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Beyond Endoscopy for the Relative Trace

Formula I: Local Theory

Yiannis Sakellaridis

Abstract

For the group G = PGL2 we prove nonstandard matching and the
fundamental lemma between two relative trace formulas: on one
hand, the relative trace formula of Jacquet for the quotient T\G/T ,
where T is a nontrivial torus; on the other, the Kuznetsov trace for-
mula with nonstandard test functions. The matching is nonstandard
in the sense that orbital integrals are related to each other not one-
by-one, but via an explicit integral transform. These results will be
used in [Saka] to compare the corresponding global trace formulas
and reprove the celebrated result of Waldspurger [Wal85] on toric
periods.

1 Introduction

1.1

With the present paper I launch an investigation of new ways to compare
trace formulas in the field of automorphic forms, as a means of proving
explicit relations between the spectra of two relative trace formulas (RTFs)
— which is translated to relations between periods of automorphic forms.
Such relations are predicted, in great generality, by the generalization of
the Gross-Prasad-Ichino-Ikeda conjecture [II10] which is to appear in my
joint work with Venkatesh [SV], and while the general conjecture is not
yet very detailed, many special cases suggest the relevance of the RTF
in formulating a detailed conjecture: the conjecture is not really about a
single pair (G,H) consisting of a group and a subgroup, not even about the
quotient space X = H\G, but it involves certain “pure inner forms” of the
pair (G,H) which can be understood in terms of the algebraic stackH\G/H
(equivalently: X×X/G). On the other hand, the relative trace formula, as
currently being used following the paradigm of endoscopy for the Arthur-
Selberg trace formula, seems to have no hope of proving relations in such
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generality, for reasons that will be explained below. Thus, we need new
ways to compare trace formulas, which is what I am doing in the present
paper, for two periods about which virtually everything is already known:
the Whittaker period and the torus period, both for the group PGL2. The
continuation of the present paper in [Saka] will provide a new proof of the
celebrated result of Waldspurger on toric periods of automorphic forms.

The topic of interest should not be seen as restricted to the study of
periods and hence as something separate from the mainstream Langlands
program. Indeed, the relative trace formula should be considered a potential
generalization of the Arthur-Selberg trace formula (before stabilization),
and the nonstandard comparison performed here is certainly within the
spirit of the ambitious “beyond endoscopy” program proposed by Langlands
[Lan04]. The difference lies in the level of ambition and difficulty: while
Langlands wants to filter out only part of the spectrum of a trace formula
by taking residues of L-functions, in order to detect the image of any chosen
functorial lift, here I perform a full comparison of two trace formulas; thus,
the spectral content is essentially dictated by the L-groups of the pertinant
spherical varieties [SV]. On the other hand, many other features of the
“beyond endoscopy” project are present. In particular, L-functions are
inserted via nonstandard (not compactly supported) test functions; this
is essential in view of the fact that, say, the Whittaker period and the
torus period correspond to different L-functions; thus, a comparison of the
corresponding RTFs using standard test functions would be impossible.

All known cases of “matching” between two RTFs — that is: direct
comparison, up to scalar “transfer factors”, of the functions obtained by
(regular) orbital integrals — occur when the L-values associated to the
pertinent periods agree. By “associated L-values” I mean the factors of
the Euler products in the spectral expansion, assuming that the pertinent
periods are Eulerian. In general, there is no reason to expect that for every
Eulerian period that one wants to study there will be another “easier” one
giving the same L-values, which is why it seems unlikely that the endoscopic
paradigm of orbit-by-orbit comparisons will suffice to prove the period con-
jectures of [SV]. The comparison performed in the present paper is itself
nonstandard : there is no matching of orbits such that the corresponding
orbital integrals be preserved by the matching of functions; instead, match-
ing is accomplished via a certain integral transform on the set of orbital
integrals. While the existence of such a transform is more or less predicted
by spectral matching, it is significant that for the example at hand we are
able to give an explicit formula for it, in terms of Fourier transforms and
birational maps. This is extremely important for the global story: since
the comparison does not preserve orbital integrals, one will need to prove
some kind of Poisson summation formula in order to obtain an identity



Beyond Endoscopy for the Relative Trace Formula I 523

between matching trace formulas; clearly, a Poisson summation formula for
an arbitrary integral transform is no trivial thing — it might prove to be a
reformulation of the functional equation of some intractable L-function. In
my understanding, no one has yet proposed a conceptual reason why such a
Poisson summation formula should be provable for the integral transforms
that will appear in the “beyond endoscopy” project; thus, understand-
ing instances where the transforms between spaces of orbital integrals are
tractable is an important task.

1.2

Now I summarize the contents of the present paper. Throughout, G denotes
the algebraic group PGL2 over a local field F , or the F -points of G. The
goal is to compare orbital integrals of test functions for the trace formula
corresponding to the quotient T\G/T , where T is a split or nonsplit torus,
and orbital integrals of test functions for the Kuznetsov trace formula —
this is the trace formula for the quotient (N,ψ)\G/(N,ψ), where N is a
unipotent subgroup and ψ a nontrivial character of the F -points of N .

As explained before, such a comparison should not be possible with
the usual test functions, for reasons related to different special values of
L-functions appearing in global periods. Therefore, we need to modify the
space of test functions — the standard choice is to take Schwartz func-
tions on G, but now our test functions for the Kuznetsov trace formula will
have nontrivial asymptotics at infinity. The best way to describe this is
to think of the Kuznetsov orbital integrals not as distributions on G, but
as G-invariant hermitian forms on S(N\G,ψ). Then one should replace
the standard Schwartz space S(N\G,ψ) by sections which have a certain
prescribed behavior at “infinity”, where “infinity” means the partial com-
pactification of N\G by P1. I describe these nonstandard sections in §4.5.

The affine quotient N\G�N is isomorphic to A1 (one-dimensional affine
space), and so is the quotient T\G � T . We will denote both by B, the
“base” of our quotient stacks. These quotients rougly parametrize orbits,
and with suitable conventions that are explained in Sections 2, 3 and 4 we
understand the orbital integrals as densely defined functions on B. Here
“densely” means that we only consider regular orbital integrals, where the
stabilizers are trivial. Thus, we end up with two spaces of densely defined
functions on B, the space S(Z) (from orbital integrals for T\G/T equipped
with standard test functions) and the space S(W) (from orbital integrals
for the Kuznetsov quotient with nonstandard test functions).

Clearly (for anyone who has some experience with those trace formulas),
these spaces of functions are not even closely related to each other as spaces
of functions, that is: there is no orbit-by-orbit matching of the two trace
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formulas. However, the first main result (Theorem 5.1) is that there is an
explicit integral transform which takes one to the other. To state it, let F
denote usual Fourier transform in one variable (with respect to characters
and measures that are described in the text), let η be the character of F×

corresponding to the splitting field of T , and let ι be the following operator
on functions on B:

ι(f) =
η(•)
| • | f

(
1

•

)
.

Define the operator:
G = F ◦ ι ◦ F .

Theorem (“Matching”, 5.1) The operator | • |G is an isomorphism:

S(Z)→ S(W).

The second main result, for F nonarchimedean and T unramified over
Qp or Fp((t)) is a fundamental lemma for elements of the Hecke algebra.
Here we need to specify (§5.3) “basic vectors” f0Z , f

0
W for the spaces S(Z),

S(W), which are obtained by the orbital integrals of certain K := G(o)-
invariant functions “upstairs”. For the torus trace formula this will be the
standard unramified test function, but for the Kuznetsov formula it has
to be nonstandard, and tailored in order to produce the correct L-value
L(π, 12 )L(π ⊗ η, 12 ) on the spectral side of the trace formula.

Acting by an element h of the spherical Hecke algebra H(G,K) on
those functions upstairs, we denote their orbital integrals by h⋆f0Z ∈ S(Z),
h ⋆ f0W ∈ S(W). The fundamental lemma states that the above integral
transform carries one to the other:

Theorem (“Fundamental Lemma”, 5.4) For any h ∈ H(G,K) the
operator | • |G carries h ⋆ f0Z to h ⋆ f0W .

1.3

The results of this paper will be used in the sequel [Saka] in order to reprove
the theorem of Waldspurger [Wal85] on the Euler factorization of toric
periods. This global application is far from a straightforward application of
the local results; the first difficulty has to do with the fact that we do not
have an orbit-by-orbit matching of trace formulas, and hence the matching
of global trace formulas has to be proven by a quite nontrivial application
of the Poisson summation formula. Other difficulties have to do with the
fact that globally there are conconvergent Euler products, and we need
to interpret them by analytic continuation; that is why in Section 6 we
introduce variations of our spaces by a complex parameter s ∈ C.
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1.4

While I certainly hope that it will be possible to generalize such nonstan-
dard comparisons to higher rank (hence proving new period relations that
generalize the results of Waldspurger), I should add a word of caution: The
relations that we get here can be seen as reflections at the level of orbital
integrals of well-known results “upstairs”: on one hand, the proof of Wald-
spurger’s results by Jacquet [Jac86] relating orbital integrals for T\G/T to
orbital integrals for the same quotient with a split torus; and on the other,
the method of Hecke for calculating split torus periods via Fourier coeffi-
cients. I explain these relations in the proof of the fundamental lemma 5.4.

The point of the present paper is that while the work of Jacquet and
Hecke does not generalize to all other periods one is interested in, the
relations between orbital integrals might generalize. Of course, we will not
be able to tell whether this is the case before studying many more examples
and trying to find a pattern for nonstandard comparisons.
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1.6 Notation

Notation is mostly local, redefined in every section. For convenience of the
reader, we give an overview of the symbols that are most frequently used
(and will be defined in the text, if nonstandard):

• F is a local, locally compact field, E a quadratic etale extension
of F . The quadratic character of F× associated to E is denoted by
η = ηE/F . If F is nonarchimedean, we denote by o its ring of integers,
by ̟ a uniformizer and by q the order of its residue field.

• We feel free to use the same symbol Y to denote the variety Y and
its points over F , whenever this causes no confusion. For example,
“functions on Y ” means functions on the F -points of Y . When there
is ambiguity, we will be denoting the latter by Y (F ).
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• We fix a measure dx on F as explained in §2.3, and a unitary complex
character ψ of F with respect to which dx is self-dual. The action
of the multiplicative group F× on functions on F is normalized in
(2.14) in order to be unitary on L2; this normalization makes Fourier
transform on F anti-equivariant with respect to the action of F×.

• The symbols X ,Z,W are reserved throughout the text for certain
quotient stacks related, respectively, to the “baby case” of Section 2,
the torus quotient of Section 3 or the Kuznetsov quotient of Section 4.
In fact, the notion of “stack” is used in a rather symbolic way here
and the reader only needs to understand the definitions of spaces
M(X ),S(X ) etc. here, which are called the spaces of “measures” and
“Schwartz functions” on those stacks but are actually defined in terms
of coinvariants and orbital integrals on functions “upstairs” (on the
homogeneous varieties). The only exception to this symbolic approach
is a proof of certain isomorphisms of stacks in §3 and the subsequent
derivation of isomorphisms between the pertinent Schwartz spaces;
however, the arguments can easily be adapted to prove the isomor-
phisms of Schwartz spaces directly.

Other than X ,Z,W, we define and redefine symbols locally, for in-
stance the letter X usually denotes some homogeneous space, which
is changing through the text.

• B denotes the “base” of our quotient stacks, i.e. the associated GIT
quotient. In fact, throughout our examples we have an isomorphism:
B ≃ Ga, which in general depends on some choices that we fix (cf.
the remarks after Proposition 3.1). For each quotient space that we
are considering, the “base” B has a regular set Breg (different in each
case). We will be using this notation when it is clear which quotient
space we are referring to, and the notation Breg

X ,Breg
Z , etc. when we

want to indicate the quotient space.

• For p-adic groups, the usual notion of “smooth” vectors and repre-
sentations typically gives rise to inductive limits of Fréchet spaces.
To achieve uniformity with the archimedean case, we describe in ap-
pendix A a notion of “almost smooth” vectors which gives rise to
Fréchet space representations. For simplicity, we call these vectors
“smooth” throughout the rest of the text and treat the archimedean
and nonarchimedean cases together whenever possible, but the reader
may ignore this and focus on smooth vectors in the traditional sense,
replacing the Fréchet spaces that we consider with their corresponding
limits of Fréchet spaces.

• The notion of Schwartz functions on an open semialgebraic set of a
(smooth) real or p-adic manifold is defined in appendix A. When
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“Schwartz function” appears without specifying on which set, we
mean Schwartz function on F . Schwartz functions on a semialge-
braic set X are denoted by S(X); we also use the letter S for the
space of nonstandard Whittaker test functions that we define in §4.5,
and for the “Schwartz space of a quotient stack”, defined as the space
of functions on Breg obtained by taking regular orbital integrals. M
denotes the space of Schwartz measures on the points of a real or
p-adic variety, as well as on quotient stacks (defined as spaces of coin-
variants).

• For spaces of smooth functions or smooth sections of line bundles,
we use the word “stalk” as in §B.4 of the appendix, that is: an
element of the stalk over a closed set is defined modulo Schwartz
functions/sections on its complement — not modulo compactly sup-
ported functions/sections on its complement. In particular, the germ
of a smooth function at a point is completely determined by its deriva-
tives at that point.

• O• is used to denote “regular” orbital integrals, while Õ• is used to
denote invariant distributions supported over the irregular points of
the base. In particular, we fix the notation Õ0 and Õu for irregular
orbital integrals defined for the split baby case in (2.9), (2.10), and the
notation Õ0+, Õ0− for the analogous orbital integrals in the nonsplit
case, (2.22) and (2.23). For the other cases, we only fix the notation
〈 〉 for a distinguished irregular orbital integral, called “inner product”
and defined in §3.6 and §4.9.

• A basic integral transform used to compare spaces of orbital integrals
is the transform G defined in (2.13).

2 A Baby Case

2.1

Before we work with non-commutative groups, we discuss the baby case of
the relative trace formula for the variety X := Ga of the group T := Gm,
in order to examine certain integral transforms which will be useful in the
sequel. We will also discuss a non-split form of the quotient X×X/T , which
although not under the general formalism of the relative trace formula, will
provide us with some necessary integral transforms.
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2.2 The split case

We let V denote an 1-dimensional vector space over F , and V ∗ its dual. In
some of the calculations below, we will be identifying V and V ∗ with F un-
der the pairing 〈x, y〉 = xy. We let T be the group Gm acting diagonally
on V × V ∗.

The stack-theoretic quotient V × V ∗/Gm will be denoted by X ; its
“dual” quotient V ∗ × V/Gm will be denoted by X ∗.

The pairing between V and V ∗ induces a canonical identification of the
categorical quotient of affine spaces (the “bases”):

B := V × V ∗ � T
∼−→ Ga

∼←− V ∗ × V � T. (2.1)

We let Breg, “the regular part of the base”, denote the complement of
zero. Notice that for every ξ ∈ Breg the fiber is a single orbit of T (both as
a variety and in the sense of F -points).

2.3 Tamagawa measures

If instead of F we were talking about a global field k, we would be fixing the
measure on its ring of adeles which comes from a globally defined differential
form on Resk/QGa and the usual measure on AQ. We factorize this in the
standard way locally [Tat67], namely:

If F = R, the usual Lebesgue measure, if F = C the double of the usual
Lebesgue measure and if F is nonarchimedean the Haar measure under
which the ring of integers has measure equal to the inverse square root of
the discriminant (hence, ≤ 1).

2.4 Measures and coinvariants

We let S(V ×V ∗) denote the Fréchet space of Schwartz functions on V ×V ∗.
Notice that the usual notion of “Schwartz space” in the nonarchimedean
case does not correspond to a Fréchet space but to a limit of Fréchet spaces.
We explain in the appendix A how to obtain a Fréchet space completion
thereof, consisting of functions which have the same decay at infinity as in
the archimedean case (faster than the absolute value of any polynomial)
and are almost smooth instead of smooth. For practical purposes, the
difference between the two approaches is unimportant, and the reader can
keep the traditional Schwartz space in their mind. The introduction of a
Fréchet space just creates the convenience of treating the archimedean and
nonarchimedean cases simultaneously. As explained in the introduction, we
will be just using the word “smooth” for what should be “almost smooth”;
also, any statement involving derivatives (other than the zeroth) should be
considered as void in the nonarchimedean case.
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We denote byM(V ×V ∗) the corresponding Fréchet space of Schwartz
measures on V ×V ∗ (i.e. products of a Schwartz function with additive Haar
measure). A choice of Haar measure on V × V ∗ defines an isomorphism:
S(V ×V ∗) ≃M(V ×V ∗), but we will not need to fix such an isomorphism
except as a convenience for certain calculations.

We define the Schwartz space of measures on X to be:

M(X ) :=M(V × V ∗)T , (2.2)

the coinvariant spaceM(V×V ∗)T . By definition, the T -coinvariant space of
a Fréchet representationW is the quotient by the closed subspace generated
by vectors of the form v − g · v, v ∈W, g ∈ T , or equivalently the universal
quotient: W →WT , with trivial T -action on the right, through which every
continuous T -invariant functional factors. In particular, it is naturally a
nuclear Fréchet space. The space F(X ) of T -invariant, tempered generalized
functions on V × V ∗ is, tautologically, the dual of M(X ).

The following is standard:

Lemma 2.1 F(X ) is the weak-* closure of the space spanned by those in-
variant generalized functions which are each supported on a fiber of the
map: X → B.

We will see a strengthening of it in Lemma 2.3.

