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Chapter 0

Introduction

The purpose of these notes is to provide an introduction to the theory of auto-
morphic representations and the Langlands program.



Part 1

Basic notions: Algebraic
geometry



This part has been written for people who come to the field with an analytic
background, and should be skipped by all who are already familiar with basic
concepts of algebraic geometry. Obviously, there are better places to get an
introduction to algebraic geometry; I just wanted to provide a crash introduction
to some basic notions that may be used elsewhere in these notes.



Chapter 1

The language of algebraic
geometry: from rings to
spaces

1.1 References

e Ravi Vakil’s notes on Math 216 at Stanford: http://math.stanford.
edu/~vakil/216blog/

e Hartshorne’s “Algebraic Geometry”

1.2 Informal discussion

Rings show up everywhere in mathematics, for instance consider the following
examples:

Cle,yl/(+* = 3y)

H(C) (the ring of holomorphic functions on C)
C(R?) (the ring of continuous functions on R?)
Q
Q[x]

Z
Zlz,y]

C[x]/x2.

The basic philosophy of algebraic geometry is to consider every ring R as a
space of functions on some space X. But, what is the space, and how do we


http://math.stanford.edu/~vakil/216blog/
http://math.stanford.edu/~vakil/216blog/

distinguish between different types of functions? Today we will be a bit vague
about the space, and will just focus on a few examples trying to understand the
nature of this space and these functions intuitively.

For example, it is clear that in the case of R = C, R = C[z], R = C[z,y]
the space X can be thought of as a point, a (complex) line and a (complex)
two-plane, respectively. The functions here are polynomial (also called regular)
functions on this space.

The spaces H(C) and C'(R?) can also be thought of as functions on a complex
line. Therefore, we see that the space itself does not suffice to describe the ring;
we need to remember the ring. However, the space gives us a good picture about
the structure of the ring, as we will see in the next paragraph.

Before we move to the next paragraph, an obvious question: OK, it was easy
to describe a space for these rings. What about the rest? For instance, what
about the rings Q, Z, C[z]/x?, etc., are they “functions” on some “space”? We
will answer this in the next lecture.

The next paragraph, however, will give an answer about rings of the form:
C[x,y]/(2* — 3y): this is just the space of regular functions on the subspace of
C? given by the equation: 2?2 — 3y = 1.

1.3 Subspaces and (radical) ideals

The notion of a (closed) subspace also depends on the ring: the subspace has to
be “cut out” by “functions” in the ring. For instance, if we are discussing the
ring C[z, y] then the set of all (z,y) € C? satisfying the equation: 22 —3y = 1is a
valid subspace, but the subspace of all (x,y) satisfying x = ¢¥ is not. However,
the latter is a valid subspace when we discuss the ring H(C?) (holomorphic
functions). Again, the notion of “subspace” will be precisely defined later today,
for some cases (see the paragraph on the Nullstellensatz), and in general in the
next lecture. Let us discuss intuitively here about some basic properties:

Given a “subspace” Y < X, let I(Y) < R denote the set of f € R which
vanish on all of Y.

Lemma 3.1. I(Y) is an ideal.

Lemma 3.2. I(Y) is a radical ideal, that is: if f* € I(Y) for some n then
felI(y).

Lemma 3.3. If Y] c Y; then I(Yy) 2 I(Ys).

FEzercise. Prove these lemmas rigorously for the cases where the space X was

defined above. Give examples of subspaces Y and the corresponding radical
ideals I(Y).

Ezercise. Define the notion of a noetherian topological space, so that it corre-
sponds to the notion of a noetherian ring.



1.4 Morphisms

We continue our intuitive discussion with morphisms between spaces X7, Xo
associated to two rings Ry, Ro. It is clear, again, that the notion of a morphism
cannot be an arbitrary set-theoretic map: X; — X5 but one of the appropriate
type, e.g. if Ry, R are rings of polynomials then the morphism should be “given
by polynomial equations”. For example,  — 22 is a valid morphism from
C — C when X; = X, = C, associated to the ring Ry = Ry = C[z], but = — €
is not a valid morphism for these rings.

Basic property of morphisms: A valid morphism m : X; — X5 gives rise to
a pull-back of functions m* : Ry — Ry, given by:

(m*f)(x1) = f(m(z1)).

FExercise. Describe the morphism Ry — R; induced by the map C 3 x +— 22 5 C,
when Ry = Ry = C[z].

Important remark: How are we going to end up defining rigorously what a
“valid morphism” is or, in the previous paragraphs, a “valid subspace” etc.?
The answer is surprising: a valid morphism will be identified with the map
between rings that, intuitively, it is supposed to induce. That is, we think about
spaces but we are using rings and algebra to define everything.

Ezxample 4.1. The map m : z — €7 is clearly a valid map from C = X; —» X5 =
C endowed with the rings Ry = Ry = H(C), with associated pull-back:

(m*f)(@) = f ().

However, it is also a valid map when X is endowed with the ring Ry = H(C)
and X, is endowed with the ring Ry = C[z]. Why?

1.5 Non-reduced rings, non-radical ideals

Continuing with the same notation, observe the following: the whole space
X does not necessarily correspond to the “zero” ideal of R. In general, it
corresponds to the ideal \/@, where va denotes the radical of an ideal. This
lemma is obvious:

Lemma 5.1. For a ring R and an ideal a, the following are equivalent:
e Va=a (ie. ais aradical ideal);
e R/a has no nilpotent elements.

A ring without nilpotent elements is called a reduced ring. The corresponding
scheme (which we haven’t yet defined) is called a reduced scheme.

If a is a radical ideal in a polynomial ring, then we can think of the ring
R = k[z1,...,2,]/a as the ring of regular (polynomial) functions on its “zero
set” Z(a). If a is not radical, how should we think of R?



Example 5.2. The ideal (22 —3y) < k[z,y] is radical. The ring R = k[x,y]/(2%—
3y) is the ring of (regular) functions on the subspace X of k? given by the
equation 22 — 3y = 0. Notice that any two elements of k[z,y] are identified in
R if and only if they coincide on the points of X; in other words, by passing
from k[z,y] to R we remember only the restriction of a function to X and forget
everything else about it.

Example 5.3. Now, let us consider the ring R = k[x]/z2. It has a unique radical
ideal, namely the ideal (z); it is the radical of the zero ideal. Its zero set (more
precisely, the zero set of its preimage in k[x], considered as a space of functions
on k) is the subset X = {0} of k. Is it correct, thus, to think of R as the
space of functions on X? No, that would be the ring k[x]/z(~ k). The ring
R remembers more from a function in k[z]; except for its restriction on X it
remembers the first derivative at that point. For example, the functions 3z + 1
and 1 are identified in k[z]/x, but not in R. On the other hand, R does not
remember the second derivative, e.g. the functions 3z + 1 and z? + 3z + 1 are
identified in R.

The way that we usually think of the “space” underlying X is a “fattened”
version of X, namely X together with an “infinitesimal neighborhood” of “first
order”. If we were considering, instead, the ring k[z]/z?, it would be an in-
finitesimal neighborhood of “second order” (in the sense that it remembers the
second derivative), and so on.

Ezercise. How would you describe the underlying space of R = k[z,y, z]/(x —
Y, (y - 22)2)?

1.6 Nullstellensatz

Now we start the rigorous discussion, but to do this we will restrict ourselves
to a very small class of all the examples of rings that we mentioned: we will
talk only about finitely generated k-algebras, where k is some algebraically closed
field (think of C, if you prefer, at first reading). Hence, such a ring R is the
quotient of k[z1,...,x,], for some n, by an ideal.

In fact, let us start with R = k[zq,...,2,]. Before continuing, return to the
previous paragraphs and check all the statements for this ring (making them
precise whenever they are not).

For any subset S c R, we let Z(S) denote the zero set of S, that is the set
of points z € k™ such that f(z) = 0 for all f € &. Check the following:

Lemma 6.1. If a is the ideal generated by S then Z(S) = Z(a).
Definition. The subsets of k™ of the form Z(S) are called algebraic sets.

As we will see, they form the closed subsets for a topology (the Zariski
topology) on k™, so in the future we will not be using the term “algebraic set”
but instead we will be saying “Zariski closed subset”.

We are ready to formulate the Nullstellensatz (deep theorem, will not prove
here, consult an algebra book like Lang’s) :
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Theorem 6.2 (Hilbert’s Nullstellensatz). If f € R wvanishes on Z(a) (i.e.
f(x) =0 for all x € Z(a) then there is an integer r such that f" € a.

Hence, the maps: a — Z(a) and Y — I(Y') give rise to a bijection between
radical ideals and algebraic subsets of k™.

In particular, maximal ideals are in bijection with points in k™. Explicitly,

the maximal ideal m, corresponding to the point a = (a1, as, ..., a,) is the ideal
(r1 —a1,29 — ag, ...,y — ay), and the homomorphism:
R— R/m, =k

is “evaluation at a”.

Ezercise. Show that the analogous theorem fails for the ring C(k™) of continuous
functions!

Now let us consider the more general situation of a finitely generated k-
algebra, i.e. R = k[x1,...,2,]/a, where a is some ideal. First of all, observe:

Lemma 6.3. Ideals of R are in natural bijection with ideals of k[x1, ..., 2]
containing a.

It is immediate then to apply the Nullstellensatz in order to generalize it to
R. Notice that we should be thinking of X := Z(a) as the “underlying space”
of R:

Theorem 6.4. There is a natural bijection between radical ideals of R and
algebraic subsets of X.

Remark. It is not nice that the description of X depends on the presentation
of R, i.e. the way we choose to realize the abstract ring R as a quotient of a
polynomial ring. This will be fixed when we talk about schemes, but we note
here that the solution will go through the observation that we made in 77, and
which generalizes here:

Points of X are in bijection with maximal ideals of R.

1.7 The maximal spectrum, and the Zariski topol-
ogy

We have seen that points on k™ are in bijection with maximal ideals in R. What
follows holds for every ring R, not necessarily those of the previous paragraph.
To give a completely analogous definition, denote by spec,, R the set of maximal
ideals of R (the mazimal spectrum of R), and given any S < R denote by
Z(S) < specy; R the set of zeroes of S, i.e. the set of maximal ideals which
contain S.

Lemma 7.1. 1. Let a and b be two ideals in R, then Z(ab) = Z(a) u Z(b).
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2. Let (a;)ier be any (possibly infinite) collection of ideals, then Z(uera;) =
ﬂieIZ(ClZ‘).

Proof. 1. We have ab < an b, so the direction > is obvious. Vice versa, if m
is a maximal (in fact, prime) ideal which contains ab then it must contain
a or b. (Otherwise, there are elements fi, fo € a,b, respectively, which
don’t belong to m, but fifo € ab < m, contradiction since m is prime.)
Therefore, m € Z(a) u Z(b).

2. Clear.
O

Corollary 7.2. The subsets of the form Z(S), S € R, form the closed sets for
a topology on spec,; R (called the Zariski topology ).

1.8 Irreducibility

In a topological space X, a subset A is called irreducible if it cannot be written
as the disjoint union of two proper, closed subsets. This notion is not very useful
in the usual, Hausdorff topologies, but there is a lot of irreducible sets in the
Zariski topology:

Lemma 8.1. Let a be a radical ideal in a ring R. The set A = Z(a) is irreducible
if and only if a is prime.

Proof. f A= B u C with B = Z(b) and C = Z(¢) proper, closed subsets, then
b-cca, but b 2 aandc2a As we saw in the proof of Lemma 7?7, we can
find such ideals if and only if a is not prime. (The “if” part comes from the
definition of a prime ideal; if a is not prime then there are elements fi, fo ¢ a
such that fi1, fo € a, and we can take the ideals generated by a and each of the

fi’s) 0



Chapter 2

Affine schemes

2.1 The category of affine schemes

Definition. The category of affine schemes is the opposite category of the
category of rings.

In other words, any affine scheme corresponds to a ring and vice versa, and
a morphism of affine schemes is the same as a morphism of rings, except that we
write arrows in the opposite direction. Whatever we say about affine schemes
corresponds to a statement about rings, there is absolutely no difference. It’s
just that by inverting the arrows we will get a more geometric picture of rings,
which we can later generalize to (non-affine) schemes.

2.2 The underlying space of an affine scheme

In the previous lecture we never defined rigorously the underlying topological
space of a ring, except in the cases where the Nullstellensatz applies, in which
case we saw a certain space (whose points were in bijection with maximal ideals
of the ring), and endowed it with a topology (the Zariski topology).

What we will do here is not completely analogous to this: following' Grothen-
dieck, we will define a space whose points will correspond not only to maximal
ideals of the ring, but to all prime ideals. Let us recall what prime ideals corre-
spond to: they correspond to irreducible, closed subspaces of our space, maybe
with fattened neighborhoods if the ideal is not reduced.

But here is a problem: if our space is to consist of both the maximal and the
non-maximal ideals, how will the inclusion relations be expressed? For example,
since the point (1,2) of C2 belongs to the subspace 2z — y = 0, but both the

1The Wikipedia article on schemes has interesting information on the history of this idea:
It was Krull in the 1930s who defined the topological space consisting of all primes of a ring,
but he abandoned the idea since it didn’t seem interesting to his peers. By the time that
Grothendieck gave the full definition of a scheme, the underlying topological space had been
used by Serre, Chevalley and Nagata.

12
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point (1,2) and the subspace 2z — y = 0 will be “points” of our new space
(since they correspond to distinct prime ideals), how will the inclusion relation
be expressed?

The answer is that the topology will be a weird kind of topology, where not
all points are closed! For example, the “point” corresponding to the ideal (2z—y)
will not be closed, and will contain in its closure the “point” corresponding to
the ideal (1,2). Actually, the closed points will precisely be those corresponding
to mazimal ideals, and this makes sense: Since they don’t belong to any larger
ideal, they shouldn’t contain any subspaces in their closure; they correspond to
our conventional notion of point.

Definition. Given an affine scheme X, the set of points of X is the set of prime
ideals of the corresponding ring. We endow this set with a topology (Zariski
topology), according to which a point p belongs to the closure of a set S if and
only if the ideal p contains all ideals contained in S.

By abuse of notation, we also denote the set of points of X by X. Here is
the important, though obvious, fact:

Lemma 2.1. A morphism of schemes X1 — Xs also induces a set-theoretic
map: X1 — Xo.

This would not be true if we had just included maximal ideals in the set. For
example, for the natural morphism: speck(X) — speck[X] the zero ideal in
k(X), which is maximal because k(X) is a field, goes to the zero ideal in k[X],
which is not maximal.

The proof that this is indeed a topology is the same as with spec,; that
we saw in the previous lecture. (Notice that we never used the fact that those
ideals were maximal; just prime.) Observe:

e Points are not necessarily closed (it is not a T; topological space); the
closure of a point-prime p is the set of all primes containing it.

e Thus, closed points are precisely the mazimal ideals.

Ezample 2.2. The space spec k[ X, Y] has a generic point £ := (0), i.e. a point
whose closure is the whole space; closed points m, ;, = (x — a,z — b); and those
primes p = (P), where P is an irreducible polynomial. It turns out that these
are all its points, for reasons that we will discuss later. The closure of p = (P)
contains itself and the points m,; with P(a,b) = 0.

Example 2.3. specZ has a generic point, and one closed point for each prime
number.

As in the discussion of algebraic subsets of k™ (when k was an algebraically
closed field), the zero set of an ideal is equal to the zero set of its radical. More
is true, namely that as in the Nullstellensatz the zero set determines the radical
ideal (but now we have to include all primes in the zero set for that to be true):
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Lemma 2.4. Let A be any ring. An element of A is nilpotent if and only if it
lies in every prime ideal. For any ideal a we have:

\/a = Np>al,
where p stands for a prime ideal.

Proof of the lemma. If f* = 0 then f™ € p for every prime p and hence f €
p since p is prime. Vice versa, if f* # 0 then S := {1,f, %, f3,...} is a
multiplicative set not containing zero, and then it is known that there is a
prime ideal which doesn’t intersect S (exercise!). The second assertion follows
from applying the first to the ring A/a. O

Finally, with exactly the same proof as before we have:

Lemma 2.5. For a radical ideal a, the zero set Z(a) is irreducible if and only
if a is prime.

Reminder: irreducible means that it’s not the union of two proper closed
subsets.

2.3 Localization

The basic reason why thinking of rings geometrically is so useful is that many
properties of rings are completely local in nature, in the sense that they are
preserved if we restrict to, say, a Zariski open subset. We explain here this
notion of “restriction”.

Given a multiplicative (i.e. closed under multiplication) subset S of a ring
R we define the localization of R at S, denoted R[S™!], to be the initial object
among homomorphisms of rings R — M which take S to units. In other words,
it is the universal ring, together a canonical map R — R[S™!] which takes
elements of S to units, with the property that any other homomorphism R — M
taking S to units factors through a map: R[S~!] — M.

It is easy to see that the localization can be constructed as follows: Its
elements consist of pairs (r,s),r € R,s € S, modulo the following equivalence:
(r1,81) ~ (re,sq) iff there exists an s € S with s(r1s9 — ras1) = 0. We will
denote the pair (r,s) by r/s, but the condition of equivalence is a bit stronger
than the usual equality of fractions because, remember, we want elements of S
to become units, and if s times something is zero then that something should
be zero in our new ring.

Lemma 3.1. The kernel of R — R[S™!] is the set of all elements of R which
are annihilated under multiplication by an element of S.

In particular, for division rings the map is injective.

Proof. Exercise! O
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Example 3.2. Let R be any ring and f an element which is not nilpotent. Let
S={f,f%f...,}, then R[S™'] = R[f~']:= R[X]/(Xf —1).

Geometrically, inverting some elements means removing their zero set from
our scheme, since their zero set consists of all ideals that contain them, and since
our element becomes invertible these ideals generate the whole ring in R[S™!].
It is in this sense that localization corresponds to “restriction to a Zariski open
set” (but also to much more, as we will see). The following proposition explains
that:

Proposition 3.3. Primes of R[S™!] are in bijection with primes of R not
meeting S. (EBach prime in R[S™!] being the prime generated by its intersection
with R.)

Proof. Let ¢ denote the morphism R — R[S™!]. If p € spec R[S~!] then ¢~1(p)
does not meet S because p doesn’t meet ¢(.S) (all elements of ¢(S) are units).

If P € spec R doesn’t meet S, we claim that ¢(P) generates a prime ideal.
Indeed, if (r172, s152) belongs to the ideal generated by ¢(P) this means that
there exist p € P and s € .S such that:

(pa 8) ~ (7“1’[“27 8182)a

i.e. there is an s’ € S such that: s’ps;sy = s'riro. The element on the left is in
P, and since s’ is not in P it means that 1 € P or ro € P, which implies the
claim.

Finally, the same argument shows that if (r, s) belongs to the ideal ¢(P)[S™}]
generated by ¢[P] then r € P, so P = ¢~ (p(P)[S™]). O

Ezample 3.4. Let R = C[x,y]/(zy), and let S = z,22,2%,.... Then R[S™!] =
Clz,z~1]. What is the geometric picture?

Example 3.5. If R is an integral domain and S = R~ {0} then K (R) := R[S~ '] is
the quotient field. Notice that in terms of schemes the map spec K (R) — spec R
is simply the inclusion of the generic point.

Ezample 3.6. If R is an arbitrary ring and .S = the set of non-zero divisors, then
K(R) := R[S™!] is called the total quotient ring of R.

2.4 Localization at a prime

Here is the most basic use of localization: let p be a prime of R, then S = R\ p
is a multiplicative set. The localization R, := R[S™'] is called the localization
of R at p.

Ezample 4.1. The localization of Z at (p) consists of all rational number which
do not have a power of p in their denominator.

Ezample 4.2. The localization of C[X] at (0) consists of all rational functions
which do not have a power of X in the denominator.
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R, is a local ring, i.e. it has a unique maximal ideal, and this maximal ideal
“is p” (i.e. it is the ideal generated by p, but we will still denote it by p). More
precisely, it follows from Proposition 77:

Lemma 4.3. Primes of R, are in natural bijection with primes of R which
are contained in p. (Geometrically, points of spec R which contain p in their
closure.)

This localization is of a slightly different nature than the example of inverting
an element f € R: in that example, we localized away from the zero set of f,
i.e. we restricted to an open subset of our Zariski space. Now, given p (whose
closure is an irreducible subset Y of our space), we feel free to remove any closed
subset that doesn’t contain Y. This means that our new functions are allowed to
be defined only in some open set, as long as Y is not in the complement of this
open set. Those functions are even allowed to have poles on Y, as long as they
don’t on all Y (indeed, all prime ideals larger than Y, i.e. all proper irreducible
subspaces of Y, have been erased).

Ezample 4.4. Localizing C[z,y] at (x) we get all rational functions of = and y
whose denominator is not divisible by «. This admits a homomorphism to C(y),
namely setting x = 0. Geometrically, this homomorphism is restriction of our
functions to the y-axis.



Chapter 3

Sheaves and schemes

Later.

17



Chapter 4

Noetherian rings

4.1 References

e S. Lang, “Algebra”, Chapter X.

e D. Eisenbud, “Commutative Algebra with a view towards Algebraic Ge-
ometry”, Chapter 3.

e Ravi Vakil’s notes for 216, chapters 6 and 12.

4.2 Recollection of definitions and basic proper-
ties

A module for a ring R is noetherian if every submodule is finitely generated, and
a ring is noetherian if it is Noetherian as a module over itself, i.e. every ideal
is finitely generated. Equivalently, if any increasing sequence of submodules
(ideals in the case of the ring) stabilizes. A finitely generated module for a
noetherian ring is noetherian.

Hilbert’s Basis Theorem states that if R is noetherian then so is R[z]. Ob-
viously, quotients of noetherian modules are noetherian, hence every finitely
generated ring over a noetherian ring is noetherian.

4.3 Primary decomposition and associated ide-
als

An ideal I is called primary if ab € I implies a € I or b™ € I for some integer n.
Equivalently, if and only if all zero divisors of R/I are nilpotent.

Lemma 3.1. The radical of a primary ideal is prime. We say that I belongs
to the prime V1.

18
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Proof. Immediate from the definitions. O
Remark. Let p = +/I, I primary. If ab € I then there are two possibilities:

e either one of them, say a is not in p, in which case b € I;

e or a” € I and b™ € I for some m,n.

Indeed, if a ¢ p then no power of a can be in I and hence b € I. On the other
hand, if a € p then some power of a is in I, because p is the radical of I.

Using this fact, you can easily prove:

Lemma 3.2. The intersection of a finite number of primary ideals belonging to
the same prime is primary.

Ezample 3.3. The primary ideals of Z are (0) and (p™), where p ranges over all
prime numbers.

Example 3.4. The ideal (z,y?) = C[z,y] is primary.

A geometric way to think about a radical ideal is that the “underlying space”
(the topological space spec(R/I)) is irreducible, but it may be “fat” (not re-
duced). Well, not quite, actually: we said that the radical of a primary ideal is
prime, but that doesn’t mean that every ideal whose radical is prime is primary.
The example below has an irreducible underlying space (i.e. a prime radical),
but is not primary:

Ezample 3.5. The ideal I = (22, xy) is not primary, because xy belongs to it,
but x doesn’t, neither does y™. The radical if I is (x), which is prime.

What is happening here? The “fattening” along the line = 0 is not the
same as the “fattening” at the point (0,0). Thus, even if the underlying topo-
logical space is irreducible, we can still distinguish between “embedded com-
ponents”, one contained in the other, with distinct fattenings. To make this
rigorous in an example, show that:

(1‘2,33y> = (1‘) N ('TZ’xy’yn)’ (41)

and that these two ideals are primary with radicals: () and (x,y), respectively.
The big theorem (actually, not too hard, but will not prove) for noetherian
rings is:

Theorem 3.6. Every ideal is the intersection of a finite number of primary
ideals. If:
I = qr NN gg

is a minimal decomposition, i.e. one where the primes p; = \/q, are distinct and
there are no redundancies, then:

e the set of primes p; (the associated primes of I) is uniquely determined
by I;
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o the set of primary ideals q; belonging to minimal associated primes is
uniquely determined by 1.

As an example, the decomposition (?7?) is such a decomposition, but it is
not unique: we could also have written:

(2%, 2y) = (2%, 2(z + y), (z + y)").

The non-minimal associated primes are called embedded primes. They cor-
respond to these “embedded fattenings” that we discussed above.
Further facts:

e The associated primes of I are precisely those primes which are annihila-
tors of elements of R modulo I.

e The minimal primes associated to I are precisely the minimal primes con-
taining 1.

By associated primes of R we mean the associated primes of the ideal (0).
These correspond to the irreducible components, as well as the “embedded com-
ponents” of spec R that were discussed above.

If associated primes of R are annihilators of some elements of R, what about
annihilators of arbitrary elements? Write ann(f) for the set of elements anni-
hilating f. (If f # 0 then this is a proper ideal, and it is the zero ideal if and
only if f is not a zero divisor.)

Lemma 3.7. Given f # 0 there is an associated prime p of R such that
ann(f) < p.

Intuition: if f # 0 there must be some “embedded component” (in the
above sense) where the localization of f is non-zero. (Recall: the element f
is in the kernel of R — R, iff annf ¢ p.) Notice that there needn’t be an
irreducible component where this localization is nonzero. For example, if R =
Clz,y]/(2%,xy) and f = z then ann(x) = (z,y), in particular ann(z) & (z).

Proof. Tt is enough to show that an ideal which is maximal with the property
of annihilating a non-zero element of R is prime. Let I = annf be such an ideal
and ab € I with a ¢ I. Then abf = 0 but af # 0, hence (b,I) < ann(af). Since
I was maximal, this implies that b € I. O

Corollary 3.8. 1. The set of zero divisors of R is precisely the union of
associated primes.

2. The natural map R — [ [ R, is an injection, where the product is over all
associated primes of R.

Proof. Exercise! O

For the unproven statements in this section, cf. Eisenbud Theorem 3.10 and
Corollary 3.5.
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4.4 Dimension

The height of a prime ideal p is the supremum of all integers n such that there
exists a sequence of distinct prime ideals: po € p; < --- < p,, = p.

The (Krull) dimension of aring R is the supremum of heights of prime ideals
in p. To say it geometrically: the supremum of numbers n such that there exists
a sequence of distinct irreducible algebraic subsets:

X()DXlz)---DXn

in spec R.
For noetherian rings this is a very reasonable notion of dimension, because
it turns out to be the unique one satisfying the four axioms:

D1: (Dimension is a local property) dim R = sup,, dim Ry,.
D2: (Nilpotents do not affect dimension) dim R = dim R*.

D3: (Dimension is preserved by finite morphisms) For a finite morphism spec S —
spec R we have dim S = dim R.

D4: If k is a field, then dim k[[z1,...,z,]] = r, and if R is a discrete valuation
domain then dim R[[z1,...,2.]] =r + 1.

Given a ring R and an irreducible algebraic subset Y in spec R (i.e. a prime

p so that Y = {p}), the dimension of Y is the dimension of R/p and the
codimension of Y is the height of p; equivalently, the dimension of R,.
Clearly,
dimY 4+ codimY < dim R.

However, as the following example shows we do not always have equality:

Ezample 4.1. Let R = k[ X1, X2, X3]/(X1)(X2, X3) (this represents the union of
a plane and an intersecting line in 3-space). Let p be the prime (X7 +1, X3, X3);
this corresponds to a point on the line, not contained in the plane. Its dimension
is zero, its codimension one, but the dimension of R is two.

However, we will see in the next paragraph a situation where they behave
well.

We finish this discussion with a mention of Krull’s Hauptidealsatz (Principal
Ideal Theorem), which we will not prove. It provides the expected answer to
the question: what is codimension of the zero set of an element of R?

Theorem 4.2. Let R be a noetherian ring, and let f € R be neither a zero
divisor nor a unit. Then every irreducible component of the zero set Z(f) (i.e.
every minimal associated prime of (f)) has codimension one (has height one).

The way this is usually formulated is that every prime minimal among those
which contain f has height 1. Notice that it is not true that (f) cannot have
embedded primes (necessarily of larger codimension), although it is true for



22

normal rings, as we will discuss later. A counterexample is the prime p =
(z,y,u,v) in the ring R = C[z,y,u,v]/(z,y) N (u,v). This is the union of two
planes in A* meeting at a point. You can check that f = = 4+ u is a non-zero
divisor, and hence cuts out a subscheme of codimension one, but the prime p is
an associated prime for (f) because it is the annihilator of the nonzero element
x — u modulo (f).

A generalization of this theorem is the following:

Theorem 4.3. Let R be a noetherian local ring with maximal ideal m, then
dim R is the minimal number n such that there exist n elements f1,...,fn, em
such that not all of them are contained in a prime other than m.



Chapter 5

Noetherian rings of
dimension one

FEvery ring in this lecture is noetherian, and every scheme is covered by a finite
set of open affine noetherian subschemes.

We study schemes of dimension one not only for their intrinsic interest (they
include Riemann surfaces, rings of integers in number fields etc.), but also be-
cause by the process of localization we often reduce problems about arbitrary
schemes to schemes of dimension one (by localizing at minimal primes).

In particular, we can start understanding in this setting several notions of
smoothness, and prepare ourselves for a general discussion of smoothness in a
later lecture. The word “smoothness” is used colloquially here, as there is also
a rigorous notion of “smoothness of a scheme over a base scheme”.

5.1 UFDs and PIDs

Proposition 1.1. For a ring of dimension one, the following are equivalent:
1. It is a unique factorization domain.
2. It is a principal ideal domain.

Proof. The second implies the first for every ring.

Vice versa, assume that R is a UFD, let p be a non-zero prime and take
0# fep. Then p o (f) =[];(fi) is a factorization into principal prime ideals,
hence there is an 4 such that the prime (f;) is contained in p. But the ring has
dimension one, hence p = (f;).

Thus, all primes are principal. Now show that the non-principal ideals, if
they exist, have maximal elements (exercise!). Since I cannot be prime, there
are a,b ¢ I with abe I. Then (I,a) and (I : a) are principal. ((I : a) denotes
the set of x with za € I, and hence contains b, so is strictly larger than I.) Their
product obviously is contained in I. On the other hand, if i € I = (I,a) = (¢),
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so i = uc, then w € (I : a) = (d) and hence i € (I,a)({ : a) = (cd). Hence
I = (cd), a contradiction. O

5.2 Normal and regular domains

Recall that a unique factorization domain is always integrally closed (i.e. con-
tains all elements of the fraction field which are integral over it); an integrally
closed domain is called normal in algebraic geometry jargon. On the other
hand, a principal ideal domain has the obvious property that for every non-zero
prime p, the R/p space p/p? is one-dimensional (generated by the image of a
generator of p). We will see that the space p/p? is the cotangent space at p, and
the equality of its dimension with the dimension of the ring is the best intrinsic
notion of smoothness, called regularity.

As a counterexample, consider the cuspidal curve y? = 23. Show (exercise!)
that the cotangent space at the point (0,0) is two-dimensional.

An analog of the above proposition for these more general notions are:

Theorem 2.1. For a noetherian domain of dimension one, the following are
equivalent:

1. It is normal.
2. It is regular.

Proof. In the next subsection we will prove that the theorem is true for local
rings.

Now, assume that R is normal, and notice that p/p? = pp/pﬁ asR/p = Ry/pp-
vector spaces. Normality is preserved by localization, thus regularity follows
from the corresponding local statement.

Vice versa, assume that R is regular, then R, is regular for every prime p.
We claim that B = npR,; this will prove normality, because the intersection
of normal domains is normal. Indeed, if ¢ € K(R) with a ¢ (b), then applying
Corollary ?? to the ring R/(b) we deduce that there is an associated prime p of
(b) such that a ¢ p. But this means that § ¢ R,.

O

In the process of proving that normal implies regular for a local ring of
dimension one, we will need the following result which does not use the local
property and is important for its own sake:

Proposition 2.2. Let R be a noetherian normal domain of dimension one.
Then every ideal is invertible, i.e. the R-submodule of K(R) (=fractional ideal)
I7' = {z € K(R)|zI < R} satisfies:

I-I"' =R

Notice that by I - I~! we denote sums of elements of the form j -i,j €
I71',i € I, so that the product of fractional ideals is again a fractional ideal.
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(More generally, I guess, we would define in such a way the product of I with
any module, so that it is a submodule.)

Proof. First, we claim that a maximal non-invertible ideal is prime, thus it
suffices to prove the proposition for prime ideals. Indeed, if I is maximal non-
invertible and ab € I with J := (a,I) 2 I then J is invertible and hence there
are elements x,y € K(R) and ¢ € I such that xa + yi = 1 = xab + yib = b.
Thus,

Ic(I,b)cIJ'¢R,

thus, unless (I,b) = I, we get that K = IJ~! is invertible, IJ 'K~! = R, thus
I would be invertible with 7' > J"'K~! a contradiction. Therefore, b € I
and hence [ is prime.

If I is prime, we claim that at least there is an element x € K (R) \ R such
that I R, i.e. I"! 2 R. Again, same flavor of argument: let J be maximal
among ideals in I for which there is such an element, then we claim that J is
prime and hence J = I by dimension one. Indeed, if abe J, ce€ J~! \. R then
cb-(a,J) c R, thus if a ¢ J then by maximality cb € R. But then ce (b, I)7!,
and by maximality (b,I) = I.

Now let I # 0 and prime (for I = 0 the proposition is obvious), then =11 is
either I or R (since I is maximal). We have arrived at the most important part
of the proof: if xI < I then x is integral over R. By normality, this will imply
that € R, a contradiction; thus 717 has to be equal to R. The proof of this
fact is contained in the lemma that follows (with A =R, a =2, M =1). O

Lemma 2.3. Let A c B be rings and o € B. Then « is integral over A if
and only if there is a faithful Ala]-module (i.e. a module M such that the map
Ala] — End(M) is injective) which is finitely generated as an A-module.

Proof. If « is integral then A[«] is such a module.

