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1. Classify all finite-dimensional representations of the group G = Z over C,
and over an arbitrary field k. Verify explicitly that those which factor
through a finite quotient Z/n are semisimple, if k is of characteristic zero.
Examine the case of positive characteristic.

2. If G is a finite group, use the Peter–Weyl theorem to deduce the following
well-known formulas; here, if π1, . . . , πr are representatives for the iso-
morphism classes of irreducible representations (over C), di = dim(πi)
and χi =the character of di. (Hint: identify the subspace spanned by
characters on both sides of the Peter–Weyl theorem.)

(a)
∑
i d

2
i = |G|.

(b) r = # of conjugacy classes in G.

(c) “Row orthogonality”1:

1

|G|
∑
g∈G

χi(g)χj(g) = δij .

(d) “Column orthogonality”:

1

|Gg1 |

r∑
i=1

χi(g1)χi(g2) =

{
1, if g1 and g2 are conjugate

0, otherwise.

Here, Gg1 denotes the centralizer of g1.

3. Use the above character relations, and possibly some natural representa-
tions that you can think of, to compute the irreducible characters of the
symmetric groups S3 and S4.

4. Let (V, q) be a two-dimensional real vector space, endowed with a non-
degenerate quadratic form. Let G be the special orthogonal group of
those linear transformations which preserve the quadratic form and act
trivially on

∧2
V . Describe the group G, and classify its irreducible finite-

dimensional complex representations.

∗Updated periodically. Last update: October 23, 2019
1By the way the character table is usually written: one row for each character, one column

for each conjugacy class.

1



5. Let G = SU2 ⊂ SL2(C) be the subgroup of those transformations which
preserve an inner product on C2.

(a) Show that G acts transitively on the set of complex lines in C2, and
that the stabilizer of a line is isomorphic to the compact torus group
S1 = R/Z. Fix such a line, with stabilizer T ⊂ G, and deduce:

• every element of G is conjugate to an element of T ;

• there is a fibration G→ CP 1, with fiber isomorphic to S1.

(b) Identify C2 with the quaternion algebra H, and G with the mul-
tiplicative group of quaternions of norm one. Deduce that SU2 is
homeomorphic to the 3-sphere S3. Thus, we obtain the Hopf fibra-
tion S1 ↪→ S3 → S2.

6. Classify all Lie algebras of dimensions ≤ 3 over a field k.

7. Consider the “fake Lie algebra” g with generators x, y, z and bracket rela-
tions [x, y] = x, [y, z] = z, [x, z] = z. Confirm that the Jacobi identity fails,
and then prove that the Poincaré–Birkhoff–Witt theorem also fails in this
case: The natural surjection Sg→ grU , where U is the quadratic algebra
T (g)/(R), with R = span{x⊗y−y⊗x−z, x⊗z−z⊗x−z, y⊗z−z⊗y−z},
is not an isomorphism. (You can prove, actually, that PBW fails every
time that the Jacobi identity does.)

8. Consider the affine variety X = SO2\SO3. We have seen (in the discussion
of spherical harmonics) that the coordinate ring R[X] (or C[X]) has a
natural, G-stable (where G = SO3) grading as a vector space:

R[X] =
⊕
k≥0

R[X]k,

corresponding to the degree of the spherical harmonics. Show that this
fails to be an algebra grading, but it corresponds to an algebra filtration
with FnR[X] =

⊕
0≤k≤nR[X]k. Describe the G-variety corresponding to

the associated graded grR[X], as well as the one corresponding to the Rees
family

⊕
n≥0 t

nFnR[X].

9. In this exercise we will describe the irreducible representations of the sym-
metric group Sd.

We consider G = Sd as the permutation group on the set Σ = {1, . . . , d},
and will say “partition of d” for every sequence λ : λ1 ≥ λ2 ≥ · · · ≥
λn > 0, of positive integers with

∑
λi = d. We will call “λ-partition of

Σ” be a disjoint decomposition Σ =
⊔
i Σi, with |Σi| = λi. (In particular,

these subsets are indexed with decreasing size, but we distinguish between
subsets of the same size.)