2.5 Orbital integrals

For ξ ∈ Breg, Φ ∈ S(V × V ∗) and a Haar measure dg on T we define the
orbital integral:

Oξ(Φ) =

∫

T

Φ(ξ̃ · g)dg. (2.3)

Here ξ̃ is any lift of ξ to V × V ∗.
We define S(X ) to be the space of functions on Breg of the form

ξ 7→ Oξ(Φ), for Φ ∈ S(V × V ∗). Throughout the text, when we talk
about “a lift of an element f ∈ S(X ) to S(V × V ∗)” we will implicitly
mean a pair consisting of an element Φ ∈ S(V × V ∗) and a Haar measure
on T , so that f is obtained by the orbital integrals of Φ. Our first goal is to
define (and normalize) a linear map: M(X )→ S(X ). To do this, we start
with the following integration formula:

Lemma 2.2 For any Φ ∈ S(V × V ∗) with image f ∈ S(X ), and Haar
measures on V × V ∗ and T , we have:

∫

V×V ∗
Φ(v, v∗)dvdv∗ =

∫

B
f(ξ)dξ, (2.4)
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where dξ is an additive Haar measure on B = F . If we take on V × V ∗

the Haar measure corresponding to the differential form dv ∧ dv∗ and the
standard Haar measure on F , where the coordinates v and v∗ are defined
using a dual basis, dg is the multiplicative Haar measure |a|−1da on F×,
then dξ is the standard Haar measure on F (§2.3).

If we now fix the measure on B to be the standard measure on F dis-
cussed in §2.3, we get a map:

M(X )→ S(X ), (2.5)

as follows: a choice of compatible measures on V × V ∗ and T gives an
isomorphism:

M(V × V ∗) ≃ S(V × V ∗)
and a map:

S(V × V ∗)→ S(X ),

and it is easy to see that the composition of the two depends only on the
chosen measure on B. For the purpose of calculations later in the chapter
we will fix the Haar measures on V × V ∗ and T described in Lemma 2.2.1

The following strengthening of Lemma 2.1 will be a corollary of Propo-
sition 2.5.

Lemma 2.3 The functionals Oξ, ξ ∈ Breg span a weak-* dense subspace
of F(X ).

This implies that the map (2.5) is an isomorphism of vector spaces.
Therefore, we will not be distinguishing from now on between M(X ) and
S(X ), and we will endow S(X ) with the Fréchet topology induced from this
identification.

In appendix B we introduce a notion of “Schwartz cosheaves”. We
point the reader there for definitions of restriction, stalks and other notions.
By Corollary B.5.2, S(X ) is the space of global sections of a flabby (i.e.
extension maps are injective — in fact, closed embeddings) Schwartz cosheaf
on B, which for simplicity we will also be referring to by the symbol S(X )
when there is no confusion. Via the regular orbital integrals, this cosheaf
is identified with a cosheaf of functions on Breg; our purpose is to describe
this cosheaf.

Lemma 2.4 The restriction of the cosheaf S(X ) to Breg is equal to the
cosheaf S(Breg) (Schwartz functions in the usual sense).

1Even fixing a measure on B locally is not important, since globally we always have
canonical choices of measures (Tamagawa measures); nonetheless it will be helpful for
calculations to fix the local maps (2.5).
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Proof Over Breg we have a T -isomorphism of the variety V × V ∗ with
Breg × T , and therefore X reg := X ×B Breg is isomorphic to Breg.2

�

Now we focus our attention on the neighborhood of 0:

Proposition 2.5 For Φ ∈ S(V × V ∗) we have, for ξ ∈ Breg in a neighbor-
hood of 0:

Oξ(Φ) = −C1(ξ) · ln |ξ|+ C2(ξ), (2.6)

with C1, C2 (almost) smooth functions (which can be arbitrary).
Moreover, the distributions:

Õ0(Φ) := C1(0) (2.7)

and

Õu(Φ) := C2(0) (2.8)

are a basis for the space of functionals on the fiber of S(X ) over 0 ∈ B, and
we have:

Õ0(Φ) = Vol(T (F )0)Φ(0), (2.9)

where Vol(T (F )0) is the volume of the maximal compact subgroup of T (F )
described below, and:

Õu(Φ) = lim
s→0

(
ζ(Φ|y=0 , s) + ζ(Φ|x=0 ,−s)

)
=

=
d

ds

∣∣∣∣
s=0

(
sζ(Φ|y=0 , s) + sζ(Φ|x=0 , s)

)
, (2.10)

where ζ is the Tate integral of a function of one variable against unramified
characters defined with the chosen measure on T , e.g. for ζ(Φ|y=0 , s) we
choose the isomorphism T ≃ Gm such that limt→0(1, 0)·t = (0, 0) and have:

ζ(Φ|y=0 , s) =

∫

T

Φ(t, 0)|t|sdt.

Remark 2.6 If we set f(ξ) = Oξ(Φ) then the distributions Õ0, Õu have
been defined in such a way that they depend only on f ∈ S(X ) and not
on Φ and the choice of Haar measure on T , i.e. if we modify Φ and the
Haar measure simultaneously so that the orbital integrals of Φ continue to

2There is clearly some work to be done to establish that isomorphisms of stacks
give rise to isomorphisms of their Schwartz spaces, but in each of the cases that we are
considering in this paper this is easy to see explicitly.
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give f , we get the same values of Õ0(Φ), Õu(Φ). It is therefore meaningful
to write: Õ0(f), Õu(f).

The volume mentioned in the lemma is obtained as follows. Notice that
the absolute value gives a canonical short exact sequence:

1→ T (F )0 → T (F )
|•|−→ Hom(X ∗(T )F , |F×|)→ 1, (2.11)

where T (F )0 denotes the maximal compact subgroup of T (F ), X ∗(T )F ≃ Z
is the F -character group of T , and |F×| ⊂ R×+ denotes the group of absolute
values of F×. The group Hom(X (T )F , |F×|) is canonically, up to inversion,
a subgroup of R×+ (all of R×+ in the archimedean case, the group qZ in the
nonarchimedean case). We endow it with a Haar measure d|t| that is on
average equal to the standard multiplicative measure t−1dt on R×+. Hence,
in the nonarchimedean case with residual degree q, dt({1}) = ln q. For a
Haar measure µ on T , the disintegration of dµ

d|t| with respect to the map

(2.11) is a Haar measure on T (F )0, and we let:

Vol(T (F )0) =
dµ

d|t| (T (F )0).

In particular, in the nonarchimedean case, this is (ln q)−1 times µ(T (F )0).

Proof It is easy to see that all functions of the form c2 − c1 ln |ξ| can be
obtained as orbital integrals in a neighborhood of zero, with ci = Ci(0) as
claimed. It is then easy to see that the invariant distributions on the fiber
of S(V × V ∗) over the preimage of 0 are given by (2.9) and (2.10). Thus,
by Proposition B.4.1, the orbital integrals of all elements of S(V × V ∗) are
of the form C2(ξ)− C1(ξ) ln |ξ| with Ci (almost) smooth functions.

This proves the lemma, and also Lemma 2.3.
�

Remark 2.7 In the archimedean case, a very novel and detailed analysis
of orbital integrals, including most of the above theorem, is performed by
Casselman and Tian in their preprint [CT].

2.6 Fourier transform

We choose a character ψ : F → C× to identify the space V ∗ × V with
the Pontryagin dual of V × V ∗; we choose it in such a way that the mea-
sure 2.3 on F is self-dual with respect to Fourier transform. Notice that,
when working with a global field, adele class characters can be factorized
as products of such characters.
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In this paper “Fourier transform” stands for the usual, schoolbook
Fourier transform from functions on Fn to functions on Fn, without any
modifications to preserve equivariance, which in one variable v ∈ V reads:
f̂(v∗) =

∫
F
f(v)ψ−1(〈v, v∗〉)dv, and in more variables is defined variable-

by-variable. It will be denoted both by ˆ and also by the letter F .
Hence we have:

ˆ̂
Φ(x, y) = Φ(−x,−y).

Since Fourier transform in one variable satisfies:

F(f(a•))(y) = 1

|a|F(f)
(y
a

)
,

it is clear that Fourier transform on V × V ∗ is equivariant with respect to
the action of T on V × V ∗ and on its dual, and therefore descends to an
isomorphism:

S(X )
∼−→ S(X ∗). (2.12)

It is therefore natural to ask how it transforms orbital integrals, or in
other words: For each Φ ∈ S(V × V ∗), express the function Breg ∋ ξ 7→
Oξ(Φ) in terms of the function ξ 7→ Oξ(Φ̂).

2.7 The integral transform G.
Definition 2.8 We let G denote the transform which maps f ∈ S(X ) to

the Fourier transform of the (tempered) function y 7→ η(y)
|y| f̂

(
1
y

)
, that is:

G = F ◦ ι ◦ F , (2.13)

where ι(f) = η(•)
|•| f

(
1
•
)
.

Recall that η is the quadratic character associated to the splitting field of T ,
so in the split case that we are currently discussing we have η = 1; however,
this formula will be used in the nonsplit case, as well.

The following lemma shows, in particular, that the function y 7→ η(y)
|y| f̂(

1
y )

is in L2(B) and hence its Fourier transform makes sense as a function.

Lemma 2.9 The Fourier transform of any f ∈ S(X ) has the property that:

lim
x→∞

|x|f̂(x)

exists.
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For the following proof, and later use, we normalize the action of F×

on functions on F in such a way that it is unitary (with respect to the
L2(F )-inner product):

(a · f)(x) = |a| 12 f(ax). (2.14)

Hence, Fourier transform is anti-equivariant with respect to this action.

Proof The function l : x 7→ ln |x| becomes smooth by application of the

operator (Id − |a|− 1
2 a·), for all a ∈ F×. Therefore, its Fourier transform

(considered as a tempered generalized function) will become rapidly decay-

ing by application of the operator (Id− |a|− 1
2 a−1·). Hence:

l̂(x) =
c

|x| + h1(x)

in a neighborhood of infinity, for some constant c and some Schwartz func-
tion h1(x).

Thus, the Fourier transform of an element of S(X ) will be of the form:

h(x) = h2(x) ⋆ l̂(x) + h3(x)

in a neighborhood of infinity, where hi are Schwartz functions and ⋆ de-
notes convolution. It is easy to see that for such a function the limit:
lim|x|→∞ |x|h(x) exists.

�

Hence, for f ∈ S(X ) its Fourier transform f̂ belongs to the space of
continuous functions h on B with the property that lim|x|→∞ |x|h(x) exists.
It is clear that ι is an involution on this space. The proof of the next
Proposition will show that it preserves the image of S(X ):

Proposition 2.10 Let Φ ∈ S(V × V ∗) and let f(ξ) = Oξ(Φ). Then:

Oξ(Φ̂) = G(f)(ξ). (2.15)

Proof We denote by Φ̂1, Φ̂2 the partial Fourier transforms with respect
to the first or second argument. We can treat f as a tempered distribution
on B; let h be a Schwartz function on B, then according to the integration
formula (2.2) we have:

∫

B
f(ξ)h(ξ)dξ =

∫∫
Φ(x, y)h(xy)dxdy =

∫∫
Φ̂1(x, y)ĥ

(
x

y

)
|y|−1dxdy =

∫∫
Φ̂(x, y)G(h)(xy)dxdy ==

∫

B
Oξ(Φ̂)G(h)(ξ)dξ.
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It is easy to see that all the integrals above are absolutely convergent.
Now, G = F ◦ ι ◦ F , and the operations F and ι preserve inner products,
therefore: ∫

B
f(ξ)h(ξ)dξ =

∫

B
G(f)(ξ)G(h)(ξ)dξ.

Hence, Oξ(Φ̂) = G(f)(ξ).
�

It now follows that Gf not only is a function on Breg, but it belongs
to S(X ). Indeed, since Fourier transform is a topological automorphism
of S(V × V ∗), it follows that G is a topological automorphism of S(X ),
identified with the space of coinvariants. It also follows that the image of
S(X ) under Fourier transform is ι-stable:

Corollary 2.11 The Fourier transform of S(X ) is the space of those (al-
most) smooth functions on B which in a neighborhood of infinity are equal
to |x|−1h

(
1
x

)
, for some h ∈ S(B). Moreover, Fourier transform descends to

a topological isomorphism between S(X )/S(B) and the stalk3 of functions
of the form:

|x|−1h

(
1

x

)

at ∞ (with the obvious topology, given by the derivatives of h at 0).

Recall that since B is a smooth variety, S(B) just denotes the usual
space of Schwartz functions on B(F ) = F . The result is similar to, but not
quite contained in, a special case of [Igu78, Theorem 2.1].

Proof It is clear that we have a short exact sequence:

0→ S(B)→ F (S(X ))→ V → 0,

arising as the Fourier transform of the sequence:

0→ S(B)→ S(X )→ S(X )/S(B)→ 0,

where S(B) is endowed with its usual topology, F (S(X )) is endowed with
the topology of S(X ) and V is defined by this short exact sequence. More-
over, the first arrow is a closed embedding, and all elements of F (S(X ))
coincide with elements of S(B) on any compact subset of B.

Since ι is a topological automorphism of W := F (S(X )), this implies
that W consists precisely of functions as in the statement of the corollary.
Such functions are sections of a Schwartz cosheaf over B = P1 in an obvious

3Recall that the notion of “stalk” used for smooth functions is the one of appendix B;
in particular, the germ of a smooth function at a point is determined by its derivatives.
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way, and ι induces an isomorphism from the stalk at zero to the stalk at
infinity — the latter being equal to the quotient V . From this it follows that
the topology on V is given by the derivatives of h at 0 (where h appears in
the expansion of a given element at ∞ as in the statement).

�

2.8 Mellin transform

Let us now view B ≃ Ga as a vector space, and describe the integral
operator G in terms of Mellin transforms with respect to the action of Gm
on Ga. We normalize the action of F× on L2(B) as in (2.14).

By the asymptotic behavior of Lemma 2.9, any f ∈ S(X ) satisfies the
Mellin inversion formula:

f(ξ) =

∫

|•|κ·F̂×
f̌(χ)χ(ξ)|ξ|− 1

2 dχ (2.16)

for every κ < − 1
2 . Here f̌(χ) denotes the Mellin transform (not to be

confused with the Fourier transform f̂):

f̌(χ) =

∫

F×
|ξ| 12 f(ξ)χ−1(ξ)d×ξ. (2.17)

We do not explicate the dual measures of the formulas above and below,
because we will only be interested in gamma factors, which do not depend
on the measures. For this reason, we ignore the fact that our normalization
of multiplicative measures is different from the one of Tate’s thesis.

We claim:

Lemma 2.12 We have G(f)(χ) = γ(χ, 12 , ψ)
2f̌(χ−1), where γ(χ, s, ψ) is

the gamma factor of χ at s (cf. below).

By the Mellin inversion formula (2.16), this completely characterizes the
operator G.

Proof By continuity of G, it is enough to prove it for f in a dense subspace
of S(X ), so let us assume that f(ξ) = Oξ(Φ) with Φ(x, y) = Φ1(x)Φ2(y).
Then by the integration formula we can write:

f̌(χ) =

∫∫
Φ1(x)Φ2(y)χ

−1(xy)|xy| 12 d×xd×y =

ζ(Φ1, χ
−1,

1

2
) · ζ(Φ2, χ

−1,
1

2
),
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where ζ(Φi, χ, s) =
∫
F×

Φi(x)χ(x)|x|sd×x denotes the Tate integral of Φi
[Tat67].

Similarly, G(f) = ζ(Φ̂1, χ
−1, 12 ) · ζ(Φ̂2, χ

−1, 12 ), and by the functional
equation for Tate integrals we have, by definition:

γ(χ, s, ψ)ζ(Φi, χ, s) = ζ(Φ̂i, χ
−1, 1− s).

This implies the claim of the lemma.
�

2.9 The non-split case

We discuss now the non-split version of the previous example, where V ×V ∗
has been replaced by the space whose F -points are equal to the elements
of a quadratic field extension E, under the action of the group of elements
of norm 1. In other words, we take:

X = ResE/FGa,

the one-dimensional torus T over k defined by the short exact sequence:

1→ T → ResE/FGm
NE

F−−→ Gm → 1,

and we will be interested in the quotient stack:

X = X/T.

The quadratic character of F× associated to the extension E will be denoted
by ηE/F or simply η.

Again we have a canonical isomorphism of categorical quotients: B :=
X � T

∼−→ Ga given by the norm map.
The first thing to notice here is that the quotient stack has “points”

corresponding to nontrivial torsors of T and which are, therefore, not ac-
counted by F -points of X; this is already evident by the fact that the map:
X ։ B is not surjective at the level of F -points. We therefore propose the
following two definitions ofM(X ), which can be seen to be equivalent (the
first one was suggested to me by Joseph Bernstein):

1. We let T → GL2 be an embedding, and letM(X ) denote the GL2(F )-
coinvariants of M

(
(X ×T GL2)(F )

)
(Schwartz measures).

2. We let:
M(X ) = ⊕αM(Xα(F ))Tα(F ), (2.18)

the direct sum of coinvariant spaces, where α ranges over all isomor-
phism classes of T -torsors.
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Here for a T -torsor Rα in the isomorphism class denoted by α we
let Tα = Aut(Rα)T and Xα = X ×T Rα. (In terms of Galois co-
homology, α can be regarded as denoting an element of H1(F, T ),
Tα is defined by its image in H1(F,Aut(T )) and Xα by its image
in H1(F,Aut(X)).) Of course, in this case we have Tα ≃ T and
Xα ≃ X (noncanonically) for all α, but these constructions make
sense in a much more general setting — and explain inner forms ap-
pearing in the relative trace formula.

Although the first definition is more natural and geometric, the second
one is more suitable for spectral expansions, and we will be working with
that.

Notice that Xα has F -points if and only if Rα admits a T -equivariant
morphism into X. Also, the definition Xα = X ×T Rα implies that as
quotient stacks Xα/Tα ≃ X/T canonically, and similarly for the GIT quo-
tients we have: Xα � Tα ≃ X � T = B. Since the GIT quotient is defined
by the norm map from E to F , this means that the norm map extends to
a (surjective) map:

⊔
αX

α(F )→ F . Therefore, it makes sense to say that
a Tα-orbit on Xα is “over” a point ξ ∈ B(F ) ≃ F ; moreover, for every
ξ ∈ Breg there is a unique such α and a unique such orbit, more precisely:
if ξ belongs to the norms from E to F then α corresponds to the trivial
torsor, while if ξ is not a norm then α corresponds to the nontrivial one.