Vice versa, if w1, ..., w, are generators of M over A then there is an n x n
matrix K = (k;;) with coefficients in A such that aw; = X", k;jjw;. Let
f € A[X] be the characteristic polynomial of K. Then f(«) € Ala] satisfies
f(a)M =0, and since M is faithful this implies that f(a) = 0. Hence « is the
root of a monic polynomial. O

5.3 Local domains

Theorem 3.1. For a noetherian local domain of dimension one, the following
are equivalent:

1. It is normal.
2. It is a UFD.
8. It is a PID.

4. It is regular.
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Proof. We already know that 2=1, 3=4, and 2<3.

3=-3: Recall Nakayama’s lemma: if R is a local ring with maximal ideal m
and M is a finitely generated R-module, then any set of elements generating M
modulo mM actually generates M. Applying this to M = m, we deduce that
regular implies principal.

1=3: We have already shown that m is invertible. Let x € m™" \ R; we

have seen in the proof of Proposition ?? that zm ¢ m. Hence zm = R = m =
(x71). O

1

5.4 Language: Dedekind rings, discrete valua-
tion rings; and their properties

A ring as in Theorem 77 is called a discrete valuation ring. The name is because
of the following equivalent characterization:

Lemma 4.1. A domain is a discrete valuation ring if and only if there is a
non-unit element w such that every nonzero element is of the form x = u - w”
for some unit u and natural number n. In this case, every ideal is of the form
(@)™, and the map v : x — n is a valuation: v(zy) = v(z)+v(y) and v(z+y) =
min(v(z),v(y)).

Proof. Let R be a ring as in §??, and let @ € m ~ m2. Let € R and let n be
the maximal integer such that zow™™ € R. Then zw ™" ¢ m and hence it is a
unit. The rest of the statements are left as exercises. 0

A ring as in Proposition 77 is called a Dedekind ring. It has the following
property:

Proposition 4.2. In a Dedekind ring R, every non-zero ideal I < R has a
unique factorization I = [, m}" (finite product), where the m;’s are prime
(mazximal) ideals and n; € N. FEuvery fractional ideal (=nonzero, finitely gen-
erated R-submodule of K(R)) has the same kind of an expression, with n; € Z.

Proof. Let I be a maximal counterexample and m some maximal ideal con-
taining I, then R > m~!I ¢ I, again by the same integrality argument as in
Lemma ??. Therefore, by maximality, m~'J = [, m}"" and hence I = m-] [, m"*.
Uniqueness is left as an exercise. O



Chapter 6

Various notions of
“smoothness”

All rings in this lecture are noetherian.

6.1 Normality and factoriality

A ring R is called normal if and only if all local rings R, are integrally closed
integral domains. This is equivalent to R being a direct sum of (a finite number
of, since noetherian) integrally closed integral domains. Notice that “direct
sum” corresponds to disjoint union of the corresponding spectra. It is enough
to check normality for p =maximal ideals. For all these facts, see e.g. Ravi
Vakil’s section 5.4.1 (June 11, 2013 version).

Theorem 1.1 (Serre). A ring is normal if and only if:
(R1) it is regular in codimension one, and

(S2) any prime associated to (f), where (f) is a non-zero-divisor and non-unit,
is of height one; every associated prime of (0) (i.e. of R) is of height zero.

We explain the important condition (R1): it means that for every prime p
of height less or equal to one, the local ring Ry, is regular. For minimal primes
(primes of height 0), this means that the local ring is a field. For primes of
height one, it means that the local ring satisfies the equivalent conditions of
Theorem ?7? and hence is a discrete valuation ring. This should be thought of
as saying that any singularities of the scheme are of codimension two or greater.

Regarding condition (S2), recall that by Krull’s Hauptidealsatz all minimal
primes over (f) are of height one, anyway. Thus, the statement is that R has
no embedded primes, and neither does R/(f) when f is a non-zerodivisor.

Remark. The analogous conditions (R0): for every minimal prime the corre-
sponding local ring is a field, and (S1): the ring has no embedded primes,
characterize reduced rings. (Exercise!)
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(S2) domains satisfy an analog of Hartogs’ lemma for complex-valued func-
tions in many variables (i.e. that they are holomorphic if they are holomorphic
outside of codimension 2):

Proposition 1.2 (Algebraic Hartogs’ lemma). If R is an (S2) domain (for

example, a normal domain), then R = ﬂp of heighe 1 100

Let us understand what this says: the elements of R, are “rational func-
tions”, whose denominators are not identically zero on m In other words,
there is a well-defined restriction of those functions to rational functions on {p}
(i.e., a homomorphism: R, — K(R). So, the statement is that if an element
of R does not have singularities along a codimension-one subscheme, then it is
actually regular everywhere.

Proof. We claim: x € K(R) belongs to R if and only if for every prime p
associated to a non-zerodivisor, x belongs to R,. If we prove this, we are done,
because by the (S2) assumption these primes are all of height one.

Let © = a/u € K(R), then u is a non-zerodivisor and we can assume that
a ¢ (u). We claim that there is a prime p associated to (u) such that a ¢ p.
Indeed, since the ring R’ = R/(u) is noetherian there is a prime maximal among
annihilators (in R’) of elements which contain anng (a), and we have seen that
all prime annihilators are associated primes. This proves the claim. O

A factorial Ting or unique factorization domain is necessarily normal. We
have the following equivalence (see Vakil, Proposition 11.3.5):

Proposition 1.3. A noetherian domain is factorial iff all codimension/height
1 primes are principal.

A scheme is called factorial if all local rings are factorial. This does not
necessarily imply that it can be covered by schemes of the form spec R with R
factorial, see Vakil, 5.4N.

6.2 The Zariski cotangent space and regularity

Let R be alocal ring with maximal ideal m, X = spec R. Then the k(m) := R/m-
vector space m/m? is called the Zariski cotangent space of X at m. Its linear
dual is the Zariski tangent space, but as is always the case in algebraic geometry
we first define notions through “functions”, so the cotangent space is a more
natural notion.

The reason that it is called the cotangent space is the following lemma.
Recall that in differential geometry (over a field k) tangent vectors at a point
x can be thought of as derivations at that point, i.e. linear maps D from the
space of smooth functions to k& which satisfy the Leibniz rule:

D(f-g) = f(x)D(g) + g(z)D(f).
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Lemma 2.1. There is a natural isomorphism between Hom(m/m? k) and the
space of derivations: R — k(m).

The natural isomorphism of the lemma is sending a derivation to the linear
functional defined by applying it to m (indeed, it has to be zero on m?); vice
versa, given such a linear map we define the derivation as being equal to the
functional on m, and equal to zero on constants. (Check that this indeed defines
a derivation!.)

A local ring is called regular (or nonsingular) if the dimension of the Zariski
cotangent space is equal to the dimension of the ring. This turns out to imply
automatically that the local ring is integral.

(Examples discussed in class.)

A ring is called regular if all its local rings are regular. This is the best
intrinsic notion of “smoothness” for rings. Serre proved that it is enough to check
this for the localizations at maximal ideals only. This is certainly believable
from a geometric point of view, but it is a hard theorem that actually requires
a cohomological interpretation of regularity!

More precisely, Serre proved that a local ring is regular if and only if it is of
finite cohomological dimension. We haven’t learnt what this means, but keep it
in mind, because it is an important notion; it shows that regularity is a deep
property, and not just some explicit geometric feature.

6.3 Differentials and derivations

The definition of cotangent space at a point as m/m?, or the tangent space
as the space of derivations from R to k(m), is not very satisfactory because it
refers to a single point. We would like to define sheaves instead, and recover the
tangent and cotangent spaces at points as fibers of these sheaves. In fact, we
will define these sheaves in the relative setting: for a morphism X — Y we will
define a relative tangent sheaf which will correspond to the “tangent spaces of
the fibers” and a relative cotangent sheaf which will be the dual of this (hence
a quotient of the cotangent sheaf by those differentials that vanish on “vertical
tangent vectors”).

Let A be a ring and R an A-algebra. An A-derivation D : R — R is an
A-linear map which satisfies D(fg) = fDg + gD f. One can analogously define
derivations R — M, where M is an R-module, which was the case above for
M = k(m).

Definition. Let f : X — Y be a morphism of schemes. The sheaf of oy -
derivations on X is the sheaf (of 0 x-modules) on X associated to the presheaf
on affine open sets:' U +— Der -1, ) (0x(U), 0x(U)).

The sheaf or relative differentials (with respect to the map f) is the sheaf
Qx/y (of ox-modules) on X, together with an f~!(oy)-derivation d : ox —

I'Without the “affine” condition, this is not a presheaf, since a derivation on ox (U) does not
necessarily determine its restriction to ox (V'), when V < U; however, recall that a presheaf
on affine open sets is enough in order to perform sheafification and define a sheaf.
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Qx vy, which is universal (initial) among such objects, i.e. every other foy)-
derivation: ox — M, where M is a 0x-module, factors through d and a mor-
phism of ox-modules: Qx/,y — M.

The definition of Q2 /y implies that, for any sheaf M of 0x-modules, we have
Ders-1(o,)(0x, M) = Hom,  (2x,y, M). The sheaves defined above are quasi-
coherent, and locally on spec R — spec A the sheaf {2x/y corresponds to the
module I/I?, where I = R is the kernel of the multiplication map: R®4 R — R
(it is generated by elements of the form a ® 1 — 1 ® a,a € A).

More useful, in practice, is to take a closed immersion of X (locally) into

a Y-scheme Z, for instance X <& Z = AY. Then, if 7 is the sheaf of ideals
defining X, there is a short exact sequence:

For instance, if Z = AYy, and the ideal of X is locally defined by a set of
functions f;, then x/y is the quotient of the free ox-module generated by
symbols dzq,...,dz, by the submodule generated by the df;’s (understood as
elements of that module via the usual rules for computing differentials). See the
discussion of the Jacobian criterion below.

For the composition of two maps: X —— Y — Z we have an exact sequence:

f*Qy )z = Qx/7 — Qxy — 0. (6.2)

We write Qx for derivations over specZ. In particular, if m € X is a closed

point with residue field k(m), then Hom,, (Qx, k(m)) = Derz(ox, k(m)) is the
tangent space. Therefore, the fiber of 2x over m is isomorphic to the cotangent
space m/m?2.
Remark. For schemes defined over a field k, it is more natural geometrically to
consider k-derivations instead of Z-derivations. The two are not always equiv-
alent: For example, consider schemes of the form spec ¥, where E is a field,
containing another field F. A Z-derivation of spec E is always trivial over the
prime field Q or F,, but beyond that we have an inequality:

dimg Qspec E/spec F = trdegF E

for any finitely generated extension E/F of F, with equality if and only if the
extension is separable algebraic over a purely transcendental one. In particular,
Z-derivations and F'-derivations are the same when E is algebraic over Q or IF,.
However, if £ = k is transcendental over the prime field then it has non-trivial
Z-derivations, but of course no non-trivial k-derivations.

Finally, while we’re at it, let’s define the sheaf of differential operators. We
will only consider the case when X is defined over a field k, and the whole story
will be k-linear. The sheaf of differential operators Dy is a sheaf of N-filtered
ox-algebras of k-linear endomorphisms D : ox — ox, with D% = ox and D%
consisting locally of those endomorphisms D which satisfy:

[D, fle DY
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for every f € ox (considered as the operator of “multiplication by f7; and [e, ]
denotes the commutator).

It is easy to see that D% = ox + Dery(0ox,0x). For nonsingular varieties
the following is true: the sheaf of differential operators is generated (as an
ox-algebra) by derivations. This is not always true for singular varieties.”

6.4 Smooth morphisms

A morphism: X — Y of schemes is called smooth of relative dimension r if,
locally on X it factors® as: U — A} — Y for some N (where U < X is
open) so that locally on U the ideal defining it is generated by n — r sections
fra1s- -+, fn, whose differentials df,. 1 (), ..., df,(z) are linearly independent in
Qpn )y ® k(x), for every point z.

It is called étale if it is smooth of relative dimension 0. This turns out to
be the correct algebro-geometric analog of the topological notion of a covering
space.

The morphism is étale if and only if it is flat and unramified. “Recall”
that an A-algebra B is called flat if the functor B ® 4 e from A-modules to
B-modules is exact. “Unramified” means that the sheaf of relative differentials
{Yx,y is zero and the morphism is locally of finite type. Equivalently, one can
define “unramified” in a way similar to “smooth”, except that we don’t put a
restriction on the number of sections f; generating the ideal, and we ask that
the df; generate Qyn /vy ® k(). (The equivalence of the two definitions follows
from (?7).)

For example, closed immersions are unramified, but not etale (unless they
are also open).

Here is a differential-geometric way to understand the notion of smoothness:
We can consider the set of sections (f;)i_,,; as a morphism f : A} — AP™".
Such a morphism induces a pull-back of cotangent sheaves (over Y'), and the
differentials df; generate the image of f*Q AYTY in Q4n /y. Hence, saying that
they are linearly independent at a point x € X is equivalent to saying that the
corresponding map on tangent spaces:

T,AY — TyAL™"

is surjective. (Well, we need to be precise about what “0” means: it should be
replaced by the image of x, which is a point in the zero section of Y. Also, there
is no “map on tangent spaces”, in general, since x may have a larger residue
field than f(x). In algebraic geometry what is really well-behaved is the pull-
back of the sheaf of differentials.) The implicit function theorem in differential
geometry would say that the fiber of 0 is smooth around x. But the fiber of 0
around zx is a neighborhood of x in X!

2See http://cornellmath.wordpress.com/2007/09/09/d-module-basics-ii/.
3If the criterion is fulfilled for one such factorization, it is fulfilled for all.


http://cornellmath.wordpress.com/2007/09/09/d-module-basics-ii/
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Notice here that we have the exact sequence:
*
f QA;’;_T/Y g QA;’,'/Y - QA;I}/A‘I;}—T - 0,

and Qx y is (locally) the fiber of QA?//Agf'r over (a neighborhood of x in) X;
therefore, it is equal to the quotient of the free ox-sheaf Qun y by the ox-
subscheaf generated by the df;’s.

If X,Y are smooth S-schemes, then Qy 5 and Qy /g are locally free, and an
S-morphism f : X — Y of finite presentation is smooth (resp. étale) if and only
if the map of differentials f*Qy /)¢ — Qx/g is injective (resp. bijective). (Of
course, from the exact sequence (?7?) and the last characterization of unramified
morphisms it follows that “surjective” is equivalent to “unramified”, without
the assumption of smoothness.)

6.5 Jacobian criterion and k-smoothness

Let k be a field, and R a k-algebra of finite type. Hence, R = k[x1,...,2,]/(f1, - fm)-
Let m be a k-valued point, i.e. a maximal ideal such that R/m = k. Notice that
this is the same as a morphism: speck — spec R. Without loss of generality,
by a change of coordinates, this point is the zero point. To compute the Zariski

cotangent space we proceed as follows: First of all, for the ring k[z,...,x,]
the Zariski cotangent space at zero is a vector space with basis (dzy,...,dz,),
where dz; denotes the image of z; modulo (x1,...,2,)%. The cotangent space

of R at zero will be:

($1,...,$7L)/((151,...,In)27f1,...,fm).

Notice that ((z1,...,2,)2, fi,. .., fm) remains the same when we replace the
fi’s by their linear terms. Therefore, the Zariski cotangent space is generated
by the dz;’s modulo the relations which can be written as df;(0) (computed as
differentials by the standard rules of calculus). This description holds at any
k-valued point x, by replacing the point of evaluation 0 by x.

Another way to say that is that it is the quotient of the space with basis
(dz;); by the image of the Jacobian matriz:

Jac(z) := (Zf (@)ij.

We conclude:

spec R is regular at a k-valued point z if and only if the corank (di-
mension of cokernel) of the Jacobian matrix is equal to the dimension
at x.

In particular, if k is algebraically closed, then by Serre’s theorem (i.e. that it
suffices to check regularity only at closed points) this criterion on the Jacobian
at every closed point is equivalent to regularity (because all closed points will
be k-valued). This is part of a more general fact:
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Theorem 5.1. If a morphism X — speck is smooth, then X is non-singular.
The converse is true when k is a perfect field.

This is not true without the assumption of perfection. For instance, if k =
F,(t) then k[x]/(xP —1t) is a field, hence regular, but the Jacobian criterion fails:
if f(x) = 2P — u then df = 0.

6.6 Formal smoothness and Hensel’s lemma

Later

6.7 Examples from number theory

Let E/F be a finite extension of p-adic fields (finite extensions of Z,), and
let op/or be the corresponding extension of rings of integers. Then op =
op[X]/f(X) for some polynomial f, which is a way to factor the morphism
specop — spec oy through A} .

As we discussed above, the sheaf of relative differentials Qg is equal to the
free sheaf generated by the symbol dz by df = f’'(x)dx. Thus, the morphism
is unramified (actually, étale) if and only if f/(x) is invertible in op[X]/f(X),
which is the case if and only if the extension is unramified.

Of course, spec E — spec F' is always étale in this case. In positive charac-
teristic, though, an finite extension of fields is étale if and only if it is separable.
(If it is separable then it is generated by a single irreducible polynomial without
multiple roots, and the above argument shows that it is etale. If it is insepa-
rable, then it is ramified: the E-module Q,ec £/spec r Of relative differentials is
nonzero. In general, an étale extension of (spec of) a field is, topologically, a
union of closed points. Each of them is (spec of) a finite separable extension.

Needs expansion



Chapter 7

Divisors and line bundles

7.1 Welil divisors

In §?? we introduced the notion of “regular in codimension one” (R1). This
allows us to talk about Weil divisors and valuations.

Let X be an integral scheme which is regular in codimension one. For every
irreducible codimension-one Y subscheme of X (i.e. in the affine case X =
spec R, for any prime p of R of height one) we have a well-defined valuation
homomorphism:

vy : K(X)* — Z.

Indeed, recall that the local ring O(X), is a valuation ring, so vy denotes the
corresponding valuation.

We let Weil(X) denote the free abelian group on the set of irreducible
codimension-one subschemes of X (i.e. height one primes of R). A Weil divisor
is effective if the coefficients are all non-negative (sometimes written: D > 0).

We have a well-defined homomorphism:

K(X)* — Div(X)

by:
1= ov(f) Y

The sum is actually finite, since every f belongs only to finitely many primes of
height one. (Indeed, these are the minimal primes over (f).)

The image of K(X) is called the subgroupprincipal divisors of X. The
quotient of Weil(X) by principal divisors is the class group C1(X) of X.

7.2 Cartier divisors and the Picard group

A cousin of Weil divisors are Cartier divisors: those are locally defined by
rational functions modulo invertible regular functions. Let us assume that X is
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an integral (noetherian) scheme (i.e. reduced and irreducible), and consider the
sheaf:
Kx/0%

of invertible rational functions modulo invertible regular functions on X. A
section of this sheaf is called a Cartier divisor, and we will denote the group of
Cartier divisors by Car(X). A Cartier divisor is effective if it is locally generated
by elements of Oy, i.e. if it is an ideal sheaf.

Let us now further assume that X is regular in codimension one. Then the
discussion in the previous section gives a well-defined map:

Car(X) — Weil(X).
This map is:

e injective, if X is normal, since every rational function with zero divisor is
invertible regular;

e bijective, if X is factorial, since every codimension one prime in a factorial
ring is principal. (Recall that “factorial” only refers to localizations at
points of X, but a generator of the prime in the local ring will represent
the divisor in a small neighborhood.)

The Picard group of a scheme X is the abelian group of isomorphism classes
of invertible sheaves (line bundles) on X. The multiplication operation is tensor
product of line bundles. In this course we will see two notions of “Picard group”:
the first is set-theoretic, and the second is scheme-theoretic (under assumptions
on X, the main one being properness). For now we focus on the set-theoretic
one:

A line bundle on X is an invertible sheaf of Ox-modules on X, i.e. a rank-
one locally free sheaf. Recall that in algebraic geometry we describe “spaces”
by their functions, so it’s natural to describe vector bundles by their sections.
Their sections form a sheaf over X, and for example, in the differential-geometric
category, a local isomorphism of a line bundle with U x C (where U is a small
open set) gives rise to an isomorphism between smooth sections over U and
C®(U) — hence the property of sections being a locally free sheaf of rank one
over the structure sheaf.

Tensoring line bundles corresponds to tensoring their sections over Ox.
Thus, isomorphism classes of line bundles form an abelian group, with the class
of Ox being the identity element; the operation of taking inverse corresponds
to replacing a sheaf F by Hom(F,Ox). The Picard group Pic(X), as a set, is
the group of isomorphism classes of line bundles over X.

In the case of integral schemes, it turns out to be the same as the group of
Cartier divisors modulo linear equivalence (i.e. modulo Cartier divisors arising
from global rational functions).

Lemma 2.1. If X is an integral scheme, there is a natural isomorphism:
Pic(X) ~ Car(X)/K(X)*.
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Proof. The natural isomorphism is taking a line bundle L, together with a
rational section s (there is always such a section, for example by trivializing
over an open subset U and taking the section corresponding to the constant
1€ Ox(U)), to the Cartier divisor associated to this section. Different rational
sections are obtained from each other by multiplication by an element of K(X)*,
hence the map is well-defined.

Vice versa, given a class D of Cartier divisors modulo rational equivalence,
represented by a cover (U;); of X and rational functions f; € Kx(U;), we can
define the subsheaf Ox (D) of Kx as the submodule of Kx generated by f[l
over U;. It is easy to see that this defines the inverse map.

By the way, if X is normal then the construction of Ox (D) extends to any
WEeil divisor: locally, the sheaf consists of those rational functions f such that
~f+ D > 0. But it won’t be invertible unless the divisor is also Cartier,
i.e. locally principal (which, as we mentioned, is always the case when X is
factorial). O

Example 2.2. When R is the ring of integers of a number field, or any Dedekind
domain, the Picard group is the ideal class group, i.e. the quotient of the group
of fractional ideals by the group of principal ideals. (Indeed, remember that
since R is a Dedekind domain, the set of fractional ideals form a free abelian
group on the set of prime ideals — hence, it can be identified with Pic(spec R).)



Part 11

Basic notions:
Representation Theory
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Chapter 8

Representations of
topological groups

In this course, we will only consider representations on complex vector spaces;
hence, we will be saying “vector space” and assuming implicitly that the under-
lying field is C. Representations over other fields, or even algebras, are very
important as well, but we won’t have time to discuss them. The interested
student should read about the classification of semisimple algebras over an alge-
braic field (Wedderburn’s theorem) in an algebra book (e.g. Lang’s), and then
follow this course trying to check where we are using the algebraic closedness
and other properties of the field of complex numbers.

8.1 Definitions

A representation of a topological group G on a topological vector space V is a

homomorphism
p: G — GL(V),

where GL(V') denotes the group of continuous, invertible linear operators on V,
with the property that the induced “action” map:

GxV >V,

(g,v) = p(g)v

is continuous.

A morphism between representations V4 and V5 of GG is a continuous linear
map: V73 — Vo which commutes with the action of G. Hence, we have defined
the category of G-representations.

A subrepresentation of V' is a closed subspace of V' which is stable under the
action of G.
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A representation is called irreducible if it does not contain any non-zero,
proper subrepresentations. A finite-dimensional representation® is called (to-
tally) decomposable if it is equal to the direct sum of irreducible subrepresenta-
tions.

Ezample 1.1. Consider the group G = Z and its representation p on V = C?

with p(1) = ( b )

It contains an irreducible subspace V; generated by , but it cannot

1
0
be written as a direct sum of two irreducible subspaces. In other words, the
following exact sequence of representations does not split:

Given a decomposable representation V', it is isomorphic to a direct sum:
@;m(i)m;, where m(i)m; denotes the direct sum of m(i) (assumed finite) copies
of m; and the 7;’s are assumed to be non-isomorphic for different indices. Then
m(i) is called the multiplicity of m; and the subspace which is isomorphic to
m(i)m; is called the m;-isotypic component of V| sometimes denoted V (m;).

Remark. If our field of definition was not C, but some non-algebraically closed
field k, then we would distinguish between irreducible and absolutely irreducible
representations: namely, V is called absolutely irreducible if V®jk is irreducible.
For example, the representation of the group G = R on the two-dimensional R-
space generated by the functions sinx and cosz is irreducible; but when we
tensor with C it becomes reducible, namely the direct sum of the span of e**
and e,

A wunitary representation of G is a representation of G on a Hilbert space V'
which preserves the norm (i.e. p has image in the subgroup of unitary transfor-
mations, U(V) < GL(V)). This is the most important class of representations,
because it has the nicest decomposition properties.

8.2 Examples; G-spaces and the regular repre-
sentation

Most examples and applications of representation theory arise in the following,
or similar, settings: a (topological) group acts on a (topological) space X, and
then we get the reqular representation of the group on various spaces of functions
on X. In general, since our group is not always abelian, we will get used to
letting the group act on the right on the space, so that its action on the function
space is on the left:

(fﬂ,g) = -4,
(- f)(x) = f(z-g). (8.1)

I For infinite-dimensional representations the way of decomposing includes more than direct
sums, and will be discussed later.
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Ezercise. Verify that (??) defines a left action.
Let us see some more examples:

Example 2.1. The action of the circle group S' on L?(S'). We know by the
theory of Fourier series that every f € L?(S!) can be decomposed uniquely as
a convergent series:

What is so special about the functions z — 2"? (If we identify S! with R/Z
via x +> 2™ these are the exponentials €27"*.) The answer is that each of
them spans an irreducible representation for the action of S', more precisely
each one is an eigenvector for S', hence the representation that it spans is
one-dimensional.

Example 2.2. The action of R on L?(R). Here we have the theory of Fourier
transform, according to which every f € L?(R) admits an essentially unique
decomposition:
f= f(s)e*™%ds.
seiR
Again, the functions z +— €275 are eigenvectors for the action of the group. We
will recall/explain elsewhere what is the precise meaning of this “direct integral”
decomposition.

Ezample 2.3. The group Dg of symmetries of the square has eight elements. It
acts on functions on the four vertices of the square. Can you decompose this
four-dimensional space into irreducibles?

Example 2.4. Consider a positive definite quadratic form on R3. The corre-
sponding special orthogonal group G' = SO3 acts on L?(S?). (The two-sphere

X = 52 is a homogeneous space for G —i.e. G acts transitively on its points. By
choosing a point v € X we get an isomorphism: X = SO5\SO3, where SO, is
the special orthogonal group for the quadratic form restricted to the orthogonal
complement of v.

The space L?(X) decomposes into an orthogonal direct sum of finite-dimensional,

irreducible subrepresentations, and the elements of those subrepresentations are
called spherical harmonics.

Finally, we can generalize the notion of the regular representation to line
bundles: If £ is a line bundle over a G-space X, endowed with a compatible
G-action (such a line bundle is called G-linear), then the space of global sections
H°(X, L) becomes a representation of G.

Ezample 2.5. Let X = CP!, G = Aut(X) ~ PGLy(C), £ = O(n) for some
integer n. Iff n > 0, the space of global sections of £ is non-empty, and furnishes
a representation of G. Explicitly, if we choose a point x € X, its stabilizer G,
is a Borel subgroup of G; we may fix an isomorphism G ~ PGLy(C) such that

G, = B =the subgroup of upper triangular matrices (rather, their image in
PGL,).
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The space of global sections of O(n) can be identified with the space of
homogeneous polynomial functions on C2? of degree n. It does not carry, in
general, a natural action of GG, but it carries a natural action of G = GLo,
and can be identified with the space of regular functions on G which have the
property that for every g € G:

(3 9) -

Exercise. Can you verify these facts?

8.3 Discussion of the continuity condition

If V is a Banach space, it seems tempting to endow GL(V) with the norm
topology and to ask that p is continuous with respect to that. However, this is
not a good requirement, because many natural representations fail to satisty it.
For example, see the following exercise:

Ezercise. We let the circle group S* := {z € C||z|] = 1} act on X := R? by
rotations in the obvious way. We consider the reqular representation of S* on
Vi=LP(X) (p=1):

(- @) = fg-x)
Show that the resulting map: G — B(V) is not continuous. (Here B(V') denotes

the Banach space of bounded endomorphisms of V)
Is the action map G x V' — V continuous? Including the case p = o0?



Chapter 9

Representations without
topology, discrete groups,
finite-dimensional
constructions

9.1 Representations on vector spaces without
topology

We consider first the case that V' does not have topology. To be more precise:
we ignore the topology on V by giving it the weak topology induced by the set
of all linear functionals. Open sets of this topology are generated by preimages
of open sets in C under linear functionals; it is an easy exercise to show that
then all linear endomorphisms of the vector space are continuous. In this case
we have the following (easy!) theorem:

Theorem 1.1. The category of representations of G on vector spaces without
topology is abelian.

For the definition of an “abelian category”, see the section on category theory
in the appendix.
Exercise. Prove the theorem!

This has several implications (see the appendix on category theory), for

instance:

Corollary 1.2 (Morphisms between non-isomorphic representations). Let my, mo
be non-isomorphic, irreducible representations of G without topology. Then any
morphism: m — Ty 1S zero.
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Corollary 1.3 (Jordan-Hoélder theorem). If a representation V' admits a finite
filtration by subrepresentations:

0=VycVicVoc.---cV,=V

where the consecutive quotients gr'V; :=V;/V;_1 are simple (i.e. irreducible and
non-zero), then the (unordered, with multiplicities) set of isomorphism classes
of the gr'V;’s does not depend on the filtration chosen.

A representation (without topology) is called finitely generated if there is a
finite number of elements in V' such that V is the smallest subrepresentation
containing them. (In the case of topological representations, we usually apply
the related notion of a topologically finitely generated representation, which is
defined the same way but remembering that “subrepresentation” implies a closed
subspace.)

Ezercise (Important!). Prove that a representation of finite length is finitely
generated.

Ezample 1.4. We consider the regular representation of the group G = R on the
space of functions on R. The subspace of functions of the form P(x)e®®, where
s is a parameter and P is a polynomial of degree < N, is a representation of
finite length. (Prove!l) What is its length?

Ezample 1.5. The same, essentially, example is the regular representation of
G = Z and the subspace of functions of the form P(n)t"™ where t € C* and P(n)
has degree < N.

Ezample 1.6. On the other hand, we claim that the regular representation of
G =Z on C.(Z) = C[Z] is not of finite length, although it is finitely generated!
The fact that it is finitely generated is easy: it has a vector space basis consisting
of the elements d,, (delta function at the point n), and 6, = (—n) - g, so the
representation is generated by just the vector dg.

There are two ways to prove that it is not of finite length: the first is to show
that all irreducible representations of the group are characters one-dimensional
(cf. Exercise ?77?), and show that there are no irreducible subrepresentations in
C.(Z). (Indeed, all eigenfunctions of the group on C[Z] are of the form n — ct™,
and this is easy to show.)

A second method is to show that C.(Z) has infinitely many, non-isomorphic,
irreducible quotients. Then it cannot have a finite composition series, because
by the Jordan-Ho6lder theorem this would imply that only a finite number of
irreducible quotients, up to isomorphism, can appear.

Let x : G — C* be the character: n — t" (for some t € C*). Clearly,
different ¢’s give different homomorphisms, so there are infinitely many such.
The map

T f j Fm)x " (n)dn

(of course, the integral is a sum, but we write it so in order to get used to more
general constructions) defines a morphism: C.(Z) — C,, where C,, is the vector
space C where G acts via x.
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Indeed, we have: T'(z- f) = §, f(n + z)x " (n)d z) §, f( (n)dn =
x(2)T'f.

This morphism is clearly non-zero, since T'(dp) = 1. Therefore, C.(Z) has
infinitely many non-isomorphic quotients and cannot be of finite length.

9.2 Discrete groups; the group algebra

Every time that we have a representation p of a group, we naturally get a
representation of its group algebra C[G] (consisting of formal, finite linear com-
binations of elements of G), i.e. a homomorphism of algebras:

C[G] — End(V)

where, again, End stands for continuous endomorphisms. The action is defined
as follows:
Zczgz : Zczp 9:)-

If the group is discrete, we have the following (easy!) theorem:

Theorem 2.1 (When G is discrete). The natural functor:
representations of G —> topological C[G]-modules

s an equivalence of categories.

Ezercise (Very important!). Classify the isomorphism classes of finitely gener-
ated, without topology, representations of the group Z. (Hint: describe the
group algebra of Z and apply a well-known theorem from algebra.)

9.3 Finite dimensional representations — various
constructions

When the vector spaces are finite-dimensional we can use various constructions
from linear algebra in order to obtain more representations. (When the spaces
are infinite-dimensional then “linear algebra” is called “functional analysis” and
things are a bit more complicated.)

9.3.1 Direct sums

If m,© =1,...,n, are representations of G' then @'_,7; is a representation of G.

9.3.2 Tensor products

o If m;,i =1,...,n, are representations of the groups G;, respectively, then
T ® - ®m, is a representation of G x -+ x G,,.
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If the groups G; are the same (= G) then we often think of the tensor
product as a representation of just one copy of G, by restricting the above
to the diagonal copy of G.

e If 7 is a representation of the group G, then 7 ® --- ® 7 (n times) is a
representation of G x S, (where S, is the symmetric group in n elements).

It contains the subrepresentation S”m of symmetric vectors in 7®", and
the subrepresentation A"7 of alternating vectors. This is a special case of
the following phenomenon:

Lemma 3.1. Suppose that W is a representation of G1 x Ga, and that
restricting it to G (forgetting the action of G1) it is decomposable, then
for any irreducible representation mo of Ga, the corresponding isotypic
subspace W (ma) is G1 x Ga-stable.

Remark. For commuting (let’s say invertible, though it’s not necessary)
linear operators (in other words, representations of Z x Z) this is the well-
known fact that for every eigenvalue of one, the corresponding eigenspace
is stable under the action of the other.

Proof. The fact that it is G2-stable follows from the definition of “isotypic
subspace”. The action of every g; € G; defines a Go-morphism: W (w) —
W. If we write W as a direct sum of its isotypic subspaces, and project to
one of them (other than the 7-th), we get a morphism: W(mr) — W(n').
By an easy extension of Corollary 77, this has to be zero. In other words,
g1 - W(r) c W(m). O

Assume now that W is decomposable with respect to both G; and Gs.

