal translations of the function y = x2 to get
other quadratic functions. They could show that
these new functions y = (x−h)2+ k are also sym-
metric, since they are just translations, but this
is not mentioned. Next, functions are multiplied
by a constant to reflect, stretch, and/or compress
them. We now have the vertex form of a quadratic
function: y = a(x− h)2 + k, which this book uses
for its definition of a quadratic. It is now described
as a parabola, or, more accurately, the fact that
the graph is a parabola is taken for granted in the
following way that also gives us the vertex that
we also wanted to look up: “If a parabola opens
upward, it has a lowest point. If a parabola opens
downward, it has a highest point. This lowest or
highest point is the vertex of a parabola.” Up to
this point, we didn’t even know these were parabo-
las. Neither symmetry nor the name was carried
along through the transformations.

This particular text is as good as it gets. Next it
mentions the standard form of a quadratic func-
tion as f (x) = ax2 + bx+ c and then expands the
vertex form and solves for b and c in terms of h
and k, as well as h in terms of b and c. Conse-
quently, they have computed the x-coordinate for

the line of symmetry as
−b

2a
, assuming there was a

line of symmetry. A good, knowledgeable teacher
might help make sense of all of this.

Our second example takes for the definition of
a quadratic function:

f (x) = ax2 + bx+ c, where a 6= 0.

And we are told “The graph of a quadratic function
is called a parabola.” We are then shown a graph of
one (1) example of a quadratic, f (x) = 3x2−12x+6,
and the book concludes: “The axis of symmetry is
a line through the graph of a parabola that divides
the graph into two congruent halves.” And we
are given the equation for the axis of symmetry:

x =
−b

2a
. There is no computation or justification

either for the existence of the axis of symmetry
or the value of x that gives it. It does have the
advantage that it is clean, quick, and simple.

For our next example we again start with y = x2

and look at vertical and horizontal translations.
We are told that the shape of this graph is a
parabola and that parabolas always have a line of

symmetry. The proof that y = x2 is symmetric is
just (−x)2 = x2, but this is not done. Reflections
and stretches (as transformations) are done in
general, but not specifically for quadratic func-
tions. A hundred and fifty pages later quadratic

functions are defined as second-degree polyno-
mial functions, and it is asserted that all quadratic
functions come from transformations of y = x2.
In fact, they have shown no such thing. They
have shown that quadratics in the vertex form

come from such transformations, but they have

not shown that all second-degree polynomials can
be written in vertex form. In addition, they now

call all quadratic functions parabolas. Symmetry
is not mentioned as these transformations occur.

Symmetry could be carried along, but they do not
bother.

In our final example, “quadratic function” is

used for several pages without definition. Eventu-
ally the general form is coughed up. We are told

that the graphs of all quadratics are called parabo-
las. It is left to an exercise to show that y = ax2 is

symmetric, and this is generalized to y = ax2 + c.
The next step is harder. The authors just assume
symmetry for y = ax2 + bx. This makes it easy to

compute the line of symmetry and to get the line
of symmetry for the general form from that.

It isn’t hard to show that ax2 + bx has a
symmetric graph, but it isn’t done. Is it skipped

intentionally, or do the authors just not realize
what they are doing?

The second author’s early 1960s (small-town

Kansas) Algebra 2textbookshows thatx =
−b

2a
must

give a maximum or a minimum for y = ax2+bx+c

by plugging in both x =
−b

2a
and x =

−b

2a
± k and

showing that the difference between the two y

values is ak2. This also shows symmetry. None of
the textbooks we looked at would dare venture

into this level of algebraic manipulation.
To solve max/min problems for quadratic func-

tions it is essential to be able to move back and

forth between the standard form, y = ax2+bx+c,
and the vertex form, y = a(x− h)2 + k. Once this

is done, symmetry is quite easy to see, but only
if it is pointed out. It is not pointed out. As with

linear functions, this is much more likely to be
done with numbers, if at all, rather than for the
general algebraic version.