2.10 Integration formula, Orbital integrals

The regular orbital integrals of a function Φ ∈ ⊕αS(Xα) are defined as:

Oξ(Φ) =

∫

Tα

Φ(ξ̃ · g)dg, ξ ∈ Breg. (2.19)

Here α is the torsor such that ξ has a lift ξ̃ ∈ Xα(F ). This definition
depends on choosing measures on the tori Tα, which we are going to fix
below. We define S(X ) as the cosheaf over B of functions on Breg obtained
as orbital integrals of elements of ⊕αS(Xα) (this definition does not depend
on choices of measures).

We endow X(F ) = E, as we did with F , with the standard additive
measure discussed in 2.3. When α denotes the (unique) isomorphism class
of nontrivial torsors, we may fix an isomorphism ι : X ≃ Xα which is
equivariant with respect to some identification of Tα with T . If the image
of 1 ∈ E is an element e ∈ Xα(F ), we define a measure on Xα(F ) as
|NE

F (e)| times the push-forward of Haar measure on E. It is easy to see
that this measure does not depend on the choice of isomorphism. Then:
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Lemma 2.13 There are is a compatible choices of Haar measures on the
tori Tα(F ) such that for any Φ ∈ S(⊔αX

α) with image f ∈ S(X ) we have:

∫
⊔

α
Xα(F )

Φ(x)dx =

∫

B
f(ξ)dξ. (2.20)

For the trivial torsor, this is the measure on T (F ) which disintegrates
the multiplicative measures |x|−1dx on E× and F× (where | • | denotes
the absolute value on each of them — notice that these do not coincide on
F× ⊂ E×) with respect to the exact sequence:

1→ T (F )→ E×
NE

F−−→ F×.

Proposition 2.14 The restriction of S(X ) to Breg is equal to S(Breg). In
a neighborhood of zero, the sections of S(X ) are precisely those functions
of the form:

C1(ξ) + C2(ξ)η(ξ), (2.21)

with C1, C2 (almost) smooth functions in one variable. Moreover, the val-
ues C1(0), C2(0) are a basis for functionals on the fiber of S(X ) over ξ = 0,
and we have C1(0) = Õ0+(Φ), C2(0) = Õ0−(Φ), where:

Õ0+(Φ) =
1

2
Vol(T (F )) (Φ(0X) + Φ(0Xα)) , (2.22)

Õ0−(Φ) =
1

2
Vol(T (F )) (Φ(0X)− Φ(0Xα)) . (2.23)

Here α stands for the nontrivial class of torsors, and 0X , 0Xα denote the
“origins” (the points fixed by the tori) on X and Xα, respectively.

Proof It is very easy to see that if Φ is supported on X(F ) then, close to
zero, Oξ(Φ) is equal to 0 if ξ is not a norm from E and equal to a smooth
function with value Vol(T (F )) · Φ(0X) at zero if ξ is a norm; similarly for
the case that Φ is supported on Xα(F ), but with ξ not a norm. The result
follows.

�

2.11 Fourier transform

We define Fourier transform on E by identifying it with its Pontryagin dual
via the pairing (x, y) 7→ ψ(tr(xȳ)), where ψ is as before and ȳ denotes the
Galois conjugate of y. The chosen measure on E is self-dual with respect
to Fourier transform. Since we will be interested only in characters χE
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of E× which are base change of characters of F×, i.e. χE = χ ◦ NE
F or,

equivalently, χ̄E = χE , the functional equation of Tate integrals does not
change under this alternative definition of duality, i.e.:

γ(χE , s, ψE)ζE(Φ, χE , s) = ζE(Φ̂, χ
−1
E , 1− s) (2.24)

for such characters χE . The additive character ψE is the composition of
the character ψ used previously on F with the trace map.

The correct way to define Fourier transform on Xα(F ) (when α de-
notes the class of nontrivial torsors) is to notice that the hermitian map:
(x, y) 7→ tr(xȳ) extends naturally to Xα(F ): if we choose any isomorphism
ι : X → Xα which maps 1 ∈ E to the element e ∈ Xα(F ) then we have:

tr(ιx · ιy) := tr(NE
F (e)xȳ),

and this definition clearly does not depend on ι. Then we have on Xα, as
we had on X:

Φ̂α(y) :=

∫

Xα

Φ(x)ψ−1 (tr(x · ȳ)) dx, (2.25)

for the Haar measure defined previously, and this is self-dual, i.e.:

Lemma 2.15 For Φα ∈ C∞c (Xα),

̂̂
Φα(x) = Φα(−x). (2.26)

Proof In what follows, it is important to distinguish between absolute
values in F and in E, therefore we will be distinguishing them by an index.
Choosing an isomorphism φ : X → Xα with 1 7→ e and NE

F (e) = a, and
denoting the pullback of Φα under this isomorphism by Φ0, we have:

φ∗Φ̂α(y) =

∫
Φα(φx)ψ−1(axȳ)|a|F dx = |a|F Φ̂0(ay) (2.27)

and, similarly,

φ∗
̂̂
Φα(x) = |a|F̂φ∗Φ̂α(ax) = |a|2FF

(
F(Φ0(a · •))

)
(ax) =

= |a|2F ·
1

|a|E
̂̂
Φ0

(ax
a

)
=

̂̂
Φ0(x) = Φ0(−x).

�

For f ∈ S(X ) we now define the transform G as in (2.13), except that
now η is nontrivial.

We claim:
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Proposition 2.16 Let f ∈ S(X ) with lift Φ ∈ S(X). Then:

Oξ(Φ̂) = G(f)(ξ). (2.28)

Proof Before we discuss the proof, let us extend the definition of Tate
integrals to Xα(F ) (where α stands for the nontrivial torsor). They will be
defined as:

ζE(Φ
α, χ ◦NE

F , s) =

∫

Xα(F )

Φα(x)χ(NE
F x)|x|s−1dx,

where |x| denotes the absolute value, extended to Xα(F ) via the norm map.
The Tate integral is defined only for characters of the form χ ◦NE

F in this
case. If, now, Φ is a function supported on the union of X and Xα (with
corresponding restrictions denoted by Φ0 and Φα) we define:

ζE(Φ, χ ◦NE
F , s) = ζE(Φ

0, χ ◦NE
F , s) + ζE(Φ

α, χ ◦NE
F , s).

It can be seen that, with these definitions, the local functional equation
(2.24) still holds. Notice, moreover, that since χE = χ ◦NE

F , we have:

γ(χE , s, ψE) = γ(χ, s, ψ) · γ(χ⊗ ηE/F , s, ψ) (2.29)

It is now clear, as in the split case, that the Mellin transform of f(ξ) =
Oξ(Φ), Φ ∈ S(X ), can be written as:

f̌(χ) = ζE(Φ, χ
−1 ◦NE

F ,
1

2
), (2.30)

and similarly if hξ = Oξ(Φ̂) we have:

ȟ(χ) = ζE(Φ̂, χ
−1 ◦NE

F ,
1

2
).

Therefore:

ȟ(χ) = γ(χ,
1

2
, ψ)γ(χ⊗ ηE/F ,

1

2
, ψ)f̌(χ−1).

Both h and G(f) satisfy the Mellin inversion formula 2.16, since they
belong to S(X ), therefore it suffices to check that their Mellin transforms
coincide, which is immediate by the above calculation and an easy calcula-
tion of the Tate integrals of G(f).

�
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3 The Torus Quotient

3.1

From now on G will denote the group PGL2 over F . By T we will be
denoting a nontrivial torus in G, and E will be the quadratic etale extention
of F such that T = ker(NE

F ). If T is split we have E = F ⊕ F , and in that
case we will sometimes be identifying T with some maximal torus inside
of a chosen Borel subgroup, and will also be denoting it by A. As before,
η = ηE/F is the quadratic character associated to E.

The first main result of this section will be:

Proposition 3.1 Let Y denote the stack (ResE/FGa)/T with the preimage
of ξ = −1 ∈ B := (ResE/FGa)�T ≃ Ga removed. Let Y× denote Y with the
preimage of ξ = 0 removed; then the morphism to B defines an isomorphism
between Y× and A1 r {−1, 0}.

If Y1,Y2 denote two distinct copies of Y, the stack Z := T\G/T is
isomorphic to the glueing of Y1,Y2 by the map:

ξ 7→ −1− ξ.

Among other things, this allows us to identify the GIT quotient X×X�
G with B = Ga. We remark that this is a different parametrization from
the one of Jacquet [Jac86]; we use it not only because it is more natural,
but also because it turns out to be the one that makes the comparison of
two RTFs via the integral transform G work. To preserve consistency of
notation, the diagonal copy of X in X × X will have image −1 ∈ B, and
the open subset Y1 will be such that it contains the image of the diagonal
copy (and hence the map Y2 → B will be the one defined in the previous
section, while the map Y1 → B will be obtained from that by ξ 7→ −1− ξ).
We let Breg

Z be the complement of {0,−1} in B; as explained in §1.6, we
will be denoting this by Breg when it is clear that we are referring to the
torus quotient.

3.2 The open subset in the split case

We first consider the case E = F ⊕ F , so we may assume that T = the
torus A of diagonal elements, and let B+, B− denote the Borel subgroups
of upper and lower triangular matrices. Let Z1 := A\(B−B+ ∩B+B−)/A,
which is open in Z.
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Lemma 3.2 1. The map:4

F ⊕ F ∋ (x, y)
ι7→

(
1 x

1

)(
1

y 1

)
=

(
1 + xy x

y 1

)
∈ G, (3.1)

restricted to the set of x, y with xy 6= −1, descends to an isomorphism:

Y ∼−→ Z1. (3.2)

2. Let w be an element in the F -points of the non-identity component
of the normalizer of A, then the automorphism g 7→ wg fixes the
preimage of Z1 in G and has the property that:

wι(x, y) ∼ ι

(
y(1 + xy),

x

1 + xy

)
(3.3)

modulo the left action of A.

Proof Direct calculation. For the first statement, one easily sees that
A\(B−B+∩B+B−) is isomorphic to the variety of matrices of the form (3.1)
with xy 6= −1, and that, thinking of those matrices this way, the map ι is
Gm-equivariant with respect to the “baby case” action (x, y)·a = (ax, a−1y)
on F 2 and a suitable isomorphism A ≃ Gm. The second statement is
immediate.

�

3.3

Let X = A\G and let w denote the nontrivial G-automorphism of
X : Ag 7→ Awg, where we also use w to denote an element of the nor-
malizer of A. We have a natural isomorphism of stacks:

X ×X/G ∋ (x1, x2) 7→ x1x
−1
2 ∈ A\G/A,

and applying the “w”-automorphism on the second copy of X induces an
isomorphism of open substacks:

Z2
∼−→ Z1,

where Z2 = A\(BwB ∩B−wB−)/A.
Combined with the isomorphism of Lemma 3.2, this proves Proposi-

tion 3.1 in the split case.

4For notational clarity, we formulate in terms of F -points some statements which
should, strictly speaking, be formulated in terms of schemes.
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3.4 The non-split case

In the above setting, but with E now denoting a field extension, the cocycle
which takes the nontrivial element σ ∈ Gal(E/F ) to the inner automor-
phism of G by w (viewed also as an automorphism of A) defines a form of
both PGL2 and A over F . The form of A is T ≃ ker(NE

F ), while the (inner)
form of PGL2 could be split or non-split according as the cocycle chosen lifts
to GL2 or not. (This depends on the representative w ∈ N (A)(F ) chosen,
more precisely on whether the negative of the quotient of its eigenvalues is
a norm from E or not.) This shows, in particular, that:

T\G/T ≃ T\G′/T, (3.4)

as stacks where G = PGL2 and G
′ is an inner form of G which splits over E.

Notice that w preserves the open substacks Z1,Z2 of Z and hence defines
forms of those.

At the same time, we have seen that the “w” automorphism on A\G
corresponds, under the map ι of Lemma 3.2, to the automorphism:

τ : (x, y) 7→
(
y(1 + xy),

x

1 + xy

)

of the subset of (x, y) ∈ k ⊕ k with xy 6= −1. This is the same as the
composition of the automorphism: (x, y) 7→ (y, x) with the action of (1 +
xy) ∈ Gm, and therefore the form of the quotient stack defined by the
cocycle σ 7→ τ is isomorphic to:

Y1 ≃
(
ResEF (Ga)r (NE

F )−1(−1)
)
/T.

Therefore, even in the non-split case we have: Z1 ≃ Y1 and, similarly,
Z2 ≃ Y2, which completes the proof of Proposition 3.1.

3.5 Schwartz functions and orbital integrals

We defineM(Z) to be the G-coinvariant space ofM(X ×X) (the Fréchet
space of Schwartz measures) in the split case. In the non-split case we must,
as before, use one of the following equivalent definitions:

1. For some embedding of G into GLn we let M(Z) be the space of
GLn(F )-coinvariants of M

(
((X ×X)×G GLn)(F )

)
.

2. We let:
M(Z) = ⊕αM((Xα ×Xα)(F ))Gα(F ),

where α runs over all isomorphism classes of T -torsors Rα, Gα =
AutG(R

α×TG), Xα = T\Gα and the index Gα(F ) denotes, as before,
coinvariants. Equivalently, Gα ranges over inner forms of G which
split over E.
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By the above isomorphisms of stacks, we also have:

M(Z) ≃ (M(Y1)⊕M(Y2)) /M(Y1 ∩ Y2). (3.5)

We let S(Z) denote the cosheaf on B of functions on Breg which are
obtained as regular orbital integrals of Schwartz functions on

⊔
α(X

α×Xα).

ξ 7→ Oξ(Φ) =

∫

G(F )

Φ(ξ̃ · g), (3.6)

where ξ̃ is a representative for the orbit parametrized by ξ.

The results of Section 2 immediately imply:

Proposition 3.3 The restriction of S(Z) to Breg = Ga r {0,−1} is equal
to the cosheaf of Schwartz functions S(Breg). In neighborhoods of ξ = 0
and ξ = −1 they have the behavior of the germs of Propositions 2.5, 2.14
around zero.

The choice of Haar measure on G(F ) does not matter for the definition
of the sheaf S(Z), and again by a “lift of an element of S(Z) to S(X×X)”
we will implicitly mean an element of S(X × X) together with a choice
of Haar measure on G(F ). However, we would now like to define a linear
isomorphism:

M(Z) ∼−→ S(Z). (3.7)

We do this locally on the open cover Z1 ∪Z2 by using the identification of
M(Zi) withM(Yi), together with the identification (3.7) from the previous
section: M(Yi) ≃ S(Yi), which gives rise to an map to S(Z):

M(Zi) ∼−→M(Yi) ∼−→ S(Yi)→ S(Z).

Equivalently, this isomorphism arises from the standard additive mea-
sure on B = F . Notice that the same integration formula as in the previous
section (Propositions 2.2 and 2.13) follows from the local isomorphisms of
stacks:

Lemma 3.4 There are compatible choices of invariant measures on B (ad-
ditive), G and

⊔
α(X

α×Xα) such that for any Φ ∈ S(⊔α(X
α×Xα)) with

image f ∈ S(Z) we have:

∫
⊔

α
(Xα×Xα)

Φ(x1, x2)dx1dx2 =

∫

B
f(ξ)dξ. (3.8)
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3.6 Inner products

In order not to introduce excessive notation, we will not reserve any symbols
for the irregular distributions on Z which are the analogs of Õ0, Õu, Õ0+, Õ0−
of §2, with one exception:

Let α be a class of T -torsors. For Φ1,Φ2 ∈ S(Xα), and an invariant
measure dx on Xα (where “invariant” means, of course, invariant under the
action of the pertinent inner form of G on each copy) we define the inner
product of Φ1,Φ2 as:

〈Φ1,Φ2〉 =
∫

Xα

Φ1(x)Φ2(x)dx,

i.e. as a bilinear form. Clearly, this extends continuously to S(Xα ×Xα),
and for an element Φ of the latter we will simply write 〈Φ〉.

Now, given f ∈ S(Z), choose a pair (Φ, (dgα)α) consisting of an element
Φ =

∑
Φα ∈ ⊕αS(Xα×Xα) and a collection of Haar measures on the inner

forms Gα such that f arises as the regular orbital integrals of Φ with respect
to those measures. Let:

(−1)α =

{
1, if α corresponds to the trivial torsor,

−1 otherwise;
(3.9)

that is, we are identifying H1(F, T ) with Z/2 in the nonsplit case.

Then we define the “inner product” of f as:

〈f〉 := (F× : NE
F E

×)−1 ·
∑

α

(−1)αVol(T (F )0) 〈Φα〉 , (3.10)

where we have implicitly chosen a decomposition of dg as an invariant
measure on T (F ) times a measure on T\Gα(F ) in order to define both the
inner product on Xα and the volume of T (F )0 according to the recipe of
§2.5 (of course, in the non-split case T (F )0 = T (F ) so no recipe is needed).
Clearly, the definition does not depend on this choice, so we have a well-
defined functional on S(Z). The following is easy to see by the results of
the previous section:

Lemma 3.5 In the split case 〈f〉 is equal to the distribution Õ0(f) of (2.7)
when a neighborhood of ξ = −1 of Z is identified with a neighborhood of
ξ = 0 of X according to Proposition 3.1. In the nonsplit case, 〈f〉 is equal
to the distribution Õ0−(f) of (2.23) under the same identification.
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4 The Kuznetsov Quotient with Nonstandard

Functions

4.1

The Kuznetsov trace formula is the relative trace formula for S(X,Lψ) ⊗
S(X,L−1

ψ ), where X is the quotient of PGL2 by a nontrivial unipotent
subgroup N and Lψ is the complex G-line bundle on X defined by a char-
acter ψ of N(F ). Here, however, we will extend it to nonstandard sections
of this line bundle, that is, sections which are not Schwartz, with prescribed
asymptotic behavior at infinity. One can identify X with the quotient by
{±1} of two-dimensional affine space, minus the origin, and “infinity” is
precisely the partial compactification of this space by P1 at “infinity”.