Example 3.2. The alternating representation or sign character sgn of the
symmetric group S, (the group of permutations of {1,2,...,n}) is the
character S, — GL1(C) = C*, which sends any transposition to —1.
It is well known that every element of S, can be written as an even or
odd product of transpositions, but not both, hence this is well-defined.
The space A"V of alternating vectors in V®" is precisely the sgn-isotypic
subspace with respect to teh S,-action.

9.3.3 Inner products

Given a representation, can we find an inner product on it which is preserved
by the action of the group? If we can, this is very advantageous:

Proposition 3.3. Any finite-dimensional unitary representation is decompos-

able.

Proof. Since G preserves the inner product, the orthogonal complement of an
invariant subspace is also invariant. By induction on the dimension, we see that
the represenation decomposes into a direct sum of irreducibles. O
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9.3.4 Duals

Given a representation (m, V'), we define a representation (7¥, V") on the dual

vector space by:
(g-v*)(v) = v* (g7 ). (9-1)

Check that this indeed defines a representation (and that inverting g was
necessary)!
The definition looks better if we write with angular brackets, and it is equiv-
alent to stating that:
<g~v,g~v*> = <U7U*>' (92)

In other words: the action on the dual space is precisely that action under which
the canonical pairing V® V¥ — C is invariant.

For two representations (m1, V') and (wg, W), we can also consider the space
Homge (V, W), and define the natural action of G x G as a composition of oper-
ators:

((91,92) - T)(v) = m2(g1) - (T(m1(g3") - ). (9:3)

Then we have:

Lemma 3.4. The natural map n : WQVY — Home (V, W) is Gx G-equivariant,
and an isomorphism if V is finite-dimensional.

Proof. Let us recall that the “natural map” is given by:
n(w®v*)(v) = (v,v*) w,

and it is a simple exercise in linear algebra that it is injective and (if the vector
spaces are finite-dimensional, by dimension counting) surjective.
Let us check that it is equivariant:

n(g1-w®gsv*)(v) = (v, g2 - v*) g1-w = g1-({g5 'v,v*) w) = (g1, g2) N(WRV*) (v).

O



Chapter 10

Representations of finite
groups

Throughout this lecture, all groups are finite.

10.1 Local finiteness

Lemma 1.1. For any representation V of a finite group G, any vector v gen-
erates a finite-dimensional subrepresentation.

Proof. The vector v generates the subrepresentation C[G]-v. Since C[G] is
finite-dimensional, C[G] - v is finite-dimensional and closed. O

A vector living in a finite dimensional subrepresenation of a representation
is called a finite vector, and a representation consisting of finite vectors only is
called locally finite.

Local finiteness allows us to focus on finite-dimensional representations only.
In particular, we may mostly ignore the topology on our space — unless otherwise
stated, all representations are without topology for this lecture.

Corollary 1.2. FEvery irreducible representation of G is finite-dimensional.

10.2 Unitarity

Lemma 2.1. FEvery representation of G on a Hilbertian space is unitarizable.

A Hilbertian space is a topological space which is isomorphic to a Hilbert
space; in particular, finite-dimensional spaces are such. (The reason we say
“Hilbertian” instead of “Hilbert” is that we don’t need an inner product to be
given to us.)
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Proof. By averaging! Let (, ) be any positive definite inner product on the
space (call the space V'), then we define a new inner product:

<’U,’LU>/ = Z <gv,gw> .

geG
This is easily seen to be positive definite and G-invariant. O

Corollary 2.2. FEvery representation of G on a Hilbertian space decomposes
into a (topological, i.e. closure of the algebraic) direct sum of irreducibles.

10.3 Schur’s lemma

Lemma 3.1 (Schur’s lemma). If V is an irreducible representation of G then
Endg (V) = C (acting by scalar multiplication).

As a corollary, irreducible representations of commutative groups are one-
dimensional.

Remark. This is not the case with arbitrary groups and representations! For
instance, Per Enflo constructed an operator on an infinite-dimensional Banach
space which has no closed invariant subspaces. Invertible operators with this
property exist, too.

Proof. Let T € Endg(V), and let A be an eigenvalue for T. By replacing T by
T — A we may assume that A = 0, i.e. kerT # 0. But ker T is G-invariant: if
Tv=0then T(g-v) =g -Tv = g-0=0. By irreducibility, ker T = V, therefore
T = 0. (Le. the original T was the scalar AI. O

10.4 The regular representation

Let H be a finite group. In order to understand all irreducible representations of
H it is enough, it turns out, to look at the regular representation on the space of
functions on H. More precisely, we consider the space C'(H) as a representation
of the group G := H x H by left and right multiplication:

(hy,h) - f(z) = f(h] ahy).

Notice that we could think of C'(H) as the group algebra of H. However, as
we discussed previously we prefer to think of the group algebra as “measures”,
while now we want to decompose a space of “functions”.

We can (and will) think of C(H) as L?(H,p), where p is any invariant
measure; it is then easy to check that this is a unitary representation. We will
take pu to be probability measure, i.e. ﬁ times counting measure.

Our goal is to prove the following theorem:
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Theorem 4.1. There is a canonical, orthogonal direct sum decomposition of
H x H-representations:
CH) ~ @t Q7" (10.1)

where T ranges over a set of representatives' for the isomorphism classes of
irreducible representations of H.

10.5 Matrix coefficients

For any representation 7 of H, if #* denotes its dual, we have a canonical,
H x H-equivariant map:
T7n* — C(H) (10.2)

v ®U* e fv,v* (.I) = <1},7T*(.13)’U*> .

The function f, .= is called the matriz coefficient of v and v*.
We have:

Lemma 5.1. If 7 is irreducible, the matrixz coefficient map (?77?) is injective.

Proof. We will see later [ref] that 7 ® 7* is an irreducible representation of
G = H x H. Hence, the map is either zero or injective. It is evidently not zero,
hence it is injective. O

This is already a very important conclusion: we can find every irreducible
representation of H in the space C(H)! (Notice that under just the action of
the left copy, m ® * is just equal to a direct sum of dim 7 copies of .)

10.6 Exhaustion of C(H)

By unitarity, we know a priori that C(H) decomposes as an orthogonal direct
sum of irreducible representations of G = H x H. We will see in §?7 that
irreducible representations of G are precisely those of the form m ® 7, where
7w and 7 are irreducible representations of H. Therefore, the following result
suffices for the proof of Theorem ?77:

Lemma 6.1. Let w, 7 be irreducible representations of H and assume that M :
7®T — C(H) is a non-zero (hence injective) morphism. Then T ~ 7*, and we
can choose this isomorphism so that M is the matriz coefficient map.

Proof. First notice (prove!) that the composition L : 7 ® 7 M, C(H) =5 Cis
an HY2& invariant functional on 7 ® 7. We claim that it is non-zero. Indeed,
if Llv®w) = 0 for every v € m,w € 7 then M = 0 because M (v ® w)(x) =
Muv®z-w)(l) = L(v®@x - w). (In other words, the reason is that the delta
measure at 1 generates the dual space of C(H) under the G-action.)

1Using Schur’s lemma, prove the following: For any isomorphic, irreducible representations
w1 and w2 of G, the G x G-representations 71 ®7rik and o ®7r5k are canonically isomorphic.
Hence, the representation m ® 7* does not depend on the choice of representative.
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This non-zero H-invariant functional defines a non-zero morphism: 7 — 7*,
which by irreducibility has to be an isomorphism.

Finally, for the isomorphism ¢ : 7 — 7* determined by L, we claim that M
is just the matrix coefficient map. Again, the reason is that the delta measure
at the identity generates the dual space and hence evaluation at 1 determines
a morphism completely. (See the section on induced representations later to
understand this point.) Precisely, this means:

M @w)(z) = Llv®@z - w) = (v, ¢z w)) = (v,2 - ¢(w)) = fo,u(z).
O

Now Theorem ?? follows: we know that C(H) has to decompose into an
orthogonal direct sum of irreducibles of G, we know that the irreducibles that
appear are precisely those of the form 7 ® 7*, and we know that the space
Homg(r @ n*,C(H)) is one-dimensional, with a canonical element, for each 7.

10.7 Corollaries

Let us number 7y, o, ..., T the distinct isomorphism classes of irreducible rep-
resentations of H, and by d; the dimension of 7;. The fact that there are finitely
many is just a consequence of the following:

Corollary 7.1. We have Y, d? = |H|.
Proof. Indeed, dim C(H) = |H| and dim; ® 7} = d7. O

(3

Corollary 7.2. There are as many isomorphism classes of irreducible repre-
sentations of H as conjugacy classes in H.

Proof. Let H act on C'(H) as the diagonal of G = H x H. Explicitly, this is
the representation obtained by the conjugacy action of H on itself. Thus, the
space of invariants C(H)* has a basis consisting of the characteristic functions

of conjugacy classes.
On the other hand,

The last step is by Schur’s lemma.

We have found two bases® for the space C(H); one is indexed by conju-
gacy classes and the other is indexed by irreducible representations; hence, they
should be identical. O

We will see more corollaries right below, when we discuss characters.

2In the second case we have not yet described a basis, but just the lines on which the basis
elements will live on. We will discuss distinguished basis elements when we discuss characters.
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10.8 Characters

If we think of C(H) as the group algebra C[H] of H, i.e. identify functions
with measures by multiplying them by the counting measure. Then (exercise!)
C(H)H is precisely the center of C[H]. Hence, the last corollary and its proof
provide two distinct bases for the center of C[H].

To be precise, we don’t yet have a basis indexed by representations; all we
know is that the space 7 ®7* has a one-dimensional line of H-invariant vectors.
Here we will see that there is actually a canonical invariant element in ™ ® 7*
(considered as a subspace of C(H)), the character of .

Given a finite dimensional (not necessarily irreducible) representation 7 of
H, we define a functional on C(H) by:

Xr (@) = trm(p).

It is actually enough to describe this functional on point masses, so we consider
H as a subset of C[H] and set:

Xx(h) = trw(h).

Lemma 8.1. X is a non-zero, H-invariant (i.e. conjugation-invariant) func-
tion, and it lives in the image of the matrixz coefficients for m.

Proof. Tt is non-zero because x(1) = d, (dimension of 7).

It is conjugation-invariant because the trace of an operator is conjugation-
invariant.

If we choose dual bases (e;);, (eF); for m and 7* then we have:

trw(h) = Z (m(h)ei, ef) = Z fei e (h),

i i

hence in the image of the matrix coefficient map. O
For irreducible 7 this function, the character of 7, is our distinguished basis

element for C(H)* corresponding to 7. We will see in the next paragraph that

this is an orthonormal basis with respect to probability Haar measure on H.
Properties of the character:

® Xmi@my = Xmy T Xma-
® Xm®ms = Xmp * Xma-
® Xrn# = Xn-

All are easy if you use bases to compute the trace. E.g., for the third one
let’s choose dual bases (e;); of 7 and (e); of 7*, then if A denotes the matrix
for m(g), the matrix for 7*(g) is tA~'. Notice that the eigenvalues of that are
the inverses of eigenvalues for A, but since Al = 1 all those are roots of unity
and satisfy: A~! = X. This shows the third property.



52

10.9 Orthogonality

Recall that we are using probability Haar measure on H, i.e. (f1, f2) = ﬁ Doner J1(h) f2(h).

Proposition 9.1. If w,7 are irreducible representations of H then:

Xy Xr) = {1 Yo (10.3)

0 otherwise.

Proof. The fact that they are orthogonal if m # 7 follows from the fact that
the images of matrix coefficients for 7 and 7 are orthogonal, as we have already
discussed. There remains to compute the L?-norm of y,:

=

- 1 2 00 = | v

geH

HXTr
We use the fact that x. - Xz = Xrgr* in order to write this as:

f Xr@r* = <X7r®7r*7 1> .
H

We claim that for any representation 7 we have: (r,1) = dim7%. Indeed,
there is a projection operator p : 7 — 7 defined by:

p(v) = f 7(g)vdg.
H
Its trace is equal to dim 7, but on the other hand it is equal to:
J tI‘T(g)dg = J Xr = <XT71> .
H H

topological vector Therefore, we have: |x,|? = dim(r ® 7*)# = 1. O

These orthogonality relations are sometimes called “row orthogonality”, re-
ferring to the character table (to be discussed) where each row corresponds to
a different irreducible representation.

Using the characters as an orthonormal basis for invariant functions, we can
express the inner product of the characteristic functions of two conjugacy classes
c and d as follows:

(Les1a) = > (Ley Xm) (X 1a) = D X (€)X ().

™

Hence we get:

Proposition 9.2. If ¢, d denote two conjugacy classes in H, we have:

el if ¢ =
ZMMMA®={H’ fe=d (104

0 otherwise.

These relations are sometimes called “column orthogonality”.
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10.10 Examples: the character tables of Sy, S5, As
etc.

To be discussed in class.

10.11 Irreducible representations of products of
groups
We left for the end the proof of:

Proposition 11.1. For a product G x H of finite groups, the irreducible rep-
resentations are precisely those of the form m & T, where m is an irreducible
representation of G and 7 is an irreducible representation of H.

The proof will be based on Burnside’s theorem which you can find in any
standard algebra book, and (a version of) which says:

Theorem 11.2. If V is a simple module, finite-dimensional over an alge-
braically closed field k, for an algebra R, then the map R — Endy (V) is surjec-
tive.

Notice that the converse is also true: if R — Endy (V) is surjective, then V
has to be simple, because it is a simple Endg(V')-module.

Now, to prove the proposition, apply the theorem to R = C[G x H]| =
C[G] ® C[H]. First, # ® 7 is irreducible because = and 7 are, and the map
End¢(7m) ® Ende(7) — Ende(r ® 7) is surjective. (Easy exercise in tensor
products!) Hence, R — Endc(m ® 7) is surjective, and therefore 7 ® 7 is a
simple R-module.

Vice versa, given a simple R-module W, let 7 be an irreducible representation
of H such that Hompy(7,W) # 0. How to show that W ~ 7 ® 7 for some
irreducible m of G? Well, if secretly we know it then notice that Home (7, W) ~
™ @7 ®7 and Hompg (7, W) = Home(r, W) ~ 7@ (t* @ 7)1 ~ 7.

Hence, set m = Hompg (7, W); it carries an action of G from its action on W.
We have a natural morphism:

TQT—> W, (10.5)

simply by taking L ® v to L(v) (where L € 7 is considered as a morphism from
7 to W, and v € 7). Since we assumed that Hompg (7, W) # 0, this morphism is
not zero and hence it is surjective (by the irreducibility of ). We claim that it
is also injective. Notice that no non-zero pure tensor, i.e. no non-zero element
of the form L ® v, L € m,v € T, can be in the kernel of the map. Therefore, our
goal is to reduce the problem to pure tensors.

Choose projectors p; € Endy(7) onto one-dimensional subspaces (v;) such
that >, p; = Id. Since C[H] — Endy(7) is surjective, we can by abuse of
notation consider the p;’s as elements of C[H]. Let f € #® 7 be in the kernel
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of (77?); then p;(f) is also in the kernel, but p;(f) is a pure tensor, hence it has
to be zero. On the other hand, f = Id(f) = >, pi(f), therefore f = 0. This
proves the proposition.



Chapter 11

Representations of compact
groups

The treatment of representations of finite groups of the previous section can be
directly generalized to take care of compact groups. The only new difficulty is
that representations will not be locally finite, and hence we need to use some
functional analysis — the spectral theorem for compact operators — in order to
produce finite-dimensional invariant subspaces.

For this lecture all groups are compact; it is known' that any compact group
possesses a unique up to scalar left and right-invariant measure, called the Haar
measure; we will denote it by dg and normalize that to be a probability measure

(dg(G) = 1).

11.1 Unitarity

Lemma 1.1. FEvery representation of G on a Hilbertian topological vector space
s unitarizable.

Proof. Same proof: take any positive definite hermitian form, and integrate it
over the action of the group in order to make it invariant. (Notice that the
continuity assumptions imply that for any fixed vectors v,v’ in the space the
function g — (gv, gv’) is continuous, in particular integrable.) O

11.2 Spectral theorems

Before we continue, recall the following spectral theorems from functional anal-
ysis.

IEvery locally compact group has a unique up to scalar left Haar measure and a unique up
to scalar right Haar measure, but these may not coincide, e.g. in the group of upper triangular
invertible 2 x 2 matrices.

95
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Let H be a Hilbert space. The adjoint of a (bounded) operator T' on H is
the operator T* with (T*v,w) = (v, Tw). An operator T is called self-adjoint if
T = T*. The idea of the spectral theorem is that the space H decomposes as an
“integral” of “eigenspaces” of T'. A familiar case of an integral of eigenspaces is
when H = L?(R), in which case the theory of Fourier transform says:

H = f (%) ds,
iR

with the spaces (%) being eigenspaces for all translation operators. (These are
not self-adjoint, but here I'm just trying to explain the notion of an integral of
eigenspaces.)

Theorem 2.1 (Spectral theorem for self-adjoint operators). If T is a self-
adjoint operator on a Hilbert space H then there is a measure space (X, B, u),
a measurable function X\ : X — R and a unitary isomorphism: H ~ L*(X, u)
which carries the operator T to “multiplication by \”.

An operator on a Hilbert space is compact if it can be approximated in the
operator norm by operators with finite-dimensional range. Equivalently, if it
maps bounded sets to precompact sets (i.e. sets whose closure is compact).

Theorem 2.2. Let T be a compact self-adjoint operator on a Hilbert space, then
there is a sequence of eigenvectors v, with (real) eigenvalues 0 # A, — 0 such
that:

H=kerT®P (vy).

an orthogonal topological direct sum (i.e. the closure of the algebraic direct sum).

In particular, all eigenspaces with nonzero eigenvalues are finite-dimensional.

It will be our effort throughout to produce self-adjoint operators, and even
compact ones, out of the action of the group. Before we get there, let us see an
immediate corollary of the first spectral theorem, which generalizes results that
were obvious for representations without topology:

Lemma 2.3. If H,H are two irreducible unitary representations and T €
Homeg(H,H') then T is a scalar multiple of an isometry.

Proof. Tt is enough to show that T*T and TT* are scalars. These are self-
adjoint bounded operators, and applying the spectral theorem we see that H
cannot be irreducible unless the space X of the spectral theorem is an atom (i.e.
every measurable subset satisfies u(A) = 0 or u(X \ A) = 0. This implies that
A is essentially constant on X, and hence these operators are scalars. O

This lemma is often called “Schur’s lemma” for unitary representations, how-
ever we want to call “Schur’s lemma” something stronger — namely, that every
G-endomorphism of H is a scalar. We could prove this abstractly using func-
tional analysis; however, we will see that for compact groups all irreducibles are
finite-dimensional. Therefore, the proof that we saw for finite groups will work.
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11.3 Convolution operators

Given a representation (, V) on a Fréchet space,” we define an action of finite
measures on G by:

(o = | (gouto). (11.1)

This is a vector valued integral, and it makes sense as an element of V. (The
completeness of V' is necessary for that.) There are generally different notions
of strong and weak vector valued integrals for topological vector spaces, but for
Hilbert spaces they coincide. The weak notion is that for every w € V* we have:

wwww»:f<ﬂmumuw>

G
For more information, see ... .

A continuous (resp. smooth, L' etc) measure on G is a measure of the form
f - dg, where f is a continuous (resp. smooth, L! etc.) function. Convolution of
continuous, resp. smooth or L' measures is again continuous, resp. smooth or
L'

The Banach space of finite complex measures on G (with norm equal to
the total mass of the absolute value of the measure, i.e. |u| = |u|(G)) will be
denoted by M(G). Notice that L'(G)dg — M(G) is an isometric embedding.
The following will clarify why representations are not continuous in the operator
topology (because when points converge this is not the case for the associated
delta measures):

Lemma 3.1. The map: M(G) — End(V) is continuous. (Remark: on the
subspace L*(GQ)dg, which is an algebra under convolution, this map is a homo-
morphism of algebras.)

Proof. Proof for V' a Banach space (for simplicity). We have:

mwxw|=Lmexwmm<£Jw@xm|u@»

We claim that there exists a constant C' such that ||7(g)| < C for all g € G.
Indeed, from continuity of the action map G x V' — V at zero we deduce that
there is a neighborhood U of 1 € G such that U maps a ball in V' into another
ball, i.e. |7(g)| < ¢1 for all g € U and some constant ¢;. Choosing a finite
number of translates ¢;U which cover G, and assuming that |7w(g;)| < co for
some co and all 4, the claim follows with C' = c¢ycs.

Hence:

|7 () ()] < Cllof|ul(@),

which proves the claim. O

2A Fréchet space is a Hausdorff topological vector space, whose topology is defined by a
countable family of semi-norms, and is complete with respect to the corresponding uniform
(metric) structure. It is a generalization of Hilbert and Banach spaces which in many cases
provides the correct setup for representation theory. An example of a Fréchet space which is
not Banach is C°(X), X a manifold.
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11.4 Peter—Weyl theorems

Now let H be a compact group, and we consider now the space H = L?(H). It
is a unitary representation for G = H x H. As before, we have:

Lemma 4.1. 1. For any finite-dimensional irreducible representation © of
H, we have an embedding: 7 @ n* — C(H) < L*(H) given by the matriz
coefficient map.

2. For non-isomorphic 7’s, the images of these embeddings are orthogonal.

Notice that the image of the matrix coefficient map counsists of (left and
right) finite vectors (since m ® 7* is finite dimensional). Our goal is to prove:

Theorem 4.2 (Peter—Weyl theorem). There is a canonical isomorphism:
L*H)~@Pronr*

(Hilbert space direct sum, i.e. orthogonal and closure of the algebraic one), where
T runs over representatives for the isomorphism classes of irreducible, finite
dimensional representations of H.

And, more generally:

Theorem 4.3. Every Fréchet representation of H contains a dense subspace
of finite vectors. In particular, every irreducible represenation is finite dimen-
sional. Every Hilbert representation of H is the Hilbert space direct sum of
irreducibles.

11.5 Compactness of convolution by continuous
measures

The main tool to prove the above theorems is the following:

Lemma 5.1. Let L (resp. R) denote the left (resp. right) reqular representation
of H on L?(H). For every continuous measure y on H the operator L(u) (resp.
R(w)) is Hilbert-Schmidt and, hence, compact.

Proof. Let u = hdg. Then the operator L(u) has the integral expression:

L) (@) = | Kl f @y
where the kernel is given by:
Kn(z,y) = h(zy~")dh.

It is known that the Hilbert Schmidt norm of an integral operator T with
kernel K on a measure space (X, dz) is given by:

ITrs = 1K 12 (x s x) -
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(Indeed, recall that we defined Hilbert-Schmidt operators for a Hilbert space H
as the image of the injection: H®H — End(H); use this to prove this statement
about the norm of an integral operator.)

In particular, L(p) is Hilbert-Schmidt. (It was important here that the group
was compact for the L2-norm of K to be finite.) Thus it is compact. (Again, it
is an easy exercise using the explicit expression |T'|%,4 = Y., |Te;|* to show that
a Hilbert-Schmidt operator maps bounded sequences to precompact sequences,
hence is compact.) O

11.6 Proof of the main theorems

We prove the theorems of §77 in steps. Intermediate bullets with larger indent
are not needed, but have been added as remarks. The proofs of some steps are
left as exercises.

e Let u, be a sequence of approximations of the identity, i.e. positive prob-
ability measures whose mass is eventually concentrated in any neighbor-
hood of the identity. Then for any Banach representation (m, V') and vector
v eV we have 7(u,)v — v.

— For any subrepresentation V of L?(#), continuous (even smooth)
functions are dense in V.
Indeed, it is enough to choose a continuous (resp. smooth) approxi-
mation of the identity and convolve elements of V' with it; the con-
volution of any function with a continuous (resp. smooth) measure is
continuous (resp. smooth).

e Left-finite (or right-finite) functions are dense in L?(H).

This is the most important step of the proof. Assume to the contrary that
there is a non-zero closed subspace V' without any left finite functions. We
can find a continuous, self-adjoint measure p on H such that R(u)V # 0.
(Indeed, we can do this by approximating the identity by continuous, self-
adjoint measures; here by self-adjoint we mean that the operator R(u) is
self-adjoint, which is equivalent to h(g~!) = h(g) if u = hdg — exercise!.)
We have already proven that R(u) is compact, hence by the spectral the-
orem there is a non-zero (real) eigenvalue A of R(u), and the A-eigenspace
is finite-dimensional. But the A-eigenspace for R(u) is stable under the
left action of H, hence there are left-finite vectors, a contradiction!

e Any Fréchet representation of H contains a dense subspace of finite vec-
tors.

Indeed, from the previous assertion we know that we can find approxi-
mations of the identity by left-finite measures. But 7(p)v is finite if p is
left-finite.

To be precise, since “approximations of the identity” were defined measure-
theoretically, and an approximation in L? preserves neither the positivity
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nor the support condition, here is what we mean: Choose an approxima-
tion of the identity by L?-measures f,dg. We can approximate f,, in L2,
and hence in L', by left-finite functions, so take finite functions h,, such
that |hy, — fullpier) < +. Then — easy exercise — for any vector v e V we
have: 7(h,dg)v — v.

— We have a sequence of inclusions:
L*(H)g, < C*(H) c C(H) c L*(H), (11.2)

where g, denotes left and right finite functions, and the finite func-
tions are dense in the natural topology of any of the other spaces.

Indeed, we apply the previous statement to any of these Fréchet
spaces, viewed as a represenation of the group H x H. What may
not be immediately clear is that all finite vectors are contained in
C®, but recall that any subrepresentation contains a dense subspace
of smooth functions; thus, any finite-dimensional invariant subspace
has to consist of smooth functions. By the way, left-invariant (or
right-invariant) would be enough for smoothness, by this argument.
But we will see that left-finite implies right-finite.

The rest of the steps for proving the Peter-Weyl theorem are precisely as in
the finite group case. A posteriori, any left-finite vector has to be right-finite,
as well, since it has to be contained in the sum of a finite number of left-isotypic
components.

11.7 Characters

Characters of finite-dimensional representations are defined exactly as in the
case of finite groups, and with respect to probability Haar measure they form
an orthonormal basis of class functions on the groups. (Notice that here we do
not have that the eigenvalues of 7(g) are roots of unity; nontheless they lie on
the unit circle because otherwise the closure of the sequence m(¢g™) would not
be compact. Therefore, we still have that x,« = Xz.)

11.8 Examples
For explicit constructions of the irreducible representations of the compact

groups SU(2),S50(3),U(2) and O(3) without using any Lie theory, cf. section
I1.5 in Brocker and Tom Dieck, Representations of Compact Lie Groups.



Chapter 12

Algebraic groups and Lie
groups

We now embark on the study of representations of compact, and non-compact,
Lie groups. Actually, we will focus on the structure and representation theory
of reductive algebraic groups over R, and later over the p-adic numbers. “Alge-
braic” means that they have the structure of an algebraic variety (compatibly
with group operations), or equivalently that they can be embedded in some
GL,, as a closed subgroup defined by polynomial equations. “Reductive” will
be explained later. All compact Lie groups are reductive algebraic, and most of
the interesting non-compact Lie groups are such.

The study of continuous representations of compact Lie groups goes in par-
allel with the study of algebraic representations of their complexifications, and
with finite-dimensional representations of their Lie algebras. We will introduce
these topics a little more generally, in order to be able to use them later for non-
compact Lie (algebraic) groups and their infinite-dimensional representations.

12.1 Lie groups, group schemes, algebraic groups

A Lie group is a group in the category of differentiable manifolds. A Lie group
is automatically real-analytic.

A group scheme (over a base scheme S) is a group in the category of (S-
)schemes. If S = speck, where k is a field in characteristic zero, then it is
automatically smooth over k. This is not the case in positive characteristic: for
example, consider the (smooth) additive group scheme over k = F,:

G, = speck[T]

with the obvious group structure. For instance, addition G, x G, — G, is given
by the morphism induced by:

K[T] 3 f(T) = f(T1,T2) € k[T] ®x k[T] = k[T, T3].

61
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Now consider the “Frobenius” homomorphism:

G, — G,
k[T]> f(I7) < f(T)€k[T].

The kernel K of this homomorphism is, as a scheme, isomorphic to k[T]/(T?),
with the embedding K — G, given by the quotient map:

K[T] — K[T]/(T*)
and the inherited addition morphism:
E[T]/(T7) 3 f(T) = f(T1, T2) € k[T1/(T") @ k[T1/(T?) = k[T3, To]/(T7, T5).

Notice that this is a k-group scheme with a unique closed point (the identity),
but it is not the trivial k-group scheme spec k, as it has non-trivial tangent space
(=Lie algebra), i.e. it is not reduced (hence not smooth).

Other examples of group schemes that are not smooth can be obtained, e.g.
over Zy, for instance by taking the subgroup of GLy (defined over Z) which
stabilizes the quadratic form given by the diagonal matrix with entries (p,p).
The fiber of this over the generic point spec@Q is an orthogonal group in two
variables (hence of dimension 1), while the fiber over the special point specF,
is GLg (of dimension 4) — in particular, this is not a smooth group scheme.

In any case, an algebraic group over a field k is a smooth group scheme over
k, and if it is affine then it is called a linear algebraic group.

12.2 Extension and restriction of scalars

If " — S is a morphism of schemes, and X is an S-scheme, then the extension
of scalars from S to S’ of X is defined as the fiber product Xg = X xg S’. For
example, if all are affine, with S = spec A, S’ = spec B, and A — B a morphism
of algebras, then Xg = spec(A[X]®4 B).

Vice versa, there are circumstances when we can consider S’-schemes to be
S-schemes. It will suffice for us to consider the case when S = spec A (assumed
noetherian) and S” = spec B with B an A-algebra which is a projective (hence,
locally free), finite A-module, and X is affine of finite type over spec B.

The restriction of scalars from B to A of X is an (affine) A-scheme Resp 4 X
with the universal property that for any algebra R over A we have:

Resp/a X(R) = X(R®a B).

By Yoneda’s lemma in category theory, this property uniquely identifies
Resp/a X, if it exists. Under the above hypothesis, it exists and can be described
as follows (when B/A is free, otherwise the same construction locally): Let
Blz;]i/(fm)m be a finite presentation of R. Let:

fm((z Yij€i)i) = Y Fmi€is
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where fp,; € Aly;;]. Then:

ReSB/A X = SpeCA[yij]i,j/(fmj)mj-

Ezxample 2.1. Let h be a non-degenerate hermitian form in n variables. The
subgroup U,, of GL, (C) stabilizing h is not an algebraic subgroup over C, be-
cause the equations used to define it involve complex conjugation. However, if
we consider GL,, /C as an algebraic subgroup over R, by restriction of scalars,
then U, is an algebraic R-subgroup.

Moreover, the extension of scalars from R to C of U, is isomorphic to
GL,,(C), i.e. Uy, Xgpecr spec C ~ GL,, /C (exercise!).

12.3 From smooth schemes to smooth manifolds

Proposition 3.1. The map X — X (R) is a functor from the category of smooth
schemes over R to smooth manifolds.

Proof. Recall! that an R-scheme X is called smooth, of relative dimension r if
locally on X there is an embedding: X > U < Ag such that:

e locally around any point y in (the image of) U, the ideal defining U as a
subscheme of AR is generated by (n — ) polynomials g,41, ..., gn,

e the differentials dg,+1(y),...,dgn(y) are linearly independent over R(y).

Notice that the g;’s define a map: Ag — Ag™", and that a neighborhood of
y in U coincides with a neighborhood of y in the preimage of 0. The condition
on differentials is equivalent to saying that all points in that neighborhood of ¥
in U are regular, i.e. the differential of this map is surjective on tangent spaces.
If we apply this to R-points, by the implicit function theorem this implies that
the preimage of 0 is a smooth manifold.

It is easy to show that the smooth structure does not depend on the embed-
ding chosen, and that the map X (R) — Y (R) obtained by a morphism X — Y
is differentiable. Thus, the functor X — X (R) is a functor into the category of
smooth manifolds. O

12.4 Open and closed subgroups of Lie groups

For any Lie group G we will be denoting by G° the connected component of
the identity. It is a normal subgroup. (Indeed, it is path connected since it
is a manifold, and a path from the identity to any point is carried over by
conjugation to another path from the identity.)

Proposition 4.1. Any open subgroup of G contains G°.

IThis has actually not been included yet in the algebraic part of the notes
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Proof. Let H be an open subgroup. Its complement is a union of (left, let’s say)
H-cosets, and since right multiplication takes open sets to open sets, those cosets
are open. Hence, the complement of H is open, therefore H is both open and
closed, and therefore it contains the connected component of the identity. [

It is not true that every subgroup of a Lie group is closed. For instance, any
one-parameter subgroup in the torus (R/Z)? with non-rational slope is dense,
but not closed.

On the other hand, every closed subgroup is a Lie subgroup:

Theorem 4.2 (Cartan). Every closed subgroup of a Lie group is a smooth
manifold, hence a Lie subgroup.

We will prove this in the next lecture, because it makes use of Lie algebras.

12.5 Compact Lie groups are algebraic

An amazing fact is that the passage from real algebraic groups to Lie groups
also works the other way in the case of compact Lie groups: they can all be
realized as the points of a real algebraic group. This was proven by Weyl, and
the following strengthening is due to Chevalley. We will not define the new
terms here (they will come in later in the course), and we will only prove Weyl’s
weak version:

Theorem 5.1. The functor G — G(R) is an equivalence between: the category
of R-anisotropic reductive R-groups whose connected components have R-points,
and the category of compact Lie groups. If G is such an R-group then G°(R) =
G(R)°. The R-group G is semisimple if and only if G(R) has finite center, and
in such cases G° is simply connected in the sense of algebraic groups if and only
if G(R)® is simply connected in the sense of topology.

We will only prove the statement that every compact Lie group is algebraic.
This follows from the following two propositions, which have independent inter-
est:

Proposition 5.2. Every compact Lie group has a faithful (i.e. trivial kernel),
finite-dimensional representation.

Proof. Let 71,72, ... be an enumeration of the irreducible representations of G.
We already know from the Peter-Weyl theorem that they are finite-dimensional.
For every n, let G, be the kernel of the map: G — GL(m @ -+ @ 7,). Hence,
we have a sequence of closed subgroups:

GZGoDGlDGQD....