Triangle Sum Theorem
The development and application of the triangle

sum theorem (that the sum of the angles of a
triangle is 180 degrees) was examined. Despite
the simplicity of both the theorem and the proof,

they depend on a great many preliminary results,
postulates, and definitions. It is an excellent way

to see if the material is structured properly.
For example, the theorem depends on a solid

understanding of parallel lines, the lines that
cross them, and the angles associated with them
all. The examination focused on the coherence and

logical progression of the material leading up to
the theorem.

Euclidean geometry is perhaps the only place
in high school mathematics where a (relatively)

complete and rigorous mathematical structure
can be taught. However, deductive geometry can
be treated in numerous ways and in different levels

of rigor. Our examination was based on the view
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that an adequate level of rigor is necessary and
possible in high school. Deciding what constitutes
an “adequate level of rigor” is crucial. In dealing
with this question, we used Euclid’s Elements as
a framework. In a program consistent with this
framework, subtle concepts and axioms, such as
those related to “betweenness” and “separation”
are dealt with intuitively, but the progression from
definitions and axioms to theorems and from one
theorem to the next is coherent and logical and
exhibits a clear mathematical structure.

Two of the geometry books we reviewed do
not have a clear logical structure for the material
taught, and there is no clear development of
a demarcation line between empirical reasoning
and deductive reasoning. In one of these books,
all the material is presented through problems.
There is nothing wrong with this approach, except
that all the problems seem to be of equal “status”.
However, although some problems are essential to
the development of a geometric structure, others
are not. For a teacher to discern the essential
mathematical progression, he or she must identify
all the critical problems—many of which appear
in the homework sections—and know in advance
what the intended structure is. Missing one or two
of these problems would result in an incomplete
or deficient structure.

In this book, important theorems in geometry
are not justified. Moreover, with the way the mate-
rial is sequenced, some of these theorems cannot
be justified. Specifically, the construction of per-
pendicular lines requires congruence of triangles,
which appears in earlier courses but mostly in em-
pirical, not deductive, forms. Congruence appears
later, after parallel lines, and is based on similar-
ity, which, in turn, is based on parallel lines. Thus
the construction that is fundamentally needed for
parallel lines can only be justified by results that
are based on parallel lines! In other words, the
argument is circular.

Also, due to the program’s choice of starting
with parallel lines rather than congruence, there
is loss of an opportunity to convey a critical
mathematical lesson about the role of postulates in
the development of mathematical structures—that
a whole constellation of theorems can be proved
without the use of the parallel postulates. This
lesson—a landmark in the historical development
of mathematics—should be within the grasp of
high school students.

In another book the approach amounts to em-
pirical observations of geometric facts; it has little
or nothing to do with deductive geometry. There
is definitely a need for intuitive treatment of ge-
ometry in any textbook, especially one intended
for high school students. But the experiential ge-
ometry presented in the first nearly 800 pages
of the book is not utilized to develop geometry
as a deductive system. Most, if not all, assertions

appear in the form of conjectures, and most of
the conjectures are not proved. It is difficult, if not
impossible, to systematically differentiate which
of the conjectures are postulates and which are
theorems. It is difficult to learn from this text
what a mathematical definition is or to distinguish
between a necessary condition and a sufficient
condition. Students are also expected to discover
definitions given pictures as hints.

The development that leads up to the proof of
the triangle sum theorem in the other two books
does not include circular reasoning. However,
there is repeated misuse of the concept of pos-
tulate, and some important theorems are stated
without proof. In addition, this development is
interrupted by two sections on analytic geometry,
with theorems that are either incorrectly labeled as
postulates or appear without proof. In the process
of developing a deductive structure for synthetic
geometry, the text introduced a “foreign object”,
analytic geometry, which does not belong to the
development of this structure.

Conclusion
The texts discussed are not unusual. Middle and
elementary school textbooks are no better, per-
haps even worse. How can mathematics be viewed
as logical when foundational work is missing, and,
worse, it is not even pointed out as something that
could or should be done?

The purpose is to inform the college mathemat-
ics teaching community about the sorry state of
high school textbooks. There is much to complain
about in college textbooks as well, but at least they
are usually written by mathematicians with some
sense of mathematical integrity.
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