CORRIGENDUM TO "ON A CONJECTURE OF CONRAD, DIAMOND, AND TAYLOR"

DAVID SAVITT

We take this opportunity to correct an error [Sav05], as a consequence of which there is one more family of strongly divisible modules that we must study by the methods of [Sav05]. Once this is done, the remaining claims of [Sav05] are unaffected. We adopt the notation of [Sav05] without further comment, and all numbered references are to that paper.

The mistake is in the statement and proof of Theorem 6.12(4). In the situation of that item, if m = 1 + (p+1)j — i.e., if i = 1 — then the two characters ω_2^{m+p} and ω_2^{pm+1} are both characters of niveau one, and are equal; hence in this case the proof of Theorem 6.12(4) does *not* show that $T_{\text{st},2}^{\mathbb{Q}_p}(\mathcal{M}/\mathfrak{m}_E)|_{I_p}$ decomposes as a sum of two conjugate characters. In fact, for each choice c of square root of \overline{w} , the map $\mathcal{M}'_2 \to \mathcal{M}_E(F_2/\mathbb{Q}_p, e_2, c, m-1)$ extends to a map $\mathcal{M}' \to \mathcal{M}_E(F_2/\mathbb{Q}_p, e_2, c, j)$; by Proposition 5.4(1), we conclude when i = 1 that

$$T^{\mathbb{Q}_p}_{st,2}(\mathcal{M}/\mathfrak{m}_E) \otimes_{\mathbf{k}_E} \overline{\mathbb{F}}_p \cong \lambda_{c^{-1}} \omega^{1+j} \oplus \lambda_{-c^{-1}} \omega^{1+j} \,.$$

This means that when i = 1 and $\operatorname{val}(b) > 0$ we still need to construct a strongly divisible lattice in $\mathcal{D}_{m,[1:b]}$ whose reduction mod p has trivial endomorphisms; or, conversely, we need to study deformations of type $\tilde{\omega}_2^m \oplus \tilde{\omega}_2^{pm}$ (with i = 1) of non-split residual representations of the form

$$\begin{pmatrix} \lambda_{c^{-1}} \omega^{1+j} & * \\ 0 & \lambda_{-c^{-1}} \omega^{1+j} \end{pmatrix} \, \cdot \,$$

We rectify this omission now. Our statements are numbered to mesh with the original article.

Lemma 6.7. (2) If i = 1, $\operatorname{val}_p(b) > 0$, and w is a square in E, then there is $X \in S_{F_2,\mathcal{O}_E}^{\times}$ satisfying

$$X(1 \otimes wb) = 1 \otimes w - \left(1 + \frac{u^{pe_2}}{p}\right) X\phi(X).$$

Proof. The constant term of X may be taken to be $1 \otimes x_0$ where x_0 is either root of $x_0^2 + wbx_0 - w$ in \mathcal{O}_E^{\times} . The recursion for the coefficient x_n of u^n is $x_n(x_0 + wb) =$ lower terms, and so the recursion can be solved to obtain $X \in S_{F_2,\mathcal{O}_E}^{\times}$.

Moreover, since $\operatorname{val}_p(b) > 0$, by putting the variable B for b we obtain an element X_B of $S_{F_2,\mathcal{O}_E[[B]]}$ which specializes to X under the map $\mathcal{O}_E[[B]] \to \mathcal{O}_E$ sending $B \mapsto b$. Note that the image of X in $(\mathbb{F}_{p^2} \otimes \mathbf{k}_E)[u]/u^{e_2p}$ is $1 \otimes c$ with c a square root of \overline{w} . Assume henceforth that the coefficient field E contains a square root of w. Now Proposition 6.10 is modified as follows.

Proposition 6.10. In the case i = 1 and $val_p(b) > 0$, we instead define

$$\mathcal{M}_{m,[1:b]} = S_{F_2,\mathcal{O}_E} \cdot g_1 + S_{F_2,\mathcal{O}_E} \cdot g_2$$

$$g_1 = \mathbf{e}_1 + \frac{X}{pw} u^{p(p-1)} \mathbf{e}_2$$
$$g_2 = \mathbf{e}_2,$$

and this is a strongly divisible \mathcal{O}_E -module with descent data inside $\mathcal{D}_{m,[1:b]}$.