We claim that every such sequence terminates. Indeed, by Cartan’s theorem,
we know that all G,, are Lie groups, therefore the dimension of G, has to
stabilize after some n. But then the map G% — G9_, is eventually the identity
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(the image is both open? and closed), and by compactness each G, has a finite
number of connected components, so the sequence has to terminate.

On the other hand, the intersection of the G;’s is (again by Peter-Weyl) the
kernel of the left regular representation of G' on L?(G), hence trivial. O

The second element is of invariant-theoretic nature. For this, let G — GL(V)
be a (complex), finite-dimensional representation of G and consider it as a real
representation by regarding V as a real vector space. (This is the baby case
of “restriction of scalars”.) Accordingly, GL(V) is considered as an algebraic
group over R (by restriction of scalars). Notice that the Zariski closure® of the
image of GG is a real algebraic subgroup. We need to show that it coincides
with G. One thing that G and its Zariski closure have in common is the set of
invariants on the polynomial ring R[V]. Recall that the polynomial ring R[V]
is (essentially, by definition) the symmetric algebra on the dual space S*V*.

Proposition 5.3. Fach orbit of a compact group (not necessarily a Lie group!)
on the vector space V' of a representation is (the real points of ) a real algebraic
subset. The image of G — GL(V) is (the R-points of ) an algebraic subgroup.

Proof. The second statement follows from the first because GL(V) < End(V) =
V*®V, and the image is the orbit of the identity transformation.

For the first we consider the map: V — V / G := specR[V]Y, and the
induced map on R-points: V(R) — V J/ G(R). Clearly, the preimage of any
point is a union of G-orbits. We claim:

The preimage of every R-point contains at most one G-orbit on
V(R).

This will be enough to prove the claim: Since the preimage is an algebraic
variety over R, it means that G-orbits are the R-points of algebraic varieties
(maybe empty, because the preimage of an R-point does not need to contain
any R-points — for instance, consider the quotient of C* by the circle group).

To prove the claim we must show that if Y7, Y5 are two distinct G-orbits on
V(R), then there is a G-invariant polynomial which takes different values on Yy
and Y> (i.e. the ring of invariant polynomials separates G-orbits).

Notice that R[V] is a locally finite representation of G (this follows by its
identification with S*V*), and therefore by the Peter-Weyl theorems it is com-
pletely reducible. If we fix two points y; € Y7 and ys € Y3, then the integrals:

L f(yi-g)dg

represent two G-invariant functionals ¢1,¢5 on R[V]. They obviously factor
through restriction of polynomials to the compact subset Y1 U Ys, and by the

2See the section on Lie algebras: ...

3Tt is important here that we have restricted scalars to R, because the Zariski closure
depends on whether we consider GL(V') as a complex or as a real variety; for example, the
Zariski closure of the circle group S in C* is S or C*, according as C* is considered as a
real or complex variety.
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Stone- Weierstrass theorem, the restriction of polynomials is dense in the space of
continuous functions on Y7 U Ys. Therefore, ¢1 and {5 are linearly independent,
i.e. £5 is non-zero on the kernel W of ¢;.

Hence, ¢ defines a G-invariant functional: W — C, and by complete re-
ducibility this splits; in particular, there is a G-invariant element f € W with
lo(f) # 0. That is, there is a G-invariant polynomial on V whose integral
over Y7 is zero and whose integral over Y5 is non-zero. But this means that its
value on Yj is zero and its value on Y5 is non-zero, which is what we wanted to
prove. U

Remarks. 1. A similar argument works to establish the following important
result: Let G be a reductive algebraic group over an algebraically closed
field k in characteristic zero. We have not defined “reductive”, but in
characteristic zero this is equivalent to the statement that every algebraic
representation of G is completely reducible. Let X be an affine variety
on which G acts. Then the closed points of X / G := speck[X]“ are in
bijection with (Zariski) closed orbits of G on X.

Here is the proof: Let Y7, Y5 be two closed orbits and consider the G-stable
ideal I < k[X] of regular functions vanishing on Y;. Restriction to Y3 gives
a map: I — k[Ys], and the image I’ has to be non-zero because otherwise
Y5 would be in the Zariski closure of Y;. But since Y5 is a Zariski-closed
orbit, a non-zero ideal coincides with the whole ring, therefore the image
I’ of I contains constant functions. By reductivity, there is a G-invariant
quotient of I, hence a G-invariant quotient of I. By reductivity, again, I
has a G-invariant element whose image in I’ is non-zero. In other words,
Y; and Y5 are separated by G-invariant regular functions.

2. The last proposition is not true for non-compact groups. For instance, not
only is the subgroup:

1
x t cz,y e Rt e RY
y £

of GL3(R) (where « is an irrational number) not an algebraic subgroup
of GL3, but it is not isomorphic to (the R-points of) any real algebraic
group.*

4For details, cf.
http://terrytao.wordpress.com/2011/06/25/two-small-facts-about-lie-groups/.
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Chapter 13

Lie algebras

13.1 Definitions

A Lie algebra is a vector space g with a bilinear, antisymmetric operation [e, o] :
g ® g — g with the following property:

The map X — ad(X) := [X, ¢] € End(g) is a representation of g, in
the sense that adXadY —adYadX = ad([X,Y]).

The last condition is nothing but the well-known Jacobi identity:
(X, [V, Z]] + [V, [2, X]] + [Z,[X, Y]] = O. (13.1)

An associative algebra A gives rise to a Lie algebra by setting [X,Y] =
XY — Y X. In that sense, the notion of a “representation” of the Lie algebra
defined above is nothing but a Lie algebra homomorphism: g — End(V'), where
V' is a vector space.

A Lie algebra is not an associative algebra; however, there is an initial object
U(g) in the category of associative algebras A with a homomorphism of Lie
algebras: g — A. In other words, U(g), together with the homomorphism
g — U(g) is defined by the universal property that any other homomorphism of
Lie algebras g — A factors uniquely through U(g). It is very easy to construct
U(g) and to see that it has this property: Simply take the quotient of the tensor

algebra of g:
(_B g@’!l

n=0
by the two-sided ideal generated by all elements of the form: X®Y —Y ® X —
[X,Y], X,Y eg.

13.2 Poincaré-Birkhoff-Witt

Now let (X;):er be a linearly ordered basis of g as a vector space. (We won’t need
it, but we include the possibility that g is infinite-dimensional, even uncountable-
dimensional.)
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Theorem 2.1 (Poincaré-Birkhoff-Witt). The monomials of the form X' X;> - -- Xi¥,
with i1 < iy < -+ < iy, form a vector space basis for U(g).

Proof. e They generate: Indeed, if we didn’t have the condition i; < is <

- < i) then we would have a basis for the tensor algebra. Now take an

element X' X2 .- Xi* (no condition on the 4;’s) which does not belong

to the span of the elements in the asserted basis, and such that: a := > r;

is minimal with this property; for the given a, the first index j such that

tj > 4541 is minimal. Then by applying the relation: X; ® X;,,, —X;,, , ®

Xi, = [Xy;, Xi,,,] we can easily reach a contradiction. Hence the asserted
bablb is, at least, a generating set.

e To show that the elements are indeed linearly independent is much more
difficult. Think about it for a moment: how do we even know that
XX X[¥ is not zero? Couldn’t there be manipulations using the
formula X ®Y — Y ® X — [X, Y] that would eventually reduce it to zero?
How can we know without even knowing what [X,Y] is? (i.e. without
having any extra information on the structure of the Lie algebra).

It turns out that the only thing we need to know is the Jacobi identity. We
will use it to construct a representation p of g (equivalently: of U(g)) on
the free vector space V' generated by the monomials X;' X;* --- X7*. This
representation will have the property that Y = X' X~ ra') X i, considered
as an element of U(g), takes 1 € V to X[ X*-- er" (a posteriori, it is
just left multiplication on U(g)). In particular, the map U(g) 3 Y —
p(Y)(1) € V is injective, which proves the theorem.

To define the representation, it is enough by the universal property of
U(g) to define it on g, and in fact just on the basis elements. For Y = X,
let [X;, X;] = > aije Xy and use these coefficients to define the action
of p(Y) on X/'Xi*--- X/* € V in the obvious way. It can get messy,
but using the Jacobi identity one can show that this is a well-defined
represenation of g.

For a nicer proof, cf. Braverman and Gaitsgory, Poincaré-Birkhoff- Witt
theorem for quadratic algebras of Koszul type, J. Algebra 181 (1996), no
2, 315-328. Tt uses algebraic deformation theory, deforming U(g) to S(g)
(the symmetric algebra of g, which, as we will see, is the associated graded
of U(g)), and deduces the desired result from a flatness property (= the
fibers of the deformation have the “same dimension”). A posteriori, this
deformation is a standard way to deform a filtered ring to its associated
graded — we may discuss it at some point.

O

We consider U(g) as a filtered algebra: U(g) = ,,eny Fn> Frnt1 D Fy, where
F,, is generated by products of at most n elements of g. Recall that the associ-
ated graded of a(n N-)filtered algebra A is the algebra gr A = @, F,,/F,,—1 (with
F_,=0).
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Corollary 2.2. We have a canonical isomorphism: grU(g) = S(g), the sym-
metric algebra of g. The algebra U(g) is noetherian.

Proof. The PBW theorem shows that F,, has a vector space basis consisting of
X X2 --~Xf:, with iy <ig < --- < and D;i; < n. Therelation XY -Y X =
[X,Y] shows that the commutator of two elements in F}, lies in F,,_; and hence
grU(g) is commutative. By the universal property of the symmetric algebra,
there is a unique homomorphism of algebras: S(g) — U(g) which is the identity
from g < S(g) to U(g). But this map is a bijection on distinguished bases,
therefore an isomorphism of algebras.

The noetherian property now follows from the noetherian property of S(g)
by the following standard argument: if J; < J; < --- is an increasing sequence
of ideals, then so is gr J; < grJo < -+ -, where grJ = ®,(J n F,,/F,_1). Notice
that the map J — gr J is not injective on ideals: two different ideals of U(g) can
have the same image in its graded. However, the map is injective on chains, i.e.
if J;1 € Jo and their graded ideals coincide, then J; = Js. From the noetherian
property of S(g), the sequence of graded ideals stabilizes, therefore so does the
original sequence. O

There are many corollaries of the PBW theorem, one of them being that
if h < g is a Lie subalgebra then U(g) is a free U(h)-module, and hence the
induction functor:

M — U(g) ®um M

(where M is an h-module) is exact. We will come back to these applications as
they become relevant.

13.3 The Lie algebra of a Lie or algebraic group

Often the Lie algebra of a Lie or algebraic group is defined as the tangent space
to the identity element. (The tangent space of the identity makes sense, and is
a vector space over the base field, both differential-geometrically and algebro-
geometrically.) This definition gives no information as to where the bracket
operation comes from. A better definition is in terms of vector fields or deriva-
tions. Look in the algebraic part of the notes for a discussion of derivations, in
general “vector fields” or “derivations” are sections of the tangent bundle. The
sheaf of k-derivations on a k-scheme X can be considered as a subsheaf of:

%Omk(OX,Ux),

which is a sheaf of associative algebras. Hence, there is a Lie bracket in
Hom(ox,0x), and it can be seen that the derivations form a Lie subalgebra,
i.e. the commutator of two vector fields is again a vector field.

Therefore, we define the Lie algebra of an algebraic group G over k to be
the space of left invariant k-linear derivations on G. In characteristic p > 0 it
has an additional structure of what is called a restricted Lie algebra, i.e. a Lie
algebra endomorphism D — DP which satisfies certain natural axioms (will not
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discuss here; just notice that the p-th power of a derivation, considered as a
differential operator, is again a derivation).

13.4 Exponential map

Now we work differential-geometrically in the setting of a real Lie group. A
one parameter subgroup is a homomorphism of Lie groups: v : R — G. Its
differential at zero gives rise to an element v/(0) € T.G = g.

Proposition 4.1. The map v — +/(0) is a bijection between one-parameter
subgroups and elements of the Lie algebra.

Proof. Locally around any point x, any vector field is uniquely integrable (this is
a basic result from ODEs), namely: if v is a vector field then there is an interval
(—€,¢€) and a curve v : (—¢,€) — G such that v(0) = z and /() = v(v(¢)), and
the germs of any two such around 0 coincide.

For a left-invariant vector field, we can use left translations by the group to
show that this local existence and uniqueness statement becomes global. O

This allows us to define an exponential map:
g—G

by:
exp(X) = vx (1),
where yx is the unique one-parameter subgroup with +/(0) = X.

This is not a group homomorphism, except if G is abelian (but, by definition,
it is a group homomorphism when restricted to any one-dimensional subspace

of g).
Proposition 4.2. The exponential map is a local diffeomorphism around 0 € g.

Proof. Tts differential, if well defined, is the identity on g = T.G, so we only
need to show that it is a smooth map. The flow on G x g associated to the
smooth vector field (g, X) — (X(g),0) is given by: R x G x g 3 (¢,9,X) —
(g-exp(tX),X), and the flow of a smooth vector field is smooth. Therefore, the
exponential map is smooth. O

13.5 Proof of Cartan’s theorem

Recall the formulation of the theorem:

Theorem (Cartan). Every closed subgroup of a Lie group is a smooth manifold,
hence a Lie subgroup.
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Proof. Let H c G be a closed subgroup of a Lie group. Let g denote the Lie
algebra of G, i.e. the tangent space at the identity. We will define a subspace of
g which will be the candidate for the tangent space of the identity for H. Then
we will show that it is indeed so.

Choose a Euclidean metric on g and let exp : g — G be the exponential map.
In a neighborhood of the idenity in g, it is a diffeomorphism onto a neighborhood
of the identity in GG, and let log denote its inverse in that neighborhood.

Let W < g be the set of all tX, where t € R and X € g is the limit of a

sequence: I%\ with h, — 0 € g and exp(h,) € H. We claim:
1. exp(W) c H;

2. W is a linear subspace of g.

For the first, if % — X and |h,| — 0 we can choose, for given ¢t € R,

integers m,, € Z such that my|h,| — t, so exp(m,, - h,,) — exp(tX) as n — .

Here we will use the following fact: for an one-dimensional subspace of g
the exponential map is a homomorphism of groups. Therefore, exp(my, - hy,) =
exp(hy)™", therefore it belongs to H. Since H is closed, the limit exp(tX) is
also in H.

For the second claim, if X,Y € W set h(t) := log(exp(tX)exp(tY)). We
claim that lim; o h(t)/t = X +Y. Indeed, the differential at the identity of
the multiplication map: G x G — G is gx g 3 (X,Y) — X +Y. Hence,
h(t)/|h(t)| = h(t)/t - t/|h(t)] — éi% ast — 0, t > 0, therefore X +Y € W.

Having proven the two claims, and given that the exponential map is a dif-
feomorphism in a neighborhood of the identity, it now suffices to show that
exp(W) is a neighborhood of the identity in H. Let D be the orthogonal com-
plement of W in g with respect to the above norm. For a sequence h,, € H with
h, — e, we can eventually write h,, = exp(z, + y,) with x,, € W and y,, € D,
(Tn,Yn) — 0. We claim that:

lim log(hy, exp(—xy,)) ~ lim O

n—00 |Yn| n—0 |y,|

if one of the two limits exists. This is the consequence of the Campbell-Hausdorff
formula, which expresses the quotient of exp(z)exp(y) by exp(z + y) in terms
of commutators (look it up online). The point is that if z, and y,, — 0, their
commutator will go to zero even faster, and this establishes the claim.

O

13.6 Morphisms of groups and morphisms of Lie
algebras

We have an obvious functor from finite dimensional, differentiable representa-
tions of a Lie group G to representations of its Lie algebra, simply by taking
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the differential at the identity of the map:
G — GL(V).

Recall that we have shown every finite dimensional representation of a com-
pact Lie group to be algebraic, in particular differentiable.

More generally, for every morphism of Lie groups: G; — G5 we get a mor-
phism of Lie algebras: g3 — go. Vice versa:

Proposition 6.1. Let G1,G2 be Lie groups with G1 connected and simply con-
nected, then every homomorphism: g1 — go lifts to a unique homomorphism:
Gl g GQ.

This follows from:

Proposition 6.2. Given a Lie group G and a sub-Lie algebra ) < g, there is a
unique connected immersed Lie subgroup H < G whose Lie algebra is §.

By an immersed Lie subgroup we mean an immersed submanifold: H — G
such that H is a subgroup of G.

Proof that Proposition 7?7 implies Proposition 7?7. Given a homomorphism: g; —
g2, compose it with the identity to get p: g1 — g := g1 D go.

Proposition 7?7 gives a unique connected immersed Lie subgroup: H —
G1 x G4 whose Lie algebra is h. Composing with projection to G; we get:
H — (7 which is an isomorphism on tangent spaces, hence a covering map.
Since (7 is simply connected, H = ;. Composing with projection to G, we
get the desired map. O

Proof of Proposition 77. The left translations of b give rise to a distribution Dy,
i.e. a subbundle of T'G. It is known from the theory of differential equations
that a distribution D is (uniquely) integrable if and only if for any two vector
fields which lie in it, their commutator also lies in it. This is easily seen to
be the case for Dy, since b is a Lie subalgebra. The leaf through zero of the
corresponding foliation is the desired immersed subgroup. O

Corollary 6.3. There is an equivalence of categories between connected, simply
connected Lie groups and finite-dimensional Lie algebras.

Proof. The only element of the proof that we are missing is the fact that every
finite dimensional Lie algebra is the Lie algebra of a group, which by Proposition
7?7 can be inferred from the fact that every finite dimensional Lie algebra has
a faithful, finite dimensional representation. This uses structure theory of Lie
algebras, and we won’t prove it. O



Chapter 14

Finite-dimensional
representations of sly(C) and
of general semisimple Lie
algebras

This Lecture is to be read in two parts: the parts on sly should be read now.
Then one builds up the structure theory of general Lie algebras (using the
representation theory of sly), to be discussed in the following lectures. Then
one discusses general semisimple Lie algebras. However, given the structure
theory, the arguments in the general case are so similar to the case of sly that
it is more convenient to place them here.

14.1 The Lie algebra sl,(C), and a central ele-
ment
The Lie algebra of sly can be identified with the algebra of 2 x 2 matrices of

trace zero, with Lie bracket the commutator of two matrices. It is generated
over the underlying field by three elements H, F, F' with bracket relations:

[H,E] = 2E,
[H,F] = —2F,
[E,F]=H.

It is easily verified that the center Z(g) of the universal enveloping algebra

contains the element:
A=4FF + (H + 2)H.
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It turns out (but we won'’t use it — see the Harish-Chandra isomorphism in
later lecture) that Z(g) is a polynomial ring generated by this element.
In this lecture, all vector spaces are finite dimensional.

14.2 Highest weight vectors

Given a representation V of sly, and A € C, let V) denote the A-eigenspace of
H. We don’t know yet that H acts semisimply, so a priori V is not the direct
sum of the Vy’s.

Lemma 2.1. £V, c V) o; F- V) < Vy_s.

Corollary 2.2. There is a non-zero vector v € V. which is an eigenvector for
H and such that Ev = 0.

This follows by the fact that V is finite dimensional, and the V)’s are linearly
independent.

We call v a highest weight vector. Similarly, there will be a lowest weight
vector, i.e. a nonzero eigenvector of H which is annihilated by F.

Proposition 2.3. Fiz a heighest weight vector v € Vy, and let V' be the span of
{Fiv}ien. Then V' is sly-stable, irreducible, and A acts by A(\2). The highest
weight X is a non-negative integer, and V' is the sum of one-dimensional weight
spaces V,, for =X\ —=2,A—4,..., =\

Proof. 1t is clearly stable under F' and H. We easily compute:
EF"vy =n(A— (n—1))F" 1u,.

Hence, the space is F-stable.

Moreover, since it is finite-dimensional, we must have n(A — (n — 1)) = 0 for
some 1 > 1, hence \ is a non-negative integer. In that case, n = A + 1, and
F"vy must be zero (because it is a highest weight vector of weight —\ — 2 and,
by the same argument, it cannot generate a finite-dimensional representation).
On the other hand, for n < A+ 1 EF™vy # 0, hence F™v) # 0. The statement
about the weight spaces of V' follows.

We have: Av = 4FEv + (H + 2)Hv = 0 + A(\A + 2)v. Since A commutes
with the action of sly and is generated by v, all elements of V’ have the same
A-eigenvalue.

On the other hand, V' has at most one eigenvector for each H-eigenvalue.
If V’ was reducible, there would be some highest weight vector with eigenvalue
# O

Corollary 2.4. Irreducible (finite-dimensional) representations of sly are H-
semisimple.

We will eventually see that all finite-dimensional representations of sly are
semisimple, in particular H-semisimple.
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Lemma 2.5. For every nonnegative integer n there is an irreducible finite-
dimensional representation of heighest weight n. It is unique up to isomorphism
and has dimension n + 1.

Proof. If V denotes the standard, 2-dimensional representation, then it is easy
to see that S™V has a unique highest weight vector with weight n + 1, hence
is irreducible. Uniqueness follows from the explicit description of the action of
E,F and H above. O

This existence statement will require a lot more work in the general case.

14.3 Semisimplicity (complete reducibility)

Suppose that we have a short exact sequence of representations: 0 — A —
B — C — 0. How do we know that it splits? Well, it splits as vector spaces.
That is, there is an element of Homc(C, B) which lifts the identity element in
Homg(C, C). We would like to know that there is a g-invariant such element.
Thus, it suffices to show that if we apply the functor of “g-invariants” to the
exact sequence:

0 — Hom¢(C, A) — Homg(C, B) — Home(C,C) — 0,

it remains exact.

This is a problem is cohomology. Any short exact sequence of g-modules
0> U —>V —> W — 0 (think of the above Hom spaces here) gives rise to a
long exact sequence:

0->U" Ve > W® > HY(g,U) - H'(g,V) - H' (g W) — ...

The right derived functor H' can be explicitly described, it turns out, as fol-
lows (more details on Lie algebra cohomology, hopefully, in some future version
of these notes):

Hl(g, V) =7 (gv V)/Cl(gv V)a

where the cocycles Z!(g, V) are maps f : g — V satisfying:
fIXY]) = Xf(Y) =Y f(X),

and the coboundaries are those of the form: f(X) = Xv (for some v € V).

Theorem 3.1. For any finite-dimensional g-module V., H'(g, V) = 0.

Proof. First, we reduce to simple g-modules by induction. Suppose that we
have a short exact sequence:

0>U—V—>W -0,

and that the first cohomology groups of U and W are trivial, then the long
exact sequence shows that H'(g,V) = 0, as well.
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For a simple V, if V = C then H'(g,V) = 0 trivially.
If V # C then, as we saw in A acts by a non-zero scalar. Given a cocycle f,
let v € V be defined by the equation:

1
glv = ;Xif(m,

where (X;);, (Y;); are dual bases for g under the Killing form. We will use the
fact that A = 8(3, X;Y;), in the case of sly, and in the general case this sum is
called the Casimir operator, does not depend on the choice of basis and lies in
the center of 3(g).

One can now easily show that Af(X) = AXv = XAwv, which implies that
f(X) = Xv, for all X €g. O

Corollary 3.2. FEvery finite-dimensional g-module is semisimple.

14.4 General g

There is very little that changes in the case of a general g. Choosing a Borel
subalgebra b and a Cartan subalgebra b thereof, denoting by (sl2), the subal-
gebras < H, > +go + g_q, for every positive root «, and by n_, n, the sums
of positive/negative weight spaces, we can easily prove as before (namely, using
the fact that each nonzero element of n, raises the weight):

Lemma 4.1. Every finite dimensional representation V contains a heighest
weight vector, i.e. an eigenvector for b.

Obviously, irreducible representations contain a unique highest-weight vector
(because the g-span of a highest weight vector contains vectors of smaller weight
only).

Applying Proposition ?? to the action of (sl), we get:

Proposition 4.2. If X € h* is the weight of a highest weight vector then (\, &) €
N for every root a > 0. The action of h on a finite-dimensional representation
V' is semisimple, and for every element w € W the weight spaces V,, and Vi,
have the same dimension.

Proof. The first statement follows directly from Proposition ?7.

For the second, let V'’ the span of h-semisimple vectors in the g-span of a
highest weight vector. I claim that V' is g-stable. Indeed, we have a homo-
morphism of h-modules: g ® V' — V, and the left hand side is h-semisimple.
Therefore, its image belongs to V.

Finally, the last statement is enough to prove for simple reflections, and in
that case it follows from the analogous statement for (slz),-representations. [

We now discuss the Casimir operator C' = >, X;Y;, where (X;);, (Y;); are
dual bases with respect to the Killing form. First of all:
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Lemma 4.3. C does not depend on the choice of basis. It belongs to the center

of U(g).

Proof. A better way to define C' is as follows: the Killing form is an invariant
2-tensor on g*, i.e. an element of:

(®°g%)".

It is nondegenerate and invariant, hence induces an isomorphism of g-modules:
g* — g. Its image under:

®°g* —> ®°g — Ulg)
is the Casimir operator. This proves the lemma. O
Now:

Lemma 4.4. The Casimir operator acts on an irreducible representation of
highest weight A by the scalar:

A+ 0, A+ p) = (p; p);
where (1, ) denotes the Killing form and p is half the sum of positive roots.

Proof. The trick is to write the operator as an element of U(h) plus an element
in the ideal generated by nt. The latter will kill v (the highest weight vector),
and the former will give the eigenvalue.

We have an orthogonal decomposition: g = h@ > - (0 D g-a); if Xo €
0o Yo € g are dual elements, the Casimir element will be equal to an element
Z inU(h) plus:

D (XaYa +YaXa) = D (2VaXa + [Xa, Yal) .-

a>0 a>0

If we apply this to vy we will get X (3~ [Xa,Ya]) v

Notice that for H € b, (H,[Xqa,Ya]) = ([H, X4o],Ys) = a(H)(Xa,Ys) =
a(H), and therefore [X,, Y, ] is the image of o under the identification: h* — §
induced by the Killing form. Therefore,

A (Z [XomYoz]> = Z (A a) =2(X, p).

a>0 a>0

On the other hand, the element Z € U(h) is the restriction of the Killing form
to b, interpreted as in the proof of Lemma ??: via the map ®°*h* — ®°*h — U(h).
This means that its evaluation on A is the Killing form (X, A).

Hence we get that the Casimir acts on vy by the scalar: (A, \) + 2(\, p) =

A+ p, A+ p) = (p,p). O

Finally, vanishing of cohomology and complete reducibility are proven as
previously, i.e. Theorem 7?7 and Corollary 7?7 hold for all semisimple g.
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Remark. All the above could be done with an arbitrary nondegenerate invariant
bilinear form, not necessarily the Killing form, replacing the Casimir element
accordingly. But on each simple factor, such a form is necessarily a multiple of
the Killing form. Moreover, Theorem 7?7 can be proven using the invariant form
(X,Y) — try(X,Y) which vanishes on the kernel of the representation V.



Chapter 15

Structure of general (finite
dimensional) Lie algebras
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Chapter 16

Structure of semisimple Lie
algebras

In fact, the present lecture also contains some general theorems for the exis-
tence and conjugacy of Cartan subalgebras and Borel subalgebras, whose proof,
however, is eventually reduced to the semisimple case.

16.1 Jordan decomposition in gl.

Definition. Let g be a Lie algebra. An element X € g is called semisimple if
ad(X) is a semisimple operator, and nilpotent if ad(X) is nilpotent.

Remark. For the Lie algebra g = End(V), where V is a vector space, these
notions of semisimple and adjoint do not completely coincide with “semisimple
operator” and “nilpotent operator”, but they coincide modulo the center of g, as
the following result shows. For this case, we will be using the word “semisimple”
or “adjoint” to refer to the property of the operator, unless otherwise stated.

Proposition 1.1. An operator T € End(V) is semisimple iff the operator
ad(T') € End(End(V)) is semisimple. It is nilpotent in End(V)/k (where k
stands for the center of End(V') iff ad(T") is nilpotent.

Now recall that for any element X € End(V') (some vector space V') there is
a unique Jordan decomposition X = X+ X, with X, semisimple, X,, nilpotent
and [Xs, X,] = 0. (Moreover, X, and X,, commute with every element com-
muting with X, since they can be expressed as polynomials in X.) Moreover,
there are polynomials P,Q € Kk [T] (where k is the base field, p the charac-
teristic) such that Xy = P(X) and X,, = Q(X) — in particular, X, and X,, are
defined over kP (Indeed, if the characteristic polynomial over the algebraic
closure is written [ [,(T — a;)}", with all a, distinct, choose P(T) to satisfy the
congruences:

P(T)=a; mod (T—a;)", P(T)=0 modT.)

7 ?
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16.2 Derivations and the Jordan decomposition

Definition. A derivation of a Lie algebra g is a linear map D : g — g satisfying
D(IX,Y]) = [X, D(Y)] + [D(X), Y.

Remarks. 1. This is a very natural extension of the definition of derivation
for an associative algebra, since such a derivation induces a derivation as
above on the associated Lie algebra. Vice versa, a derivation of a Lie
algebra induces a derivation of its universal enveloping algebra.

2. Derivations form a Lie subalgebra of End(g).
3. The adjoint representation ad : g — End(g) has image in Der(g).

Proposition 2.1. Fvery derivation of a semisimple Lie algebra is inner, i.e.
in the image of ad.

Proof. The formula [D, ad(X)] = ad(DX) shows that the image of ad is an ideal
in Der(g). Since the image is a semisimple Lie algebra, there is a complementary
ideal I (namely, its orthogonal complement under the Killing form on Der(g)).
But if D € I, and I is an ideal, the same formula shows that ad(DX) € I n
ad(g) = 0, which since ad is injective means that DX =0, i.e. D = 0. O

Corollary 2.2. The identity component of the automorphism group of a semisim-
ple Lie group coincides with the group of inner automorphisms.

Proposition 2.3. If D € Der(g) then Dy, D,, € Der(g).

Proof. If X is in the generalized A-eigenspace and Y is in the generalized u-
eigenspace for D, then it can be shown by induction that:

n

- 0D = Y ()0 - G000 ]

r=0

hence [X,Y] is in the generalized p + A-eigenspace. This shows that D is a
derivation, and then D,, = D — D, is a derivation. O

Theorem 2.4. Let g be a semisimple Lie algebra. Then every element has
a unique decomposition (over k:p_oo), X = X5 + X, with X, semisimple, X,
nilpotent and [Xs, X,] = 0.

Proof. By the previous two propositions, ad(X)s and ad(X), are derivations
and therefore belong to the image of ad. This proves the existence (and unique-
ness) of X, and X,. O

If we assume complete reducibility of finite-dimensional representations of
semisimple Lie algebras (which we will prove later), we can show that the Jordan
decomposition is preserved by homomorphisms of semisimple Lie algebras. In
fact, we can show more generally:
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Theorem 2.5. For a homomorphism p : g — End(V) we have p(X;) = p(X)s,
p(Xn) = p(X)n.

Proof. By complete reducibility of End(V') under the adjoint g-action, we have:
End(V) = p(g) ®m,

where m is an ad(p(g))-invariant subspace. (Notice that in Proposition ?? we
were able to obtain a similar decomposition in Der(g) by using the Killing form,
so we did not need to know reducibility.)

Since p(X)s, p(X)n are polynomials in p(X), their adjoint action preserves
both p(g) and m. Let p(X), = p(a) + b with a € g,b € b. Then [p(g),b] = 0,
which means that b € End(V) is a g-endomorphism. If V = @V; is a decomposi-
tion into irreducibles, b acts by a scalar on each one of them, by Schur’s lemma.
On the other hand, we know that p(X), is nilpotent, p(a) and b commute, and
try, (p(a)) = 0 because a (like every element of g) is a sum of commutators.
Therefore, try, (b) = 0, hence b acts by zero on all V;, i.e. b = 0.

Now, p(X), = p(a) acts nilpotently on V, hence it acts nilpotently on
End(V) under the adjoint representation. By the decomposition End(V) =
g @ m it follows that it acts nilpotently on g. By the uniqueness of the Jordan
decomposition we can now infer that p(X), = p(X,). O

We will see later that the image of a semisimple element of g (where g is
semisimple) under any representation is a semisimple operator, and the image
of a nilpotent element is a nilpotent operator.

16.3 Cartan subalgebras

A Cartan subalgebra of a Lie algebra g is a nilpotent, self-normalizing subalgebra
h. Here g is not (yet) necessarily semisimple.

We will construct Cartan subalgebras as nilspaces (generalized eigenspaces
of zero under the adjoint representation) of s-regular elements. Then we will
show that they are all conjugate to each other.

Definition. An s-regular element X € g is an element with minimal possible
0-generalized eigenspace under ad.

Since the dimension of the zero generalized eigenspace is the heighest power
of ¢ which divides the characteristic polynomial of ad(X), it follows that s-
regular elements form a (nonempty) Zariski open set.

Remark. In many books on Lie algebras, the word “regular” is used for “s-
regular” (which is my invention!). The problem with this is that it has become
nowadays standard to call “regular” the elements with minimal zero eigenspace,
i.e. centralizer, instead of generalized eigenspace. This includes non-semisimple
elements, while s-regular, as we shall see, implies semisimple (for semisimple Lie
algebras) — hence for those: s-regular = regular semisimple.



83

Proposition 3.1. The nilspace of a s-regular element is a Cartan subalgebra.

Proof. Let X be the s-regular element and h its centralizer. We will prove
that h is nilpotent; equivalently, by Engel’s theorem, that the restriction of
ad(Y) to b, for any Y € b, is nilpotent. Let U < h be the subset of elements
which fail to satisfy this; it is a Zariski open subset (again by considerations of
the characteristic polynomial). Let V' < b be the subset of elements which act
invertibly on g/h. It is again a Zariski open subset, and non-empty since X € V.
IfU # & then U nV # (J, i.e. there exists an element Y € ( such that the
dimension of the zero generalized eigenspace for Y is less than the dimension of
h, a contradiction by the s-regularity of X. Thus, b is nilpotent.

