MIDTERM 2

54 pts. total

Name: ____________________________
Section: _________________________

1.) Find \(f'(x) \) or \(\frac{dy}{dx} \) for each of the following. You do not need to simplify:

a.) [4 pts.] \(f(x) = x^4 + 2x + 1 \).
 \[f'(x) = 4x^3 + 2 \]

b.) [4 pts.] \(f(x) = \frac{e^x}{x} \).
 \[f'(x) = \frac{xe^x - e^x}{x^2} \]

c.) [4 pts.] \(y^2 + \ln(x \sin x) = 2 \). (Find \(\frac{dy}{dx} \)).
 \[
 2y \frac{dy}{dx} + \frac{1}{x \sin x} (x \cos x + (\sin x)(1)) dx = 0
 \]
 \[
 2y \frac{dy}{dx} + \frac{x \cos x + \sin x}{x \sin x} = 0
 \]
 \[
 2y \frac{dy}{dx} = -\frac{x \cos x + \sin x}{x \sin x}
 \]
 \[
 \frac{dy}{dx} = -\frac{x \cos x + \sin x}{2yx \sin x}
 \]

d.) [4 pts.] \(f(x) = \sqrt{\tan^3 x} \).
 \[f'(x) = \frac{1}{2\sqrt{\tan^3 x}} (3 \tan^2 x)(\sec^2 x). \]
2.) [6 pts.] Use the Intermediate Value Theorem to show that the function \(f(x) = x^3 - 2x + 1 \) has three zeroes (i.e. the equation \(f(x) = 0 \) has three solutions).

\[
\begin{align*}
 f(2) &= 5 \\
 f\left(\frac{3}{4}\right) &= -5/64 \\
 f(0) &= 1 \\
 f(-2) &= -3
\end{align*}
\]

So \(f(x) = 0 \) somewhere between \(\frac{3}{4} \) and 2, between 0 and \(\frac{3}{4} \), and between \(-2\) and 0.

3.) [6 pts.] Use the formal definition of the derivative to find the derivative of \(f(x) = x^2 \).

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

\[
= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}
\]

\[
= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}
\]

\[
= \lim_{h \to 0} \frac{2xh + h^2}{h}
\]

\[
= \lim_{h \to 0} 2x + h
\]

\[
= 2x.
\]
4.) Find the limits of the following, using whichever method you like:

a.) [4 pts.] \(\lim_{x \to 1} \frac{x^3 - 1}{x^2 - x} \)

Plugging in gives \(\frac{0}{0} \). So we use L'Hopital’s Rule:

\[
\lim_{x \to 1} \frac{x^3 - 1}{x^2 - x} = \lim_{x \to 1} \frac{3x^2}{2x - 1} = \frac{3}{2 - 1} = 3.
\]

b.) [4 pts.] \(\lim_{x \to 0} \frac{x}{\tan x} \)

Again, plugging in gives \(\frac{0}{0} \). So we use L'Hopital’s Rule:

\[
\lim_{x \to 0} \frac{x}{\tan x} = \lim_{x \to 0} \frac{1}{\sec^2 x} = \frac{1}{1} = 1.
\]

c.) [4 pts.] \(\lim_{x \to 0^+} \frac{\cos x}{x} \)

Plugging in this time gives \(\frac{1}{0} \). So the limit goes to \(\pm \infty \). To determine which one, we note that both the top and bottom are positive as \(x \) goes to zero from the positive direction. So the limit is \(\infty \).

5.) [6 pts.] Describe where \(f(x) \) is continuous, where \(\begin{cases}
 x^2 - 9 & \text{if } x \neq 3 \\
 7 & \text{if } x = 3
\end{cases} \)

At \(x \neq 3 \), \(f(x) \) is a rational function (i.e. a polynomial divided by another polynomial). These are continuous whenever they are defined, and this one is defined for any \(x \neq 3 \). So \(f(x) \) is continuous whenever \(x \neq 3 \).

Now, we check whether \(x \) is continuous at \(x = 3 \). To see whether it is continuous, we check that 1.) The function is defined, 2.) The limit is defined, and 3.) 1 and 2 give the same value. Now,

1.) \(f(3) = 7 \)

2.) \(\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} x + 3 = 6 \)

3.) \(f(3) \neq \lim_{x \to 3} f(x) \).

So \(f \) is not continuous at 3. Thus, \(f \) is continuous everywhere except at \(x = 3 \).
6.) [8 pts.] A cow is launched from a cannon for Fox’s new reality TV show, So You Think You Can Fly? A camera is placed 4 yards away from the cannon to catch the cow’s hilarious reaction. The cow goes straight up in the air; when the cow is 3 yards up, he is going upwards at a rate of 6 yards per minute. How fast is the cow moving away from the camera?

This will look like a triangle with base 4 and height h, meaning that the applicable formula is

$$a^2 + h^2 = D^2,$$

where D is the hypotenuse (i.e. the distance from cow to camera). Since we are looking for how fast the cow is moving away from the camera, we must find $\frac{dD}{dt}$.

Next, we have the following information RIGHT NOW!:

$$\text{RIGHT NOW!: } h = 3, \frac{dh}{dt} = 6, \ D = 5,$$

where the first two are directly from the statement of the problem and the third can be found by plugging 3 in for h above. Now, we take the derivative and then divide through by dt:

$$2hdh = 2DdD$$

$$2h \frac{dh}{dt} = 2D \frac{dD}{dt}$$

Plugging in the information about RIGHT NOW, we have

$$2(3)(6) = 2(5) \frac{dD}{dt}$$

$$36 = 10 \frac{dD}{dt}$$

$$\frac{36}{10} = \frac{dD}{dt}$$

$$3.6 = \frac{dD}{dt}$$

Bonus [0 pts.]: Why does Fox force these shows on us? Seriously.