Let us start in a slightly different way: Let G = Aut(P1) and let X̄
denote the total space of the line bundle O(−2) over P1; it is G-linearizable,
i.e. it carries an action of G which commutes with the natural action of Gm.
We denote by X the complement of the zero section — it is homogeneous
under G, and stabilizers are unipotent subgroups. There is a unique, up
to the action of Gm(F ), G(F )-linear complex line bundle on the F -points
of X̄ on which the stabilizers of points on X act by a nontrivial unitary
character; we fix such a line bundle, and denote it by Lψ. Over P1 this is
G-isomorphic (non-canonically) to the trivial line bundle. For any subset
S of X̄ × X̄ we will denote by S+ the open subset of S lying over the open
G-orbit on P1 × P1. If S is stable under the diagonal action of G, then so
is S+.

4.2 Orbits

Let N be the subgroup of upper triangular unipotent matrices in PGL2, N
−

the subgroup of lower triangular matrices, both identified with the additive
group Ga in the usual way, and A the torus of diagonal elements. Fix a
nontrivial unitary character ψ of F , the same character that we used for
Fourier transforms in previous sections. We claim that there is a canonical
map from (X ×X)+ to the open subset:

Gm ≃
{
N

(
ξ

1

)
N−

∣∣∣∣ ξ ∈ Gm

}

of N\G/N−.
Indeed, let (x, y) ∈ (X × X)+, then there is a unique isomorphism of

the triple (G,Gx, Gy) with (PGL2, N,N
−) such that Gx acts on the fiber

of Lψ by the character ψ of N(F ) = Ga(F ) (standard isomorphism), and a
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unique isomorphism such that Gy acts on the fiber of L−1
ψ by the character

ψ−1 of N−(F ) = Ga(F ). Then

(
ξ

1

)
is the unique element of A which

conjugates one isomorphism to the other; our convention to distinguish
between ξ and ξ−1 is that as (x, y) approach the complement of (X ×X)+

in X×X, ξ goes to infinity. This defines an isomorphism of quotient stacks
(varieties):

(X ×X)+/G→ Gm. (4.1)

We embed Gm →֒ B := Ga →֒ B := P1, and set Breg = Breg
W = B r {0}. We

will sometimes be denoting the regular set by B×.

Lemma 4.1 The map (4.1) extends to a rational map:

X̄ ×X → B, (4.2)

which is regular away from the complement of (P1 ×X)+ in P1 ×X, that
is: away from the set of points (p, x) ∈ P1 ×X such that x lies in the fiber
over p.

The reader should keep in mind that ξ = 0 corresponds to points on
(P1 × X)+, while ξ = ∞ corresponds to the complement of (X × X)+ in
X × X. This paradoxical way of parametrizing orbits plays a role when
discussing Fourier transforms (where the vector space structure imposed
on B is important).

There is a certain degree of arbitrariness in choosing the “standard”
identifications of N,N− with Ga; therefore, there is nothing special about
the orbit above ξ = 1. However, this choice should be compared to the
choice that the “irregular” orbits of Z map to {0,−1} ∈ B in the discus-
sion of Section 3; both are essentially choices of a generator of the ring of
invariants, they are related and should be changed simultaneously.

4.3 Orbital integrals

In what follows, we try to make explicit the choices made in order to think of
orbital integrals on the Kuznetsov trace formula as functions on Breg ≃ F×.
The reader may wish to skip straight to (4.6).

Let Φ1,Φ2 be smooth sections of Lψ, resp. L−1
ψ , of compact support

on X. Fix a Haar measure on G = G(F ). At a first stage, we define
the (regular) orbital integrals of Φ1 ⊗ Φ2 to be the G-invariant section of
Lψ ⊠ L−1

ψ on (X ×X)+ obtained by integrating Φ1 · Φ2, that is:

O(x,y)(Φ1 ⊗ Φ2) =

∫

G

g · (Φ1,Φ2)(x, y)dg, (4.3)
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where g· denotes the right regular representation under the diagonal action
of G.

At a second stage, we would like to represent these orbital integrals as
functions on B× := B r {0} = F×. Let (x0, y0) ∈ (X × X)+, with image
1 ∈ B, let A denote the unique torus in G which normalizes both Gx0

and
Gy0 , identified with Gm according to the image of (x0a, y0) in B (a ∈ A).
For ξ ∈ Gm corresponding to a ∈ A, let:

Oξ(Φ1 ⊗ Φ2) = O(x0,y0)(a · Φ1 ⊗ Φ2), (4.4)

where a acts on the section O(x0,y0)(Φ1⊗Φ2) by the regular representation
on the first coordinate; hence, Oξ(Φ1 ⊗Φ2) is understood as an element in
the fiber of Lψ over (x0, y0). We remark that a· denotes the action of a
as an element of G; the natural action of Gm on O(−2) by dilations does
not extend to the line bundle Lψ. When, later, we will replace Lψ by the
trivial line bundle, we will be denoting the action of Gm by dilations by
La (where L is supposed to be reminiscent of “left action” in terms of the
torus acting on X ≃ N\G), in order to avoid confusion. Notice that the
orbit map: B× ∋ a 7→ (x · a, y) ∈ (X ×X)+ extends to:

B → (X̄ ×X)+. (4.5)

Finally, we choose an isomorphism of the fiber of Lψ⊠L−1
ψ over (x0, y0)

with C, in order to consider Oξ(Φ1 ⊗ Φ2) as a complex-valued function on
F×, as ξ varies. This last choice of isomorphism only affects the orbital
integrals by a common scalar multiple, and will be reflected in our choice of
unramified sections in the fundamental lemma (e.g. we will ask that some
sections be equal to “1” at (x0, y0), which only makes sense after choosing
this isomorphism).

Explicitly, if we identify the stabilizers of x0, y0 with N,N− such that
they act on Lψ, resp. L−1

ψ by ψ,ψ−1, respectively, and if we trivialize the

fiber in order to think of Φ1 ⊗Φ2 as an element of C∞(N\G×N−\G,ψ⊗
ψ−1), then:

Oξ(Φ1 ⊗ Φ2) =

∫

G

Φ1(

(
ξ

1

)
g)Φ2(g)dg. (4.6)

Given these choices — that is, the embedding (4.5) and the identification
of the fiber over 1 with C, we can easily see:

Lemma 4.2 1. The action map:

B ×G→ (X̄ ×X)+ (4.7)

is an isomorphism.
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2. The chosen trivialization of the fiber over (x0, y0), the action of B××G
(here B× is acting as the torus A on the first copy, as before), and
the above isomorphism give rise to a G-equivariant isomorphism of:

Lψ ⊠ L−1
ψ

∣∣∣
(X̄×X)+

with the trivial line bundle over B ×G.

4.4 Integration formula

Identifying sections Φ ∈ S
(
Lψ ⊠ L−1

ψ

∣∣∣
(X̄×X)+

)
with sections of the trivial

line bundle according to Lemma 4.2, we have:

Lemma 4.3 For suitable choices of a G-invariant measure on X = X(F )
and a Haar measure on G = G(F ), we have:

∫

(X̄×X)+
Φ(x, y)d(x, y) =

∫

B
Oξ(Φ)|ξ|−2dξ, (4.8)

where dξ is our fixed, standard additive measure on B ≃ F .

4.5 Nonstandard sections

We letM(X̄×X,Lψ⊠L−1
ψ ) (resp. S(X̄×X,Lψ⊠L−1

ψ )) denote the Schwartz

cosheaf over X̄ × X consisting of smooth measures (resp. functions) on
X ×X, valued in Lψ ⊠ L−1

ψ , with the following properties:

• the restriction of the cosheaf to X × X coincides with the standard
cosheaf of Schwartz measures (resp. functions) valued in Lψ ⊠ L−1

ψ ;

• in a neighborhood of P1×X they are finite sums of the form
∑
i fiFi,

where:

1. the fi’s are Lψ ⊠ L−1
ψ -valued Schwartz functions on X̄ ×X;

2. the Fi are scalar-valued measures (resp. functions) on X × X
which are G-invariant in the second coordinate5, and in the first
coordinate are annihilated asymptotically by the operator:

(
1− δ− 1

2 (a)La

)
·
(
1− ηE/F δ−

1
2 (a)La

)
. (4.9)

5This is just one of many equivalent ways of describing our measures, and the reader
should not get confused trying to figure out the purpose of invariance in the second
coordinate; the point is that our resulting measures will be of Schwartz type in the
second coordinate, which is taken care of by the fi’s, so we only need the Fi’s in order
to describe their asymptotic behavior in the first coordinate.
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Our notation is hiding the details of the asymptotics, and is just replac-
ing X by X̄ to remind that these measures are not Schwartz on X; however,
they cannot be considered as smooth measures on X̄.

We explain what it means, for a scalar-valued function or measure on X,
to be asymptotically annihilated by (4.9). Thinking of Gm as the dilation
group of the bundle O(−2) over P1, we have an L2-isometric action of it on
functions on X given by:

Laf(x) = δ(a)−
1
2 f(ax), (4.10)

where δ(a) is the inverse of the character by which the non-normalized
action of Gm transforms an invariant measure on X, written suggestively
so that in an identification of X with N\PGL2 it corresponds to:

(
a

1

)
7→ |a|.

Similarly, we have an L2-isometric action of Gm on measures on X given
by:

Laµ(x) = δ(a)
1
2µ(ax), (4.11)

and of course the map from functions to measures: f 7→ fdx is equivariant
with respect to these actions.

Hence, “asymptotically annihilated” by (4.9) means that applying the
operator (4.9) to the given function/measure produces a function/measure
which is supported away from P1. Thus, these functions can be identified
in a neighborhood of P1 with elements of a representation π of the form:

0→ I(δ
1
2 )→ π → I(ηE/F δ

1
2 )→ 0, (4.12)

where the sequence is nonsplit if (and only if) ηE/F is trivial. Here I(•) de-
notes the principal series representation obtained by normalized induction
from the character •. However, the isomorphisms with principal series are
not canonical, and we prefer to think of π as the space of smooth functions
on X which are annihilated by (4.9).

4.6 Coinvariants

We let M(W) denote the G-coinvariants of M(X̄ × X,Lψ ⊠ L−1
ψ ). Here

the letter W is reminiscent of a stack, but for us it is just formal notation,
because I do not know how to make sense of Lψ ⊠ L−1

ψ as a bundle on the

stack. We denote by M(W+) the G-coinvariants of those measures which
are almost supported on (X̄ ×X)+ ⊂ X̄ ×X.
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Using the trivializations of Lemma 4.2, we have a map from M(W) to
smooth measures on B×; as we shall see, this map is injective, so we feel
free not to distinguish between an element ofM(W) and the corresponding
measure on B×. We let S(W) be the space of functions on B× which are
obtained as “regular” orbital integrals (understood as in §4.3), with respect
to a Haar measure on G, of elements of S(X̄ ×X,Lψ ⊠L−1

ψ ). According to
Lemma 4.3, the map µ 7→ µ

|ξ|−2dξ is a linear isomorphism:

M(W)→ S(W). (4.13)

We would like to understand the spaces M(W+), M(W) as sections
over B, B of the G-coinvariants of the push-forward to B of the Schwartz
cosheaf M(X̄ × X,Lψ ⊠ L−1

ψ ), in order to take advantage of the results
of appendix B. This is not directly possible, as the map (4.2) is rational,
not regular. We will see, however, in Proposition 4.10 that the stalk over
the irregular locus S of (4.2) does not contribute at all toM(W); thus, we
may indeed view M(W) as (sections of) the flabby cosheaf of coinvariants
of the push-forward of M((X̄ ×X)r S,Lψ ⊠ L−1

ψ ).

4.7 Limiting behavior at 0

Let X be the quotient stack of Section 2, that is: X = ResE/FGa/T , where
T = kerNE

F . We consider elements ofM(X ) as measures on Br{0} = F×,
as we do with elements ofM(W). Recall thatM(W+) denotes the sections
of this cosheaf over (X̄×X)+, and S(W+) their images under the operation
of orbital integrals.

Proposition 4.4 As spaces of measures on F×, we have:

M(W+) = | • |−1M(X ). (4.14)

The symbol | • |−1 denotes multiplication of a measure µ(ξ) by |ξ|−1.

Proof Using the isomorphisms of Lemma 4.2, the spaceM((X̄×X)+,Lψ⊠
L−1
ψ ) can be identified with a space of scalar-valued measures on B× × G

with the following properties:

• away from a neighborhood of {0} × G they coincide with Schwartz
measures;

• in a neighborhood of {0} × G they are equal to a Schwartz function
on B ×G times a measure µ(b)dg with dg a Haar measure on G and:

µ(b)− µ(ab)− ηE/F (a)µ(ab) + ηE/F (a)µ(a
2b) = 0, (4.15)

for every a ∈ F×.
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Their G-coinvariants coincide with their push-forwards to B×, which are
characterized by the analogous properties (i.e. Schwartz away from 0 and
same condition on the measure µ). By the explicit description ofM(X ) in
Propositions 2.5 and 2.14, the claim follows.

�

Corollary 4.5 As spaces of functions on B×, we have:

S(W+) = | • |S(X ). (4.16)

This follows immediately from the integration formula of Lemma 4.3.
In the next subsection we will identify the limiting behavior of an element
of S(W+) as ξ → 0 in terms of invariant distributions supported on the
fiber over ξ = 0.

4.8 Explication

We would now like to explicate the “irregular” distributions that determine
the limiting behavior at zero.

Let V be defined by the short exact sequence of Fréchet spaces:

0→ S(X ×X,Lψ ⊠ L−1
ψ )→ S(X̄ ×X,Lψ ⊠ L−1

ψ )→ V → 0.

(Recall that S(X̄×X,Lψ⊠L−1
ψ ) denotes the nonstandard sections defined

in 4.5 and not really sections of the line bundle over X̄ ×X.) That is, in
the language of appendix B, V is the stalk over P1 × X of the Schwartz
cosheaf whose global sections are S(X̄ ×X,Lψ ⊠ L−1

ψ ).
Let Gψ denote the Fréchet space of germs of smooth sections of Lψ

around P1. Since Lψ is trivializable over P1, this space is isomorphic (non-
canonically) to the space of germs of smooth functions around P1. Then
we have an isomorphism of G×G-representations:

V ≃ (Gψ⊗̂C∞(P1)π)⊗̂S(X), (4.17)

(completed, projective tensor products), where π is as in (4.12).
Clearly, the fiber over P1 ×X is obtained by evaluation of the element

of Gψ on P1, which gives a map:

S(X̄ ×X,Lψ ⊠ L−1
ψ )→

(
C∞(P1,Lψ)⊗C∞(P1) π

)
⊗ S(X,L−1

ψ ). (4.18)

The first tensor product is isomorphic to π, depending on a trivialization
of Lψ over P1; for simplicity, but to remember that this isomorphism is
not canonical, we will be denoting it by π′. Since the elements of π can
be thought of as sections of the trivial line bundle on X annihilated by the
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operator (4.9), elements of π′ should be thought of as similar sections of
the pullback of Lψ under the projection map: X → P1. We are going to
encode the G-coinvariants of the fiber in two “irregular” orbital integrals.

For now we will define those irregular orbital integrals only for elements
of S(W+). Let f ∈ S(W+) and (Φ, dg) be a pair consisting of an element
Φ ∈ S((X̄ ×X)+,Lψ ⊠ L−1

ψ ) and a Haar measure on G such that f is ob-
tained by the orbital integrals of Φ. Under the isomorphisms of Lemma 4.2
(see also the proof of Proposition 4.4), Φ can be written as a function on
B ×G of the form:

|ξ| (−h1(ξ, g) ln |ξ|+ h2(ξ, g)) in the split case (η = 1),

|ξ| (h1(ξ, g) + η(ξ)h2(ξ, g)) in the non-split case (η 6= 1)

where hi(ξ, g) are Schwartz functions on B ×G.
In the split case we set:

Õ
0,δ

1
2
(f) =

∫

G

h1(0, g)dg, (4.19)

Õ
u,δ

1
2
(f) =

∫

G

h2(0, g)dg. (4.20)

In the nonsplit case we set:

Õ
0,δ

1
2
(f) =

∫

G

h1(0, g)dg, (4.21)

Õ
0,ηδ

1
2
(f) =

∫

G

h2(0, g)dg. (4.22)

Then it is easy to see:

Lemma 4.6 For f ∈ W+, there are smooth functions C1, C2 so that in a
neighborhood of zero:

f(ξ) = |ξ| (−C1(ξ) ln |ξ|+ C2(ξ)) in the split case, (4.23)

f(ξ) = |ξ| (C1(ξ) + η(ξ)C2(ξ)) in the non-split case. (4.24)

Moreover, C1(0) = Õ
0,δ

1
2
(f) and C2(0) = Õ

u,δ
1
2
(f) in the split case,

C1(0) = Õ
0,δ

1
2
(f) and C2(0) = Õ

0,ηδ
1
2
(f) in the nonsplit case.

Thus, with the isomorphism of Corollary 4.5 and the distributions de-
fined in Section 2, we have:

Õ
0,δ

1
2
(f) = Õ0(| • |−1f),

Õ
u,δ

1
2
(f) = Õu(| • |−1f)
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in the split case, and:

Õ
0,δ

1
2
(f) = Õ0+(| • |−1f),

Õ
0,ηδ

1
2
(f) = Õ0−(| • |−1f)

in the nonsplit case.

4.9 Inner product and limiting behavior at ∞
Let now Y be the complement of (X ×X)+ in X ×X (that is, the union
of Gm-translates of the diagonal copy of X), and denote by S(X ×X,Lψ⊠
L−1
ψ )Y the stalk of S(X ×X,Lψ ⊠ L−1

ψ ) over Y . Notice that at this point
we have restricted our attention to sections of our cosheaves over X ×X;
that is, standard Schwartz sections of Lψ ⊠ L−1

ψ on X ×X. We denote by

S(Y,Lψ ⊠ L−1
ψ ) the fiber of S(X ×X,Lψ ⊠ L−1

ψ ) over Y — it is the space

of Lψ ⊠ L−1
ψ -valued Schwartz functions on Y . Just for this subsection, we

introduce the notation S(W0) for the G-coinvariants of S(X×X,Lψ⊠L−1
ψ ).