If Z normalizes h then [Z, X] € b which implies that Z is in the nilspace of
X,ie. inb. O

Hence, every Lie algebra has Cartan subalgebras. We will eventually prove
that any two Cartan subalgebras are conjugate (over the algebraic closure) by
the group of inner automorphisms of g and, in particular, equal to nilspaces of
s-regular elements.

16.4 Root decomposition, semisimple case

Theorem 4.1. Assume that g is semisimple, and let b be the nilspace of an
s-reqular element (hence' a Cartan subalgebra). Then:

1. b is abelian.
2. The centralizer of § is b.
3. Every element of by is semisimple.

4. The restriction of the Killing form (or any non-degenerate invariant form)
of g to b is non-degenerate.

Proof. The rest of the statements follow from the last one. Let us see how:

Cartan’s criterion says that a Lie subalgebra a of End(V') is solvable if and
only if tr(XY) = 0 for every X € a,Y € [a,a]. Applying this to ad(h) < End(g)
(which is nilpotent, hence solvable), we get that B(X,Y) =0for all X e h,Y €
[, ] (where B is the Killing form for g). Therefore, the radical of the restriction
of B to b contains the commutator, which means that [, h] = 0.

The centralizer is contained in the normalizer, which is h, but since § is
abelian it coincides with it.

Finally, let X € b and let X = X + X, be its Jordan decomposition. Since
X, X,, commute with the centralizer of X, which contains b, it follows that
X, X, are in the centralizer of b, which is h. Thus, if Y € b, ad(Y)ad(X,,) is
nilpotent, which implies that ad(X,,) is orthogonal to h under the Killing form.
By non-degeneracy of the Killing form on h, X,, = 0.

I Eventually, since they are conjugate, all Cartan subalgebras are of this form
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We come to the proof of the last statement: if X is a regular element
such that g is (the nilspace of X), let g = @, gn be a decomposition of g
into generalized ad(X)-eigenspaces. As we saw in the proof of Proposition 77,
(97, 0,] © @r+p, which implies that gy L g, (under the Killing form), unless
A+ p = 0. Therefore, the decomposition:

g=00D®P(or Dg-»)

is orthogonal, and since B is nondegenerate, it has to be non-degenerate on each
of the summands, in particular on h = go. O

Corollary 4.2. b is a mazimal abelian subalgebra of g. Every s-regular element
s semisimple.

The decomposition of g into generalized eigenspaces for the adjoint action
of a Cartan subalgebra b is called the Cartan decomposition of g:

g=h+ Z Ja-

adch*

The set ® of non-zero elements of h* which appear in this decomposition is
called the set of roots of g.

Now I collect quickly the basic facts about the root decomposition, which
are well-known and easy to follow in the literature. Only hints about the proofs
are given.

® [00,958] S Gass-
e & spans h*.

o If « € ¥, let {, € b be the image of @ under the isomorphism: h* — h
defined by a non-degenerate invariant form (, ) on g. Then, for all H € b,
X € g40,Y € g_o we have: (H,[X,Y]) = ([H,X],Y) = a«(H)(X,Y) =
(H,(X,Y)hs), and therefore: [X,Y] = (X,Y)h,. Notice that the pair-
ing (, ) between g, and g_, is nonzero because otherwise it would be
degenerate on g.

It follows that bo := [ga, §—a] is one-dimensional, spanned by the element
heo. We let H, (or &) denote its unique multiple with a(H,) = 2 (the
coroot associated to «).

e The sum b, + go + g—o is a subalgebra isomorphic to sls. To prove this,
one first shows that it includes an sly-triple (H, E, F'). An element of g_,
orthogonal to E would be a highest weight vector of weight —2, which is
absurd. Therefore, g_,, is one-dimensional, and so is gq.

o If o, ca e @ then ¢ = £1.

e For o € @, the reflection h* 3y +— v — (v, Hy) a fixes ®.

Indeed, this follows from viewing g as an sly-module: a nonzero element
Y of g, has weight (v, H,), and by properties of slo-modules the element
FPY is nonzero. But that lives in g,y m.)a-
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16.5 Conjugacy of Borel subalgebras and the
universal Cartan: statements

A maximal solvable subalgebra of a Lie algebra (over the algebraic closure) is
called a Borel subalgebra. Clearly, a Borel subalgebra contains the radical of g,
and therefore most questions (most importantly, the question of conjugacy) are
reduced to the semisimple case.

The following is immediate:

Lemma 5.1. FEvery Borel subalgebra is its own normalizer.

Let G be the group of inner automorphisms of g, i.e. automorphisms of the
form exp(ad(y)) € GL(g). Here g is not assumed to be semisimple, although
clearly the proof of the following theorem reduces to the semisimple case:

Theorem 5.2. All Borel subalgebras are G-conjugate.

Remark. The definition of G is not satisfactory, because it relies on the expo-
nential map which is not algebraic. Here is how we would define an algebraic
subgroup of GL(V) in general, in characteristic zero: We would take G to be
the subgroup generated by exp(ad(X)) for all nilpotent elements of X (the ex-
ponential is algebraic on them!). It turns out, for semisimple groups at least
(which is all we care about in this theorem) that these generate the same group
as the one analytically defined above. In arbitrary characteristic, over an alge-
braically closed field k, an algebraic group G(k) acts transitively on the Borel
subalgebras of its Lie algebra.

The proof will use many lemmas, including;:
Lemma 5.3. All Cartan subalgebras of a solvable Lie algebra are conjugate.

(We write “conjugate” for the group of inner automorphisms of the given Lie
algebra, i.e. in the last lemma the inner automorphisms of the solvable algebra.
Again, exponentials of nilpotent elements will suffice, although in this case they
do not generate the whole group of inner automorphisms.)

Corollary 5.4. All Cartan subalgebras of a Lie algebra g are conjugate (over
the algebraic closure).

Proof of the corollary. Any Cartan subalgebra is nilpotent, hence solvable, hence
contained (over the algebraic closure) in a Borel subalgebra. Two Borel subal-
gebras are conjugate, and two Cartan subalgebras of a given Borel are conju-
gate. O

Definition. The universal Cartan b of g is the quotient of any Borel subalgebra
b by its nilpotent radical. It is a commutative Lie algebra. For two different
Borel subalgebras b and b’, we identify the corresponding quotients h and b’ by
picking an element g € G which conjugates b to b’; since b is its own normalizer,
such an identification is unique up to an inner automorphism of b, but inner
automorphisms act trivially on the quotient b; therefore, b is unique up to
unique isomorphism.
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The universal Cartan comes with a set of roots ® < h*, and in fact with a
canonical choice of positive roots ®* (those that appear in the decomposition
of b). This will play a role in the definition of the Langlands dual group, which
has, by definition a canonical maximal torus with Lie algebra isomorphic to h*.

16.6 The scheme of Borel subgroups

A maximal solvable subgroup of an algebraic group over an algebraically closed
field & is called a Borel subgroup. For a smooth group scheme G (of finite presen-
tation) over an arbitrary base S, we call Borel subgroup any smooth subgroup
scheme of finite presentation B of G over S such that for all s € S the geometric
fiber Bs is a Borel subgroup (SGA3, XXIV, 4.5).

In general, it is not true that the functor which assigns to any S-scheme T'
the set of Borel subgroups over T is reprentable, i.e. that there exists a scheme
B over S such that B(T) is the set of Borel subgroups over T'. For instance, G
would act by automorphisms on such a scheme, and the kernel would be equal
to the radical of G, but if S = speck and k is not perfect then the radical may
not be defined over k.

However, if G is reductive then it is proven in SGA3, XXVI, 3.3:

Theorem 6.1. If G is a reductive subgroup (i.e. smooth, and all geometric
fibers are reductive) over a base S, the functor which assigns to an S-scheme T'
the set of Borel subgroups of G over T is representable by a smooth, projective,
geometrically integral group scheme B over S.

If there is a Borel subgroup B over S then B ~ G/B under the action of G.
The implications of this theorem are very important; for instance:

Corollary 6.2. If G is a reductive group defined over a global field k, then it
is quasi-split (i.e. has a Borel) over almost all completions k, of k.

Proof. Indeed, for a finite set of places V there is a reductive model of G over
the V-integers oy. Consider the scheme B of Borel subgroups over S = spec oy.
Let R be a non-archimedean completion of oy and let F' be the residue field
of R (a finite field). Since G is reductive over F, it is known that it has a
Borel subgroup defined over F. In other words, the scheme B has an F-point.
A smooth scheme is formally smooth, which in our case implies the henselian
property: every F-point of B lifts to an R-point. In other words, there is a
Borel subgroup at every non-archimedean place outside of V. O

16.7 Positive roots and standard Borel subgroups

We return to working over an algebraically closed field.
The following are combinatorial properties of root systems:

Proposition 7.1. Let (V,®,s,) be a root system, let I be a functional which
does not vanish on ® and let @1 be the elements of ® on which | is positive.
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This is called a choice of positive roots. Let A denote the set of elements of ®
which cannot be written as sums of other elements of ® with positive integral
coefficients. (These are the simple roots for this choice of positive roots.) Then:

1. Every a € T is a sum of elements of A.
2. If a,B € A then (o, 8) < 0.
8. The elements of A are linearly independent.

Proof. The first property follows immediately from the definition of A. The
second is proved by classifying root systems of rank 2. For the third, if we had
a linear relation ZaieA c;a; = 0 then some of the ¢;’s have to be negative, say

fort=1,...,7. Then:
|A|

Z(_Cz’)ai: Z CiQy

i=1 i=r+1

2 r |A|
; :<Z(_Ci)ai7 > Ciai>

i=1 i=r+1

which by the second statement is less or equal to zero, a contradiction. O

We call standard Borel subalgebra a subalgebra of the form b + > 4+ Gas
where § is a Cartan subalgebra and ®* is some choice of positive roots. Of
course, in the end it will turn out that every Borel subalgebra is standard.

The proof of conjugacy of Borel subalgebras goes by decreasing induction
on the dimension of b N b’, where b is assumed to be standard, the case where
one is included in the other being obvious.

[TO BE CONTINUED)]



Chapter 17

Verma modules and the
category O.

17.1 Verma modules

We have seen' that finite-dimensional representations of semisimple Lie algebras
are completely reducible, and the irreducibles are generated by a highest weight
vector (with dominant, integral weight). We now want to construct those irre-
ducible representations (in particular, to show that there is a unique one up to
unique isomorphism for each given weight), and to compute their characters.

In specific cases one can do that “by hand”, constructing first the irreducible
representations fundamental weights, and then the rest by taking tensor prod-
ucts of those (and subtracing copies of the representations already constructed).
For instance, for sl,, the n — 1 fundamental representations are the first n — 1
exterior powers of the standard, n-dimensional represntation.

For a more systematic approach, it is better to move outside the realm
of finite-dimensional representations, constructing the universal objects with
highest weight.

More precisely, we consider the category of g-modules of arbitrary, possibly
infinite, dimension (no topology), and for A € h* (where h denotes a universal
Cartan, later to be identified with a Cartan subgroup of g we let M, denote the
module with the universal property that for any g-module:

Homgy (M, V) = Homy(Cy, V).

The module 901 is called the Verma module of weight A, and it is very easy to
see that it exists, namely:

My = U(g) ®u () Cr—p-

n class, but not in the notes!
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Notice that, by the PBW theorem, as a b~-module:
My =U(n")®c Cr—yp, (17.1)

where U(n™) acts by left multiplication on the first factor, and the h-action is
the tensor product of the adjoint representation and the representation on Cy_,.
(The tensor product of Lie algebra representations is defined as: X (v ® w) =
(Xv)@uw+v®(Xw).)

Therefore:

Lemma 1.1. 1. My is b-locally finite and semisimple. The (h-)weights of
M) are of the form (X — p) — >, cio;, where a; range over simple positive
roots (we will denote their set by A) and ¢; € Z. The weight spaces are
finite-dimensional, and M)\)‘fp is one-dimensional.

2. My is n-locally finite.

Proof. The first statement follows immediately from the presentation (??), and
the second from the first and the fact that the action of n raises weights. O

Corollary 1.2. M) has a unique irreducible quotient, which will be denoted by
Ly.

Proof. The sum of all proper submodules does not meet M ))\‘ P and hence is
proper. O

17.2 The category O.

The full subcategory of g-modules which are:
e h-locally finite and semisimple;
e n-locally finite;
e finitely generated

is called category O (from a Russian paper of Gelfand-Gelfand-Bernstein). As
we have seen, it contains Verma modules.

Lemma 2.1. A submodule of a module in O is in O. The category is noethe-
rian, i.e. every increasing chain of subobjects of a given object stabilizes.

Proof. For the first statement, only finite generation is not obvious, but it follows
from the fact that U(g) is noetherian (a corollary of PBW).

The union of a chain of submodules is a submodule, hence finitely generated,
hence the chain has to stabilize. O

We will eventually see that it is also Artinian, i.e. every object is of finite
length.
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Lemma 2.2. Every object in O has a filtration whose quotients are surjective
images of Verma modules.

Proof. Let V be in O, and let W < V be a finite-dimensional, generating sub-
space. Without loss of generality, W is b-stable (for U(b)W is, in any case, finite-
dimensional). By Lie’s theorem, it has a filtration with one-dimensional quo-
tients. Therefore, V has a filtration with quotients generated by b-eigenvectors.
Each such representation is the surjective image of a Verma module. O

The Grothendieck group of an abelian category C is the free group on its
objects, modulo the relation: [B] = [A] + [C] for every short exact sequence
0> A— B — C — 0. We will eventually see that the Grothendieck group of O
is generated by Verma modules, in fact: it is free on the set of Verma modules.

17.3 The case of sl;, and application.

Here we identify the elements of h* with integers, according to their value on
&. Under this, p corresponds to 1, and therefore M) denotes the Verma module
with heighest weight A\ — 1.

Lemma 3.1. M, is irreducible, unless A\ € Zq, in which case there is an exact

sequence:
0> M_),—> My— Ly,—0.

Proof. Every submodule must have a highest weight vector, which must be of
the form F"vy_,. We compute that:

EF™vy_, =n(A—n)F" luy_,,
therefore for it to be zero (for some n > 0 we must have A € Z~. O

We return to the case of a general semisimple g. Then:

Lemma 3.2. If a is a simple root such that (\,&) € Zsq then there is an
embedding: M, — My. The quotient V. = My/M;_» has the property that it is
locally (sla)-finite, where (sls), denotes the embedding of sly into g determined
by the root a.

Proof. As in the previous lemma, we calculate that there is a highest weight
vector with weight s, A, hence there is a non-trivial map: M, — M,. Since
M, My ~U(n~) as U(n~)-modules, and U(n~) does not have zero divisors,
such a map has to be injective.

With notation (Hy, F., F,) for the sly-triple corresponding to «, we need
to show that the quotient is F,-locally finite. (Finiteness under the other two
is automatic for the category O0.) If V' is the set of F,-finite vectors, then
V' 3 va_,; we claim that V’ is g-stable. Indeed, we have a homomorphism of
F,-modules: g® V' — V., where F, acts on g via the adjoint representation.
But g is F,-finite and V' is F,-locally finite, hence their tensor product is
locally finite, therefore gV’ < V’. Together with vyx_, € V', this implies that
Vi=V. O
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We haven’t defined characters yet, but here’s a corollary about them:
Corollary 3.3. For every subquotient of V', the character is sq-stable.

This says, in particular, that the set of weights of that subquotient is s,-
stable.

The corollary follows from the theory of finite-dimensional sl,-representations.
It implies:

Corollary 3.4. Assume that A is integral (i.e. (&, \) € Z for all roots ) and
strictly dominant (i.e. (&, \) > 0 for all positive roots o). Then the represena-

tion:
= M/ () M)

(sum over simple positive roots) is finite dimensional. In particular, Ly (the
unique irreducible quotient of My ) is an (the) irreducible finite-dimensional rep-
resentation with highest weight A\ — p.

Proof. By the previous corollary, the quotient will have a W-stable set of weights.
On the other hand, all weights are < A and differ from A by an element of the
root lattice, so there is a finite set of weights only. Finally, the weight spaces
are finite dimensional, so the quotient is finite-dimensional. O

We will eventually see that L, = L,. In particular, for each dominant
integral weight \ the exists a (unique up to isomorphism) finite-dimensional

representation V) := Ly;, of g. (The uniqueness was a corollary of Corollary
?7.)

17.4 Localization with respect to 3(g)

Recall that 3(g) denotes the center of the universal enveloping algebra. Lemma
7?7 implies:

Lemma 4.1. 3(g) acts by scalars on Verma modules. For every object V in O,
the action of 3(g) on V is locally finite.

Proof. For the first statement, notice that 3(g) preserves weight spaces, so it
must act by a scalar on the one-dimensional highest weight space. But that
generates the whole module, so it acts by the same scalar on it.

We have seen in Lemma 7?7 that every object can be filtered by surjective
images of Verma modules. The center acts by a scalar on a Verma module,
hence on its quotients. Therefore it acts locally finitely on finite extensions of
such objects. O

The following will be proven later:

Theorem 4.2 (Harish-Chandra isomorphism). There is an isomorphism of
algebras ¢ : 3(g) = C[h*]", with the property that every A € 3(g) acts on the
Verma module Vy by the scalar ¢p(A)(N).
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Notice that the maximal ideals of C[h*]" are the complex points of the set-
theoretic quotient h*/W. Indeed, for every finite group I' acting on an affine
variety X the quotient X /T is an affine variety (i.e. k[X]! is finitely generated),
the map X — X /T is finite, and the quotient is also the so-called geometric
quotient (usually denoted X /T, although this can be mistaken for the stack-
theoretic quotient, which is the most “correct” one), in particular its points are
in bijection with G-orbits on X.

Corollary 4.3. 1. The category O is a direct sum of categories Oy, with x
varying over the complex points of b* /W.

2. If X is such that \—wA is never a sum of the form Y, nqoa, with o varying
over simple (positive) roots and ny, € N, then M)y is irreducible.

3. Every object in O is of finite length.

4. The classes of the Verma modules My (or, equivalently, their irreducible
quotients Ly ) are a basis for the Grothendieck group Z[O].

Proof. 1. Since the action of the center is locally finite, we can decompose
every object into a direct sum of generalized 3(g)-eigenspaces. Obviously,
there are no g-morphisms between them.

2. If M) is not irreducible, there is a nontrivial map from M, to M) for some
. But this can happen only if A — p is in the positive root monoid, and
by the decomposition of categories it can only happen if 4 = w for some
weW.

3. By Lemma 77, it suffices to show that Verma modules are of finite length.
Define K by the short exact sequence:

0— Ky — My — Ly — 0,

if nonzero then K, admits a filtration as in Lemma ??, whose factors are
surjective images of modules M, with i < A. But by the decomposition of
categories, u has to be a W-conjugate of A, and hence in a finite number
of steps we will arrive at weights p as in the previous statement, hence
M,, irreducible.

4. Same argument, by induction on A (the starting point of the induction
being the M) of 2. The fact that the L) also form a basis follows from
the fact that the category is Artinian, and they are the only irreducible
objects (non-isomorphic to each other).

O

Corollary 4.4. When X is integral and strictly dominant, the representations
L of the previous subsection are irreducible (hence equal to Ly ).
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17.5 Characters

Consider the ring R of formal sums >} ¢« c(M\)e*, where cy is supported in a
finite number of translates of the negative root monoid. Elements of the ring
are multiplied as the notation suggests.

The character chy of an object V' in the category O (or a sub-h-module) is
the following element of R: Y Aeh* dim Vye*. It defines a group homomorphism
from Z[O] (the Grothendieck group of O) to R. Moreover, it can easily be
shown that the character of the tensor product of two representations is the
product of the two characters. (The tensor product is not necessarily in O, but
it has weight spaces such that this statement makes sense.)

Let L =[],.,(e2 —e™%) € R (the product over all positive roots). Notice
that L can also be written as: e”[[ ., (1 —e™®), hence it is supported on
integral weights. (The weight p is integral because o = p — sq4p = (p, &) a for
every simple root a.)

Proposition 5.1. The character of the Verma module M) satisfies:

L-xu, = e
Proof. As an h-module, Vy = U(n_)Q®Cx_,, so ch(V) = ch(U(n_))-ch(Cy_,) =
x(U(n™)) - 2. Therefore, it suffices to prove that the character of U(n_) is
the power series e”/L.
By the Poincare-Birkhoff-Witt theorem, as f) representations we have: U(n_) =
®a>05°9_w. The character of S®g_, is 1 +e* +e2* + ... = ﬁ, and this
proves the proposition. O

Finally, we are ready to prove the Weyl character formula:

Theorem 5.2. The character of the irreducible representation with heighest
weight X\ is given by the Schur polynomial:

D wew sgn(w)ew(A“)

x(Va) = i

Proof. Since in the Grothendieck group we have:

VAl = [Mxsp] + Z cw[Mu(rip)l,
weW,w#1

we get:
L-ch(Vy) = e + Z CopeATP)
weW,w#1
On the other hand, we know that the character should be W-invariant
(Corollary ?7?), therefore the expression on the right should be (W, sgn)-equivariant.
Therefore, ¢,, = sgn(w). O



Chapter 18

The Chevalley and
Harish-Chandra
isomorphisms
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Chapter 19

Commutative ('*- and Von
Neumann algebras

We begin with a look at the theory of C*- and Von Neumann (or W#*)-algebras.
To every locally compact group G one can associate the C*-algebra C*(G),
which is the C*-envelope of the convolution algebra L'(G). General theorems
about the structure of C*- and W*-algebras enable us, then, to decompose
any unitary representation of G into a direct integral of irreducibles (Plancherel
decomposition) provided the C*-algebra of the group is nice enough.

19.1 Basic definitions

A Banach algebra is a Banach space (V,|| o |) with an algebra structure satis-
fying: [ab| < ||la| - |b]|- Not to be confused with a B*-algebra, which is a term
synonymous to a C*-algebra and now obsolete.

A Banach *-algebra is a Banach algebra equipped with an antiinvolution:
(ab)* = b*a* satisfying: |a*| = |a].

A C*algebra is a Banach *-algebra which, in addition, satisfies |a*al = ||a]?.
This turns out to be a very rigid condition: as we will see, the algebraic structure
together with the requirement of completeness completely determine the norm.

Up to now our algebras were equipped with the norm topology. If, however,
the space V' of a C*-algebra turns out to be the Banach dual of a Banach space
Vi (called the predual of V), then we call it a W*-algebra (or Von Neumann
algebra) and we endow it with the weak-* topology. The weak-* topology has
completely different features than the norm topology (for instance, the unit ball
is compact, by the Banach-Alaoglu theorem), and this makes the study of Von
Neumann algebras quite differnt. As we will see in this lecture, for commutative
algebras this is the difference between topology and measure theory: (locally
compact) Hausdorff spaces and (locally finite) measure spaces. Notice that the
predual of a general Banach space is not uniquely defined: nonisomorphic spaces
can have isomorphic duals (for example, the spaces ¢ and ¢y of convergent, resp.
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nullsequences have duals isomorphic to the space I! of summable sequences).
However, it turns out that for W* algebras the predual is unique.

Those algebras are called unital if they have an identity element. W*-
algebras turn out be unital always, C*-algebras are not necessarily unital but
they have an approrimate identity: a net of elements w; with ||lu;| < 1 and
limu;a = limau; = a for all a. Even if a C* algebra A does not have an
identity, we can add one by defining on A @ C the norm:

A
IAL + af = sup Az + az|
w20 |z

However, since (two-sided) ideals in C*-algebras are non-unital C*-algebras,
one needs to discuss non-unital C*-algebras as well.

An example of a C*-algebra is the algebra B(H) of bounded operators on
a Hilbert space, with = : the adjoint operator. It turns out that this is a Von
Neumann algebra:

Theorem 1.1. Let T(H) be the Banach space of trace class operators in B(H);
the norm on T(H) is given by |a|rc = |(a*a)7 | s, where HS is the Hilbert-
Schmidt norm and (a*a)% is defined by continuous functional analysis (will
discuss later). Then we have:

with pairing (a,b) = tr(a*b).

It turns out that C*- and W*- algebras have faithful representations under
which we can equivalently define them as (those algebras which are isomorphic
to) norm-closed, respectively weak-* closed subspaces of B(H), for some Hilbert
space H. Moreover, the weak-* topology on B(H) coincides with what is called
the weak operator topology: a net of operators T; — T if an only if for all
z,y € H we have: (Tyx,y) — T.

19.2 Invertible elements and characters of a com-
mutative C'*-algebra

From now on, for the rest of the lecture, all C*-algebras are commutative.

An example of a commutative C*-algebra is the space Cy(X) of continuous
functions vanishing at infinity on a locally compact space X, endowed with the
supremum norm and the involution f — f. It is unital if and only if X is
compact.

From now for the rest of this section on all Banach algebras are unital with'
7] = 1.

IThis condition is automatic for C*-algebras. For a general Banach algebra A, the given
norm is equivalent to the norm a — |Lg||, where L, € B(A) is the operator of left multiplica-
tion by a, and for that we have || = 1.
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The converse is true: every C*-algebra A turns out to be isomorphic to
Co(X) for some locally compact space X. To recover X from A, we think
as in algebraic geometry: the points of X should be maximal ideals of A, or
equivalently homomorphisms into a field.

The following hold automatically:

Proposition 2.1. 1. Every (algebraic) mazimal ideal in a Banach algebra is
closed.

2. The only (complex) Banach field is C. Hence, maximal ideals of A are in
bijection with characters, that is homomorphisms: A — C (automatically
continuous, since the ideal is closed).

3. For every character w we have |w|| = 1.

4. Every maximal ideal in a C*-algebra is self-adjoint, i.e. closed under *. (This
turns out to be true for any closed ideal, but it’s harder and we won’t need
it.) Hence, every character is a *-homomorphism into C.

For the proof, and for later use, we introduce the spectrum o(a) of an element
a € A: it is the set of A € C such that a — AI is not invertible. We will prove
the above proposition together with the following;:

Proposition 2.2. 5. The spectrum of every element in a Banach algebra is a
nonempty compact subset of C.
Proof. 1. We start with a lemma. For what follows, keep in mind

Lemma 2.3. If |a| <1 then the series ,._,a™ converges to (1 —a)~".

The proof is easy. It has two corollaries:

a. If A > |a| then a — I is invertible. Indeed, |[A~tal| < 1.

b. The set of invertible elements is open. Indeed, if a is invertible and
|b]l < Ja=1|~t then |a='b| < 1 and hence a + b = a(1 + a~'b) is
invertible.

Hence we get:

e Every maximal ideal is closed. For it doesn’t contain any invertible
elements, and since those are open neither does its closure, i.e. its
closure is also a proper ideal.

e For each a € A, o(a) is closed and bounded (compact).

5. To prove that the spectrum of an element a € A is nonempty, we define a
function f : C \ o(a) — A by g(2) = (2I —a)~!. We claim that this
function is holomorphic,” and lim, ., g(z) = 0. By Liouville’s theorem,

2The notion of a holomorphic function into a Banach space, defined by the convergence of
the usual derivative, is known to be equivalent to the notion of a weakly holomorphic function,
which means that (g(z),a*) is holomorphic for every a* € A*.
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if o(a) = & this will imply that (g(z),a*) = 0 for every a* € A*, which is
absurd.

Holomorphicity is proven by showing that in an open ball around a point
zo which doesn’t meet the spectrum we have:

o0

9(z) = Y (20— 2)"(z0l —a) ",

n=0

a convergent power series. The fact that g(z) — 0 as z — oo follows from
writing:
lg()] = [=[7H (I =27 a) 7!

and observing that lim, (I — 27 ta) = I.

2. If A is a Banach field, a € A and z € o(z) then a — zI is not invertible, hence
zero. This means that a = zI, and A = C.

3. We have seen that if z > ||a| then a—zI is invertible and hence w(a—zI) # 0.
Therefore, |w(a)| < |al|, but w(I) =1 = |I], so |lw| = 1.

4. Tt suffices to show that for a character w, and a self-adjoint element a (i.e.
a = a*, we have w(a) € R. Assume w(a) = a + i, and by replacing a by
the self-adjoint element a — oI we may assume that w(a) = ¢8. Then we
compute that for ¢ € R:

lw(a + itD)|? = 5% + 2t6 + 2.

On the other hand, |a + itI|? = |a? + t2I|| < |a|?® + t2, and if 8 # 0 and
t » 0 we get a contradiction to the fact that |w| = 1.
O

19.3 The Gelfand transform

Given a commutative C*-algebra A (or more generally any Banach algebra),
we will denote its set of characters by A(A) and we will call it the spectrum?
or structure space of A. If A has a unit element then A(A) is weak-* closed
in A* (if it doesn’t we need to include the zero homomorphism). We endow
A(A) with the weakest topology making all elements of a continuous, that is:
the restriction of the weak-* topology when A(A) is considered as a subspace
of A*. The Banach-Alaoglu theorem implies:

If A has an identity element then A(A) is a compact (Hausdorff) space.

In the general case, it is a locally compact space. The map A — Cy(A(A)):
a— a(w) := w(a) is the Gelfand transform. (The reason that functions vanish
at infinity is that “infinity” corresponds to the zero functional.) Proposition 77
implies:

3What we called “spectrum” o(a) of an element a € A before becomes the range of its
Gelfand transform a, as a function on A(A).
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Corollary 3.1. The Gelfand transform is a *-homomorphism.

The basic goal of this lecture is to prove the following theorem, which shows
that all commutative C*-algebras are of the form Cy(X), for some locally com-
pact space X:

Theorem 3.2. For a commutative C*-algebra A the Gelfand transform is an
isometric isomorphism onto Cy(A(X)).

It is enough to prove the theorem for unital C*-algebras; the general case
follows by adding an identity element and extending characters (this can be
done in a unique way). So let A be a unital C*-algebra.

Theorem ?7 will be proven by showing:

Proposition 3.3. The map A > aw— ae C(A(A)) is an isometry.

This shows that the Gelfand transform is injective, and by an easy applica-
tion of the Stone-Weierstrass theorem it can be seen to be surjective.

To prove it we need to have a more intrinsic, “algebraic” definition of the
norm.

Proposition 3.4. 1. For a self-adjoint element a (i.e. a* = a) we have
la]| = sup |o(a)].

Lemma 3.5. We have o(a) = o(a).

Proof. An element a is invertible iff it belongs to no maximal ideal iff w(a) # 0

for all w € A(X). Thus, a — zI is invertible iff @ — z does not vanish (is

invertible). O

This shows how Proposition ?? follows from Proposition ??: |a|| = sup |o(a)| =
sup |o(a)| = |a| for all self-adjoint elements, which is enough in order to prove
it for all elements (just apply the equality to the element aa™).

We are left with proving Proposition ??. The number r(a) = sup |o(a)] is
called the spectral radius of a.

Proposition 3.6 (Spectral radius formula). For any element a in a unital
Banach algebra we have: .
r(a) = lim [|a™| ™.

This proves Proposition ??, since for self-adjoint elements |a?" | = [al>".

Proof. T leave it as an exercise to prove that for a polynomial p, p(c(a)) =
o(p(a)). Therefore, r(a)" = r(a™) < |a™| = r(a) < |a™|, for all n.

On the other hand, the function g(z) = (21 — a)~! that we encountered
in the proof of Proposition ?? is analytic for |z| > r(a) and has a convergent

expression:
1 & /sa\"
o =5 2 (3)
n=0
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when |z| > |al|. Therefore, the same expression should converge, locally uni-
formly in z, when |2| > r(a). This means, in particular, that (2)" is bounded,
hence limsup ||a”|# < |z|. Since this holds for every z with |z| > r(a), the claim
is proven. O

This completes the proof of Theorem ?7.

19.4 Commutative W*-algebras

Now let us see the analogous theorem for W*-algebras. Here the locally compact
Hausdorff space A(A)) will be replaced by a measure space (X, €2, v) which is
locally finite, i.e. a direct sum of finite measure spaces. For such a space, the
commutative C*-algebra L*(X,v) is actually a W*-algebra, being the dual of
LY (X,v). Vice versa:

Theorem 4.1. Let A be a commutative W*-algebra. Then it is isomorphic to
L*®(X,v) for some locally finite measure space (X,Q,v).

The proof of this theorem should be read after the next chapter.

Proof. By the Gelfand-Naimark theorem, A = C(X), where X is the spectrum
of A. If ¢ is a normal state then by the Riesz representation theorem it defines
a unique Radon measure pg4 on X, easily seen to be positive, such that:

ota) = | e

This gives a morphism ¢ : A — L*(X, py) which is easily seen to be a
W*-morphism (i.e. a weak-star continuous *-homomorphism): Indeed, it is im-
mediate that it is a *-homomorphism. For weak-star continuity: first, a weak-*
convergent net x, — x in A is bounded (by the uniform boundedness principle).
Since ¢ is norm-continuous, (tz4)q is bounded. Therefore, it suffices to show
that (f,1xa) — (f,z) for f in a dense subset of L' (X, uy) — we take f to be con-
tinuous, hence f = b for some b € A. Then (f,124) = §biapy = ¢(bra) — ¢(bz)
since ¢ is weak-star continuous.

We now know that the image of A is weak-star closed, and since it contains
the image of continuous functions it is equal to L® (X, ug).

The kernel of + = 14 is a closed ideal, and hence generated by a projection
z € A. Tt is easily seen that z = I — supp(¢).

O



Chapter 20

General ("-algebras and
their states

20.1 Corollaries of the Gelfand-Naimark theo-
rem

The Gelfand-Naimark theorem can often be used to deduce results for arbitrary
C*-algebras, as follows: if a € A is a normal element, i.e. commutes with its
adjoint: aa® = a*a, then it generates a commutative C*-algebra inside of A.

Theorem 1.1. Lett: A < B be an injective homomorphism from a C*-algebra
to a normed algebra. Then |z|a < |wx|p for any normal element x; if v is an
injective *-homomorphism of C* algebras, it is an isometry.

Proof. By considering the C*-algebra generated by z, we may first assume that
A is commutative, hence without loss of generality B is also commutative. If X
is the spectrum of A and X’ < X is the set of characters which are B-continuous,
then we claim that X’ is dense in X. Indeed, if not we can find an open subset
U of X and nonzero elements a,b € A such that a is supported in U and bis 1
on X’ and 0 on U. Hence, ab = 0.

