Introduction to Lie groups, Fall 2019: Exercises^{*}

Yiannis Sakellaridis

October 23, 2019

- 1. Classify all finite-dimensional representations of the group $G = \mathbb{Z}$ over \mathbb{C} , and over an arbitrary field k. Verify explicitly that those which factor through a finite quotient \mathbb{Z}/n are semisimple, if k is of characteristic zero. Examine the case of positive characteristic.
- 2. If G is a finite group, use the Peter–Weyl theorem to deduce the following well-known formulas; here, if π_1, \ldots, π_r are representatives for the isomorphism classes of irreducible representations (over \mathbb{C}), $d_i = \dim(\pi_i)$ and χ_i =the character of d_i . (Hint: identify the subspace spanned by characters on both sides of the Peter–Weyl theorem.)
 - (a) $\sum_{i} d_i^2 = |G|.$
 - (b) r = # of conjugacy classes in G.
 - (c) "Row orthogonality"¹:

$$\frac{1}{|G|} \sum_{g \in G} \chi_i(g) \overline{\chi_j(g)} = \delta_{ij}.$$

(d) "Column orthogonality":

$$\frac{1}{|G_{g_1}|} \sum_{i=1}^r \chi_i(g_1) \overline{\chi_i(g_2)} = \begin{cases} 1, \text{ if } g_1 \text{ and } g_2 \text{ are conjugate} \\ 0, \text{ otherwise.} \end{cases}$$

Here, G_{g_1} denotes the centralizer of g_1 .

- 3. Use the above character relations, and possibly some natural representations that you can think of, to compute the irreducible characters of the symmetric groups S_3 and S_4 .
- 4. Let (V,q) be a two-dimensional real vector space, endowed with a nondegenerate quadratic form. Let G be the special orthogonal group of those linear transformations which preserve the quadratic form and act trivially on $\bigwedge^2 V$. Describe the group G, and classify its irreducible finitedimensional complex representations.

^{*}Updated periodically. Last update: October 23, 2019

 $^{^1\}mathrm{By}$ the way the character table is usually written: one row for each character, one column for each conjugacy class.

- 5. Let $G = SU_2 \subset SL_2(\mathbb{C})$ be the subgroup of those transformations which preserve an inner product on \mathbb{C}^2 .
 - (a) Show that G acts transitively on the set of complex lines in \mathbb{C}^2 , and that the stabilizer of a line is isomorphic to the compact torus group $S^1 = \mathbb{R}/\mathbb{Z}$. Fix such a line, with stabilizer $T \subset G$, and deduce:
 - every element of G is conjugate to an element of T;
 - there is a fibration $G \to \mathbb{C}P^1$, with fiber isomorphic to S^1 .
 - (b) Identify \mathbb{C}^2 with the quaternion algebra \mathbb{H} , and G with the multiplicative group of quaternions of norm one. Deduce that SU_2 is homeomorphic to the 3-sphere S^3 . Thus, we obtain the *Hopf fibration* $S^1 \hookrightarrow S^3 \to S^2$.
- 6. Classify all Lie algebras of dimensions ≤ 3 over a field k.
- 7. Consider the "fake Lie algebra" \mathfrak{g} with generators x, y, z and bracket relations [x, y] = x, [y, z] = z, [x, z] = z. Confirm that the Jacobi identity fails, and then prove that the Poincaré–Birkhoff–Witt theorem also fails in this case: The natural surjection $S\mathfrak{g} \to \operatorname{gr} U$, where U is the quadratic algebra $T(\mathfrak{g})/(R)$, with $R = \operatorname{span}\{x \otimes y y \otimes x z, x \otimes z z \otimes x z, y \otimes z z \otimes y z\}$, is not an isomorphism. (You can prove, actually, that PBW fails every time that the Jacobi identity does.)
- 8. Consider the affine variety $X = SO_2 \setminus SO_3$. We have seen (in the discussion of spherical harmonics) that the coordinate ring $\mathbb{R}[X]$ (or $\mathbb{C}[X]$) has a natural, *G*-stable (where $G = SO_3$) grading as a vector space:

$$\mathbb{R}[X] = \bigoplus_{k \ge 0} \mathbb{R}[X]_k,$$

corresponding to the degree of the spherical harmonics. Show that this fails to be an algebra grading, but it corresponds to an algebra filtration with $F^n \mathbb{R}[X] = \bigoplus_{0 \le k \le n} \mathbb{R}[X]_k$. Describe the *G*-variety corresponding to the associated graded $\operatorname{gr}\mathbb{R}[X]$, as well as the one corresponding to the Rees family $\bigoplus_{n>0} t^n F^n \mathbb{R}[X]$.

9. In this exercise we will describe the irreducible representations of the symmetric group S_d .

We consider $G = S_d$ as the permutation group on the set $\Sigma = \{1, \ldots, d\}$, and will say "partition of d" for every sequence $\lambda : \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$, of positive integers with $\sum \lambda_i = d$. We will call " λ -partition of Σ " be a disjoint decomposition $\Sigma = \bigsqcup_i \Sigma_i$, with $|\Sigma_i| = \lambda_i$. (In particular, these subsets are indexed with decreasing size, but we distinguish between subsets of the same size.)