Proof. Put $\mathcal{M} = \mathcal{M}_{m,[1:b]}$. Observe that $h := u^{p-1}g_1 + \left(\frac{X}{w} + (1 \otimes b)\right)g_2$ lies in Fil¹ \mathcal{M} . Since $\frac{X}{w} + (1 \otimes b)$ is a unit in S_{F_2,\mathcal{O}_E} and g_1 does not lie in Fil¹ \mathcal{M} , we deduce that Fil¹ $\mathcal{M} = S_{F_2,\mathcal{O}_E} \cdot h + (\text{Fil}^{1}S_{F_2,\mathcal{O}_E})\mathcal{M}$. From this it is easy to check that $I\mathcal{M} \cap \text{Fil}^{1}\mathcal{M} = I\text{Fil}^{1}\mathcal{M}$. Finally, we compute that

$$\phi(g_1) = \phi(X)u^{p^2(p-1)}g_1 + \left(1 - X\phi(X)\frac{u^{pe_2}}{pw}\right)g_2$$

$$\phi(g_2) = pwg_1 - Xu^{p(p-1)}g_2$$

both lie in \mathcal{M} ; using the defining relation for X we find $\phi_1(h) = (1 \otimes w)X^{-1}g_1 \in \mathcal{M}$ and conclude that \mathcal{M} is a strongly divisible module.

Now amend Theorem 6.12(4) so that it applies only to that case i > 1, and add the following.

Theorem 6.12. (5) If i = 1 and $\operatorname{val}_p(b) > 0$, then $T_{\operatorname{st},2}^{\mathbb{Q}_p}(\mathcal{M}/\mathfrak{m}_E)$ is independent of b and

$$T_{\mathrm{st},2}^{\mathbb{Q}_p}(\mathcal{M}/\mathfrak{m}_E) \cong \begin{pmatrix} \lambda_{-c^{-1}}\omega^{1+j} & *\\ 0 & \lambda_{c^{-1}}\omega^{1+j} \end{pmatrix}$$

with $* \neq 0$.

Proof. Write $\mathcal{M}' = T_0(\mathcal{M}/\mathfrak{m}_E)$. Then $\operatorname{Fil}^1 \mathcal{M}'$ is generated by $u^{p-1}g_1 + c^{-1}g_2$ and $u^{e_2}g_1$, with $\phi_1(u^{p-1}g_1 + c^{-1}g_2) = cg_1$ and $\phi_1(u^{e_2}g_1) = u^{p^2(p-1)}cg_1 + g_2$. Note that $\phi_1(u^{p(p-1)}g_2) = -cg_2$. There is evidently a nontrivial map $\mathcal{M}' \to \mathcal{M}_E(F_2/\mathbb{Q}_p, e_2, c, j)$ sending $g_2 \mapsto 0$ and $g_1 \mapsto u^{p^2}\mathbf{e}$. On the other hand if $f: \mathcal{M}' \to \mathcal{M}_E(F_2/\mathbb{Q}_p, e_2, d, n)$ is a nontrivial map sending $g_1 \mapsto \alpha \mathbf{e}$ and $g_2 \mapsto \beta \mathbf{e}$, then α, β must both be polynomials in u^p since g_1, g_2 are in the image of ϕ_1 . On the other hand if $\beta \neq 0$ then the relation $f \circ \phi_1 = \phi_1 \circ f$ on $u^{p(p-1)}g_2$ implies that β is a unit times u^p ; but then $f(u^{p-1}g_1 + c^{-1}g_2) \in \langle u^{e_2}\mathbf{e} \rangle$ implies that α has a linear term, a contradiction. Therefore $\beta = 0$, and then it is easy to check that c = d and j = n. It follows that $* \neq 0$.