On the other hand, we claim that ¢(b) is invertible in B; indeed, otherwise
there is a character w of B with w(:(b)) = 0, but by assumption w(b) = 1 for
every character of B. Therefore, (ab) = 0 implies that ¢(a) = 0, contradicting
the injectivity of ¢.

Now recall that |z||4 = ra(z) and |z|p = rp(z), where by r we denote the
corresponding spectral radii. Since X’ is dense in X, it follows that r4(x) =
rp(t(x)), from which we deduce the first statement. If B is also a C*-algebra,
the inequality becomes an equality, and therefore the map is an isometry.

For an injective *-homomorphism A — B of C*-algebras (not necessarily
commutative), the norms are determined by those of normal elements (by the
formula |z[|? = |z*z|), and therefore the general statement follows from the
one about commutative algebras. O
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Corollary 1.2. The image of a *-homomorphism of C*-algebras is always
closed.

Theorem 1.3. If.: A — B is a morphism of W*-algebras (i.e. a *-homomorphism
which is continuous under the weak-* topologies) then the image is closed.

Proof. First, observe that a weak-star continuous operator between Banach
spaces is bounded; in fact, it is the adjoint of a bounded operator between the
preduals. (A weakly continuous operator between Banach spaces T : V. — W
is bounded by applying the uniform boundedness principle to W*: for a norm-
convergent sequence x,, — 0 in V the functionals ¢ — ¢(Tx,) on W* are all
bounded, and hence uniformly bounded.)

Hence, by using the analogous statement for C*-algebras, ¢ is an isometry
from A/K to B, where K is the kernel, and its image is norm-closed. Since the
image of the unit ball in A/K is the unit ball in ¢(A), it suffices to show that
this is weak-star closed. But it is the continuous image of a compact set (in the
weak-star topology), hence compact, hence closed. O

20.2 Positive elements

Let A be a C*-algebra. An element a € A is called positive if it is self-adjoint,
and its spectrum is contained in [0, 400). Hence, under the Gelfand transform
for the C*-algebra that it generates, it corresponds to a non-negative real-
valued function. We write a > 0 if a is positive, and a < 0 if —a > 0; the set
of positive elements is denoted by A*. By considering the Gelfand transform it
immediately follows:

a_
lal

< 1.

Lemma 2.1. A self-adjoint element a is positive if Hl —

Theorem 2.2. 1. Positive elements form a closed cone.

2. An element a is positive if and only if there exists a x € A such that
x*x = a. There exists a unique positive such x.

Proof. The first statement follows easily by using the previous lemma.

For the second, if a is positive the existence of z is immediate from the
Gelfand-Naimark theorem. Vice versa, if ¢ = x*x but a is not positive then
(again by the same theorem) there exists a positive element b such that bz*zb <
0. By writing xb = hy + iho, with h; self-adjoint, we compute that (za)*(za) +
(za)(za)* = 2(h? + h3) > 0. (We are using here the first fact, that the sum of
two positive elements is positive.)

On the other hand, the spectrum of (za)*(xa) union {0} coincides with the
spectrum of (za)(xa)* union {0} as the following lemma shows. Hence, they
are both negative, and their sum is negative, a contradiction.

For uniqueness of such a positive z, it suffices to show that such a x should
commute with a (then it follows again from Gelfand-Naimark); but this is ob-

vious since a = z*x = 22. O
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Lemma 2.3. Ifa,b are two elements in a C*-algebra, s(ab) u{0} = s(ba) U{0}.

Proof. Assume that ab — zI is invertible, = u~!. Then we compute: (ba —
zI)(bua — I) = zI = (bua — I)(ba — zI). Hence, if z # 0 then ba — zI is
invertible. O

Remark. Unlike the finite-dimensional case, we cannot avoid adjoining 0. In-
deed, consider a Hilbert space with a proper isomorphic subspace, H = H®C'. If
a € B(H) is projection to the subspace H and b € B(H) is the embedding of the
subspace into the ambient space, then ab is the identity, but ba has nontrivial
kernel.

Every self-adjoint element can be written as ¢ = ay — a_ with ay > 0,
commuting with each other, and max{|a+ |} = [la| (from the Gelfand-Naimark
theorem); the element |a| = a4 + a_ is called the absolute value of a.

20.3 Positive functionals

The space P of positive functionals on A is the space of all linear functionals:
A — C which are > 0 on positive elements. A priori, we do not need to assume
that they are bounded, but they will turn out to be.

As an example, on B(H) (bounded operators on a Hilbert space) consider
the functional a — (a,xi), where £ € H. It will actually turn out that all
positive functionals of a C*-algebra A are of this form, for some representation

A — B(H).
Theorem 3.1. 1. A positive functional is always bounded, hence P < A*.
2. If € P then:

(a) ¢p(a*) = ¢(a), i.e. it is a *~homomorphism into C;
(b) the form (a,b) — ¢(b*a) is hermitian positive semi-definite;
(c) 16(a)” < |d]p(a*a).
Proof. First of all, if ¢ is unbounded then it is unbounded on self-adjoint ele-
ments (because a = hy + ihy with h; self-adjoint of norm < |al|); and hence it
is unbounded on positive elements (because of the decomposition a = a4y —a—
with -] < [al]).
Assume a = Y27 "a,, with a,, > 0, [la,| = 1, #(27"a,) > 1. Then ¢(a) > N
for every NN, a contradiction. Hence ¢ is bounded.
To prove that ¢ is a *-homomorphism, we first show that it takes real values
on self-adjoint elements. This follows from the decomposition a = ay — a_.
Now, for arbitrary a = b + ic (with b, ¢ self-adjoint) we have a* = b — ic and
hence ¢(a*) = ¢(b) — igp(c) = ¢(b + ic).
Because of this, the form (a,b) — ¢(b*a) is clearly hermitian (i.e. sesquilin-
ear, skew-symmetric), and it is positive since ¢ is positive.
Finally, from Cauchy-Schwarz inequality for this hermitian form (at least
when A has an identity; the general case can be handled with an approximate

identity) we get: [¢(a)]* < ¢(1)p(a*a) < |d]p(a*a). 0
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Remark. More generally, an operator ¢ : A — B between C*-algebras is called
positive if ¢(AT) = BT; *-homomorphisms are always positive.

20.4 States

A state of A is a positive linear functional ¢ with ||¢| = 1; their space will be
denoted by .. Since we secretly know (and will see soon) that they correspond
to symmetric matrix coefficients of representations, it is important to know that
there are enough of them to distinguish points:

Theorem 4.1. If a € A is normal then there is a ¢ € % with |¢(a)| = ||a|.

Proof. There is certainly such a state (in fact, a character) on the C*-algebra
generated by a (namely, evaluation at the maximum of |a|). By the Hahn-
Banach theorem, we may extend it to a linear functional on A without chang-
ing its norm. The fact that the extension is positive follows from the following
lemma (when A has an identity; the general case is treated similarly with ap-
proximate identities):

Lemma 4.2. A functional ¢ € A* is positive iff ||¢|| = ¢(1).

Indeed, let a be self-adjoint with |a] < 1; we first show that ¢(a) is real.
Without loss of generality, ¢(a) = a + i3 with 8 < 0. Hence, |¢p(a — inl)|*> <
1+ n? for every n; on the other hand, this is equal to |a+i8 —in|? = (|8] +n)?,
from which it follows that 5 = 0.

If a is also positive then [ —a| < 1 =1—¢(a) <1 = ¢(a) = 0. This
completes the proof of the lemma, and the theorem. O

20.5 Positivity and normal states for IV *-algebras

Lemma 5.1. If A is a W*-algebra, the set of A® self-adjoint elements and the
set AT of positive elements are both weak-star closed.

Proof. Tt sufficies (Krein-Smulian theorem) to show that their intersection with
the unit ball 4; is closed. If (z4)a is a net of self-adjoint elements of norm < 1
converging in the weak-star topology to a + ib, assume b # 0 and that there
is a positive A € o(b). (If not, consider the negative of this sequence.) Then
2o +inl|| < /14 n? and for large n thisis < A+n < |b+nl| < |a+ibI +inl|.
Since a + bl +inl is the limit of (x4 +inl), which belongs to the compact ball
v/1+ n?Ay, this also belongs to that ball, a contradiction.

Recall that AT n A; contains precisely those self-adjoint elements a € A,
with 1 — « € Ay, hence it is weak-star closed as the intersection of weak-star
closed sets. O

Corollary 5.2. The involution * is weak-star continuous.

A state on A is called normal if it is weak-star continuous. Their set will be
denoted by .#,.
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Proposition 5.3. If ¢(a) =0 for all ¢ € 4, then a = 0.

Proof. By the Hahn-Banach separation theorem for real topological vector spaces:
Say a € A% . AT (otherwise work with —a). Since AT is a weak-star closed
convex subset of the locally convex real topological vector space A*, there is
a real-valued linear functional [ on A% with I(a) < inf,e 4+ {(z). Since AT is a
cone, this means that I(a) < 0 and [(A*) > 0. Now define ¢p(a+ib) = I(a)+il(b)
on A (a,be A%). It is a continuous state with ¢(a) # 0. O

20.6 Universal representations

Let A be a C*-algebra. Given a state ¢, we can define the Hilbert space Hy

as the completion of A with respect to the seminorm |la|s = ((b(a*a))%. Left
multiplication by A is well-defined and gives a morphism 74 : A — B(H,), as
is implied by the following lemma:

Lemma 6.1. The radical of the hermitian form (a,b) — ¢(b*a) is a closed left
ideal of A, and more precisely: |ba|y < |aq - [b].

Proof. Since the form is positive semi-definite, ¢p(a * a) = 0 < Vb, ¢(b*a) =
0 = ¢(a*b*ba) = 0, so ba is also in the radical. It is clearly closed by continuity
of ¢.

To prove the norm estimate (which actually makes the first part of the proof
redundant), for given a with |afs # 0 we define a new functional: ®(b) =
¢(a*ba). Tt is clearly positive, and hence ¢(b) = ¢(I) = [a[3. Hence, 1 (b*b) <
||a\|35 - |b]?. (Use approximate identity if I ¢ A.)

OJ

Notice that if £ € 4 denotes the image of I € A, we have: ¢(a) = (m4(a)€, €).

We now form the huge Hilbert space: Huniv = @ge.rHg. It is called the uni-
versal representation of the C*-algebra A. Theorem 7?7 shows that the universal
representation muniy : A — B(Huniv) is injective, and hence an isometry to its
image. Therefore, every C*-algebra is isomorphic to a norm-closed *-subalgebra
of B(H) (and vice versa, of course).

We now turn to W*-algebras; assume that A is such.

Lemma 6.2. If ¢ is a normal state, then the map 7y : A — B(Hy) is weak-star
continuous.

Proof. We use the following fact: the weak-star topology on B(#H), where H is
a Hilbert space, is equivalent on bounded spheres to the weak operator topology,
defined by the seminorms T — | (T¢,n) | (£, € H); in other words, the topology
where T, — T iff T,¢ — T¢ weakly for all £, Since 7y is norm-bounded, it
suffices to prove continuity on bounded sets. (Indeed, it is easy to show that
any weakly convergent net is norm-bounded.) In other words, we need to prove
that for every &, n € Hy the functional: a — (m(a){,n) is weak-star continuous.
Also, by norm-boundedness it suffices to prove so for a norm-dense subset of
such (&,n). If £ and 7 are the images of elements x,y € A, then this functional
is equal to ¢(y*ax), so it is continuous. O
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Now we form the representation H,, = @ge.#, He. It follows that the corre-
sponding map 7, : A — B(H,,) is weak-star continuous (again, by the fact that
it is norm-bounded and the functionals a — (m,(a)¢,n) are continuous for a
norm-dense subset of (£,7)). By Proposition ??, it is injective, and by Theorem
7?7 we get:

Theorem 6.3. Every W*-algebra is isomorphic to a weak-star closed *-subalgebra
of B(H), for some Hilbert space H, and vice versa.

Finally, a *-subalgebra of B(#) is weak-star closed if and only if it is closed
in the weak operator topology, so we might as well replace the former by the
latter in the previous theorem.

20.7 Projections in a W*-algebra

Later
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Chapter 21

Basic notions

This chapter is a repetition of material presented in Part 77.

21.1 References

e A. Borel, Linear Algebraic Groups. (2nd ed., Springer).
e T. A. Springer, Linear Algebraic Groups. (2nd ed., Birkh&user).

e T. A. Springer, Reductive Groups. Automorphic forms, representations
and L-functions, PSPUM 33.1, AMS (the “Corvallis proceedings”).

21.2 Basic notions

Let k be a field.

A group scheme is a group in the category of k-schemes. Facts: If k is of
characteristic zero, then any group scheme is smooth over k. In characteristic
p > 0, though, a group scheme could be non-reduced, for instance the Frobenius
group scheme, i.e. the kernel of G, — G,, : ¢ — gP. An algebraic group is a
smooth group scheme over a field k. FROM NOW ON, ONLY CHARACTER-
ISTIC ZERO.

The geometrically connected component G® of G is always defined over k
and normal. (The group of components G /G is also an algebraic group over k,
cf. “homogeneous spaces”.)

The multiplicative group G,, = speck[T,T~*],T — T, - T,. The additive
group G, = speck[T],T — T\ + Ts.

A linear algebraic group is one which is affine. Equivalently, it admits a
closed embedding into GL,, for some n.

The Jordan decomposition: Every element g € GL,, can be written uniquely
as gsgu, with g5 semisimple and g, unipotent, so that g5 and g, commute. If
g € GL,(k), then so are g5 and g,. Let G be a linear algebraic group and
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i : G — GL, an embedding. Let g € G. Facts: whether i(g) is semisimple
or unipotent does not depend on the embedding! Therefore g will be called
semisimple or unipotent accordingly. Moreover, g = gsg, uniquely, with g, € G
semisimple and g, € G unipotent.

From now on “group” will mean “linear algebraic group” (over k).

21.3 Homogeneous spaces

If G is a group and H a closed subgroup, then H\G, the geometric quotient of
G by H, exists in the category of k-schemes, and is also smooth over k. (The
existence statement is valid in positive characteristic as well, but of course the
quotient may not be reduced if G is not.) However, it quasi-projective but not
necessarily affine.

(Definition of geometric quotient 7 : X — Y of a scheme X by the action
of G: 7 is open and surjective, Oy = (74Ox)¢ and the geometric fibers are
precisely the geometric orbits of G. For more details see, for instance, Mum-
ford, Geometric Invariant Theory or the fourth chapter in the book of van
der Geer and Moonen on abelian varieties, appearing in preliminary form at:
http://staff.science.uva.nl/~bmoonen/boek/BookAV.html.)

The idea of the proof: Show that there exists an algebraic representation V' of
G such that H is the stabilizer of a line in V. One finds such a representation by
playing with the ring of regular functions on G and the ideal defining H. Then
H\G can naturally be identified with the orbit of that line in P(V). (General
facts about algebraic representations and actions of G on varieties: By definition,
their matrix coefficients are regular functions on G. Every action of G on an
affine variety X is locally finite, i.e. every f € k[X] generates a finite-dimensional
subspace. Every orbit of G on X is locally closed.)

Example : P\G, where P is a parabolic subgroup, is projective. (This is
actually the definition of parabolic subgroup, so the statement is void unless
you know some examples of parabolic subgroups!) In fact, for reductive G the
quotient H\G is affine if and only if H is also reductive. (Borel & Harish-
Chandra.) We will explain these notions later.

If H is normal, then H\G has a natural group structure. Beware: the points
of (H\G)(k) are not the same as H(k)\G(k), in general. Example: the space
0,,\ GL,, of non-degenerate quadratic forms in n-variables.

21.4 Diagonalizable groups

The character group X' (G) of G is the group of morphisms: G — G,,,. If F'is a
superfield of the field of definition, we will write: Xr(G) for X(Gr) (where Gp
denotes the base change to F), i.e. those characters defined over F.

Ezercise. The only character of G, is the trivial one.

(This has the following generalization: The only irreducible algebraic repre-
sentation of a unipotent group is the trivial one.)
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On the other hand, the characters of G,, are precisely those of the form
T — T" for some r € Z. We notice that if we consider them as functions
Gm — G,, — A then every element of k[G,,] can be written as a linear
combination of characters. (In other words, k[G,,] is the Grothendieck ring
over k of the group X%(Gy,).)

A diagonalizable group is one for which its k-character group X3 (G) spans
k[G] over k. Equivalently, it is commutative and semisimple. It is called split
according as Xy (G) = X%(G) or not. A torus is a group which is isomorphic,
over k, to G”, for some r. The connected component of a smooth diagonalizable
group is a torus.

Theorem 4.1. The contravariant functor G — X (G) is an equivalence between
the categories of diagonalizable k-groups and of finitely generated Z-modules with
a (continuous) Gal(k/k)-action.

This is a relief: Everything that we would like to know about these groups

can be reduced to a relatively simple combinatorial picture. Let us see an
example:
Example 4.2. The character group of G2, is isomorphic to Z?; fix such an iso-
morphism. Let E be a quadratic extension of k. There is a diagonalizable
group R which is isomorphic to G2, over the algebraic closure, but such that
R(k) = EX.! Let o be the non-trivial element of Gal(E/k). Then we define the
action of Gal(k/k) on X(G2,) as follows: It will factor through Gal(E/k), and
?(a,b) = (b,a) € Z2. The short exact sequence:

0— {(a,—a)laeZ} > 7> >Z —0

(where Gal(k/k) acts trivially on the last group) corresponds, dually, to a se-
quence of the groups:

1« R/Gp « R G < 1

which at the level of points is the embedding k* — E*.
On the other hand there is another short exact sequence:

0—{(a,a)laeZ} >7*—>7Z—0

where now the Galois group acts trivially on the first term, but not on the last.
This corresponds to the norm map:

E* - k*.

Notice that the kernel of the norm map is an 1-dimensional torus. Moreover,
notice that here we have a surjection of algebraic groups which is not a surjection
at the level of k-points.

1We recall here the notion of points of a scheme: Given schemes X,Y over a basis S,
we define X(Y) := Mor(Y, X) in the category of S-schemes (the “Y-points of X”). When
Y = spec A, for a ring A, we also say “A-points”. If S = speck, X is affine and A is any
k-algebra then X (A) = Hom(k[X], A). Of course, for our discussion, G(A) is the same as
i(G) N GLy (A) for any closed embedding i : G — GLy,.
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Remark. The group constructed above is called the restriction of scalars of
G,, from E to k; namely, we start with the group G,, over E and construct
an algebraic group R over k such that for every extension F' of k we have
R(F) = G,,(F ® E). We will return to this concept in a more general setting.

Ezercise. Verify the above-mentioned property of restriction of scalars for the
given example.

Ezercise. Prove the following: If k is algebraically closed and D is a diagonal-
izable group, then there exists a finite subgroup F of D such that D = D° x F.
Does that hold for arbitrary k?

21.5 Reductive groups

A group is solvable if it admits a normal series whose successive quotients are
abelian. Notice that this notion is k-independent, since we can take the normal
series where G is followed by [G;, G;], which is defined over k. A Borel subgroup
of a linear group G is one which is maximal (over the algebraic closure) among
the connected solvable subgroups. It is not true in general that there is a Borel
subgroup over k; if there is, the group G will be called quasi-split. We will see
later that every reductive group is an inner form of precisely one (isomorphism
class of) quasi-split group.

Facts: All Borel subgroups are G(k)-conjugate. A subgroup is parabolic if
and only if it contains a Borel. (The proof of these facts relies on (a generaliza-
tion of) the Lie-Kolchin Theorem, which states that a connected solvable group
acting on a proper variety has a fixed point.)

Every group G has a maximal closed, connected, normal, solvable subgroup.
This is the radical R(G). The unipotent elements of R(G) form a maximal
closed, connected, unipotent subgroup of G, the unipotent radical R,(G). We
say that G is reductive if R, (G) = 1 and semisimple if R(G) = 1. The rank of
G is the dimension of a maximal torus and its semisimple rank is the rank of
its derived group; equivalently, the dimension of its root system (see below).

(Discussion of examples in class.)

Reductivity theorem: If G is reductive then every algebraic representation of
G is completely reducible. This theorem does not hold in positive characteristic,
where it is replaced by geometric reductivity (Haboush). (The latter states that
for every G-invariant vector there is a G-invariant function, homogeneous of
degree a power of the characteristic exponent of the field, which is non-zero
on the given vector. If the characteristic exponent is 1, this leads to complete
reducibility.)

The notion of semisimplicity is better understood at the level of Lie alge-
bras. Lie algebra g of G = tangent space at the identity = derivations of k[G]
in k[G] invariant by left translation = differential operators on G homogeneous
of degree 1 invariant by left translation. All the definitions given above (solv-
able, reductive, semisimple etc.) have obvious analogs for Lie algebras and a
(connected) group G is ... if its Lie algebra is ... .
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A Lie algebra g is called simple if it is not abelian and its only ideals are
0 and g. Then: g is semisimple if and only if it is isomorphic to a product of
simple algebras. This is equivalent to There is also another criterion for when a
Lie algebra is semisimple, sometimes taken as the definition: g is semisimple iff
the invariant bilinear form: (X,Y") — tr(ad(X) o ad(Y)) (the Killing form) is
non-degenerate. A very nice reference for semisimple Lie algebras is the book
of Serre: Complex Semisimple Lie Algebras.

21.6 Root systems and root data

For this section we assume k to be algebraically closed. In the next lecture we
will discuss rationality issues.

We saw a nice combinatorial description for diagonalizable groups, we would
have liked to have the same for more general classes of groups. This is not
possible in the sense of getting an equivalence of categories?, but at least we
can fully describe the isomorphism classes of groups this way.

More precisely, the adjoint representation Ad : G — GL(g) of a reductive
group gives rise to its root datum: This is a combinatorial description of the
structure of G.

Let G be reductive, and let A be a maximal torus in G. We denote by
small gothic letters the corresponding Lie algebras. The group A is equal to its
centralizer; the centralizer of a maximal torus in a (not necessarily reductive)
algebraic group is called a Cartan subgroup. All Cartan subgroups are conjugate.
Under the adjoint representation, g decomposes into eigenspaces for A:

g:a(JaZua.

aed

Facts: a is precisely equal to the zero eigenspace (i.e. a is its own commutator).
The non-zero eigencharacters of A are called roots (their set denoted by @), and
their eigenspaces u, are all one-dimensional.

Recall that we study diagonalizable groups via their character lattices. The
character lattice X' (A) is free, and ® is a finite subset of it. The Weyl group
W := N (A)/A acts on X(A) and the set of roots. It is a finite group.

Let us first consider the case of SLs: Its Lie algebra is generated by three

elements h = ( 1 1 ), e = < 1 ) and f = ) which satisfy the

1
commutation relations [h,e] = 2e, [h, f] = —2f and [e, f] = h. Three non-zero
elements (h, e, f) in a Lie algebra which satisfy these commutation relations are
called an sly-triple. Here we have X' (A) ~ Z, with roots £« = +2 under such
an isomorphism and W = Z/2 which sends a to —a.

2There is a good reason for it: To get an equivalence of categories one must consider the
category of all G-representations, cf. Tannaka-Krein duality. For diagonalizable groups this
category is described easily in terms of combinatorial data, this is no longer the case for other
groups.
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Similarly, for every reductive group if & € ® then —« € ® and there are h € a,
e € u, and f € u_, such that (h,e, f) is an sly-triple in g. In fact, h is unique,
e can be chosen to be an arbitrary non-zero element and f is unique once e is
chosen. The element h lives in X(A)* := Homgz(X(4),Z) = Hom(G,,, A), and
it is called the co-root & associated to a. Hence, to the group G one can also
associate the set ® of co-roots, a finite subset of X'(A)*.

21.6.1 Root systems

Both the sets of roots and of co-roots, together with the action of the Weyl
group, each satisfy the axioms for a combinatorial object called the root system.
Strictly speaking, a root system is formed by ® and its linear span V in X'(4)®R
(and similarly for the co-roots). These axioms are:

1. @ is a finite subset spanning V and not containing 0.

2. For every a € ® there is a symmetry w, (that is, a linear automorphism
of V' whose fixed point set is a hyperplane) such that w,(®) = ® and
we () = —a.

3. For each a, f € @, w,(B) — B is an integer multiple of a.

Moreover, the (“absolute”) root system arising from a reductive group is reduced,
or crystallographic: If a,ca € ® then ¢ = +1.

Now the reader should consult a reference on root systems (for instance,
Serre’s book) to learn more about them, their classification, etc. In short: Since
W is a finite group, it is possible to find an inner product on V such that
the w,’s are reflections. This inner product is unique up to multiple on every
irreducible component (a root system is irreducible if it is not the sum of two
sub-root systems). With respect to this inner product, for every «, 3 € & we

have wy(8) = B — 25330[ The angle between a and 3, for o and S8 simple
roots (for a definition of simple roots, see the next lecture), encodes the way in
which w, and wg commute (more precisely, W is the group with generators w,
with « ranging over simple roots, and relations w2 = 1 and (wawg) ™) =1
where m(a, 8) = 2,3,4 or 6 according as the angle between alpha and S is
7/2,2m/3,3m/4, or 57/6). It also encodes relations for a set of generators of the
Lie algebra g. The simple roots are the vertices of the Dynkin diagram, with
an edge between two roots iff they are not orthogonal — the edge being simple,
double or triple according as the angle between them is 27/3, 37/4, or 57/6, and
an arrow from the longest to the shortest, if they don’t have the same length.
The reduced, irreducible root systems have been classified: there are four infinite
families A,,, By, Cp, D,, and five exceptional root systems Gs, Fy, Eg, E7, Eg.
(Examples in class.)

Remark. The (hidden) condition that the Weyl group be finite imposes strong
combinatorial restrictions that lead to only this finite number of families. There
is a more general world, set up in a way that does not include the condition of
finiteness, that of Kac-Moody algebras.



114

21.6.2 Root data

Notice that the root system only determines the adjoint group of G, for instance
the groups GL,,, SL,,, PGL,, all have the same root system. We must find a
way to encode information about the center of the group.

The data (X := X(A),®,X := X(A)*, ) satisfy the axioms for a root
datum. These consist of:

1. Two lattices (free Z-modules of finite type) which are each other’s dual.

2. Finite subsets ® ¢ X, ® c X with a bijection ® — & : a — & such that
(a, &) = 2 (to understand this condition, recall the case of sly).

3. The endomorphisms of X, Xv defined by wq(z) = x — (z,d) a, wg (&) =
Z — (o, &) & preserve ¢ and P.

(The last axiom is equivalent to: The endomorphisms w, preserve ® and gen-
erate a finite group.)

Theorem 6.1 (Classification over the algebraic closure). Assume k algebraically
closed. For any root datum there exists a connected reductive group G and a
maximal torus A < G over k which give rise to that root datum; the pair (G, A)
18 unique up to isomorphism.

Some more definitions: Let R ¢ X,R < X be the lattices spanned by
roots, resp. co-roots, V = X ® R and V = X @ R. The root datum is called
semisimple if R ® R = V; this is equivalent to the corresponding group being
semisimple. Assume that this is the case. Let P < V, P ¢ V be the duals of
R, R respectively. Hence R © X ¢ P and R ¢ X < P We say that the root
datum is simply-connected if X = P and adjoint if X = R. This is known to be
equivalent to the corresponding group being so. (Simply connected means that
the étale fundamental group is trivial; in the complex case this is equivalent to
the topological fundamental group being trivial; adjoint means that G = G24.)

Examples: SL,, is simply connected, PGL,, is adjoint.

The elements of P (resp. P) are called weights (resp. co-weights). Their
significance is the following: Notice first that they depend only on the root
system, not the root datum. Hence, they can be “seen” by the Lie algebra,
which does not “see” the precise character lattice of the maximal torus. Over
an algebraically closed field, dominant weights parametrize isomorphism classes
of irreducible finite-dimensional modules for the Lie algebra. Then these rep-
resentations can be “lifted” to the group (i.e. are the differential of a group
representation) if and only if the corresponding weight is integral, which means
that it belongs to X. For instance, if the group is simply connected then all
representations can be lifted. (No surprise here!)

While it is difficult to describe morphisms between algebraic groups in gen-
eral, it is easy to do so for morphisms which are central isogenies; that is,
surjective morphisms with finite kernels belonging to the center. The combina-
torial shadow of a central isogeny is the notion of isogeny of root data: Given
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two sets of root data ¥ = (X, ®,X,®) and ¥ = (X', &', X', ') a homomor-
phism X — X' is called an isogeny if it is injective with image of finite index in
X', it maps ® bijectively to ® and its adjoing maps @’ bijectively to ®.

Theorem 6.2. Assume k algebraically closed. Consider root data as above and
let (G, A), (G',A") be the corresponding groups and mazimal tori according to
??. Every central isogeny (G, A) — (G', A") induces canonically an isogeny of
root data W' — W. Conversely, if f : W' — W is an isogeny, there exists a
central isogeny G — G, unique up to automorphisms Inn(a),a € A.

This theorem will allow us to understand automorphisms of reductive groups,
which in turn will help us understand their forms over a non-algebraically closed
field. First, we need to discuss based root data:

21.6.3 Weyl chambers and based root data

Given a root system (V, ®) with Weyl group W, the complement V of the union
of fixed point hyperplanes of reflections in W is the union of a finite number of
connected components, each of which is a fundamental domain for the action
of W on V. Choosing such a Weyl chamber C gives rise to two translation-
invariant orderings on V: The stronger of the two is the one defined by C', and
elements which are greater or equal to zero with respect to this (i.e. elements of
C) are called dominant. The weaker is the one defined by the cone spanned by
the roots « such that (¢, &) > 0 for every ¢ € C. These roots are called positive
and their set will be denoted by ®*. Notice that Vo€ &, € @ or — e &,
When expressing an inequality in V we will, by default, refer to this weaker
ordering; when we say “an ordering of the roots” or “a choice of positive roots”
we mean one induced by the choice of a Weyl chamber. The irreducible elements
of @ (i.e. those which cannot be written as a sum of others) form the set of
simple roots, usually denoted by A, and they are a basis for V. A choice of
positive roots induces a choice of positive co-roots in the dual root system, such
that « >0 < a> 0.

If (G, A) is an algebraic group with a maximal torus (over an algebraically
closed field), (V, ®) is the corresponding root system and B is a Borel subgroup
containing A, then it is easy to see that the roots of b form the set of positive
roots with respect to a choice of Weyl chamber. One can see that the set of
Weyl chambers is in bijection with the Borel subgroups of G containing A. A
root datum ¥, together with a choice of positive roots as above, is called a based
root datum. An automorphism of a based root datum is an automorphism of
the root datum which preserves the set of positive roots.

21.6.4 Automorphisms

Now we study automorphisms of a reductive group G. Fix a maximal torus
A, a Borel B > A (corresponding to a choice of positive roots) and non-zero
elements u, € U, for all a > 0. Given an automorphism ¢ of G, by the fact that
all Borels are conjugate we can compose it with an inner automorphism to get
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an automorphism ¢’ which preserves B. Moreover we can compose that with

Inn(a), for some a € A, to get an automorphism ¢” which fixes the u,’s. It is a

fact that the Borel subgroup is its own normalizer; from this it can be seen that

¢" is the only element in its Inn-coset which preserves the data (A, B, {uq}a)-
Hence:

1 - Inn(G) — Aut(G) — Out(G) = Aut(G, A, B, {ua}a) — 1

and this sequence splits.

It is clear from our discussion of central isogenies that automorphisms of
(G, A, B, {uq}«) are in bijection with automorphisms of the corresponding based
root datum. (For a semisimple simply connected or adjoint group the latter are,
in turn, the same as isomorphisms of the Dynkin diagram.)

In the next lecture, we will use our knowledge of automorphisms to dis-
cuss the Galois action on a group and classify forms of the group over a non-
algebraically closed field.

21.7 Parabolic subgroups

Theorem 7.1. Let G be a reductive group and firx a based root datum cor-
responding to (A,B). Let A denote the set of simple positive roots. The
parabolic subgroups of G containing B are in natural bijection with subsets
of A. Let I < A and let P; be the corresponding subgroup, Uy its unipotent
radical. Then Pr = Ly x Uy where Ly is the following subgroup: We have
Z(Ly) ={a€ Ala(a) =0 for all « € I; and Ly is the centralizer in G of Z(Ly).

Such a subgroup L; is called a Levi subgroup. The equalities above also
hold at the level of k-points for any field k, if P; is defined over k: Pr(k) =
L;(k)Ur(k). Moreover, (G/P)(k) = G(k)/P(k) for every parabolic. Having
fixed a Borel subgroup B, a parabolic which contains it is called a standard
parabolic. Since all Borels are conjugate, all parabolics are conjugate to a
(unique) standard one.



Chapter 22

Structure and forms over a

non-algebraically closed
field.

22.1 Restriction of scalars

We saw in the previous lecture that for an extension E/k we can regard E*
either as G,,(E) or as the k-points of a group over k. One is of course familiar
with such a situation: the additive group C is isomorphic to R2. We will now
discuss this in more generality.

Let E/k be an extension, X a variety over E. We would like to define a
variety Y over k such that the k-points of Y are naturally identified with the E-
points of X. In fact, we would like this to hold also for the S-points of Y, where
S is any scheme over k (for instance, the F-points, where F' is an extension of
k); those should be the same as S Xgpeck Spec E points of X.

Definition. Consider the functor {Schemes over k} — {Sets} defined by S —
X (S Xspeck spec F). If this functor is represented by a scheme Y over k, we call
Y the restriction of scalars of X from E to k, denoted Resg/;, X.

The definition says nothing more than the preceeding paragraph. But from
the wording of the definition + abstract nonsense it follows that if the k-scheme
Resp,, X exists then it is unique up to unique isomorphism.