The group G acts on the space Σλ of λ-partitions; we define this action as a
right action. To invoke a vocabulary similar to that of Lie groups, although
it is not standard in this case, let us say that a “parabolic subgroup” of G
is the stabilizer of a λ-partition, for some λ. Hence, a parabolic subgroup
is a subgroup of the form SΣ1

×· · ·×SΣn , where Σ =
⊔
i Σi is a λ-partition

as before, and SΣi denotes the group of permutations of the subset Σi.
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Thus, the homogeneous space Σλ is isomorphic to P\G, where P is the
stabilizer of the “standard” λ-partition, where the integers are placed in
the subsets Σλ in order.

We can think of λ as a Young diagram, that is, the diagram consisting of a
row of λ1 squares stacked over λ2 squares (aligned on the left), etc, and we
can also think of Young tableaux, which are ways to populate the squares
of a given Young diagram with the elements of Σ (without repetitions):

5 6 3 7
1 2 4
8

Then, the parabolic P mentioned above is the stabilizer of the rows of the
standard Young tableau, where the integers are placed in order.

The dual partition to λ is partition λ∗ : λ∗1 ≥ λ∗2 ≥ . . . λ∗m > 0 of d
counting the sizes of the columns of the Young diagram of λ. The space
Σλ∗ of λ∗-partitions of Σ is the homogeneous space Q\G, where Q = Gλ∗

is the stabilizer of the columns of the standard Young tableau.

We will construct the irreducible representations of G by inducing the
trivial and sign representation from the groups P and Q. None of them
is irreducible, but they share a unique irreducible component. Everything
will be based on the following combinatorial lemma, which is the first
thing that you are asked to prove:

Lemma 1. If λ, µ are two partitions of d, and (σ, τ) is a pair consisting
of a λ-partition σ of Σ and a µ∗-partition τ of Σ with no pair (k, l) of
elements of Σ in the same subset of σ and of τ , then τ is the refinement
of a λ∗-partition of Σ; that is, there is a Young tableau, whose rows are
the subsets of the partition σ, and whose columns are unions of subsets of
the partition τ .

In particular, µ∗ ≤ λ∗, or equivalently, µ ≥ λ, in the lexicographic order,
i.e., µ = λ or at the first index i where µi 6= λi we have µi > λi.

If µ = λ and there is no pair (k, l) in the same subset of σ and of τ , then
σ, τ are the rows, resp. columns, of a single Young tableau.

Now, we let Mλ, resp. Aλ, be the G-equivariant complex line bundles
over the (discrete) space Σλ which are induced, respectively, from the
trivial, resp. sign character, of the stabilizers. Explicitly, sections of Mλ

are left-P -invariant functions on G, i.e., left-P -invariant elements of C[G],
while sections of Aλ are functions on G which vary by the sign character
under left translation by P . For notational simplicity, we will identify the
bundles with their space of sections. The next exercise is just asking you
to recall the concept of induction:

Lemma 2. Show that (the spaces of sections of) Mλ, Aλ are the induced
representations IndGP (1), IndGP (sgn), using the universal property of induc-
tion as the definition.

Now we come to the beef:
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Proposition 3. We have dimHomG(Mλ, Aλ∗) = 1.

If λ > µ (in the lexicographic order), we have dimHomG(Mλ, Aµ∗) = 0.

To prove it, think of (not necessarily G-equivariant) maps from Mλ to
Aλ∗ as “kernel functions”: Those are sections, over Σλ × Σµ∗ , of the line
bundle L := Mλ ⊗ Aµ∗ , where a kernel function K corresponds to the
operator

TK(f)(y) =
∑
x∈Σλ

f(x)Kf (x, y).

Then, the space of G-morphisms HomG(Mλ, Aµ∗) is identified with the
space of Gdiag-invariant sections of L. Use Lemma 1 to deduce that, when
λ > µ, there are no nonzero invariant kernels, and when λ = µ, there
is a one-dimensional space of invariant kernels, supported on the unique
G-orbit corresponding to Young tableaux.

Finally, use the previous proposition to prove:

Theorem 4. The image of a nonzero G-morphism Mλ → Aλ∗ is an
irreducible representation Vλ. For λ, µ different partitions, Vλ, Vµ are non-
isomorphic, and these are all the irreducible representations of Sd.

10. In this exercise, we establish Schur–Weyl duality, which refers to a corre-
spondence between representations of symmetric groups and general linear

groups (or their Lie algebras), realized inside the tensor powers V ⊗
d

of a
vector space.