The group G acts on the space Σ_{λ} of λ -partitions; we define this action as a right action. To invoke a vocabulary similar to that of Lie groups, although it is not standard in this case, let us say that a "parabolic subgroup" of G is the stabilizer of a λ -partition, for some λ . Hence, a parabolic subgroup is a subgroup of the form $S_{\Sigma_1} \times \cdots \times S_{\Sigma_n}$, where $\Sigma = \bigsqcup_i \Sigma_i$ is a λ -partition as before, and S_{Σ_i} denotes the group of permutations of the subset Σ_i .

Thus, the homogeneous space Σ_{λ} is isomorphic to $P \setminus G$, where P is the stabilizer of the "standard" λ -partition, where the integers are placed in the subsets Σ_{λ} in order.

We can think of λ as a Young diagram, that is, the diagram consisting of a row of λ_1 squares stacked over λ_2 squares (aligned on the left), etc, and we can also think of Young tableaux, which are ways to populate the squares of a given Young diagram with the elements of Σ (without repetitions):

5	6	3	7
1	2	4	
8			

Then, the parabolic P mentioned above is the stabilizer of the rows of the standard Young tableau, where the integers are placed in order.

The dual partition to λ is partition $\lambda^* : \lambda_1^* \geq \lambda_2^* \geq \ldots \lambda_m^* > 0$ of d counting the sizes of the columns of the Young diagram of λ . The space Σ_{λ^*} of λ^* -partitions of Σ is the homogeneous space $Q \setminus G$, where $Q = G_{\lambda^*}$ is the stabilizer of the columns of the standard Young tableau.

We will construct the irreducible representations of G by inducing the trivial and sign representation from the groups P and Q. None of them is irreducible, but they share a unique irreducible component. Everything will be based on the following combinatorial lemma, which is the first thing that you are asked to prove:

Lemma 1. If λ, μ are two partitions of d, and (σ, τ) is a pair consisting of a λ -partition σ of Σ and a μ^* -partition τ of Σ with no pair (k, l) of elements of Σ in the same subset of σ and of τ , then τ is the refinement of a λ^* -partition of Σ ; that is, there is a Young tableau, whose rows are the subsets of the partition σ , and whose columns are unions of subsets of the partition τ .

In particular, $\mu^* \leq \lambda^*$, or equivalently, $\mu \geq \lambda$, in the lexicographic order, i.e., $\mu = \lambda$ or at the first index i where $\mu_i \neq \lambda_i$ we have $\mu_i > \lambda_i$.

If $\mu = \lambda$ and there is no pair (k, l) in the same subset of σ and of τ , then σ, τ are the rows, resp. columns, of a single Young tableau.

Now, we let M_{λ} , resp. A_{λ} , be the *G*-equivariant complex line bundles over the (discrete) space Σ_{λ} which are induced, respectively, from the trivial, resp. sign character, of the stabilizers. Explicitly, sections of M_{λ} are left-*P*-invariant functions on *G*, i.e., left-*P*-invariant elements of $\mathbb{C}[G]$, while sections of A_{λ} are functions on *G* which vary by the sign character under left translation by *P*. For notational simplicity, we will identify the bundles with their space of sections. The next exercise is just asking you to recall the concept of induction:

Lemma 2. Show that (the spaces of sections of) M_{λ} , A_{λ} are the induced representations $Ind_{P}^{G}(1)$, $Ind_{P}^{G}(sgn)$, using the universal property of induction as the definition.

Now we come to the beef:

Proposition 3. We have $dimHom_G(M_{\lambda}, A_{\lambda^*}) = 1$.

If $\lambda > \mu$ (in the lexicographic order), we have dimHom_G(M_{λ}, A_{μ^*}) = 0.

To prove it, think of (not necessarily *G*-equivariant) maps from M_{λ} to A_{λ^*} as "kernel functions": Those are sections, over $\Sigma_{\lambda} \times \Sigma_{\mu^*}$, of the line bundle $L := M_{\lambda} \otimes A_{\mu^*}$, where a kernel function *K* corresponds to the operator

$$T_K(f)(y) = \sum_{x \in \Sigma_{\lambda}} f(x) K_f(x, y).$$

Then, the space of G-morphisms $\operatorname{Hom}_G(M_\lambda, A_{\mu^*})$ is identified with the space of G^{diag} -invariant sections of L. Use Lemma 1 to deduce that, when $\lambda > \mu$, there are no nonzero invariant kernels, and when $\lambda = \mu$, there is a one-dimensional space of invariant kernels, supported on the unique G-orbit corresponding to Young tableaux.

Finally, use the previous proposition to prove:

Theorem 4. The image of a nonzero G-morphism $M_{\lambda} \to A_{\lambda^*}$ is an irreducible representation V_{λ} . For λ, μ different partitions, V_{λ}, V_{μ} are non-isomorphic, and these are all the irreducible representations of S_d .

10. In this exercise, we establish Schur–Weyl duality, which refers to a correspondence between representations of symmetric groups and general linear groups (or their Lie algebras), realized inside the tensor powers V^{\otimes^d} of a vector space.