For Φ1 ∈ S(X,Lψ), Φ2 ∈ S(X,L−1
ψ ) and a measure dx on X, we define

the inner product:

〈Φ1,Φ2〉 =
∫

X

(Φ1 · Φ2)(x)dx,

i.e. as a bilinear map. Clearly, it extends to a linear functional on S(X ×
X,Lψ ⊠ L−1

ψ ), and for Φ in this space we will be using the notation 〈Φ〉.
Given f ∈ S(W0), choose a pair (Φ, dg) consisting of an element

Φ ∈ S(X × X,Lψ ⊠ L−1
ψ ) and a Haar measure on G so that f is ob-

tained as the coinvariants of Φ with respect to this measure. The chosen
measure on G induces a measure on X as follows: let x ∈ X and N = Gx,
the stabilizer of x; hence, X = N\G. The group N acts by a character Ψ
on the fiber of Lψ over x, and we choose an identification of N(F ) with F
such that the character Ψ becomes our fixed additive character ψ; we then
let dn be the Haar measure on N corresponding to our fixed measure dx of
§2.3, and we let dx be the measure on X corresponding to dg, dn. Clearly,
it does not depend on the choice of point.

We then define the “inner product” of f to be the functional:

〈f〉 = 〈Φ〉 , (4.25)

where the “inner product” of Φ is defined with respect to the measure
described above.

The following is immediate:
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Lemma 4.7 The inner product spans the space of G-invariant functionals
on S(Y,Lψ ⊠ L−1

ψ ) (the fiber of S(X ×X,Lψ ⊠ L−1
ψ ) over Y ).

Based on Proposition B.4.1 now, the stalk of S(W0) at ξ =∞ is gener-
ated over the stalk of smooth functions by an element with nonzero “inner
product”.

Proposition 4.8 The stalk of S(W0) at ξ = ∞ coincides with the set of
germs of all functions f of the following form:

• in the nonarchimedean case:

f(ξ) = C(ξ−1) ·
∫

|x2|=|ξ|
ψ(ξx−1 − x)dx, (4.26)

where C denotes a(n almost) smooth function6 defined in a neighbor-
hood of zero, with C(0) = 〈f〉.

• in the archimedean case:

f(ξ) =

∫
Z

(
ξ

|x|2 + 1
, x

)
ψ

(
ξx̄

|x|2 + 1
− x

)
dx, (4.27)

where Z is a Schwartz function on Gm × P1, with Z(−1,∞) = 〈f〉.
(4.28)

Remark 4.9 It may not be clear at first from the above expressions, but
it will become clear from the stationary phase analysis of the archimedean
integrals in §5.2 that the stalks are generated over the stalk of smooth
functions by a single element, as they should. Thus, we could also write
them as C(ξ−1) times the same integral with Z replaced by any preferred
function such that Z(−1,∞) = 1. (Jacquet has computed the integrals
explicitly in [Jac05], and his work will be the basis for the analysis of §5.2.)

Proof We can easily see that the germ of f can be written as an integral
of the form: ∫

Φ

((
ξ

1

)(
1

x 1

))
ψ−1(x)dx,

where Φ ∈ S(N\PGL2, ψ), with ψ here denoting the character

(
1 x

1

)
7→

ψ(x), the measures being the standard ones, and Φ

((
1

1

))
= 〈f〉.

6Notice that this stalk is one dimensional; equivalently, the stalk is generated by
such functions with C constant. This can be seen by direct computation, or by showing
that the stalk is generated by the images of locally constant functions “upstairs”.
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Now we decompose in terms of the Iwasawa decomposition G = NAK,
where K = PGL2(o) in the nonarchimedean case, and K is the “standard”
SO(2) or SU(2) in the real and complex case, respectively.

We can easily see that in the nonarchimedean case, for:

Φ(nak) =

{
ψ(n), if a ∈ A(o)
0, otherwise

we get: ∫
ψ(ξx−1 − x)dx.

Since this particular Φ satisfies Φ

((
1

1

))
= 〈f〉 = 1 6= 0, it generates

the fiber = stalk of S(W0) over ∞. It is easy to see that for large |ξ| only
the x with |x2| = |ξ| contribute (see the proof of Theorem 5.1), and this
gives the desired claim.

In the archimedean case, the Cartan decomposition reads:

(
ξ

1

)(
1

x 1

)
=

(
1 ξx̄√

|x|2+1

1

)(
ξ√
|x|2+1 √

|x|2 + 1

)


1√
|x|2+1

−x̄√
|x|2+1

x√
|x|2+1

1√
|x|2+1


 ,

and the matrix

(
1

1

)
is obtained as the limit when x→∞, ξ

|x|2+1 → −1,
hence the claim.

�

4.10 Contribution of irregular locus and convergence

of orbital integrals

Let S ⊂ X̄ ×X be the irregular locus of the map (4.1), that is: the set of
points (x̄, x) with x̄ ∈ P1 equal to the image of x under the natural map:
X → P1.

Proposition 4.10 The embedding:

S((X̄ ×X)r S,Lψ ⊠ L−1
ψ ) →֒ S(X̄ ×X,Lψ ⊠ L−1

ψ )

induces an isomorphism on G-coinvariants, that is:

S(W) = S((X̄ ×X)r S,Lψ ⊠ L−1
ψ )G.
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This proposition already implies that all the invariant distributions that
we have defined on S((X̄×X)rS,Lψ⊠L−1

ψ ) (regular and irregular orbital
integrals, including the inner product) extend to the whole space; for later
use, we mention the following (which is easy to see):

Lemma 4.11 In the nonarchimedean case, the regular orbital integrals of
an element of S(X̄ ×X,Lψ ⊠ L−1

ψ ) can be decomposed as:

∫

N\G

∫ ∗

N

,

where
∫ ∗
N

is a stabilizing integral over large compact open subgroups of N .

Proof (of Proposition 4.10) If we fix the stabilizer N− of a point on
X, and denote by ψ−1 the character by which it acts on the fiber of L−1

ψ ,

the problem is easily reduced to that of finding (N−, ψ)-equivariant dis-
tributions on the stalk V of S(X̄,Lψ) over the unique point y of P1 fixed
by N−. The notation S(X̄,Lψ) means similar asymptotics as in §4.5, not
sections of Lψ over X̄, but it is easy to see that as an N−-module this stalk
has a filtration:

0→W → V →W → 0,

where W is isomorphic to the stalk of smooth sections of Lψ over y.
If S′ = {y} ⊂ X, in the notation of appendix B the stalk V of S(X̄,Lψ)

over S′ has a separated decreasing filtration by Vn := J n
S′V . Clearly, the

group N− acts trivially on JS′/J 2
S′ = the cotangent space of y, and hence

also on J n
S′/J n+1

S′ = the n-th symmetric power of the cotangent space.
Moreover, recall that Lψ is the trivial line bundle over P1. Therefore, there
are no (N−, ψ)-equivariant functionals on the n-th graded piece of this
filtration, which is an image of (actually, isomorphic to):

J n
S′/J n+1

S′ ⊗ S({y},Lψ).

�

5 Matching and the Fundamental Lemma

5.1 Matching

Theorem 5.1 The operator | • | ·G gives rise to a topological isomorphism:

S(Z) ∼−→ S(W), (5.1)
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which satisfies:
〈| • |Gf〉 = γ∗(η, 0, ψ) 〈f〉 , (5.2)

where 〈 〉 denotes the inner products defined in §3.6, 4.9, and γ∗(η, 0, ψ)
denotes the leading term in the Taylor expansion of the gamma factor
γ(η, s, ψ) around s = 0.

Proof We have short exact sequences:

0→ S(X )→ S(Z)→ S(Z)/S(X)→ 0 (5.3)

and:
0→ | • |S(X )→ S(W)→ S(W)∞ → 0. (5.4)

Recall that S(W)∞ denotes the stalk of S(W) at ξ = ∞. The arrows
on the left are closed embeddings and come from (3.5), where we restrict
only to sections ofM(Y1) with smooth orbital integrals — that is, we allow
singularities only at ξ = 0, not at ξ = −1; and from Corollary 4.5.

We have already seen that G is an automorphism of S(X ), hence | • |G
is an automorphism between the leftmost terms of the above sequences.
There remains to see that it induces isomorphisms of the quotients.

By Corollary 2.11 and standard properties of Fourier transform, the
germs at ξ = 0 of elements of ιF(S(Z)) are precisely the germs of functions

of the form f1(ξ) +ψ
(

1
ξ

)
h(ξ) with f1, h smooth. Moreover, we claim that

for ιF(f) ∼ ψ
(

1
ξ

)
h(ξ) (where ∼ denotes equality of germs), we have:

h(0) = γ∗(η, 0, ψ) 〈f〉 . (5.5)

It suffices to prove (5.5) for one element f for which 〈f〉 is nonzero.
Recall that for (almost) every character χ of F×, considered as a tempered
distribution on k by meromorphic continuation according to Tate’s thesis,
we have a relation:

χ̂(•) = γ(χ−1, 0, ψ) · | • |−1 · χ−1(•). (5.6)

Indeed, this is just a reformulation of the functional equation for zeta in-
tegrals; in what follows, we denote the obvious bilinear (not hermitian)
pairing by angular brackets, and use the exponent ψ when Fourier trans-
form is taken with respect to the character ψ, instead of ψ−1 which is our
standard convention. We denote Tate’s zeta integral of a function φ ∈ S(F )
by ζ(φ, χ, s).

〈φ, χ̂〉 =
〈
̂̂
φ
ψ

, χ̂

〉
=

〈
φ̂, χ

〉
= ζ(φ̂, χ, 1) =

γ(χ−1, 0, ψ)ζ(φ, χ−1, 0) = γ(χ−1, 0, ψ)
〈
φ, χ−1(•) · | • |−1

〉
.
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This implies that a function on F which is equal to χ(ξ) in a neighbor-
hood of zero (and Schwartz elsewhere) has Fourier transform which is equal7

to γ(χ−1, 0, ψ)|ξ|−1χ−1(ξ) in a neighborhood of infinity (and Schwartz else-
where). In particular, (5.5) holds for the nonsplit case η 6= 1.

For the split case, we can obtain the function 1− ln |ξ| as the limit of:

1

t
− |ξ|

t

t
.

A function which is equal to this in a neighborhood of zero has Fourier

transform which is equal to −γ(1,−t,0)
t |ξ|−t−1 in a neighborhood of ∞, and

in the limit t→ 0 we obtain γ∗(1,−t, 0)|ξ|−1.
There remains to show that Fourier transform gives a continuous sur-

jection from the set of functions of the form ψ
(

1
ξ

)
h(ξ) around ξ = 0 (and

Schwartz otherwise) to | • |−1 times the germs of Kloosterman integrals
described in Proposition 4.8. It will be an implicit byproduct of the proof
that, if C is as in the remark following Proposition 4.8, then C(0) = h(0),
hence 〈| • |Gf〉 = γ∗(η, 0, ψ) 〈f〉.

We perform this for the archimedean case in the next subsection. For
the nonarchimedean case, let us say that h = 1o. (Since the stalks are
one-dimensional, it will be enough to check for one element.) Then:

F
(
ψ

(
1

•

)
h(•)

)
(ξ) =

∫

o

ψ(x−1 − ξx)dx.

For |ξ| larger than |p−2 · c2| (and larger than 1), where c denotes the
conductor of ψ, we claim that only the terms with |x2| = |ξ|−1 contribute.
Indeed, set u = x−1 and v = ξx and assume that |u| > |v| (the case |u| < |v|
is identical). Then u has norm larger than |p−1c|, and as it varies in a ball
of radius |p−1c| around some point u0, v varies in a ball of radius less or
equal than |c| around v0 = ξu−1

0 . Therefore:
∫

u0+p−1c

ψ(u− ξu−1)du =

∫

u0+p−1c

ψ(u)du = 0.

Hence,

F
(
ψ

(
1

•

)
1o

)
(ξ) =

∫

|x|2=|ξ|−1

ψ(x−1 − ξx)dx =

= |ξ|−1

∫

|x|2=|ξ|
ψ(ξx−1 − x)dx.

�

7Asymptotically equal in the archimedean case, i.e. the quotient by the stated func-
tion tends to 1. This is proven by an easy argument multiplying the character by a
smooth cutoff function.
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5.2 Stationary phase

We complete the proof of matching in the archimedean case, and more
precisely the identification of the Fourier transform of functions of the form

ψ
(

1
ξ

)
h(ξ) (in a neighborhood of 0) with the Kloosterman germ of (4.27)

based on the arguments of [Jac05]. We only discuss the real case, as the
complex case can be treated similarly.

Lemma 5.2 Let F = R and let φ(u, δ) be a Schwartz function in two
variables. The integral:

∫
φ(u,

1

λ
)ψ(λ(u+ u−1))du

is equal to f1(λ) + |λ|−
1
2ψ(2λ)θ+

(
1
λ

)
+ |λ|− 1

2ψ(−2λ)θ−
(
1
λ

)
, where f1 is

a Schwartz function of λ, and θ± are smooth functions (supported in a
neighborhood of zero) whose derivatives at zero are polynomials, without
constant terms, on the derivatives of φ(u, δ) at u = ±1 (respectively), δ = 0.
In particular, θ±(0) depends only on φ(±1, 0) (respectively).

Moreover, in the special case that φ(u, δ) = f(uδ) for some smooth func-
tion f , each derivative of θ+ at 0 depends on a finite number of derivatives
of f at 0, and the germ of θ+ at zero can be arbitrary. Similarly for θ−.

Proof This is [Jac05][Proposition 1], except for the last statement.
It is proven in [Jac05] that, up to a certain nonzero constant:

θ+(δ) =

∫
φ1(u, δ)ψ

(
−u

2δ

4

)
du,

where φ1 is the partial Fourier transform in the variable v = u−1√
u

of the

function:

φ(u(v), δ)
du

dv
.

(We assume without loss of generality that φ is supported close to u = 1,
so that the change of variables v = u−1√

u
is valid.)

Hence,

θ
(n)
+ (δ) =

∫ [(
∂

∂δ
− 2πiu2

4

)n
φ1(u, δ)

]
ψ

(
−u

2δ

4

)
du.

(We assume without loss of generality that ψ(x) = e2πix.)
Therefore:

θ
(n)
+ (0) =

(
∂

∂δ
− 1

8πi

∂

∂v

)n
φ(u(v), δ)

du

dv

∣∣∣∣
v=δ=0

.
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It is clear that, if φ = f(uδ), this expression is bounded by a finite

number of derivatives of f at 0, and that the evaluation of θ
(n)
+ (0) involves

higher derivatives of f at 0 than the evaluation of all θk+(0), k < n. There-
fore, the map f 7→ θ+ is surjective onto the stalk of smooth functions at
zero.

�

This allows us to complete the proof of Theorem 5.1 in the real case:
Indeed, by the stationary phase method or the arguments of [Jac05] it is
easy to see that (4.27) is a Schwartz function of ξ for ξ > 0 or Z supported
away from −1 (in the first variable). For Z supported close to −1 and ξ < 0

we can make first the change of variables: t = x2+1
x , and the integral (4.27)

becomes: ∫
Z1

(
ξ

t2
, t

)
ψ(ξt−1 − t)dt,

where Z1 is another (arbitrary) smooth function on Gm×P1. Then we can

make the change u = −
√
−ξ−1

t to turn this into:

√
|ξ|

∫
Z1 (−u, t)ψ(

√
−ξ(u−1 + u))du. (5.7)

Similarly, for the Fourier transform of a function of the form h(x)ψ
(
1
x

)

we have: ∫
h(x)ψ(x−1 − ξx)dx,

which again by the same arguments depends up to a Schwartz function of ξ
only on the restriction of h in a neighborhood of zero, and only for ξ < 0.
By the change of variables u = −

√
−ξx we get:

√
|ξ|−1

∫
h1(−

√
−ξ−1

u)ψ(
√
−ξ(u+ u−1))du, (5.8)

where h1 is another (arbitrary) smooth function in a neighborhood of zero.
By the last statement of Lemma 5.2, the stalks at zero of (5.7), (5.8)

coincide. This completes the proof of Theorem 5.1.
�

5.3 Basic vectors

From now on, until the end of this section, we assume that F is nonar-
chimedean, E (and hence F ) is unramified over the base field Qp or Fp((t)),
and endow the groups G, T,N,N− with smooth group scheme structures
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over the ring of integers o. We set K = G(o), a hyperspecial maximal com-
pact subgroup. The conductor of our fixed self-dual character ψ is equal to
the ring of integers of F . We consider the o-schemes:

X1 = T\G, X2 = N\G,

where the latter is equipped with the line bundle Lψ defined by ψ and an
o-identification: N ≃ Ga.

We endow the various groups with invariant volume forms defined over o,
which are nonzero when reduced to the residue field. Based on our fixed
measure on F of §2.3, this gives rise to invariant measures on their F -
points, and the F -points of their quotients; these measures are canonical,
as any two volume forms with these properties are multiples of each other
by elements of o×.

We consider the spaces S(Z) and S(W) of coinvariants corresponding
to X1, resp. X2, as defined previously. We will define distinguished vectors
f0Z , f

0
W on them, the basic vectors.

For S(Z) we define:

f0Z := the image of 1X1(o) ⊗ 1X1(o) in S(Z). (5.9)

(Having fixed measures on the various groups, this image is a well-defined
element of S(Z).)

The description for f0W will be more complicated, as it is a “nonstan-
dard” test function, i.e. not compactly supported. Recall from 4.3 that, in
order to define orbital integrals for the Kuznetsov trace formula as func-
tions, we have chosen a point (x0, y0) ∈ (X2×X2)

+ with image 1 ∈ B, and
have trivialized the fiber of Lψ⊠L−1

ψ over that point. We now assume that

(x0, y0) ∈ (X2 × X2)
+(o), hence after trivializing the fiber and choosing

suitable o-isomorphisms of the stabilizers with N,N− (and of the latter
with Ga) our sections become elements of C∞(N\G×N−\G,ψ⊗ψ−1). In
fact, we may trivialize both the fibers of Lψ over x0 and L−1

ψ over y0, to

consider smooth sections of Lψ (resp. of L−1
ψ ) as elements of C∞(N\G,ψ)

(resp. C∞(N−\G,ψ−1)).
For n ∈ N, we denote by 1xnK the section:

1xnK

(
u

(
̟m

1

)
k

)
(where u ∈ N, k ∈ K) =

{
0, if m 6= n,

ψ(u), otherwise,
(5.10)

of Lψ. As n varies in N, these form a basis for the space of compactly
supported, K-invariant sections of Lψ. We similarly define 1−ynK for L−1

ψ .