The following holds in arbitrary characteristic:

Theorem 1.1. If X is an irreducible non-singular affine variety over E then
Resp), X exists and is also irreducible, non-singular and affine. If E/k is
separable, the same holds without the demominations “irreducible” and “non-
singular”. If E/k is separable and X is a reductive group then Resg/, X is also
reductive.
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Ezample 1.2. Let E/k be a quadratic Galois extension, fix a non-degenerate
hermitian form on E™ and let U ¢ GL,(E) denote the corresponding unitary
group. Then U cannot be identified with the group of points of an F-subgroup
of GLy; however, U = U,(k), where U, is a k-subgroup of Resg/, GLy,.

Remark (Important!). Every group defined over a number field can, by restric-
tion of scalars, be treated as a group over Q. This turns out to be very convenient
in some general applications, such as the results of Borel and Harish-Chandra
that we will discuss soon. However, by restriction of scalars we lose some good
properties, such as that of being split. (Being quasi-split, however, is a property
which is preserved.)

22.2 Structure

Let G be a reductive group over a field &k (in characteristic zero).

Cartan subgroups are always defined over k; Borel subgroups are not. If there
exist Borel subgroups over k the group is called quasi-split. If those contain a
split maximal torus (equivalently: if there exists a split maximal torus) then the
group is called split. But in general, we fix a Cartan subgroup A and a maximal
split torus S < A. The rank of S is the k-rank of G. We let again S act on the
Lie algebra of G, and mark the non-zero eigenvalues on X (S); these give rise to
the relative root system ®j of G. Notice that in this case the root subspaces are
not necessarily one-dimensional; and under the restriction map A% (A) — X(S)
some (absolute) roots of G may map to zero. More precisely:

Theorem 2.1. The group Z(S) is the Levi subgroup of a minimal parabolic
k-subgroup of G. Given an ordering of i with set of simple roots Ay there
is a compatible ordering of ® (with simple roots A) (i.e. such that Ay is the
image of those elements of A which don’t map to zero). There is a bijection
between standard parabolic k-subgroups of G and subsets of Ay. All parabolic
k-subgroups are conjugate under G(k) to a (unique) standard one.

A group is called anisotropic if S is trivial, isotropic otherwise.

22.3 Forms

Definition. Let X be a k-scheme. A form (or twist) of X is a k-scheme X’
such that X7 is isomorphic to Xp..

From now on, let us work for simplicity in the category of quasi-projective
k-varieties. Let I' = Gal(k/k)."! We plan to explain the following theorem:

Theorem 3.1. Isomorphism classes of forms of X are in natural bijection with
HYT, Autg(X)).

1We gave the general definition using the separable closure of k because everything that
we say in this section holds in arbitrary characteristic. In any case, if X = G an algebraic
group, any X’ which is k-isomorphic to G is also k*-isomorphic.
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Here H' is the cohomology group defined by continuous cocycles from T
to Autj(X), the latter considered discrete. From now on we will write simply
H*(A) for the Galois cohomology of a T'-group A.

Remark. The natural isomorphism of the theorem depends on the form X that
we started with, as does the action of I' on Aut;. More precisely, as we will

recall, H' is a pointed set, and the distinguished point corresponds to the class
of X.

Let X' be a form of X, and ¢ : X3 — X[ an isomorphism. For any v e T’
the map ¢~ oyo¢oy~!is an automorphism of Xz. Define:

c:I'— Aut(X)
by v+ ¢t ovyo¢poryl It satisfies the cocycle condition:

c(mz2) = c(1) - " e(r2).

Conversely, given a (continuous) cocycle define the following action * of I’
on X(k): v #x := c(y)("x) (where the exponent, as usual, denotes the given
action). It can be seen that the new action comes from a k-form of X.

On the set of cocycles from I' to a I'-group A we define the equivalence rela-
tion: ¢ ~ ¢ iff e(y) = b=1c/(7)7b for some b € Autz(X). The set of equivalence
classes is H'(I', A). Tt is not a group if A is not abelian; however, it has a
distinguished point coming from the trivial cocycle (whose equivalence class is
the set of coboundaries).

Non-abelian cohomology groups have the usual “long exact sequence” prop-
erty of derived-functor cohomology for the functor A — H9(A) := AT, as long as
the long exact sequence makes sense. That is, if we have a short exact sequence
of I'-groups:

1-A—->B->C—1

then we get
1— H°(A) - H(B) - H°(C) - H'(A) - H'(B) — H'(C)

as maps of pointed sets (i.e. the distinguished point maps to the distinguished
point). “Long exact” means that the preimage of the distinguished point is the
image of the previous arrow. Moreover, if A is central in B, then this sequence
extends to include H?(A).

The non-existence of a group structure on H! may cause some confusion.
For instance: The I-structure on Aut(X) depends on the form X chosen, but
the set of isomorphism classes of forms of X does not. To explain this, one can
check that if X’ is a form, ¢ : X — X’ and ¢ the corresponding cocycle, then
for every 1-cocycle cx with values in Aut(X’) the map ¢~ !(cx) - ¢ is a 1-cocycle
in Aut(X) and this establishes an isomorphism of sets (not pointed sets, as 1
goes to [c]!): HY(Aut(X")) — H'(Aut(X)).
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22.4 Forms of reductive groups

Let G be a quasi-split reductive group over k, A = B a maximal torus and a
Borel over k.
In the previous lecture we established the split short exact sequence:

1 - Inn(G) — Aut(G) — Out(G) = Aut(¥(G, A4, B)) — 1 (22.1)

(where we mean k-automorphisms but we drop the subscripts ; for simplicity;
U(G, A, B) denotes the corresponding based root datum).

The k-structure on G defines an action of I" on Aut(X) which preserves
Inn(G). More precisely, we have a canonical I-isomorphism: Inn(G) = G4
where G2 = G/Z(G) denotes the adjoint group of G. The splitting can also be
chosen so that it is preserved by I'.

Hence we have: H'(Inn(G)) — H'(Aut(G)). Forms of G whose isomorphism
classes correspond to elements in the image of H!(Inn(G)) are called® inner
forms. The discussion at the end of the previous subsection shows that G
being an inner form of G5 is an equivalence relation.

From the splitting of (??) one can deduce that: Every isomorphism class is
an inner form of precisely one quasi-split form. Assume now that G is quasi-
split; then (?7) splits in a I'-equivariant way.

Definition. A group G over k is called unramified if it is quasi-split, and splits
over an unramified extension.

Theorem 4.1. Let k be a global field.> Let G be a connected reductive group
over k, G, := G x speck, for every place v. Then for almost all' v, G, is
unramified.

I thank Brian Conrad for pointing out the following proof to me.

Proof (sketch). We can fix a model for G over the ring of S-integers o0g, where S
is some finite number of places. (In other words, if we write equations for G over
k, we can make sure that S contains all the primes dividing the denominators,
so that the coefficients are S-integers.) This can be done in a way that all fibers
are connected.

2Since the map H'(Inn(G)) — H'(Aut(G)) is not always injective, there is some ambigu-
ity as to what “inner form” really means. Colloquially, it is often used to refer to a form, or
an equivalence class of forms, of G which arises by an inner twist (and hence parametrized by
the image of this map). However, a more proper notion is one that would contain informa-
tion about the “inner twist”, so that isomorphism classes of inner forms are parametrized by
H'(Inn(G), and not by its image in H!(Aut(G)). “Inner twists” have a geometric explanation:
the set H!(Inn(G)) parametrized isomorphism classes of G,q-torsors (i.e. principal homoge-
neous spaces), where G,q is the adjoint group of Gj for such a G-torsor T, the associated form
of G is the group Autg(T).

3A global field is a number field in characteristic zero, and the function field of a curve
over a finite field in positive characteristic. Its places are the equivalence classes of norms on
the field. In the function field case, these coincide with the (scheme-theoretic) closed points
of the curve — the curve assumed non-singular, and are all non-archimedean. In the number
field case the places include non-archimedean and a finite number of archimedean ones.

4“For almost all places” means “for all but a finite number”.
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For a finite set S’ © S, all fibers away from S’ are reductive and split over
an unramified extension. Indeed, to show that almost all fibers are reductive we
may do this after a finite separable extension of E/k, and since every reductive
group splits over a finite separable extension we may choose E so that G is split
over F. Notice that F is unramified almost everywhere over k, so the claim that
G splits over an unramified extension will be automatic. There is an explicit
split reductive model of G over Z (the “Chevalley model”), and since any two
models agree at almost all places, this means that almost all fibers of the given
model were reductive.

Now we will appeal to the existence and smoothness of “the scheme of Borel
subgroups” of GG in order to show that at all places outside of S’ the group is
quasisplit (hence unramified). Namely, given a reductive group G over og/, there
is an og/-scheme B, the “scheme of Borel subgroups”, representing the functor
which to every og-scheme T" associates the set of Borel subgroups of G'Xspecog, T
The existence of this scheme is proven in [EGA 3.XXVL.3], together with the
fact that it is projective, with geometrically integral fibers and smooth over og.
(Of course, if G is reductive and quasi-split over a field k& then the scheme is
isomorphic to B\G, for some Borel B, since all Borel subgroups are conjugate
and self-normalizing.)

Smoothness implies that for a dvr R, any point (Borel subgroup) over the
residue field lifts to an R-point (Borel subgroup). Apply this to R = the local-
ization of 0g/ at any (nonzero) prime. Over the residue field F, any (connected)
reductive group is quasi-split; this follows from our discussion of forms: every
form is an inner form of a quasi-split group G’, but H'(Inn(G")) is trivial over
a finite field because of Lang’s theorem which states that H' of connected alge-
braic groups over finite fields is trivial. Thus, G has a Borel over F, and hence
over R.

O

22.5 The dual group

A basic principle of the Langlands conjectures is that representations (and au-
tomorphic representations) of groups which are isomorphic to each other over
the algebraic closure should be related. This is expressed by a conjectural
parametrization of the representations by means of a dual group, which is a
combinatorial construction based on the root datum of the group and the Ga-
lois action on it. (The next logical step is to deduce that if there is a map
between dual groups then there should be a map between representations — of
groups which a priori have nothing to do with each other. This is the prin-
ciple of functoriality, but it is too early to get into this.) Non-combinatorial
constructions of the dual group exist only in the Geometric Langlands Program.

To each reductive k-group G we will associate a group of the form ‘G =
G % T, where G is a complex reductive group and I' = Gal(k/k). The group “G
is called the Langlands dual group or L-group of G.

The definition of G is two phrases: One takes the root datum of G and
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inverts it. In other words, if ¥ = (X, ®, X, ®) is the root datum of G, that of G
will be ¥ = (X 0, X, ®). As we have seen, this uniquely determines a reductive
group over an algebraically closed field. This group, without the Galois action,
will sometimes be called the “dual” group of G, although when it is clear from
the context we may just say “dual” for “Langlands dual”. Notice that G' comes
with a canonical maximal torus A*.

Notice that the Dynkin diagram of the dual group is that of the group, with
the arrows reversed, i.e. short roots become long and long roots become short.
This, of course, does not fully determine the group. From the root datum we
see that if G is semisimple and simply connected then G is adjoint and vice
versa.

Examples (the isomorphism class of G is given over the algebraic closure;
since we are just applying an involution to the root data, we don’t need to
specify which one is G and which one is G): GL, < GL,, SL, < PGL,,
SOzn+1 > Sp2n, SOQn s SOQn, G2 A Gg etc.

To define the homomorphism I' — Aut(é) defining the semi-direct product
it is better to start from the split form GP! of G. The Galois action on the based
root datum W+ of G*P! is trivial, therefore H'(Aut(¥*)) = (Hom(T, Aut(¥+))
mod conjugation). Let now ¢ € Hom(T, Aut(¥*)) a representative for the
conjugacy class of the element corresponding to G' (more precisely: to the inner
class of G). This defines the semidirect product: *G = G x T uniquely up
to inner automorphisms.Notice that all forms in an inner class have the same
L-group. We will see (much later) that the best way to formulate the Langlands
conjectures deals with all inner forms at the same time, not each one separately.

Remark. As a matter of convenience, since I" acts on Aut(G) through a quotient
Gal(F/k), we often use G' x Gal(F/k) instead of “G. We will adopt this habit,
and feel free to refer to G' x Gal(F/k) (which, of course, is not uniquely defined)
as the Langlands dual group whenever this causes no confusion. For instance,
if G is split we will usually use G.

22.6 Basic examples

22.6.1

Let F be a Galois extension of k and G a split group over F. Let G’ = Resp/;, G.
Then “G’ = (G)F'* x Gal(F/k) (s. the previous remark). (Exercise!)

22.6.2 Inner forms of GL,.

Consider GL,, as a subvariety of Mat,. Every inner automorphism of GL,
extends to Mat,,, therefore defines a form of the latter, a central simple algebra
D of dimension n? over k. The corresponding inner form of GL,, is G = D*
(the multiplicative group of invertible elements of D, regarded as a variety over
k). Vice versa, any automorphism of a simple algebra is inner (a special case of
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the Skolem-Noether theorem), hence all central simple algebras correspond to
inner forms of GL,,.
Notice the following part of the long exact sequence:

H'(GL,) — H'(PGL,) — H?*(G,,)
corresponding to the short exact sequence:
1 - G,, —» GL, - PGL, .

Since H'(GL,,) = 1 (Hilbert’s theorem 90), H!(PGL,, = Inn(GL,,)) injects into
Br, = H%(G,,), the Brauer group of k. Hence for every central simple element
of dimension n? we get an element of the Brauer group, and this way we could
recover the classification of central simple algebras up to equivalence.

Central simple algebras of dimension 4 are called quaternion algebras. In
characteristic other than two, all isomorphism classes admit a (non-unique)
presentation of the form: D = Q(a,b) := k{i,j}/ <i2 =a,j? =b,ij = —ji>.
(Angular brackets denote the free non-commutative algebra.) Caution: This
includes all central simple algebras of dimension 4, i.e. both the division algebras
and Mat,,. Whether a quaternion algebra is split (=isomorphic to Mat,,) or not
depends on a and b. We will discuss this in more detail later, when we recall
class field theory and the Hilbert symbol.

The structure of quaternion algebras is very important and very educational
for number theorists. An excellent reference is: M.F. Vigneras, Arithmetique
des algebres de quaternions.

22.6.3 Unitary groups.

Exercise. For every n, Out(GL,,) = Z/2, represented by g — fg~1.

Let G = Resg/p GL,,, where E/F is a quadratic (Galois) extension. Then
G(F) = GL,(F)xGL,,(F) and the Galois action is given as follows: If V(gy, g2) =
7(v)("g1, Yg2) where 7(7) is the trivial or the non-trivial permutation of the two
factors according as v = 1 in Gal(E/F) or not. Notice that G comes with an F-
linear involution, from the action of o on GL, (F), which in order to distinguish

from the Galois action on points of G we will denote by ( ): (g1, 92) = (92,91)-

Hence G = GL,, x GL,,. The homomorphism I' = Gal(F/F) — Aut(G)
(unique up to Inn(A*)) which defines the L-group factors through Gal(E/F)
and the non-trivial element o of Gal(E/F) maps to the automorphism (g1, g2) —
(g2, 91). This defines LG, which for simplicity we present as (GL,,(C)x GL,,(C)) x
{1,0}.

Let H be a non-degenerate hermitian matrix, and let U = U, < G be
the unitary group of this hermitian form, i.e. the group of g € G such that

tgHg = H. Clearly, Ug ~ GL,,.

Claim. All unitary groups in n variables are inner forms of each other.

Indeed, all non-degenerate hermitian forms are G(F)-conjugate, so if U’ is
another unitary group in G then U'(F) = gU(F)g~" for some g € G(F), and
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the cocycle ¢ : T' — Aut(U) corresponding to U’ is given by ¢(v) = Inn(g-7g~1),
and g-7g~! € U(F). Notice that v ~ g-7g~! is a coboundary in G, but not
(necessarily) in U.

(Vice versa, one can show that all inner forms of U are “generalized unitary
groups”, namely they arise as follows: There is a central division algebra D over
E with an F-linear involution “of the second kind”, i.e. the involution restricted
to E (the center of D) is non-trivial, to be denoted again by ( ). Now we define
a “generalized unitary group” in the same way as above, but using Mat,, (D)
instead of Mat,, (E), where m? - dim(D/E) = n?.)

We now compute the dual group of U. We have U = GL,. To determine
the action of the Galois group, choose the hermitian matrix H = I,, and the
isomorphism: (GL,)z — Up given by g — (g9,'¢g™!) € U = G. Then one sees
that the homomorphism I' — Aut(U) factors through Gal(E/F) and o ~— (g —
tg=1). Hence LU(C) = GL,,(C) x {1,0} with this action.



Chapter 23

Brauer groups, (Galois
cohomology.

23.1 References.

e J. Milne, Class field theory.

e J.-P. Serre, Galois cohomology.

23.2 Central simple algebras.

Let k be a field, an algebra A over k is simple if it has no two-sided ideals
other than 0 and A, and central if its center is A. By Wedderburn’s theorem,
every finite-dimensional simple algebra is isomorphic to Mat,, (D), where D is
a division algebra over k, and this is central iff D is central. We also recall the
Skolem-Noether theorem: If A, B are simple, finite dimensional algebras over k
and B is central then any non-zero (hence automatically injective) homomor-
phisms: A — B are conjugate by a unit of B (i.e. they coincide after applying
an inner automorphism to B).

From now on, all our algebras will be finite-dimensional over k. The tensor
product of two central simple algebras is again central simple. We define an
equivalence relation A ~ B on central simple algebras as follows: A ~ B <=
A ® Mat,, ~ B ® Matn for some m,n. We define Br(k) to be the set of
isomorphism classes of central simple algebras modulo this equivalence relation,
and denote by [A] the class of A. Tensor product descends to provide Br(k)
with the structure of a monoid. In fact it is a group: This is proven by the
relation A ® A°PP ~ End(V'), where A°PP the ‘opposite’ algebra of A. (Proof:
A® A°PP acts k-linearly on A by ‘left and right multiplication’; by simplicity, it
injects into Endg(A), and by dimension counting, it surjects.) Hence the name
Brauer group.
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Let E/k be a finite Galois extension, and A a central simple algebra over
k. We say that A splits over E if [A® E] = 1 in Br(E) (i.e. it is isomorphic
to a matrix algebra over E). We define Br(E/k) to be the subgroup of Br(k)
consisting of elements which split over E. (One can easily see that the previous
sentence makes sense.)

Facts. e There is a natural isomorphism of abelian groups:

Br(E/k) ~ H*(Gal(E/k), E*).

o If L/E/k is a tower of Galois extensions, then the injection: Br(E/k) —
Br(L/k) corresponds to the so-called ‘inflation-restriction’ exact sequence
in group cohomology:!

0 — H?*(Gal(E/k), E*) — H*(Gal(L/k),L*) — H?*(Gal(L/E),L*).

e Given these injections, Br(k) = H?(Gal(k/k),G,).

The element of H? corresponding to the class of a central simple algebra of
dimension n? can be obtained? by the boundary map:

H'(PGL,) — H*(G,,)
of the long exact cohomology sequence corresponding to the exact sequence:
1- G, —» GL, - PGL,, — 1.

Recall from the discussion of inner forms of GL,, that H'(PGL,) parametrizes
isomorphism classes of central simple algebras of dimension n?. You will under-
stand this long exact sequence better after you read the rest of this section.

23.3 Abelian and non-abelian Galois cohomol-
ogy

If T is a topological group acting on a group A (considered discrete), we saw in
lecture 2 an explicit definition of the first cohomology H*', which we recall here:
First we define the set of 1-cocycles as the set of (continuous) maps: ¢: ' —> A
satisfying the condition:

c(mz2) = c(y1) - e(ye).

The group A acts on cocycles by bc(y) = bc/(v)Yb™!, and we define H'(T", A) to
be the set of orbits for this action. We discussed that this is a pointed set.

LAn assumption for the ‘inflation-restriction’ sequence to be exact on the left is that the
corresponding H! groups are trivial, which is Hilbert’s theorem 90.

21 think that the isomorphism Br(k) ~ H?(G,,) is defined to be the inverse of this in some
parts of the literature.
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If A is an abelian group, then H! has the natural structure of an abelian
group, moreover there is a much better definition which immediately defines
groups H® for every positive i: H®(T', A) is i-th derived functor of the left-
exact functor HO(I', A) = AU (I-invariants). (Moreover, one can define the
homology groups H;(T", A) as the i-th derived functor of the right-exact functor:
Hy(T', A) = Ar (co-invariants). We do not discuss here the notion of derived
functors, suffice it to say that they are canonically defined and that given a short
exact sequence 0 - A — B — C — 0 of I'-modules we get corresponding long
exact sequences of cohomology and homology groups. For non-abelian groups
there is no such ‘derived functor’ construction, and even defining a reasonable
analog for H? in cases where we need it is very tricky.

The point now is that these cohomology groups are abstractly defined in
terms of the group and the module, but in practice they have many reincarna-
tions which make them useful and help them compute them. As an example, we
mentioned above how H?(Gal(E/k), EX) is interpreted as a Brauer group; using
this incarnation one can prove certain facts about this group; and then use this
fact to understand something about a different incarnation of this group. This
happens, for instance, in a certain approach to local class field theory. The goal
of the discussion below is to collect several basic facts about Galois cohomology
groups of algebraic groups and discuss some basic incarnations.

As a matter of notation, if T is the absolute Galois group of some field &
and G is an algebraic group over k, we use the notation H*(T',G) to denote
the group H*(I', G(k)). (We write k but we mean the separable closure. Recall
the “continuous” assumption: we consider G(E) as a discrete group, so every
cocycle factors through a finite quotient of the Galois group.) Sometimes we
also write just H'(G).

23.4 Basic and important facts of Galois coho-
mology

In the formulations below, notice that even though we are stating things for
infinite Galois groups, since all cohomology groups are defined using continuous
cocycles and the modules are considered discrete they are really limits of the
corresponding cohomology groups over all finite extensions of the field.

The additive group: The additive group G, is cohomologically trivial: H (G,) =
0 for every ¢ > 0. This follows from the following facts:

Lemma 4.1. Let ' be a finite group, V an abelian group and V =
Indfl} V. Then V is cohomologically trivial as a I'-module.

Theorem 4.2 (Normal Basis Theorem). If E/k is a finite Galois exten-
sion with Galois group T then there exists a € E such that T - a is a basis
for E over k. Hence, as a k[[']-module, E ~ k['] = Indfl} k.
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The multiplicative group: For any field k we have H(G,,) = 1. This is Hilbert’s
theorem 90. However, higher cohomology groups are, in general, non-zero;
for example, H?(G,,) is the Brauer group of k.

GL, and SL,: A generalization of the previous statement is that H'(GL,) = 1.
This is also referred to as Hilbert’s theorem 90. Beware: this is not a
statement about forms of GL, because if we change the Galois action
we also change the cohomology groups. By the short exact sequence:
1 - SL, —» GL,, — G,, — 1 and the surjectivity of the ‘determinant’
map we also get that H'(SL,) = 1.

Cohomological dimension: A group T', or a field k with absolute Galois group
is said to have cohomological dimension < n if for every torsion k-module
A we have HY(T', A) = 0 for i > n.

Finite fields: Fact: cd(i) = 1. Corollary: for a finite field k, H*(k,G,,,) = 1 for
every i. For instance, there are no non-trivial central simple algebras over
k.

Lang’s theorem: Let k be a field of cohomological dimension < 1 (such as a finite
field) and let G be a connected algebraic group over k, then H!(k,G) = 1.

Torsors: A torsor or principal homogeneous space for an algebraic group G over
k is an algebraic variety X with a G-action such that the action of G (k)
on X (k) is simply transitive. (Hence, X (k) = G(k) as a G(k)-space non-
canonically, since there is no ‘preferred’ point on X.) Clearly, the torsor
is trivial (i.e. k-isomorphic as a G-space to G) if and only if X (k) # &.
Fact. (easy to check! exercise!): Isomorphism classes of G-torsors over k
are classified by H'(k,G). This is a canonical isomorphism since there is
a preferred class trivial torsors, which will correspond to the distinguished
point of H'(k,G).

Homogeneous spaces: Let G be an algebraic group over k. A homogeneous space
for G over k is a variety X over k with a (let’s say right) G action such
that G(k) acts transitively on X (k). Assume that X (k) # ¢, and pick
a k-point xg. Then its stabilizer will be a closed algebraic subgroup H
defined over k, and the orbit map g — x¢ - g defines an isomorphism of

varieties: X ~ H\G.

Fact. (check it as well!): The set of G(k)-orbit on X (k) is parametrized
by the kernel of:
H'(k,H) — H'(k,G).

This parametrization depends on the choice x¢ — its G(k) orbit will corre-
spond to the distinguished point.

Remark. The above fact can be seen as a “long exact sequence”:

1 — H(H) - H(G) - H*(X) - H'(H) - H'(G).
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Application to vector spaces with tensors: Let V be a k-vector space of dimen-
sion n and @ be a tensor of type (p, ¢) for V, i.e. an element of VP ® (V*).
Naturally, the group GLy acts on the space of such tensors (let’s say on
the right), and we would like to classify over k the tensors @’ which are
k-isomorphic to @, i.e. such that Q' € Q - GLy (k).

Examples: A quadratic form is a symmetric (0, 2)-tensor and non-degenerate
quadratic forms are a homogeneous space under GLy ; the stabilizers are
the orthogonal groups O,,. Similarly a symplectic form is a non-degenerate
(here n = dim V' must be even) alternating (0, 2)-tensor, and all such form
a homogeneous space for GLy with stabilizers the symplectic groups Sp,,.

Let Go < GLy be the stabilizer of @), then k-equivalence classes (i.e.
G Ly (k)-orbits) of such @’ are parametrized by:

ker(H'(k,Q) — H'(k,GLy)) = H'(k,Q)

by Hilbert’s theorem 90. For instance we have parametrizations (depend-
ing on base points):

k — equivalence classes of
non-degenerate quadratic forms 3 <  H1(k,O,).
in n variables

and:
k — equivalence classes of

symplectic forms < H'Y(k,Sp,,)-
in n variables

It is known that any two symplectic forms are k-isomorphic, hence:

H'(k,Sp,) = 1.

Cohomology groups over a p-adic field: The following generalizes Tate-Nakayama
duality for tori, gives a very convenient way of computing cohomologies
over a p-adic field, and the (somewhat surprising, at first glance) fact that
in this case H' is actually a group!®

Theorem 4.3 (Kottwitz). Let k be a local non-archimedean field, G a

connected reductive group over k and *G = G x T its Langlands dual

(notation as previously). Then there is a canonical isomorphism:
H'(k, @) = (mo(2(@)"))"

where by Z we denote the center, by my the group of connected components

and by an asterisk the dual (i.e. character) group.

As an exercise, compute cohomologies for several groups, including tori,
and verify that the computation coincides with things you know, such as
the index (k* : NFE>) where E/k is a finite Galois extension.

3The group structure arises from the group structure on H'(k,T), where T is any maximal
anisotropic torus in G.
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23.5 Reciprocity for global Brauer groups.

Recall (from the next chapter!) that by local class field theory we have canonical
isomorphisms:

Br(k) ~ Q/Z

for any local non-archimedean field, and:
1
Br(R) ~ §Z/Z.

Our purpose here is to explain the following theorem and its implications.
The theorem is closely connected with the proof of the reciprocity law of global
class field theory, but we won’t describe the connection.

Theorem 5.1. Let k be a global field. There is a canonical short exact sequence:
0 — Br(k) - @, Br(k,) > Q/Z — 0 (23.1)

(called the fundamental exact sequence of global class field theory. The product
here ranges over all completions of k (including archimedean ones).

It is easy to understand the first map componentwise (as the restriction map
to decomposition groups). The fact that its image lies in the direct sum is non-
trivial, but not hard. It is similar to our discussion of why every reductive group
is quasi-split almost everywhere. In this case it implies:

A central simple algebra over k splits at almost every place.

Injectivity of the first map is the Hasse principle for Brauer groups. The name
“Hasse principle” for such a property is understood through the following (but
see also the paragraph on the Hasse principle below):

Corollary 5.2. Let A, B be two central simple algebras of the same dimension
over a global field k. If A, (the completion of A atwv, i.e. AQyk,) is isomorphic
to B, at every v then A and B are isomorphic over k.

The map on the right comes from adding the “invariant” maps (i.e. the
aforementioned isomorphisms). Its surjectivity implies that we can describe a
central simple algebra over the global field k by just describing its local compo-
nents! For instance, the local “invariants” of quaternion algebras are either 1/2
or zero. Hence:

For every finite, even collection of places S which do not contain com-
plex places, there is precisely one quaternion algebra over k which
is ramified exactly at the places in S.
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23.6 The Hasse principle.

We say that a group G satisfies the Hasse principle if the canonical map of
Galois cohomologies:

H'(k,G) — [ [ H" (kv, Go)

is injective. Notice that by Kottwitz’s isomorphism for H!(k,,G,) if v is finite,
if G is semisimple simply connected then the product on the right is only over
the infinite places. We have:

Theorem 6.1 (Kneser, Harder, ...). Let G be a semisimple, simply connected
group, then it satisfies the Hasse principle.

Let us see what such a statement has to do with the classical Hasse principle
for quadratic forms. Recall that the theorem of Hasse-Minkowski states that:

A quadratic form in n variables has a non-trivial zero over k if it has
a non-trivial zero over k,, for every v.

By an easy argument involving Witt’t theorem for quadratic forms, this is equiv-
alent to the following:

Two quadratic forms @1 and ()5 are isomorphic over k if and only
if they are isomorphic over k,, for every v.

As we have seen, isomorphism classes of non-degenerate quadratic forms
are classified (depending on choice of a ‘base point’) by elements in H(k,O,,).
Therefore, the Hasse-Minkowski theorem (we can assume non-degeneracy) is
equivalent to:

Theorem 6.2 (Hasse-Minkowski). The canonical map H*(k,O0,) — [, H' (ky, On0)
18 injective.

(Notice that O,, is not simply connected, so this is not a special case of the
previous one.)

The question of whether a Hasse principle holds or not is a very important
and often difficult one. If you want to enrich your vocabulary, look at a book
on elliptic curves to learn the definition of the Tate-Shafarevich group: it is an
ostruction to the Hasse principle.



Chapter 24

Recollection of class field
theory.

Class field theory, the cornerstone of algebraic number theory developed in the
first half of the 20th century, is a subject that one should study by itself and for
its own sake, and it preceeds the theory of automorphic representations, both
logically and as a necessary tool. Therefore, the notes for this lecture are not
intended to present the subject in any complete fashion, but only to gather the
basic results that will be needed in our course.'

24.1 References.

e Cassels and Frohlich (eds.), Algebraic number theory.

e S. Lang, Algebraic number theory.

e J. Milne, Class field theory, on the web: http://www.jmilne.org/.
e J.P. Serre, Local fields.

Here we mostly follow Milne’s notes.

24.2 Local class field theory.

Let k be a local field. The term local field will be reserved throughout the
notes for a locally compact one. Hence, a local field is either R or C —called
archimedean— or the quotient field of a discrete valuation ring with finite residue
field —called non-archimedean. The main results of local class field theory are:

1Here it is appropriate to recall a quote of Prof. James Milne during a lecture of his at the
2003 Summer School on Automorphic Forms in Toronto: “I have fifteen minutes left and two
things to talk about; one of them is class field theory.”
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Theorem 2.1 (Local Reciprocity Law). There is a unique homomorphism (lo-
cal Artin map or local reciprocity map)

br - kX — Gal(E*/k)
with the following properties:

1. If k is non-archimedean, for any prime element w of k and any finite
unramified extension E of k,

¢r(@)| e = Frobgy, .

2. For any finite extension E of k, the composition k* — Gal(k/k)*® —
Gal(E/k)* induces an isomorphism:

bp KX /NFE* ~ Gal(E/k)™.

As formulated, the theorem contains the Norm Limitation Theorem, which
states that if F/k is Galois and F < FE is the maximal abelian subextension
then NPE* = NI F*.

Theorem 2.2 (Local Existence Theorem). A subgroup N of k* is of the form
NEE* for some finite abelian extension E* of k if and only if it is of finite
index and open.

Putting together the reciprocity and the existence theorem, we get an iso-
morphism:?

Gal(k/k)™ ~ k* (24.1)

where k* denotes the profinite completion of k.

We reformulate the local reciprocity Law in terms of Galois cohomology:
First, we recall the Tate cohomology groups — a construction which joins together
the long exact sequence for group cohomology — the derived functor for A — A¢
— and homology — the derived functor for A — Ag. We assume that the group
G is finite, then for any G-module A the group Hi.(A) is defined as:

Hi(G,A), ifi>1,
i B A% /Ng(A), ifi=0,
Hr (G A) =4 ker(Ng)/I(A),  ifi = —1 and
H_i_l(A), le < —1.

Here N¢g denotes the norm map a — ), ga, and Ig the augmentation ideal
of Z[G] generated by the elements of the form (1 — g),g € G. (Hence the
coinvariants Ag = A/I5(A).)

2We formulate the statements for the case of characteristic zero, but they also hold for
function fields if we replace the algebraic closure by the separable closure.
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The Tate groups have the benefit that they join the two long exact sequences,
i.e. a short exact sequence of modules:

0-A—->B—-C—-0
gives rise to a two-way long exact sequence of Tate groups:
... Ho(A) > HW(B) —» HH(C) — HEHA) — ...

Now we see what the isomorphism of class field theory says in cohomological
language. Let E/k be a finite Galois extension and let G = Gal(E/k), then:

G Gal(E/k)™ = Hy(G,Z) ~ HM(G, BX) = k* /NP E*.

This isomorphism will be provided by cup product by a canonical element
up, of H?*(G,E*). Hence, the proof of the local existence theorem rests
upon proving the following two facts (we assume, of course, that k is non-
archimedean):

1. The first fact is of arithmetic nature: H?(Gal(k/k),G,,) ~ Q/Z canon-
ically. Moreover, for any abelian extension E of degree n the image of
H?(Gal(E/k), E*) is the subgroup generated by 1/n. The element of
H?(Gal(E/k), EX) corresponding to 1/n is called the fundamental class
upyy of the extension E/k.