(We also note the following typos in the published version of the proof of Theorem 6.12(4): in the first sentence, the expression $\phi_1(u^{e_2})$ should be $\phi_1(u^{e_2}g_2)$; in the last sentence, the characters λ_c should both be $\lambda_{c^{-1}}$.)

The proof of Corollary 6.15(2) should then invoke Theorem 6.12(5) in lieu of Theorem 6.12(4) in the case of representations ρ to which Theorem 6.12(5) applies, noting that the two choices for x_0 lead to different reductions of ρ .

We now turn to deformation spaces of strongly divisible modules. The proof of the following proposition is identical to the proof that the corresponding module $\mathcal{M}_{m,[1:b]}$ of Proposition 6.10 is a strongly divisible module. As noted in Remark 6.20, we omit the description of N in the strongly divisible module below.

Proposition 6.21. There exists a strongly divisible module with descent data and $\mathcal{O}_E[[B]]$ -coefficients as follows.

(6) If i = 1 and assuming that w is a square in E,

$$\mathcal{M}_{X} = (S_{F_{2},\mathcal{O}_{E}}[[B]]) \cdot g_{1} \oplus (S_{F_{2},\mathcal{O}_{E}}[[B]]) \cdot g_{2},$$

Fil¹ $\mathcal{M}_{X} = S_{F_{2},\mathcal{O}_{E}}[[B]] \cdot (u^{p-1}g_{1} + (w^{-1}X_{B} + (1 \otimes B))g_{2}) + (\text{Fil}^{1}S_{F_{2},\mathcal{O}_{E}}[[B]])\mathcal{M}_{X}$
 $\phi(g_{1}) = \phi(X_{B})u^{p^{2}(p-1)}g_{1} + \left(1 - X_{B}\phi(X_{B})\frac{u^{pe_{2}}}{pw}\right)g_{2},$
 $\phi(g_{2}) = pwg_{1} - X_{B}u^{p(p-1)}g_{2},$
 $\widehat{g}(g_{1}) = (\widetilde{\omega}_{2}^{m} \otimes 1)g_{1}, \qquad \widehat{g}(g_{2}) = (\widetilde{\omega}_{2}^{pm} \otimes 1)g_{2}.$

Finally, one must amend the proof of Theorem 6.24 to include a proof that the canonical injection

$$R(2, \tau(\mathcal{M}_X), \overline{\rho}(\mathcal{M}_X))_{\mathcal{O}_E} \to R(\mathcal{M}_X)$$

is a surjection; this proceeds exactly along the strategy outlined in the proof of Theorem 6.24. Indeed, let \mathcal{M}'' denote the minimal Breuil module with descent data from F_2 to \mathbb{Q}_p associated to the character $\lambda_{-c^{-1}}\omega^{1+j}$, with generator h such that $\phi_1(h) = -c^{-1}h$. Then a map $f: \mathcal{M}'' \to T_0(\mathcal{M}_X/(\mathfrak{m}_E, B^2))$ must send h to an element of the form $\alpha u^{e_2}g_1 + \beta(u^{p-1}g_1 + (w^{-1}X_B + B)g_2)$ (where, abusing notation, we identify elements of $S_{F_2,\mathcal{O}_E[[B]]}$ with their images in $(\mathbb{F}_{p^2} \otimes \mathbf{k}_E[B]/(B^2))[u]/u^{e_2p}$). Write $\alpha = \alpha_0 + B\alpha_1$ and $\beta = \beta_0 + B\beta_1$ to separate out the terms involving B. The relation $f(\phi_1(h)) = \phi_1(f(h))$ shows first that $\alpha_0 = au^p$, $\beta_0 = -au^{p^2}$ for some $a \in \mathbf{k}_E$, by considering the relation mod B; then, after some algebra, the full relation eventually implies a = 0. Thus the image of f lies in $B \cdot T_0(\mathcal{M}_X/(\mathfrak{m}_E, B^2))$, as desired.

References

[Sav05] David Savitt, On a conjecture of Conrad, Diamond, and Taylor, Duke Math. J. 128 (2005), no. 1, 141–197.