For an algebraic representation V of the dual group Ǧ = SL2, denote
by hV the element of the spherical Hecke algebra H(G,K) corresponding
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under the Satake isomorphism:

H(G,K) = C[Rep(Ǧ)]

to the representation V . Here the monoid of dominant weights of Ǧ is
isomorphic to N, and we will be writing hn for hVn

, where Vn is the n-th
highest weight representation.

The Casselman-Shalika formula states that:

hn ⋆ 1x0K = q−
n

2 1xnK . (5.11)

Let Hs be the formal series in the spherical Hecke algebra which corre-
sponds under the Satake isomorphism to the L-function:

L(π,
1

2
+ s)L(π ⊗ η, 1

2
+ s). (5.12)

To understand what this means, we view an L-function L(π, ρ, s) (where ρ
is a representation of the dual group) as a formal series (in the parameter
q−s) of traces of representations:

L(π, ρ, s) =
∞∑

i=0

q−istr(Siρ(π̂)),

where π̂ is the Satake parameter of π, hence the corresponding series in the
Hecke algebra will be:

∞∑

i=0

q−ishSiρ.

We then define, for each s:

Φ0
s := Φ0

1,s ⊗ Φ0
2 = (Hs ⋆ 1x0K)⊗ 1−y0K ∈ C

∞(X2 ×X2,Lψ ⊗ L−1
ψ )K×K .

(5.13)
To see thatHs⋆1x0K , a priori a formal series of elements of C∞c (X2,Lψ),

makes sense as a section of Lψ when we fix s, write Hs = h1,s ⋆ h2,s, where
h1,s corresponds to the L-function L(π, 12 + s) and h2,s corresponds to

L(π⊗ η, 12 + s). Recall that for a representation (ρ, V ) of Ǧ, and t ∈ Ǧ, we
have:

−1

det(I − q−sρ(t)|V ) =
∑

n≥0

q−nstrρ(t)|SnV . (5.14)

Hence:
h1,s =

∑

n≥0

q−n(s+
1
2
)hn,
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h2,s =
∑

n≥0

q−n(s+
1
2
)ǫnhn,

where ǫ = ±1, according as η is trivial or not.
Let Vn denote the highest weight representation of Ǧ corresponding to

the n-th dominant weight, then we have the Clebsch-Gordan formula:

Vm ⊗ Vn =

min(m,n)∑

l=0

Vm+n−2l. (5.15)

We use it to compute the convolution of h1,s with h2,s, i.e. to write the
series:


∑

m≥0

q−m(s+ 1
2
)hm


 ⋆


∑

n≥0

q−n(s+
1
2
)ǫnhn


 =

∑

n,m≥0

q−(n+m)(s+ 1
2
)ǫnhm ⋆ hn =

∑

n,m≥0

min(m,n)∑

l=0

q−(n+m)(s+ 1
2
)ǫnhm+n−2l.

Let k = m + n − 2l, then the restrictions between the different indices
correspond to the system:

l ≤ min(m,n) ≤ l +
k

2
m+ n = k + 2l.

To count all m,n for a given k, we add over all l = 0, 1, . . . and have two
cases: either m = min(m,n), in which case m ranges over: l ≤ m ≤ ⌊k2 ⌋; or
m > min(m,n) in which case n ranges over: l ≤ n ≤ l+ ⌊k+1

2 ⌋. Altogether,
n ranges from l to k + l. Therefore, the coefficient for hk will be:

∞∑

l=0

q−(k+2l)(s+ 1
2
)
k+l∑

n=l

ǫn =
∞∑

l=0

ǫlq−(k+2l)(s+ 1
2
) ·





k + 1 if ǫ = 1,

0 if ǫ = −1, kis odd,
1 if ǫ = −1, kis even.

Hence,

Φ0
1,s = Hs ⋆ 1x0K =

∞∑

n=0

q−n(s+1)

1− ǫq−2s−1
· 1xnK ·





k + 1 if ǫ = 1,

0 if ǫ = −1, kis odd,
1 if ǫ = −1, kis even.

(5.16)
We deduce:
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Lemma 5.3 For each fixed s such that 1− ǫq−2s−1 6= 0, Φ0
1,s makes sense

as a smooth section of Lψ. Moreover, for s = 0 we have: Φ0
0 ∈ S(X̄ ×X,

Lψ ⊠ L−1
ψ ).

Proof Only the last assertion remains to be proven. We denote by F 0
1,s

the K-invariant function on X2 which, under the above trivializations, is
equal to Φ0

1,s on diagonal elements; that is, F 0
1,s is given by the same series,

but 1xnK is replaced by 1′xnK
:= the characteristic function of the K-orbit

represented by diag(̟n, 1). Then it is easy to see that Φ0
1,s is the product

of F 0
1,s by a section of Lψ which extends to P1. Therefore, it suffices to

prove that F 0
1,0 satisfies, in the notation of §4.5:
(
1− δ− 1

2 (a)La

)
·
(
1− ηE/F δ−

1
2 (a)La

)
F 0
1,0 = 0.

This follows immediately from the fact that Ldiag(̟m,1)1
′
xnK

=

q
m

2 1′xn−mK
.

�

Therefore, we may define the basic vector:

f0W := the image of Φ0
0 in S(W). (5.17)

5.4 Fundamental lemma

Finally, we arrive at the “fundamental lemma” for elements of the Hecke al-
gebra. Notice that the Hecke algebraH(G,K) does not act on the quotients
S(Z), S(W). However, the Bernstein center does, since these are quotients
of G×G representations (and we accept the convention that it is the Bern-
stein center of the first copy of G which acts). The Bernstein center for the
component of the spectrum corresponding to unramified principal series is
isomorphic to H(G,K) under the natural map; therefore, we will abuse
notation to write h ⋆ f for h ∈ H(G,K) and f ∈ S(Z) or S(W). Of course,
this discussion serves only aesthetic purposes and is redundant otherwise,
as we will only use such expressions for f = the image of a K×K-invariant
function/section Φ1 ⊗ Φ2, and then h ⋆ f can be interpreted as the image
of (h ⋆ Φ1)⊗ Φ2.

Theorem 5.4 For f0Z , f
0
W the basic vectors defined in the previous subsec-

tion, and all h ∈ H(G,K), the integral transform | • |G satisfies:

| • |G
(
h ⋆ f0Z

)
= h ⋆ f0W . (5.18)
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This could be proven by explicit calculations as follows: On one hand,
one can explicitly compute the orbital integrals of characteristic functions
of K-orbits (or the “characteristic sections” 1xnK ⊗ 1−ymK of the previous
subsection); some of those computations are exhibited in Section 6. On the
other hand, one can use a Casselman-Shalika type formula (which in this
case is one of the easiest cases of the general formula computed in [Sakb])
to explicitly describe the Hecke action in terms of those characteristic func-
tions.

Since this is tedious and not particularly informative, but mainly in
order to demonstrate how the contents of the present paper are simply
reflections, at the level of orbital integrals, of certain transforms taking
place “upstairs” at the level of G-spaces plus prior work of Jacquet on the
results of Waldspurger, we follow a shortcut; it is important to realize,
though, that nothing in the present paper depends on the existence of this
shortcut, as it could be done directly.

Proof For the proof we will introduce intermediate “spaces” Z1 and W1

and we will prove “fundamental lemmas” for each step in the sequence:

S(Z)↔ S(Z1)↔ S(W1)↔ S(W).

Just for this proof, we write P, P1, Q1, Q for the basic functions that
have been defined, or will be defined, for the above spaces.

Symbolically, we have:

Z1 = A\G/(A, η),

where A is the split torus of diagonal elements and η(diag(a, 1)) = ηE/F (a)
— in particular, Z1 = Z in the split case; and:

W1 = (N,ψ)\G/(N−, ψ−1),

but with different test functions than W.
More precisely, now, we define S(Z1) as the space of functions on

B r {0,−1} obtained by orbital integrals of elements of the space:

S(A\G×A\G, 1⊗ η).

We use here the same parametrization for A\G/A as discussed in Section 3,
but since there is a nontrivial character η we also need to specify represen-
tatives for the orbits which allow us to think of orbital integrals as functions
on the regular set of B. For Φ1 ⊗ Φ2 ∈ S(A\G×A\G, 1⊗ η) we define:

Oξ(Φ1 ⊗ Φ2) =

∫

G

Φ1

((
−ξ 1 + ξ

−1 1

)
g

)
Φ2(g)dg. (5.19)



568 Yiannis Sakellaridis

Throughout we assume smooth o-models for our groups, and Haar mea-
sures arising from residually nontrivial integral volume forms. The “basic
function” is, of course, the image of Φ1 = the characteristic function of
(A\G)(o) and Φ2(ak) = η(a) for a ∈ A, k ∈ K = G(o), Φ2 = 0 off AK.

Jacquet has shown in Proposition 5.1 of [Jac86] that there is a “funda-
mental lemma for the Hecke algebra” between Z and Z1, that is:

h ⋆ P = h ⋆ P1 (5.20)

for all h ∈ H(G,K) and ξ ∈ Breg
Z = B r {0,−1}. The parametrization of

orbits is different in loc.cit., as are the volumes, but in the end there is no
need to normalize by volume factors — as can easily be checked by taking
ξ ∈ Breg

Z (o).
Now we introduce the space S(W1), or rather just its basic vector Q1.

This space will consist of the orbital integrals of certain smooth — but not
Schwartz — sections of Lψ⊠L−1

ψ over X×X, where X = N\G. The basic
vector Q1 will be obtained from the section Φ1⊗Φ2, where Φ1 = H1 ⋆1x0K

and Φ2 = H2 ⋆1
−
y0K

, in the notation of §5.3; Here H1 and H2 are the formal
series in the Hecke algebra corresponding to the L-values:

L(π,
1

2
)

and

L(π ⊗ η, 1
2
),

respectively. How to make sense of Φ1, Φ2 as sections is completely analo-
gous to the discussion of §5.3.

We claim that there is a “fundamental lemma for the Hecke algebra”
between S(W1) and S(W), that is:

h ⋆ Q1 = h ⋆ Q (5.21)

for all h ∈ H(G,K) and ξ ∈ Breg
W = B×. It is convenient here to move

to the domain of convergence by introducing a parameter s, i.e. func-
tions Hs

i defined as before, with the L-values taken at 1
2 + s instead of 1

2 ;
we let Qs1 the corresponding function of orbital integrals. Then, writing
Hs

1 =
∑
n c(n, s)hn, H

s
2 =

∑
n d(n, s)hn, where hn is the Hecke element

corresponding to the n-th dominant weight of the dual group, we have:

h ⋆ Qs1(ξ) =
∑

m,n

c(m, s)d(n, s)Oξ(h ⋆ hm ⋆ 1x0K , hn ⋆ 1
−
y0K

)

for ℜ(s) large, by the fact that for such s the regular orbital integrals are
actual, convergent, integrals.
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For an element h in the full Hecke algebra of G, we denote by h∨ its
linear dual: h∨(g) = h(g−1). Elements of the spherical Hecke algebra of
PGL2 are all self-dual. Since orbital integrals are invariant by the diagonal
action of G, we get:

h ⋆ Qs1(ξ) =
∑

m,n

c(m, s)d(n, s)Oξ(hn ⋆ h ⋆ hm ⋆ 1x0K , 1
−
y0K

)

= Oξ(H
s
2 ⋆ h ⋆ H

s
1 ⋆ 1x0K , 1

−
y0K

).

Finally, using the commutativity of the spherical Hecke algebra, this is
equal to: Oξ(h ⋆ H

s
1 ⋆ H

s
2 ⋆ 1x0K , 1

−
y0K

) = h ⋆ Qs. Hence, h ⋆ Qs1 = h ⋆ Qs

for ℜ(s) large.
Taking the limit (analytic continuation) as s → 0 we obtain (5.21).

Taking the limit is justified as follows: on one hand, the sections H1 ⋆ 1x0K

etc. are, by definition, pointwise limits of the sections Hs
1 ⋆ 1x0K etc. On

the other, for given ξ and sufficiently large m or sufficiently large n we have

Oξ

(
(hm1x0K)⊗ (hn ⋆ 1

−
y0K

)
)
= 0; this will be seen in §6.3.

We are left with showing the fundamental lemma for the passage S(Z1)
↔ S(W1). To achieve that we will work on the level of spaces, and translate
the “unfolding” method of Hecke to orbital integrals.

Let f1∈S(A\G, δs), f ′1∈S(A\G, ηδs). Recall that δs(diag(a, 1)) = |a|s.
We define:

f2(g) =

∫

N

f1(ng)ψ
−1(n)dn ∈ C∞(N\G,ψ)

and:

f ′2(g) =

∫

N

f ′1(nwg)ψ
−1(n)dn ∈ C∞(N−\G,ψ−1),

where w =

(
1

−1

)
.

We claim:

Lemma 5.5 If f1 is the basic function of A\G, i.e. the function supported
on AK with f ′1(ak) = δs(a), then f2 = L(•, 12 + s) ⋆ 1x0K , where by the
L-value we mean the corresponding element of the Hecke algebra H(G,K).
If f ′1 is the basic function of (A\G, ηδs), i.e. the function supported on AK
with f ′1(ak) = ηδ−s(a), then f ′2 = L(π ⊗ η, 12 + s) ⋆ 1−y0K .

Proof Assume that π is an irreducible unramified representation and Wπ

the spherical Whittaker function of π with respect to (N,ψ−1), normalized
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so that Wπ(1) = 1. Since by the Casselman-Shalika formula each 1xnK is
up to a constant a multiple of hn ⋆ 1x0K we can write f2 as a formal sum:

∞∑

n=0

c(n)hn ⋆ 1x0K ,

so that if the integral: ∫

N\G
Wπ(g)f2(g)dg

is convergent, it is equal to:

∑

n

c(n)trVn(π̂)

∫
Wπ(g)1x0

(g)dg = Vol(N\G(o))
∑

n

c(n)trVn(π̂),

where Vn is the n-th irreducible representation of the dual group and π̂ the
Satake parameter of π. Therefore we just need to compute this integral.

We write:

∫

N\G
Wπ(g)f2(g)dg =

∫

G

Wπ(g)f1(g)dg =

∫

A\G

∫

A

Wπ(ag)δ
s(a)daf1(g)dg = Vol(A\G(o))

∫

A

Wπ(ag)ηδ
s(a)da.

It is well-known (and follows easily from the Casselman-Shalika formula)
that the last integral is absolutely convergent for ℜ(s) > − 1

2 , and equal to

Vol(A(o))L(π, 12 + s). This implies the claim, since Vol(A\G(o))Vol(A(o))
Vol(N\G(o)) =

Vol(N(o)) = 1.
This proves the lemma for f2, and the proof for f ′2 is identical.

�

We continue with the proof of Theorem 5.4. By the previous lemma,
when s = 0, we have h ⋆ P1(ξ) = Oξ(f1 ⊗ f ′1) and Q1(ξ) = Oξ(f2 ⊗ f ′2)
when f1 = h⋆(the basic function of (A\G, δs)) and f ′1 =(the basic function
of (A\G, ηδs)). We want to investigate the relationship between orbital
integrals for f1⊗ f ′1 and those for f2⊗ f ′2, when s = 0; as before, those will
be the analytic continuation of the ones for ℜ(s)≫ 0, where they are given
by convergent integrals. We denote the Fourier transform of f1 along N :

f̂1(y, g) =

∫

N

f1(ng)ψ
−1
y (n)dn,

where ψy

((
1 x

1

))
= ψ(yx), and similarly for f̂ ′1(y, g).
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Clearly, f2(g) = f̂1(1, g), f
′
2(g) = f̂ ′1(1, wg). Moreover, f̂1(y, diag(a, 1)g)

= |a|s+1f̂1(ay, g) and f̂
′
1(y, wdiag(a, 1)(g)) = η(a)|a|−s−1f̂ ′1(a

−1y, g). Hence
we have:

Oξ(f2, f
′
2) =

∫

G

f̂1(1, diag(ξ, 1)g)f̂
′
1(1, wg)dg =

|ξ|s+1

∫

A\G

∫

F×
f̂1(aξ, g)f̂

′
1(a

−1, wg)η(a)dadg.

The function ξ 7→
∫
F×

f̂1(aξ, g)f̂
′
1(a

−1, wg)η(a)da can be seen as an

orbital integral on Ga
2 with respect to the action of the multiplicative

group: a · (x, y) = (ax, a−1y). Thus, we are in the split “baby case” of
Section 2, except that we also have a character η(a) in the orbital integrals.
Moreover, we are applying those orbital integrals to the Fourier transform
of a Schwartz function on Ga

2 (indeed, the restrictions of f1, f
′
1 to unipotent

orbits are Schwartz functions). We have then seen in 2 (for the case η = 1,
but the case η 6= 1 is similar) that:

∫

F×
f̂1(aξ, g)f̂

′
1(a

−1, wg)η(a)da =

G
(
c 7→

∫

F×
f1

((
1 ca

1

)
g

)
f ′1

((
1 a−1

1

)
wg

)
η(a)da

)
. (5.22)

It follows that:

Oξ(f2, f
′
2) =

|ξ|s+1 · G


c 7→

∫

A\G

∫

F×

f1

((
1 ca

1

)
g

)
f ′1

((
1 a−1

1

)
wg

)
η(a)dadg


 =

|ξ|s+1G
(
c 7→

∫

A\G

∫

F×
f1

((
1 c

1

)(
a−1

1

)
g

)
·

f ′1

((
1 1

1

)(
a

1

)
wg

)
dadg

)
=

|ξ|s+1G
(
c 7→

∫

G

f1

((
cc1 c

1

)
g

)
f ′1

((
1 1

1

)
wg

)
dg

)
=

|ξ|s+1G (c 7→ Oc(f1 ⊗ f ′1)) .