It is based on the following theorem from linear algebra, which you are
asked to prove:

Theorem 5 (Double centralizer theorem). If V is a finite-dimensional
complex vector space, A ⊂ EndB(V ) is a semisimple subalgebra of opera-
tors, and B = EndA(V ) is its commutant, then

(a) B is semisimple.

(b) A = EndB(V ).

(c) There is a bijection Mi ↔ Ni between isomorphism classes of simple
A-modules and isomorphism classes of simple B-modules, and an
isomorphism of A⊗B-modules

V =
⊕
i

Mi ⊗Ni.

To start the proof, let Mi range over all isomorphism classes of simple
A-modules. Since V is A-semisimple,

V =
⊕
i

Mi ⊗HomA(Mi, V ), (1)

and Ni = HomA(Mi, V ) is a module for the centralizer B of A. Now use
the Artin–Wedderburn theorem, and Schur’s lemma, to explicitly identify
B, and its centralizer, inside of End(V ).

Now we apply this to Sd and gl(V ):
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Theorem 6 (Schur–Weyl duality). Consider the space V ⊗
d

under the
commuting actions of Sd and gl(V ), i.e., as a representation of the algebra
A⊗B, where A = C[Sd] and B = U(gl(V )). Then, the images Ā, B̄ of A

and B in End(V ⊗
d

) are each others’ commutants, that is,

Ā = EndB(V ⊗
d

), and

B̄ = EndA(V ⊗
d

).

We have a decomposition

V ⊗
d

=
⊕
τ

τ ⊗ θ(τ), (2)

where τ ranges all isomorphism classes of irreducible representations of

Sd, and the θ(τ) := HomSd(τ, V ⊗
d

) are either zero, or distinct irreducible
representations of gl(V ).

Notice that the action of gl(V ) on V ⊗
d

is defined as we define tensor
products of representations of Lie algebras, i.e., the image of e ∈ gl(V ) in

End(V ⊗
d

) is the element Sde :=
∑d
i=1 1⊗ · · · ⊗ e (i-th factor)⊗ · · · ⊗ 1.

Since both subalgebras are semisimple (complete reducibility), by Theo-
rem 5 it is enough to prove the second claim.

Do some linear algebra to identify EndA(V ⊗
d

) with the d-th symmetric
power of the endomorphism ring (viewed as a vector space), SdEnd(V ).
The d-th symmetric power of any vector space E is spanned by the sym-
metric tensors e ⊗ · · · ⊗ e, for e ∈ E. Use the theory of symmetric poly-
nomials to deduce that, for all e ∈ End(V ), the element e ⊗ · · · ⊗ e is in
the subalgebra generated by the images Sd(x) of elements x ∈ gl(V ).

Finally, prove:

Lemma 7. Every irreducible representation of gln restricts irreducibly to
sln.

Proof. We have gln = z ⊕ sln, where z is the center, but the center acts
by a scalar, by Schur’s lemma, so any sln-invariant subspace is also gln-
invariant.

Therefore, the irreducible representations of gln constructed in Theorem
6 are also irreducible for sln.

11. This exercise combines the previous two.

For the Lie algebra gln with the standard Cartan of diagonal elements and
the standard Borel of upper triangular elements, the dominant, integral
weights are of the form

diag(z1, z2, . . . , zn) 7→ λ1z1 + · · ·+ λnzn,

with λ1 ≥ λ2 ≥ · · · ≥ λn some integers.
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For the Lie algebra sln, the positive, integral weights are described simi-
larly, except that the λi’s are determined modulo the operation of adding
the same constant to all of them. To reduce ambiguity, we can always
take λn = 0 (but won’t be doing that).

Prove that, if λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are integers, d =
∑
i λi, τ = Vλ

is the irreducible representation of Sd constructed in Exercise 9 (ignoring
the λi’s which are zero), and V is an n-dimensional vector space, then
the irreducible representation θ(τ) of Schur–Weyl duality (2) has heighest
weight λ.

On the other hand, if λn > 0 and V is a vector space of dimension < n,

then θ(τ) = 0, i.e., τ does not appear in the decomposition of V ⊗
d

.

[Some hints for this exercise will be added later.]
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