It is based on the following theorem from linear algebra, which you are asked to prove:

Theorem 5 (Double centralizer theorem). If V is a finite-dimensional complex vector space, $A \subset End_B(V)$ is a semisimple subalgebra of operators, and $B = End_A(V)$ is its commutant, then

- (a) B is semisimple.
- (b) $A = End_B(V)$.
- (c) There is a bijection $M_i \leftrightarrow N_i$ between isomorphism classes of simple A-modules and isomorphism classes of simple B-modules, and an isomorphism of $A \otimes B$ -modules

$$V = \bigoplus_i M_i \otimes N_i.$$

To start the proof, let M_i range over all isomorphism classes of simple A-modules. Since V is A-semisimple,

$$V = \bigoplus_{i} M_i \otimes \operatorname{Hom}_A(M_i, V), \tag{1}$$

and $N_i = \text{Hom}_A(M_i, V)$ is a module for the centralizer *B* of *A*. Now use the Artin–Wedderburn theorem, and Schur's lemma, to explicitly identify *B*, and its centralizer, inside of End(V).

Now we apply this to S_d and $\mathfrak{gl}(V)$:

Theorem 6 (Schur–Weyl duality). Consider the space V^{\otimes^d} under the commuting actions of S_d and $\mathfrak{gl}(V)$, i.e., as a representation of the algebra $A \otimes B$, where $A = \mathbb{C}[S_d]$ and $B = U(\mathfrak{gl}(V))$. Then, the images \overline{A} , \overline{B} of A and B in $End(V^{\otimes^d})$ are each others' commutants, that is,

$$\bar{A} = End_B(V^{\otimes^d}), \text{ and}$$

 $\bar{B} = End_A(V^{\otimes^d}).$

We have a decomposition

$$V^{\otimes^d} = \bigoplus_{\tau} \tau \otimes \theta(\tau), \tag{2}$$

where τ ranges all isomorphism classes of irreducible representations of S_d , and the $\theta(\tau) := \operatorname{Hom}_{S_d}(\tau, V^{\otimes^d})$ are either zero, or distinct irreducible representations of $\mathfrak{gl}(V)$.

Notice that the action of $\mathfrak{gl}(V)$ on V^{\otimes^d} is defined as we define tensor products of representations of Lie algebras, i.e., the image of $e \in \mathfrak{gl}(V)$ in $\operatorname{End}(V^{\otimes^d})$ is the element $\mathcal{S}_d e := \sum_{i=1}^d 1 \otimes \cdots \otimes e$ (*i*-th factor) $\otimes \cdots \otimes 1$.

Since both subalgebras are semisimple (complete reducibility), by Theorem 5 it is enough to prove the second claim.

Do some linear algebra to identify $\operatorname{End}_A(V^{\otimes^d})$ with the *d*-th symmetric power of the endomorphism ring (viewed as a vector space), $S^d \operatorname{End}(V)$. The *d*-th symmetric power of any vector space *E* is spanned by the symmetric tensors $e \otimes \cdots \otimes e$, for $e \in E$. Use the theory of symmetric polynomials to deduce that, for all $e \in \operatorname{End}(V)$, the element $e \otimes \cdots \otimes e$ is in the subalgebra generated by the images $S_d(x)$ of elements $x \in \mathfrak{gl}(V)$.

Finally, prove:

Lemma 7. Every irreducible representation of \mathfrak{gl}_n restricts irreducibly to \mathfrak{sl}_n .

Proof. We have $\mathfrak{gl}_n = \mathfrak{z} \oplus \mathfrak{sl}_n$, where \mathfrak{z} is the center, but the center acts by a scalar, by Schur's lemma, so any \mathfrak{sl}_n -invariant subspace is also \mathfrak{gl}_n -invariant.

Therefore, the irreducible representations of \mathfrak{gl}_n constructed in Theorem 6 are also irreducible for \mathfrak{sl}_n .

11. This exercise combines the previous two.

For the Lie algebra \mathfrak{gl}_n with the standard Cartan of diagonal elements and the standard Borel of upper triangular elements, the dominant, integral weights are of the form

$$\operatorname{diag}(z_1, z_2, \dots, z_n) \mapsto \lambda_1 z_1 + \dots + \lambda_n z_n,$$

with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ some integers.

For the Lie algebra \mathfrak{sl}_n , the positive, integral weights are described similarly, except that the λ_i 's are determined modulo the operation of adding the same constant to all of them. To reduce ambiguity, we can always take $\lambda_n = 0$ (but won't be doing that).

Prove that, if $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ are integers, $d = \sum_i \lambda_i$, $\tau = V_{\lambda}$ is the irreducible representation of S_d constructed in Exercise 9 (ignoring the λ_i 's which are zero), and V is an n-dimensional vector space, then the irreducible representation $\theta(\tau)$ of Schur–Weyl duality (2) has heighest weight λ .

On the other hand, if $\lambda_n > 0$ and V is a vector space of dimension < n, then $\theta(\tau) = 0$, i.e., τ does not appear in the decomposition of V^{\otimes^d} . [Some hints for this exercise will be added later.]