This proves the theorem.
�
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6 Variation With a Parameter and Explicit

Calculations

For global applications we will not be able to use the space of nonstandard
sections for the Kuznetsov quotient directly. The reason is that, spectrally,
they correspond to values of L-functions on the critical line, where global
Euler products are non-convergent. We therefore need to introduce varia-
tions of this space, corresponding to the parameter s in:

L(π,
1

2
+ s)L(π ⊗ η, 1

2
+ s).

We conclude with this, and some explicit calculations.

6.1 Nonstandard Whittaker space depending on s.

We generalize the definitions of §4.5 to an arbitrary parameter s ∈ C (the
previous case corresponding to s = 0), borrowing freely notation from
there.

We let Ms(X̄ × X,Lψ ⊠ L−1
ψ ) (resp. Ss(X̄ × X,Lψ ⊠ L−1

ψ )) denote

the Schwartz cosheaf over X̄ × X consisting of smooth measures (resp.
functions) on X ×X, valued in Lψ ⊠ L−1

ψ , with the following properties:

• the restriction of the cosheaf to X × X coincides with the standard
cosheaf of Schwartz measures (resp. functions) valued in Lψ ⊠ L−1

ψ ;

• in a neighborhood of P1×X they are finite sums of the form
∑
i fiFi,

where:

1. the fi’s are Lψ ⊠ L−1
ψ -valued Schwartz functions on X̄ ×X;

2. the Fi are scalar-valued measures (resp. functions) on X × X
which are G-invariant in the second coordinate, and in the first
coordinate are annihilated asymptotically by the operator:

(
1− δ− 1

2
−s(a)La

)
·
(
1− ηE/F δ−

1
2
−s(a)La

)
. (6.1)

We let M(Ws) denote the G-coinvariants of Ms(X̄ × X,Lψ ⊠ L−1
ψ ).

Again, using the trivializations of Lemma 4.2, we have a map fromM(Ws)
to measures on B×. Finally, we identify those with functions on B×, by
dividing them by |ξ|−2dξ (see the discussion following Lemma 4.3), and
get the local Schwartz space S(Ws) of the Kuznetsov trace formula with
parameter s, consisting of functions on B×. This is the space of orbital
integrals of elements of Ss(X̄ ×X,Lψ ⊠ L−1

ψ ).
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6.2 Basic vector

We now come to the setting of §5.3, adopting (until the end of the section)
all the conventions and notation from there. In particular, F is nonar-
chimedean and we have good integral models, measures, and isomorphisms
for everything. We only denote here by X what was denoted there by
X2; namely, the space N\PGL2. We defined in 5.3 certain sections Φ0

s of
Lψ ⊠ L−1

ψ over X ×X. In analogy with Lemma 5.3 we have:

Lemma 6.1 The section Φ0
s belongs to Ss(X̄ ×X,Lψ ⊠ L−1

ψ ).

The proof is identical to that of Lemma 5.3. We define f0s to be the
image of Φ0

s in S(Ws). (In comparison to §5.3, we omit the index W since
here we only work on the Kuznetsov space, and introduce the index s so
that the previous f0W is now f00 .)

6.3 Orbital integrals for the characteristic sections

Recall that 1xmK denotes a certain compactly supported section of Lψ
defined in §5.3, and 1−ymK a compactly supported section of L−1

ψ . Now we
compute the orbital integral:

Oξ(1xmK ⊗ 1−y0K)

for ξ ∈ F×. We also identify ξ with the representative

(
ξ

1

)
of N\G/N−,

according to §4.3.
We have:

Oξ(1xmK ⊗ 1y0K) =

∫

N−\G

∫

N−
1xmK(ξng)ψ−1(n)dn · 1−y0K(g)dg =

Vol(X(o))

∫

N−
1xmK(ξn)ψ−1(n)dn.

Let n =

(
1

x 1

)
∈ N , then ξn admits the following Iwasawa decompo-

sition (G = NAK):

• if |x| ≤ 1: then ξ ∈ A, n ∈ K;

• if |x| > 1: then ξn =

(
1 ξx−1

1

)(
−ξx−1

x

)(
1

1 x−1

)
.
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Therefore,

∫

N−
1xmK(ξn)ψ−1(n)dn =

1xmK

(
ξ

1

)
+

∞∑

i=1

1xmK

(
ξ̟i

̟−i

)∫

p−irp−i+1

ψ(ξx−1 − x)dx.

Thus we get:

• if |ξ| = q−m: Oξ(1xmK ⊗ 1−y0K) = VolX(o);

• if |ξ| = q2i−m for some i > 0:

Oξ(1xmK ⊗ 1−y0K) = VolX(o)

∫

p−irp−i+1

ψ(ξx−1 − x)dx;

• zero otherwise.

For the integral in the second case, we have |ξx−1| = |x|q−m ≤ |x|. Hence:

• If m ≥ 1 and i > 1 then as x varies in a ball of radius q, ξx−1 varies
in a ball of radius ≤ 1, therefore the integral is zero.

• If m ≥ 1 and i = 1, i.e. |ξ| = q2−m then as x varies in p−1 r o,
ψ(ξx−1) = 1 and we get: Oξ1xmK = −VolX(o).

• Finally, if m = 0 and |ξ| > 1 then we get (with a change of variables
x 7→ −x): Oξ1xmK = VolX(o)

∫
|x|2=|ξ| ψ(x− ξx−1)dx.

To summarize:

Oξ(1xmK ⊗ 1−y0K) =

VolX(o) ·





1 if |ξ| = q−m;

−1 if |ξ| = q2−m,m ≥ 1;∫
|x|2=|ξ| ψ(x− ξx−1)dx if |ξ| > 1,m = 1.

(6.2)

Remark 6.2 We notice that for any ξ and sufficiently large m we have
Oξ(1xmK⊗1y0K) = 0. Thus, for an element Φ ∈ Ss(X̄×X,Lψ⊠L−1

ψ )K×K

which can be written as a series:

Φ =
∑

m≥0

c(m)(1xmK ⊗ 1−y0K),

a regular orbital integral Oξ(Φ) can be written as an eventually stabilizing
series (compare with Lemma 4.11):

Oξ(Φ) =
∑

m≥0

c(m)Oξ(1xmK ⊗ 1−y0K).



Beyond Endoscopy for the Relative Trace Formula I 575

6.4 Orbital integrals of the basic function

Recall that the basic vector f0s ∈ S(Ws) is obtained by the orbital integrals
of Φ0

s = (Hs ⋆ 1x0K) ⊗ 1−y0K , where Hs is the formal series in the Hecke

algebra corresponding to the unramified L-factor L(π, 12 +s)L(π⊗η, 12 +s).
We compute its regular orbital integrals, according to the previous remark.

Lemma 6.3 We have:

f0s (ξ) = Oξ(Hs ⋆ 1x0K ⊗ 1y0K) =

Vol(X(o))L(η, 2s+ 1)
(
|ξ|s+1 · (I − q−2s−1̟2·)f(ξ) + 1|ξ|=q2 +K(ξ)

)
,

(6.3)

where:

• K(ξ) denotes the function which is supported on |ξ| > 1 and equal to:∫
|x|2=|ξ| ψ(x− ξx−1)dx there. (K stands for “Kloosterman”.)

• f is the function supported on |ξ| ≤ 1 and equal, there, to:

{
1− logq |ξ| in the split case,
1+η(ξ)

2 in the non-split case;

• the action of ̟2 is normalized as in (2.14).

Proof Indeed, for given ξ with |ξ| = q−n, the first term expresses the
contributions of 1xnK and 1xn+2K whenever those are nonzero, according
to the first two cases of (5.16). However, there is no contribution from 1x0K

when |ξ| = q2, and this is what the second term is correcting. The third
term expresses the contribution of 1x0K when |ξ| > 1.

�

A Almost Smooth Functions, Schwartz and

Tempered Functions

A.1 Almost smooth functions

The space of smooth functions on a real manifold has the structure of a
Fréchet space. We would like, for the purpose of uniformity, to define a
similar Fréchet space of functions for a p-adic manifold X, i.e. for a topo-
logical space equipped with an atlas of “p-adic analytic functions”, which is
locally isomorphic to the ring of p-adic analytic functions on on (where, as
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usual o denotes the ring of integers of a local nonarchimedean field F ). The
usual notions of “locally constant” and “uniformly locally constant” (when
there is some uniform structure) functions do not lead to Fréchet spaces.
We are going to define a new class of functions, which in this appendix
will be called “almost smooth” and in the rest of the paper, for simplic-
ity, just “smooth”. Also, in this appendix we will be denoting the space
of these functions by C∞+, but in the rest of the paper just by C∞. Fi-
nally, for any statement about “almost smooth” functions in this appendix,
when applied to real manifolds, the word “almost” should be disregarded;
and moreover, complex manifolds and varieties will be considered as real
manifolds/varieties.

Almost smooth functions will form a sheaf for the usual Hausdoff topol-
ogy on X, and therefore it is enough to describe them locally around each
point x ∈ X.

We choose an analytic chart for a neighborhood U of x, so that it
becomes isomorphic to on with its ring of analytic functions. Then we
identify C∞+(U) with C∞+(on), the space of almost smooth functions on
on, defined as those complex-valued functions of the form:

f =
∑

i≥0

fi (A.1)

on on, where fi is invariant under p
i×· · ·×pi and for every N > 0 there is a

scalar C such that ‖fi‖∞ < Cq−iN for all i. In other words, the supremum
norms vanish faster than any power of the level. It is a Fréchet space under
any of the following equivalent systems of seminorms:

Lemma A.1.1 On the space of continuous functions on on, the following
seminorms define tamely equivalent8 Fréchet spaces:

1. ‖f‖N := supi≥−1,x∈on qiN |f(x)−Ki ⋆ f(x)|;
2. ‖f‖N := supi≥−1,x∈on qiN |Ki+1 ⋆ f(x)−Ki ⋆ f(x)|;
3. ‖f‖∞, and ‖f‖N := supx∈on supy∈onr{0} |y|−N |f(x)− f(x+ y)|

(where |(y1, . . . , yn)| = supi |yi|).

Here Ki is the characteristic measure of pi × · · · × pi, convolution is in the
additive group on, and by convention K−1 ⋆ f = 0.

8Recall that a tame Fréchet space is a Fréchet space with a presentation as a count-
able inverse limit of Banach spaces Bn, and a map T : lim←Bn → lim←B′n is tame if
there are integers b and r so that for all n ≥ b the map T is continuous from Bn+r to
B′n.



Beyond Endoscopy for the Relative Trace Formula I 577

It is clear that the Fréchet structure is preserved under analytic au-
tomorphisms, thus the notion of an almost smooth function on a p-adic
manifold is well-defined. Notice that, like smooth functions, these “almost
smooth” functions have vanishing derivatives, for any reasonable notion of
“derivative”, for instance for any Z ∈ on we have:

lim
t→0

f(tZ)− f(0)
|t| = 0.

Therefore, any statements about derivatives in the nonarchimedean case,
throughout the paper, should be taken to concern only the zeroth derivative.
However, we will encode the issue of how fast a function varies in what
we will call “pseudo-derivatives”, a notion that is related to the seminorms
defined above.

A.2 Semialgebraic sets and charts

We recall that a semialgebraic set on a real algebraic variety X is obtained
by a boolean combination (i.e. by taking unions and complements a finite
number of times) of subsets of X(R) given by an inequality of the form
f ≥ 0, where f is a regular function. For a smooth algebraic variety X
over a nonarchimedean field F , on the other hand, semialgebraic sets are
defined as boolean combinations of sets of the form:

{x ∈ X(F )|f(x) ∈ Pk}, where Pk = {yk|y ∈ F},

f is a regular function, and k ∈ N≥2, cf. [Den86]. By definition, a map:
X → Y between semialgebraic sets is called semialgebraic if its graph is
semialgebraic.

The above sets are the basic closed sets for the restricted topology of
semi-algebraic sets (restricted means: only finite unions of open sets are
required to be open), and this is the topology we will be using when talk-
ing about “open” and “closed” sets and neighborhoods, unless otherwise
specified.

Notice that, in general, the notion of closure is not well-behaved for
restricted topologies. However, for semialgebraic sets the following is true:
The closure of a semialgebraic set in the usual (Hausdoff) topology is closed
semialgebraic; hence, the notion of closure is well behaved, and closure in
semialgebraic topology coincides with closure in the Hausdorff topology.

By a smooth semialgebraic set we will mean an open semialgebraic sub-
set of the points of a smooth variety. (One can more generally define
“semialgebraic manifolds”, but we will not need this.) For the description
of tempered functions, we will need to introduce a notion of “semialgebraic
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chart” for smooth semialgebraic set U in the nonarchimedean case. By a
semialgebraic chart of U we mean a finite partition into open-closed subsets:
U =

⊔
j Uj and, for every j, a semi-algebraic isomorphism αj : Vj

∼−→ Uj
with an open semialgebraic subset Vj of Fn which is on-stable (under ad-
dition in Fn).

Lemma A.2.1 Semialgebraic charts exist.

Proof It is easy to see that any smooth semialgebraic set in the nonar-
chimedean case is isomorphic to a finite disjoint union of open semialgebraic
subsets of Fn, so there remains to consider the case that U ⊂ Fn, in order
to show that one can find an on-invariant chart.

For simplicity, we only show that this is the case for the basic open set
{x|f(x) /∈ Pk} where Pk is the set of k-th powers of elements of F as above
and f is a polynomial; the general case is only notationally more compli-
cated. We may even restrict to the intersection of this set with on, by
partitioning the set and inverting coordinates as appropriate. Away from
any neighborhood of the zero set of f (in on) the condition: f(x) /∈ Pk is
locally constant in x, hence uniformly locally constant, hence multiplying
the coordinates by a suitable scalar will give the required chart. We are
left with finding an on-invariant chart for a neighborhood of the zero set
Z ⊂ on of f . By a resolution of singularities (which will be recalled in
the next appendix, Theorem B.1.2), we can replace a neighborhood of Z
by a compact semialgebraic set V of the same dimension, so that the pull-
back of f is, in semialgebraically-local coordinates (y1, . . . , yn), of the form:
c · yi11 · · · yinn . Then the claim is easy to show.

�

A.3 Schwartz functions

If U is an open semialgebraic subset of (the points of) a real or p-adic
variety, we will define the space S(U) of Schwartz functions on U as a
space of smooth (in the archimedean case), resp. almost smooth functions
(in the nonarchimedean). The definition in the archimedean case is well-
known, but to construct its analog for the nonarchimedean case we need
to take into account not only the growth of f , but also the growth of the
summands fi of an expression as in (A.1). For this, we will introduce the
following analog of differential operators:

Definition A.3.1 Let U be an open subset of the points of a smooth p-adic
variety and C := (Ui, Vi, αi)i a semialgebraic chart of U . For each almost
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smooth function f on U and eachN ≥ 0 we define theN -th pseudoderivative
of f with respect to C to be equal to f if N = 0, and otherwise:

fC,(N)(x) = sup
y∈onr{0}

|y|−N |f(x)− f(x+ y)|, (A.2)

where the “sum” x+ y should be interpreted in terms of the chart C — i.e.
it really means: αi(α

−1
i x+ y) for x ∈ Ui.

It is easy to prove:

Lemma A.3.2 If C, C′ denote two different charts, for every N there is a
semialgebraic function T such that:

|fC,(N)(x)| ≤ |T (x)| · |fC′,(N)(x)|.

As a corollary, the notions of Schwartz and tempered functions that we are
about to define do not depend on the choice of chart; we will omit the chart
from the notation for pseudoderivatives from now on.

Now we define Schwartz functions on U . We recall that a “Nash dif-
ferential operator” is a “smooth semialgebraic” differential operator, cf.
[AG08]. In particular, the growth of these operators is bounded, locally for
the semialgebraic topology, by regular functions.

Definition A.3.3 The space S(U) of Schwartz functions on U consists of
those smooth functions on U , in the archimedean case, resp. almost smooth
in the nonarchimedean case, with the property:

• for every Nash differential operator D on U , in the archimedean case,
and for every (equivalently: some) chart C, every N ≥ 0 and semi-
algebraic function T , in the nonarchimedean case, the function Df ,
resp. Tf (N), is bounded.

The space of Schwartz functions on U is naturally a nuclear Fréchet
algebra; its topology is generated by the seminorms:

sup
x∈U

|Df(x)|,

in the archimedean case, where D varies over all Nash differential operators
(evidently, a countable number of them suffices), and:

sup
x∈U

|T (x)f (N)(x)|

in the nonarchimedean, where N ∈ N and T varies over all semialgebraic
functions on U (again, a countable number suffices).

We will discuss in appendix B cosheaf-theoretic properties of Schwartz
functions. The following will be a consequence of B.1.1:
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Proposition A.3.4 Schwartz functions on U are precisely those functions
which for one, equivalently any, smooth compactification Ū of U extend to
smooth functions (in the archimedean case) resp. almost smooth functions
(in the non-archimedean case) all of whose derivatives vanish on Ū r U .

We remind that any statement about derivatives should be understood to
apply only to the zeroth derivative in the nonarchimedean case.

A.4 Tempered functions

Definition A.4.1 If U is an open semialgebraic subset of (the points of)
a smooth real or p-adic variety, we define the space O(U) of tempered func-
tions on U as those smooth (in the archimedean case), resp. almost smooth
(in the nonarchimedean) functions f on U with the property:

• In the archimedean case, for every Nash differential operator D on
U there is a semialgebraic function T on U with |Df | ≤ |T |; in the
nonarchimedean, for every (equivalently: one) chart C and any N ∈ N
there is a semialgebraic function T on U with |f (N)| ≤ |T |.

The space O(U) of tempered functions on U is an algebra which acts
on the space of Schwartz functions:

O(U)⊗ S(U)→ S(U).

Moreover, each f ∈ O(U) is a bounded operator on S(U). We endow
O(U) with the strong operator topology on the Fréchet space S(U); this way
it becomes a locally convex topological algebra. By definition, convergence
to zero of a net (fα)α ⊂ O(U) in the strong topology means that fαφ→ 0
for every φ ∈ S(U). Since S(U) is a nuclear, and hence Montel Fréchet space
(i.e. bounded sets are precompact), it is known that this topology coincides
with the operator topology of uniform convergence on bounded/compact
sets [Köt79, p. 139]. It is easy to describe sequential convergence in this
topology:

Lemma A.4.2 For a sequence fn ∈ O(U) we have fn → 0 iff:

1. fn → 0 in C∞(U) (with the usual Fréchet topology of locally uniform
convergence of all derivatives), resp. in C∞+(U), and

2. for each Nash differential operator D, resp. for each chart C and in-
teger N , there is a semialgebraic function T such that:

|Dfn| ≤ |T |, resp. |f (N)
n | ≤ |T | for all n.
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Proof It is clear that such a sequence is a null sequence. Vice versa,
it is clear that a null sequence should converge to zero in C∞(U), resp.
C∞+(U). The proof of the second condition is reduced to tempered func-
tions on F by the resolution of singularities that will be recalled in the
next appendix (Theorem B.1.2). We prove that all fn should be bounded
by some |x|N , for some N , in a neighborhood of ∞ (the proof for deriva-
tives/pseudoderivatives is similar): if not, there is a Schwartz function φ
on F with supx |fn(x)φ(x)| bounded below. Thus, fn cannot be a null
sequence.

�

In particular, O(U) is sequentially complete. In fact, it can be shown
that it is a complete, nuclear topological vector space, but we will not
use this.

B Schwartz Cosheaves

In this appendix we formalize certain properties of Schwartz functions.
These properties are obvious for the Schwartz functions themselves, but
not totally obvious for their coinvariants, hence the language that we are
introducing is helpful in analyzing orbital integrals.

From now on, as in the main body of the text, “smooth” function
means “almost smooth” at nonarchimedean places. Throughout
this section, X denotes the F -points of a smooth algebraic variety over
a local field F , “closed” and “open” refer to the restricted topology of
semialgebraic sets.

Finally, to avoid repeating the same dichotomy again and again, any
mention of “a Nash differential operator D” should be understood,
in the nonarchimedean case, as the data consisting of:

1. a semialgebraic chart C;
2. an integer N ≥ 0;

3. a semialgebraic function T .

Then, a statement about the function Df should be replaced by the analo-
gous statement about the function |T |f (N), as in the definition of Schwartz
functions in Appendix A. On the other hand, we keep our convention that
any statement about derivatives should be understood to apply
only to the zeroth derivative in the nonarchimedean case. By con-
sistently using the phrases “Nash differential operator” and “derivative”,
this should cause no confusion.
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B.1 The sheaf of tempered functions

The association U → O(U), where O(U) denotes the space of tempered
functions on U (§A.4), is a sheaf of topological algebras on X. We will
consider it as the “structure sheaf”, in the sense that all other sheaves will
be modules for it.

Except for the general sheaf properties, what is interesting for us now is
the following relation between topology and algebra structure: Any closed
S ⊂ X gives rise to the sheaf of ideals JS ⊂ O of functions vanishing on S.
We denote by J n

S (U) the closed ideal of O(U) generated by n-fold products
of elements in JS(U); we write KS(U) = ∩nJ n

S (U). Both J n
S and KS are

sheaves on X.

Lemma B.1.1 The sheaf KS is the sheaf of tempered functions which van-
ish, together with all their derivatives, on S; in particular, in the nonar-
chimedean case KS = JS. Equivalently, for each open U ⊂ X the space
KS(U) consists of those tempered functions f on U with the property that
for any Nash differential operator D on U r S the function Df is bounded
in a neighborhood of S ∩ U .

Before we prove the lemma, we mention a basic tool for our proofs,
namely the embedded resolutions of singularities, in the following sense:

Theorem B.1.2 For every smooth semialgebraic set X and a closed semi-
algebraic subset S ⊂ X, there is a smooth semialgebraic set X̃ and a proper
morphism p : X̃ → X, such that:

1. p is an isomorphism away from S;

2. there is a finite open cover X̃ =
⋃
Ui and, on each Ui, semialge-

braic coordinates (y1, . . . , yn) such that p−1(S) ∩ Ui is given by finite
intersections and unions of sets of the form:

{x|f(x) ≥ 0},

in the (real) archimedean case, and:

{x|f(x) ∈ Pk}, Pk = {yk|y ∈ F},

in the nonarchimedean case, where f = cyi11 · · · yinn , ij ∈ N.

This follows from Hironaka’s embedded resolution of singularities [Hir64,
Corollary 3, p. 146].

Along with the previous lemma, we will also prove the following, which
will be useful elsewhere:
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Lemma B.1.3 Consider a resolution X̃ → X as in Theorem B.1.2. Then
for every open U ⊂ X with preimage Ũ ⊂ X̃, the pullback gives rise to an
equality:

KS(U) ≃ KS̃(Ũ).

Proof (of Lemmas B.1.1 and B.1.3) We first prove that an element
f ∈ O(U) belongs to all J n

S (U) if and only if it vanishes on S ∩U together
with all its derivatives. One direction is easy: it is clear that any element
of J n

S (U) has vanishing i-th derivatives, for i ≤ n, on all points of S.
Vice versa, consider a resolution X̃ → X as in Theorem B.1.2. If Ũ is

the preimage of U , it is easy to see (by reduction to Ũ = Fn with S̃ =
a “standard” semialgebraic set defined by conditions on the coordinate
functions) that if a smooth function vanishes with all its derivatives on S̃,
it coincides locally around each point of S̃ with the restriction of a Schwartz
function on ŨrS̃. (We remind again that in the nonarchimedean case there
are no higher derivatives, so the statement is about almost smooth functions
vanishing on S̃.) Let V denote the (closed) subspace of O(U) consisting of
such functions; we will eventually prove that it coincides with KS̃(Ũ).

To do so, we use two well-known results in the archimedean case, which
can be similarly be proven for the nonarchimedean case, for sets as in
Theorem B.1.2:

1. For every Schwartz function φ on Ũ there is a real-valued, positive
Schwartz function ψ on the same space such that φ

ψ is a Schwartz
function.

2. Every Schwartz function φ on Ũ r S̃ is a product of two Schwartz
functions on the same space.

From this it can immediately be deduced that any f ∈ V can be written
as a limit of fψα, where ψα runs over a suitable system of positive Schwartz
functions on Ũ , directed by majorization; and that every fψα is the product
of two Schwartz functions on Ũ r S̃. But Schwartz functions on Ũ r S̃
belong to V , hence the multiplication map: V ⊗ V → V has dense image.
Since V ⊂ JS̃(Ũ), it follows that V ⊂ J 2

S̃
(Ũ); repeating this argument,

V ⊂ J n
S̃
(Ũ) for all n. Hence V ⊂ KS̃(Ũ), therefore these spaces are equal.

Now, there is a sequence of natural numbers kn → +∞ such that a
smooth function on Ũ which vanishes with all its first n derivatives on
S̃ ∩ Ũ descends to a function on U which vanishes with all its first kn
derivatives on S ∩U (vice versa, if the first n derivatives of a function on U
vanish on S then they also vanish for the pullback to Ũ). This implies
that elements of KS(Ũ) descend to smooth functions on U with vanishing
derivatives on S. Notice that the pullback of O(U) is closed in O(Ũ), and
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the topologies coincide (indeed, since the map X̃ → X is proper, it suffices
for defining the topology on O(Ũ) to consider only those Schwartz functions
on Ũ which are pullbacks of Schwartz functions on U). Again by the fact
that KS̃(Ũ)2 is dense in KS̃(Ũ) we deduce that KS̃(Ũ) ⊂ J n

S (U) for all n,

hence KS̃(Ũ) = KS(U).
�

Now notice that we have an injective map: KS(U)→ O(U r S).

Lemma B.1.4 There is a sequence (un)n ⊂ KS(U) with:

un → 1 in O(U r S).

We will call such a sequence an approximate identity, despite the fact
that it is only bounded in the weaker topology of O(U r S), because it
satisfies:

unf → f for all f ∈ KS(U).

Proof We may choose a countable, increasing filtration of U rS by open
sets Un with the property that the complement of Un contains a neigh-
borhood of U ∩ S. Then we can find a sequence of tempered functions
un ∈ KS(U), with un|Un

≡ 1 and the property that for every Nash differen-
tial operator D on U rS there is a semialgebraic function T on U rS such
that |Dun| ≤ |T | for all n. (Again, this is easier to see with a blowup as in
Theorem B.1.2.) By Lemma A.4.2, the limit of this sequence in O(U r S)
is the constant function 1.

�

We denote the quotient sheaf OS := O/KS . It is supported on S.
Notice that for every quotient of O by an ideal subsheaf I, the map:
O(U) → (O/I)(U) is surjective for every U ; thus, no sheafification is
needed. Indeed, using a partition of unity as in [AG08, Theorem 5.2.1],
we can patch functions fi on a finite cover U =

⋃
i Ui, which agree on inter-

sections modulo I, to a function f ∈ O(U) whose restriction to Ui is ≡ fi
mod I(Ui).

Lemma B.1.5 The sheaf OS can also be described as the completion of O
over the closed subset S:

OS = lim
←
n

O/J n
S . (B.1)

Proof In the nonarchimedean case we have seen that KS = JS , so the
statement is trivial. We discuss the archimedean case.
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First of all, we use a resolution X̃ → X as in Theorem B.1.2. Then we
have, for every U , a commutative diagram of injective maps:

O/KS(U)
� �

//
� _

��

lim←
n

O/J n
S (U)

� _

��

O/KS̃(Ũ)
� �

// lim←
n

O/J n
S̃
(Ũ)

Let us fix a sequence Di of Nash differential operators which generate all
Nash differential operators over the ring of Nash (i.e. smooth semialgebraic)
functions, for the set Ũ . An element of lim←

n

O/J n
S̃
(Ũ) can be represented

(non-uniquely) by a sequence fn ∈ O(Ũ) with the property: for all i ≤ n
we have Difn|S̃ = Difi|S̃ . The topology on lim←

n

O/J n
S̃
(Ũ) is given by

seminorms:
sup
x∈S̃

|T (x)Di(φfn)(x)|,

where T varies over semialgebraic functions on S̃ and φ varies over elements
of S(Ũ).

It is then elementary to construct (by appropriate Taylor series) a
smooth, tempered function f on Ũ with Dif |S̃ = Difi|S̃ for all i. More-

over, for every φ ∈ S(Ũ) the construction of f can be made such that
‖Di(fφ)‖L∞(U) is bounded in terms of a finite number of seminorms of the
form:

sup
x∈S̃

|T (x)Dj(φjfn)(x)|,

where T is semialgebraic and φj ∈ S(Ũ). Thus, the bottom horizontal
arrow of the above diagram is an isomorphism.

But if the given element of O/J n
S̃
(Ũ) comes from O/J n

S (U), all the

derivatives of the constructed function f on S̃ descend to S; therefore,
the function descends to an element of O(U). In other words, the vertical
arrows are closed embeddings into the same subspace, and this proves the
claim.

�

B.2 Schwartz cosheaves

By a Schwartz cosheaf on X we will mean a cosheaf F of nuclear Fréchet
spaces on X, satisfying certain axioms. The extension maps will be denoted
by eUV (where V ⊂ U are open subsets), or simply by e when the source and
target are clear. We will sometimes call the extension maps “extension by
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zero”, to emphasize their geometric meaning. The axioms are expressed in
terms of an arbitrary open subset U (as I do not see a way to make them
“sheaf-theoretic” combining the presence of a sheaf and a cosheaf), and are
the following:

1. The extension maps eUV : F(V )→ F(U) are closed.

2. F(U) is a continuous O(U)-module, i.e. there is a continuous bilinear
map:

O(U)×F(U)→ F(U)

compatible with multiplication on O(U).

3. If S ⊂ X is closed, sections of F vanishing to arbitrary degree on S
are extensions by zero of sections on the complement of S, that is: if
JS denotes the sheaf of ideals of tempered functions vanishing on S
as before then:

⋂

n

J n
S (U)F(U) ⊂ e (F(U r S)) . (B.2)

(We will prove equality in the next lemma.)

4. Obvious compatibility conditions: If V ⊂ U are open then the dia-
gram commutes:

O(U)

rU
V

��

⊗ F(U) // F(U)

O(V ) ⊗ F(V )

eU
V

OO

// F(V ).

eU
V

OO

Lemma B.2.1 Let (un)n be a weak approximate identity in KS(U) as in
Lemma B.1.4, then unf → f for every f ∈ eUV (F(U r S)). Consequently:

⋂

n

J n
S F(U) = e (F(U r S)) = KSF(U).

Proof Let V = UrS. Since the map O(V )×F(V )→ F(V ) is continuous,
and un → 1 in O(V ), we have unf → f for every f ∈ F(V ). By the
compatibility of restrictions and corestrictions (fourth axiom), une

U
V (f) is

the same as eUV (unf), and since eUV is continuous, this tends to eUV (f) for
all f ∈ F(V ).

But une
U
V (f) ∈ KS(eUV F(V )) ⊂ J n

S F(U) for all n, hence the claim.

�
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B.3 Functoriality

In what follows, we consider only morphisms between smooth semialgebraic
sets. For a morphism π : X → Y , and a cosheaf F on X, the push-forward
π∗F is simply the cosheaf: V 7→ F(π−1V ).

Lemma B.3.1 The push-forward of a Schwartz cosheaf is a Schwartz co-
sheaf.

Proof The only nontrivial verification is that of the third axiom. Let
π : X → Y be a morphism and denote for clarity by OX and OY the
corresponding sheaves of tempered functions. Let S ⊂ Y be a closed subset,
and KS ,Kπ−1S the corresponding sheaves on Y and X, respectively.

The third axiom for F implies that for every open V ⊂ Y we have an
equality: ⋂

n

J n
π−1S(π

−1V ) · π∗F(V ) = e (π∗F(V r S)) .

In particular, since JS(V ) ⊂ Jπ−1S(π
−1V ), we get:

⋂

n

J n
S (V ) · π∗F(V ) ⊂ e (π∗F(V r S)) .

But by the proof of Lemma B.2.1, we have:

e (π∗F(V r S)) ⊂ KS(V ) · π∗F(V ),

and of course KS(V ) · π∗F(V ) ⊂
⋂
n J n

S (V ) · π∗F(V ). Hence, all these
three spaces coincide.

�

B.4 Stalks, fibers and a Nakayama-type lemma

Given a closed S ⊂ X we define the stalk of a Schwartz cosheaf over S to
be the cosheaf:

FS = F/e (FXrS) ,

where FXrS is the cosheaf: FXrS(U) = F(U r S). Clearly, FS is zero on
X r S; in that sense, it is supported on S.

Let now ŌS be the quotient O/JS — it is the sheaf of restrictions to S of
(smooth) tempered functions on O, and it satisfies ŌS(U) = O(U)/JS(U).
The fiber of F will be the cosheaf: F̄S(U) = F(U)/JS(U)F(U). Of
course, in the nonarchimedean case the fiber and the stalk coincide. In the
archimedean case, we will use the following version of Nakayama’s lemma:
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Proposition B.4.1 Let S =a point (hence ŌS(U) = C for every U ⊃ S),
and assume that a finite-dimensional subspace N ⊂ F(U) spans the fiber
F̄S(U). Then the same subspace algebraically (i.e. without taking closures)
generates FS(U) as an OS(U)-module.

Proof For simplicity of notation, M := FS(U), R = OS(U), J = JS(U),
Mn = JnM . Notice that by the third axiom for Schwartz cosheaves, M is
separated with respect to the J-adic topology, i.e. we have an embedding:

M →֒ lim
←
n

M/Mn.

We claim that for every n the map Jn ⊗N → Mn/Mn+1 is surjective.
Indeed, we have a natural map with dense image:

Jn/Jn+1 ⊗R/J N →Mn/Mn+1,

but since the space on the left is finite dimensional, the map is surjective.
This implies that the map (R/Jn) ⊗ N → M/Mn is surjective, and

hence so is the map:

lim
←
n

((R/Jn)⊗N)→ lim
←
n

M/Mn.

Since N is finite-dimensional, the left hand side is equal to (lim←R/Jn)⊗
N , which is equal to R ⊗ N by Lemma B.1.5. Therefore N generates
lim←

n

M/Mn algebraically over R, and in particular M = lim←
n

M/Mn.

�

B.5 Group actions

Let F be a Schwartz cosheaf on a smooth F -variety X, and assume that
it carries an action of a group G. (The group G is assumed to act trivially
on X; for example, if Y is an affine G-variety, with G reductive, X = Y �G
and G is a cosheaf on Y with a compatible G-action, then F could be the
push-forward of G.)

We let FG denote the cosheaf of G-coinvariants, that is:

FG(U) = F(U)G,

where F(U)G denotes the quotient of F(U) by the closed subspace gener-
ated by vectors of the form v − gv, v ∈ F(U).

Proposition B.5.1 The cosheaf FG is a Schwartz cosheaf. For every two
open sets V ⊂ U , the map:

(
eUV F(V )

)
G
→ FG(U) is a closed embedding.



Beyond Endoscopy for the Relative Trace Formula I 589

Proof The only nontrivial axiom to check is the closedness of exten-
sion maps, therefore it suffices to prove the second statement. Let M1 =
eUV F(V ), M2 = F(U), and let Ni, i = 1, 2, be the subspace of Mi alge-
braically spanned by elements of the form v − g · v, v ∈ Mi. We need to
prove that for a sequence fi → f , where fi ∈ N2 and f ∈ M1, we have
f ∈ N1.

Choose an approximate identity un ∈ KUrV (U) (Lemma B.1.4). Then
we have: limn unf = f (Lemma B.2.1). We also have limi unfi = unf for
every i; thus, f ∈ (unfi)n,i ⊂ N1.

�

In applications to the present paper, all Schwartz cosheaves that we will
encounter are flabby, i.e. the extension maps are monomorphisms (hence
closed embeddings, by the first axiom). The last proposition implies:

Corollary B.5.2 In the above setting, the cosheaf of G-coinvariants of a
flabby Schwartz cosheaf is flabby.
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