2. The second fact is purely a statement in group cohomology and is called
Tate’s theorem: Let G be a finite group and A a G-module. Suppose that
for all subgroups H of G we have H'(H, A) = 0 and H?(H, A) is cyclic
of order equal to |H|. Then, cup product by a generator u € H?(G, A)
defines for all ¢ an isomorphism:

Hi(G,Z) ~ Hi (G, A).

We discuss the first fact, which is of wider number-theoretic interest since,
as we have already discussed, the group H?(Gal(k/k),G,,) is the Brauer group
of k and classifies isomorphism classes of central simple algebras over k. One
shows first that H2(Gal(k" /k), k™) = Q/Z. This is relatively easy to do; one
shows that the units in every unramified extension are cohomologically trivial;
hence for every finite unramified F/k we have

H*(Gal(E/k), E*) = H*(Gal(E/k), E* /o), = 7)

(we normalize the isomorphism with Z to map w +— 1), and then the latter
is equal to H'(Gal(E/k),Q/Z) = Hom(Gal(E/k),Q/Z) (by the long exact se-
quence of 0 > Z — Q — Q/Z — 0), which is cyclic with canonical generator
Frobg, — 1/deg(E/k). The final step is to show that H?(Gal(k™/k), k™) =
H?(Gal(k/k),G,,), or: H*(Gal(k/k™),G,,) = 0. One way to do that is by using
its interpretation as Brauer group and showing that every central simple algebra
over k splits over an unramified extension, but there are also other ways.
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We have outlined a proof of the local reciprocity theorem. For the existence
theorem there are several proofs, e.g. using Lubin-Tate formal group laws (s.
Milne) or softer methods using generalities about class formations together with
Kummer and Artin-Schreier theory (s. Serre).

24.3 Global class field theory.

Let E/k be a finite abelian Galois extension of global fields. Let I' = Gal(E/k),T’, =
Gal(E,/k,) for every place v of k and some place w of F over v. Notice that
since E/k is abelian the decomposition groups of all w/v are the same, so T',,

as a subgroup of I', does not depend on w. From local class field theory, we
have homomorphisms: kS — I', for all v. Moreover, for almost every v these
homomorphisms are trivial on o), the units of k,. Therefore, their product
defines a homomorphism (global Artin map or global reciprocity map):

Al =Gp(Ay) - T.
The Global Reciprocity Law of class field theory states:
Theorem 3.1. The subgroup k* < A} lies in the kernel of the reciprocity map.

More precisely:
AYJ(K*NEFAR) ~T
under the reciprocity map.

And the Global Existence Theorem states:

Theorem 3.2. For a subgroup N < A[/k* to be the kernel of the reciprocity
homomorphism for some finite abelian extension E, it is necessary and sufficient
that it be open of finite index.

Putting together the reciprocity and the existence theorem, we get:
Gal(k/k)™ ~ AS Jk*. (24.2)

We will not discuss the proofs of global class field theory, but we will discuss
several applications.

24.4 Hilbert symbols.

Let n be a positive integer and let k& be a local field which contains the n-th
roots of unity p,. Then we have two theories of cyclic degree-n extensions of k;
the first is Kummer theory and the other is class field theory. Hilbert symbols
are a way to compare the two theories.

Namely, the power-n Hilbert symbol (, ) : k* x k* — pu, is defined as
follows: Let a,b € k*. Consider the Kummer extension k(a'/™) and the Galois
element ¢ (b). Then we define:

¢k(b)(a1/n) = (a, b)al/". (24.3)
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There is also a cohomological description of the Hilbert symbol. Let I' =
Gal(k/k). Kummer theory, at this level, is the obvious cohomological state-
ment that k*/(k*)" ~ HY(T, u,) = Hom(T, i1,,) (coming from the long exact
sequence for 1 — u,, — G,, —> G,, — 1, where the third arrow is raising to the
n-th power). The Hilbert symbol is the map:

Bk = ()" k() ~ (D, ) x B (T, ) —

- H2(F,,U,n ®,Un) = HUn.

Here, the second-last arrow is cup product and the last arrow is given by cup
product H2(T, p,,) x HO(T, pn) ~ H?(T, iy @ p) and the canonical isomor-
phisms: H(T, pp,) = Z/nZ, HO(T', p,) = i, and Z/nZ @ piy, = fin,.

Here is an application of the Hilbert symbol: Recall that if the charac-
teristic of k is not 2, every quaternion algebra over k admits a presentation
D = Q(a,b) := k{i, j}/ (i* = a,j* = b,ij = —ji) for some a,b € k. If k is a local
field the algebra is split if and only if the quadratic (i.e. n = 2) Hilbert symbol
(a,b) is trivial. (More precisely, the class [D] in the two-torsion (~ Z/2) of
Br(k) is non-trivial if and only if (a,b) is so.) Notice that the quadratic Hilbert
symbol admits the following equivalent definition:

1, if 22 = ax?® + by? has a non-zero solution,
(aa b) = :
—1, otherwise.

Now let k be a global field containing the n-th roots of unity, a,b € k. For
every place v of k we have the power-n Hilbert symbol (a,b),. It is immediate
from (??) to deduce that this is equal to 1 almost everywhere, and that the
global reciprocity law implies:

Theorem 4.1. [] (a,b), = 1.

The Hilbert symbol is related to the n-th power residue symbol (i.e. the Leg-
endre symbol for n = 2) and the above theorem implies other familiar reciprocity
laws. For details, s. Milne, Chapter VIII.

As far as quaternion algebras go, we see that the class [D,] in Br(k,) has
to be non-trivial at an even (finite) number of places. In the next lecture we
will see that, conversely, any even set of places defines a (unique) quaternion
algebra (Hasse principle).

24.5 The classical formulation.

Let Apy denote the product of the archimedean completions of k and A}’ the
restricted product of non-archimedean completions, or finite adeles. Similarly
for A

Notice that we have a natural isomorphism: A" /T, _., 05 ~ Ty, the group
of fractional ideals of k. Hence the ideal class group:

Cr = kAL [ o

v<00
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If E/k is a finite Galois extension and p is a prime ideal of k& which is
unramified in E, and if B is a prime of E over p, one writes (B, E/k) for the
image of p in Gal(E/k) under the Artin map. If E/k is abelian, we will also
write (p, E/k) since it doesn’t depend on the choice of 9B.

What we want to do now is to find an ideal-theoretic way to describe the
quotients k*\A; /K for all open subgroups K of A;'. We define:

Definition. A modulus m is a function m : {places of k} — Z~( which is equal
to zero almost everywhere and at all complex places, and < 1 at real places.

We write v|m if m(v) # 0. For a modulus m we let K, be the open subgroup
K = 1], Km,» of A} with:
ox, ifv<oo,m(v)=0,
L+p™® ify=p<oo,m@) >0,
kr, ifv=o,m)=0,
Ry, ifv=Rm@)=1

Km,v =

Such subgroups form a basis for open subgroups of A}.

Recall that the ray class group Cy for the modulus m is defined as the
quotient of an ideal group Z5*PP(™) modulo a subgroup of principal ideals Py
defined as follows: supp(m) = {v|m(v) # 0}, Z% < T is the subgroup of fractional
ideals prime to S, for a set of places S (ignoring possible infinite places in .S); and
P < 75%PP(M) g generated by elements a € 0, which are = 1 mod Hp<oo pm ()
and such that a, > 0 if v is a real place with m(v) > 0.

Proposition 5.1. Cy = k*\A; /K.

Now the formulations of class field theory in terms of ideals are immediate.
I state only the reciprocity law and leave the rest as an exercise:

Theorem 5.2. Let E/k be a finite abelian extension, and let S be the set of
primes of k ramified in E. We define the Artin map: T° — Gal(E/k) by the
properties stated in the local reciprocity law. Then this map admits a modulus
m with supp(m) = S; in other words, there is such an m with Py in the kernel
of this map. More precisely, one has an isomorphism:

2P p  NETRPP™ o Gal(E/K).

The smallest possible m is called the conductor of E/k.

24.6 Chebotarev density.

We can apply class field theory to determine the density of primes that split in
a Galois extension and answer other similar questions. The application requires
the following deep theorem, whose proof (the one I know, at least) uses analytic
properties of Dirichlet L-functions, s. Lang’s Algebraic Number Theory, Theorem
XV.6 (which is slightly stronger than what we are formulating).
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Theorem 6.1. Let k be a number field, P the set of its finite primes and let
P — A; be any map which sends a prime p to an idele which is trivial at
every place except p and equal to a uniformizing element at p. Then (taking
into account the natural filtration of P by norms of its elements) the image of P

is equidistributed with respect to Haar measure on k*\A[ . In other words, the
push-forward of the uniform probability measure on {p|N6(p) < M} converges

weak-star to uniform probability measure on k*\A;* as M — 0.

If we combine this with class field theory, we get a weak version of Chebotarev
density:

Theorem 6.2. Let E/k be an abelian Galois extension. The set of p € P which
split completely in E (equivalently, the preimage of 1 € Gal(E/k) under the
1

Artin map on the set of unramified primes) has density ROk

A trick reduces the general case to this in order to get:

Theorem 6.3 (Chebotarev). Let E/k be a finite Galois extension, o € Gal(E/k)
and let C' denote the conjugacy class of 0. The set of p € P which are unramified

in E and such that there exists a prime B|p which maps to o under the Artin
€]

map has density equal to: B

24.7 The dual formulation; Weil groups; Dirich-
let characters.

The fact that class field theory investigates Gal(k/k)*" suggests that it is really a
statement about characters (1-dimensional representations) of Gal(k/k). This
leads us to dualize the isomorphisms that we previously saw; the Langlands
conjectures then generalize this dual formulation to include higher-dimensional
representations.

Dualizing is trivial modulo the observation (“no small subgroups” argument)
that a Lie group does not have arbitrarily small subgroups; therefore, if ¢ : A —
B is a homomorphism with A locally compact totally disconnected and B a Lie
group then ker ¢ contains an open-compact subgroup of A.

Let k be a local field. From dualizing (?7) we get:

{Complex characters of Gal(k/k)} <> {Complex characters of = }.

In fact, we can do better than that, since we have more information about
the isomorphism (??). Suppose k is non-archimedean. Let Wy be the set of
elements of Gal(k/k) which, modulo inertia, are equal to a power of Frobenius;
in other words, W is the preimage of Z < 7 under the homomorphisms:

Gal(k/k) — Gal(k™ /k) ~ Z.
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The group W is called the Weil group of k.* On the other side of the reciprocity
law, it corresponds to £*. We now have the bijection:

{Homomorphisms:W), —» C* = G,,,(C)} < {Irreducible representations of k> =

(24.4)
Of course, we have rigged the notation so that it suggests the generalization by
the Langlands program: The group G, on the right hand side will be replaced
by a reductive group G and the group G,,, on the left hand side will be replaced
by its Langlands dual “G.

Remarks. 1. Since the groups in the last assertion are not compact any more,
we need to clarify what kind of “characters” or “representations” we are
referring to. Indeed, in the previous (compact) formulation all characters
had finite image and were unitary; this is no longer the case. In fact, for the
above bijection it doesn’t matter which category of characters we choose
— we can choose to refer to unitary characters, or to arbitrary continuous
characters. Notice that continuous characters are automatically smooth,
i.e. locally constant; this follows from the “no small subgroups” argument.
In the older literature, the term “character” often meant “unitary char-
acter”, and other continuous characters were called “quasi-characters”.
We will adopt the (more standard nowadays) convention that “charac-
ter” means “continuous homomorphism into C*” will add the adjective
“unitary” when needed.

2. In the non-archimedean case the distance between characters of the Weil
group and those of the Galois group are not so far apart. Let us describe
them on the right hand side: An unramified character of k* is a character
which is trivial on the maximal compact subgroup 0*. On the Galois side,
this means that the character is trivial on the inertia subgroup. We have
an absolute value: £ — R, and every unramified character is of the
form z — |z|* for some complex number s. In fact, s is uniquely defined
modulo 27i/log q, where ¢ is the order of the residue field. Now, every
character x of k can be written (non-uniquely) as xo - | |*, where x( has

finite image (< extends to = or, on the Galois side, to Gal(k/k)).

3. There is no a priori reason to consider only complex characters. In fact,
while complex representations were historically used to approach problems
related to modular forms, L-functions etc., geometric approaches make it
more natural to consider l-adic representations (i.e. coefficients in Q;, for
some prime 1) since such are the Galois representations arising from the
etale cohomology of varieties. In the local non-archimedean case, if [ is
different from the residue characteristic of k then there is no significant
difference between [-adic and complex representations — and whichever
differences arise will be discussed. If, however, [ is equal to the residue
characteristic of k then there is no analog of the “no small subgroups”

3There is a general abstract definition of Weil groups, which you can read in the article of
Tate in the Corvallis proceedings.
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argument, the picture is much more complex and it has been the object
of intensive research since Wiles’ proof of Fermat’s last theorem and, es-
pecially, in recent years. This is the p-adic Langlands program which will
be beyond the scope of our course.

In the archimedean case, we let W = C* and Wy be the group generated
by C* and an element o such that 02> = —1 and cz0~! = z for every z €
C*. We notice that in every (archimedean or not) case, Wi’ = k* and we
have a canonical map Wy — Gal(k/k) with dense image. (These are parts of
the axiomatic definition of Weil groups.) In particular, the statement of (77?)
continues to hold.

If k is a global field then from dualizing (?7?) we get:

————

{Complex characters of Gal(k/k)} <> {Complex characters of A /k*}.

Characters of A} /k* are called idele class characters or Gréssencharacters.
Notice that if a Gréssencharacter is trivial on A} then it can be identified with
characters of the ray class group Z°"PP(™) /P for some modulus m (with oo { m).
Ifk=Qand m= ]_[p p™P) then the ray class group is equal to (Z/mZ)*, and
the Grossencharacter is a Dirichlet character.

In the global case there is again a notion of Weil group W endowed with
a homomorphism with dense image: W, — Gal(k/k), and an isomorphism:
Wb = A /E*, the two of them being compatible in the sense of class field
theory. We won’t get into details at this point, we just finish this discussion of
WEeil groups with a couple of remarks:

Remarks. 1. Notice that in the global or arhimedean case not all Weil group
representations factor through Galois representations, or are even close to
them in the way that we discussed in the non-archimedean case. Still,
representations of non-Galois type are important for automorphic forms,
for instance Maass forms are of this type. We will return to this point in
the discussion of the global Langlands conjectures.

2. For the Langlands generalization, it is good to think not of representations
of the group Ay/k*, but of representations of the group A} which appear
on the homogeneous space k*\A; . We will discuss at some point what
this means.



Chapter 25

The automorphic space.

The theory of automorphic forms is harmonic analysis on the homogeneous
space G(k)\G(Ag), where k is a global field. We call this space the automorphic
space. This term is not completely standard, but there is no other name for
it. Here we study properties of this space, discuss the adelic and the classical
picture, and some relevant arithmetic issues. We fix throughout a number field
k (of course, almost all holds for function fields as well), and all groups are linear
algebraic groups defined over k. The letters S, % will always denote finite sets
of places of k, A7 will denote the adeles outside of S, i.e. the restricted product
HZ@S k., and Ay g will denote the product [ [, g k. For a variety X over S we
will denote: Xy, := X(k), Xp = X(Ag), X := X(AY) and X5 := X(Ags).
The (finite) set of archimedean places will be denoted by co.

25.1 References.

e A. Borel and G. Mostow (eds.), Algebraic groups and discontinuous sub-
groups. Proceedings of Symposia in Pure and Applied Mathematics Vol.
IX, available for free on the AMS website.

e V. Platonov and A. Rapinchuk, Algebraic groups and number theory.

e A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups.
Annals of Math. (2), 75 (1962), p. 485-535.

e A. Borel, Some finiteness properties of adele groups over number fields.
Publications mathématiques de IL.H.E.S., tome 16 (1963), p. 5-30.

25.2 The automorphic quotient.

Let G be a linear algebraic group over k. Since G is affine (can be embedded as
a closed subvariety of affine space), the subgroup Gy, of G4 is discrete and the
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space [G] := G \Gy is a locally compact space, homogeneous under the action
of Gy. It carries an invariant measure under Gy.

Basic questions regarding this space: Is it compact? If not, is the volume
finite? Other finiteness properties?

We may fix an integral model for G, i.e. the structure of an o-group scheme.
For instance, let G — GL,, be a closed embedding over k, and consider the
structure induced from the standard structure of GL, (the scheme-theoretic
closure of G over o). For questions of finiteness which we will encounter here,
it doesn’t matter which structure we fix. For finer arithmetic questions (class
numbers, etc.) which will come up later, it matters.

Let us summarize the basic results, before discussing them in more detail in
the following sections:

If G = G, or, more generally, a unipotent group, the space Gx\Gj is com-
pact. If G is a torus, then Gi\G, is compact if and only if G is anisotropic.
Recall that a reductive group G is called anisotropic if it has no non-trivial split
subtori. This is more generally the case:

Theorem 2.1. Let G be a linear algebraic group over k with mazimal reductive
quotient G*%. The automorphic space Gi\Gy is compact if and only if G™9 is
anisotropic.

Regarding volumes, the basic result is:

Theorem 2.2. Let G be as above. Then Vol(Gr\Gy) < « if and only if Xi(G),
the k-character group of G, is trivial.

Finally, we have the following very basic finiteness property:

Theorem 2.3. Let G be as above and let K = []
double cosets:

G(o0,). The number of

V<0

Gr\Ga/K - G
18 finite.

Let us give a Leitfaden to the proofs and their history. All of them are
contained in Borel’s article mentioned in the references. Before that, Mostow
and Tamagawa had given a proof of the first theorem and Borel and Harish-
Chandra had given a proof of the second theorem in the “classical” setting, i.e.
for G(Z)\G(R). The proof is based on the existence of Siegel sets, some very
explicitly described subsets of G(R) which contain a fundamental domain for
the action of G(Z). The passage between the adelic and the classical setting is
very easy once one knows the third theorem, and we will explain it. However, as
I understand it, Borel had to re-do the theory of Siegel sets in the adelic setting
in order to prove the third theorem.
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25.3 The additive group
25.4 The multiplicative group
25.5 The general linear group

The discussion of the automorphic quotient for the general linear group will
depend on strong approzrimation for SL,, which will be discussed in more detail
in the next section. It states:

SL,, (k) is dense in SL,(AY).

We remind that A denotes the adeles away from infinity, i.e. the finite adeles.

Notice that this statement implies, in particular, that SL,(Z) is dense in
SL,,(Z), i.e. the map: SL,(Z) — SL,(Z/n) is surjective for every n. Such a
result is certainly not true for the multiplicative group, for instance: Z* does
not surject onto (Z/5)*.

Proposition 5.1. Let GL,(R)" denote the connected component of the identity
in the Lie group GL,(R), i.e. the group of real matrices of positive determinant.
It acts with a unique orbit on the quotient:

GLn(Q)\ GLn(AQ)/ H GLn(Zp)7

pP<0
and the stabilizer of the point represented by 1 is equal to the subgroup SL,(Z).

Proof. Given an adele (g2, g3, - - -, goo ), consider first the image of its double coset
under the determinant map: It is a well-defined element of Q*\Ag/[]

and as we have seen R} acts with a unique orbit on it. Therefore, we may
assume that (g2, 9s,. .., gx) € SL,(Ag). But then, by strong approximation for
SL,,, it belongs to SL,, (Q) [, .., SLn(Z,)-SL,,(R), which proves the first claim.

p<o0
The stabilizer of the point represented by 1 is the intersection:

X
p<0 Zp )

GL,(Q) n [ [ GLa(Z,) - GLu(R)* = SL,,(Z).

P<00

25.6 Weak and strong approximation.

We say that a (geometrically integral) variety X over k satisfies weak approzi-
mation if:

For every finite set of places S, X (k) is dense in Xg = [[,cq X (ko).

vesS

Equivalently, if:
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X (k) is dense in [ [, X (k)

the product taken over all places. We say that X has the property of weak
approximation away from a finite set of places X if this property holds with
the product taken over all places outside of 3. For instance, if ¥ = o and an
integral model (i.e. the structure of an o-scheme, where o is the ring of integers
in k) is given, then weak approximation outside of ¥ means that for every finite
set of finite places S, every integer N and every set of points (z, € X (ky))ves
we can find x € X (k) such that 2 =, mod pY.
We have:

Theorem 6.1 (Kneser, Platonov). Let G be semisimple simply connected or
adjoint. Then G satisfies weak approximation.

There are many more examples of groups which satisfy weak approximation,
for instance GL,,. (Proof: GL, s is open in Mat, s and carries the induced
topology, so since Mat,, satisfies weak approximation, so does GL,,.)

We say that a variety X satisfies strong approzimation away from a finite
set of places X if:

X (k) is dense in X* = X (A7).

Sometimes if ¥ = oo we say that X satisfies strong approximation without
mentioning . Hence, strong approximation (away from o0) is a strengthening
of the statement “class number = 1”. Notice that the above condition is much
stronger than being dense in [ [, (k,), because the topology on the adeles is finer
than the induced topology from [ [, (k,). For instance, if G = GL,, and ¥ = o
then the property reads: For every set S of finite places and for all (z, € ky)ves
there exist S-integers in k* (i.e. elements of K N[ [,cg00 ko [ [1ggu00 00 ) Which
approximate (,)yes-
A slightly weaker version of the following theorem was proven by Kneser:

Theorem 6.2 (Platonov). If G is simple, simply connected and Gy is not
compact then G satisfies strong approximation outside of X.

25.7 Reduction theory for GL, over Q

By “reduction theory” we mean, basically, the theory of Siegel domains and its
consequences. It all relies on the special case of the group GL,,, defined over Q.
To state the basic theorem in this case, we need some definitions:

A fundamental domain for the action of a discrete subgroup I' on a locally
compact group G is an open subset D of G such that no two points of D are
in the same I'-orbit, and such that G = uy e I'yD. A fundamental domain is
not an object easy to describe. Therefore, one works with slightly larger sets,
which may contain a finite number of translates of their points.

A fundamental set Q for I'\G is a subset of G such that I - Q = G and the
set {y e |72 Q # &} is finite. There are also stronger (more complicated but
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more convenient) conditions that one can impose, see for instance Borel’s article
on “Reduction theory” in “Algebraic groups and discontinuous subgroups”.

Now let G = GL,, and consider the Borel subgroup of upper triangular
matrices, with its factorization B = AN, where N is the unipotent radical and
A denotes the torus of diagonal matrices. Let A denote the set of simple positive
roots of A with respect to B.

Let Ky = SO, (R), defined with respect to the definite quadratic form rep-
resented by the unit matrix, and K = [[,_,, GLn(Zp) x K, a maximal com-
pact subgroup of GL,(Aqg) satisfying the Iwasawa decomposition: G(Ag) =
B(Ag) - K = N(Ag) - A(Ag) - K.

A Siegel set is a subset of G(Ag) of the form: U; A, K where:

e U; is a compact neighborhood of the identity in N(R);
o Ay ={ae (R})" < A(R)|e*(a) <t for every o€ A}

. (There is a more general notion which does not require these specific subgroups
A, N and K, of course, which will be subsumed by the general discussion of
Siegel domains later.)

Then:

Theorem 7.1. There exists a Siegel set & which is a fundamental set for

G(Q\G(Ag).

Proof. Later. U

25.8 Arithmetic subgroups, Siegel sets.

Let G be an algebraic group over Q. A subgroup I' of G(Q) is called arithmetic
if there exists a faithful representation p : G — GL,, such that the image of T is
commensurable to p(G) N GL,(Z). (Two subgroups are called commensurable
if their intersection has finite index in both.) If this condition holds for some p,
then it holds for every faithful representation of G over Q.

Let T" be an arithmetic subgroup, we would like to describe a fundamental
domain for T\G(R). A fundamental domain is a connected open subset D of
G(R) such that no two points of D are in the same I'-orbit, and such that
G(R) = uyeIyD. A fundamental domain is not an object easy to describe.
Therefore, one works with slightly larger sets, which may contain a finite number
of translates of their points.

A fundamental set Q for T\G(R) is a subset of G(R) such that ' - Q =
G(R) and the set {y € T|7Q n Q # &} is finite. There are also stronger
(more complicated but more convenient) conditions that one can impose, see
for instance Borel’s article on “Reduction theory” in “Algebraic groups and
discontinuous subgroups”.

The following discussion assumes that G is reductive just to keep ourselves
from saying “the reductive quotient of G” all the time. Assume that G is not
anisotropic over Q and let S be a maximal split torus. Let ®g be the relative
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root system with respect to S, and choose an ordering of ®q (denote by Ag the
simple positive roots), corresponding to a minimal parabolic P. The parabolic
P can be decomposed as P = S - M - N, where N is its unipotent radical, M is
reductive and Q-anisotropic and S n M is finite. Let K be a maximal compact
subgroup of G(R) whose Lie algebra is orthogonal to that of S(R) under the
Killing form — we have a decomposition G(R) = P(R)- K = (MN)(R)-S(R)- K.

A Siegel set is a subset of G(R) of the form: U;S;K where U; is a com-
pact neighbourhood of the identity in (MN)(R) and S; = {s € S|e*(s) <
t for every o € Ag}. The following is the basic result of reduction theory:

Theorem 8.1. Let G be a connected reductive group over Q and let T’ be an
arithmetic subgroup of G. Let C be a set of representatives for the double cosets
MNG(Q)/P(Q) (where P is as above); this set is finite. There exists a Siegel set
S such that Q := C - S is a fundamental set for T\G(R). Conversely, for every
finite subset C < G(Q) such that C- & is a fundamental domain for some Siegel
set &, C' contains a set of representatives of T\G(Q)/P(Q).

The elements of the set T\G(Q)/P(Q) are called the cusps of T\G(R). The
theorem on finiteness of volume of I'\G(R) now follows from computing the
volume of a Siegel set, which is something explicit and straightforward.

The proof of this theorem, as well as its adelic version which will be discussed

below, embeds G into GL,, in a suitable way and then analyses the situation for
GL,, and SL,,.

25.9 The classical and the adelic picture.

Let G be a connected reductive group over Q. Fix an integral structure as above,
andlet K =[], _. G(0,). Consider the action of G, on G(Q)\G(A)/K. By the
finiteness theorem ?7 there are only finitely many orbits; let &; be representatives
for those, and let T'; « G(R) be the stabilizers. Hence G(Q)\G(A)/K is, as a
G(R)-space, equal to the disjoint union of I';\G(R). The connection between
the adelic and the classical picture is established through the following easy
lemma:

Lemma 9.1. The subgroups T'; are arithmetic subgroups of G(R).

For instance, if §; = 1 then T'; = G(Z).

Now it is clear that if K is replaced by any compact open subgroup K’, the
number of G(R)-orbits on G(Q)\G(A)/K’ will remain finite, and the stabilizer
subgroups are arithmetic. For instance, if m =[], g pvm(v) is a finite modulus
and K’ =] K] where K| = G(0,) for v ¢ S and K|, = {g € G(o,]g = 1
mod p:]n(v)} for v € S, the stabilizer of £ = 1 is the congruence subgroup {v €
G(Z)|y =1 mod m}.

v<00
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25.10 Genus and class number.

Let G be a reductive algebraic group over k, and fix a model for G over o,
the ring of integers of k. (For instance, fix an embedding G — GL,, over k
and take the scheme-theoretic closure of G over 0. Notice that this will not, in
general, be smooth over all points of 0.) Denote by K the compact subgroup
K =11,-., Ky of the adeles of G, where K, = G(o0,).

The number of double cosets G(k)\G(A)/K - G, is called the class number
of the fixed integral structure on G. We have seen that in the case of G = G,
it coincides with the class number of the field. In general, there is a more
conceptual way to understand the class number: Let G — GL,, over k. The
integral structure on GL,, (and hence the induced integral structure on G) is
induced by the choice of a lattice L in k", i.e. a finitely-generated o-submodule
which spans the whole space. Each such lattice gives rise to lattices L, := L®,0,
in k7', and the group G(A) acts on such collections (L, )y<q of lattices with
stabilizer K - Go. (The infinity component acts, by definition, trivially.) The
orbit of M under G(A) is called the genus of M, and the number of G(k)-orbits
in the genus is the class number.

In specific cases, there are even more conceptual explanations: Let @ be
a non-degenerate quadratic form in n variables with integer coefficients, and
let G = Og be the orthogonal group of @, considered as a subgroup of GL,,.
The Hasse-Minkowski theorem says that if Q" ~ @ over k, for every v, then
Q' ~ Q over k. We want to ask the same question over the integers: Two
integral quadratic forms @, Q' will be called integrally equivalent if there exists
g € GL,(0) with Q- g = G'. (We denote the action of GL,, on the right, instead
of identifying the quadratic forms with matrices and writing ‘g~ 1Qg.) We define
the genus of @ to consist of those integral quadratic forms @’ such that Q' ~ Q
under the GL,,(0,)-action, for every finite v, and under the GL,, (k,)-action for
infinite k. Then we have:

Lemma 10.1. The set of integral equivalence classes in the genus of QQ can
be naturally identified with the double coset space: G(k)\G(A)/K - Go. Hence,
the class number of Q (more correctly, of the genus of Q) is equal to the class
number of G, as defined previously.

Let @’ be in the genus of Q). In particular, Q' is k,-equivalent to Q at every
place, hence by the Hasse-Minkowski theorem Q' = @ - ¢ for some g € GL,, (k).
This g is uniquely defined modulo G(k), i.e. we get a canonical element in
G(k)\GL, (k). Now, by the fact that they are locally integrally equivalent,
there exists an element (z,)y € [[,-o, GLn(0s) - [[,eeo GLn(ky). such that
Q' - (z4)y = Q, or equivalently: g--(x,1), € G(A). This element is determined
uniquely modulo K - G4. Hence, we have constructed a map from the genus of
Q to the set G(k)\G(A)/K - Gs. One now checks that this map is a bijection
of the latter with the set of integral equivalence classes in the genus.



Chapter 26

Tamagawa numbers.

26.1 References:

e http://www.math.u-psud.fr/colliot/ LECTURES ON LINEAR ALGEBRAIC
GROUPS BEIJING LECTURES, MQRNING SIDE CENTRE, APRIL
2007 JEAN-LOUIS COLLIOT-THELENE

26.2 Differential forms and measures.

For what follows, we will need to endow our p-adic and Lie groups (and homoge-
neous spaces thereof) with invariant measures. It is usually best to obtain these
measures from geometric objects, namely top-degree differential forms. Let k
be a locally compact field and let X be a non-singular variety over k. Fix a
Haar measure on k. For R,C,Q,, etc. we fix the standard measures (which for
Qp means that the measure of Z,, is 1). Let w be a top-degree differential form
on X. Then w gives rise to a natural positive measure on X (k), to be denoted
by |w]|. It is easy to understand what it is in local coordinates: if X = A™ with
coordinates x1,...,z, then the differential form dx; A --- A dx,, corresponds to
the fixed measure on k™. One can see that this description of the measure on
X does not depend on the choice of coordinates. For more details, see Weil’s
“Adeles and algebraic groups”.

For later use, we look here at the relation between left and right Haar mea-
sures: Reductive groups carry top-degree differential forms which are left- and
right- invariant, and hence their k-points are unimodular (i.e. left Haar mea-
sure in also right Haar measure). Unipotent groups are also unimodular. If
G = M x N is an algebraic group with M reductive and N unipotent, and if wy
is a top-degree invariant form on N, then there exists a character 0: M — G,
which describes the action of M on wy. More precisely, if ¢, @ u — mum™!
denotes the left conjugation action of M on N, then ¢} (wy) = d(m)wn. Let
wys denote an invariant differential form on M. We have the natural projec-
tion: pyr : G — M, and two different maps: pk,p% : G — N, such that an
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element g € G is written as pa(g)pk(9) or p%(9)par(g). Then one sees easily
that w; 1= p¥,(war) A paF(wn) (resp. omega, = p¥ (war) A piF(wn)) is a left
(resp. right) invariant top-form on G. Therefore |w;| and |w,.| will be left and
right Haar measures, respectively. The character ? is the quotient between these
two differential forms:

Wy =0-wy.

It is called the modular character of G.

26.3 Global measures

Let k be a global field, and G a semisimple group over k. Is there a natu-
ral invariant measure on the automorphic space G(k)\G(A)? Since G(k) acts
properly discontinuouly on G(A), this is the same as asking if there is a nat-
ural invariant measure on G(A). Let w be a k-rational top-degree invariant
differential form on G. It defines measures |w,| on G,, for every v. We would
like to define p = [], |wy| as a measure on G(A). The problem is that this
product will not converge, but let us ignore this for a moment and assume that
i is well-defined. Let w’ be another k-rational invariant differential form, and
i/ the corresponding measure. Then we have w’ = aw for some a € k*, and
p' =11, lalup. By the product formula, [], |a|, = 1. Therefore the measures
w' = p coincide! The fact that there is an invariant measure p on G(A) (and,
correspondingly, an invariant measure £ on G(k)\G(A)) which does not depend
on any choices is amazing! This measure is called the Tamagawa measure.

It is now natural to ask: What is the Tamagawa measure of G(k)\G(A)?
The answer turns out to be something very close to ‘one’ — more precisely, it
is the quotient of the order of the fundamental group of G by the order of its
Shafarevich group (=the kernel of H'(k,G) — Y, H'(k,,G), i.e. it measures
the failure of the Hasse principle), and in particular is equal to one for simply
connected semisimple groups. This deceptively simple statement has taken an
incredible amount of very hard work to prove (mainly by Kottwitz), and it
underlies very classical and important results in arithmetic, such as the mass
formula of Siegel which we will discuss below.

There remains to explain how to understand the non-convergent product:
Let K = [],.., K, be an open-compact subgroup of the finite adeles of G. We
need to show how to make sense of [ [, |wy|(Ky). It turns out that for almost
every v the factor |w,|(K,) is equal to a special value Lg ,(sg) of the Euler
factor at v of a certain L-function like the Riemann zeta function. We have
not discussed L-functions yet, so I'm very rapidly writing here that they are
functions of a complex variable s defined for s > 1 by a convergent Euler
product [ [, Ly (s), which admits meromorphic continuation. The way to make

sense of the infinite product of measures, then, is to substitute |w,| by LGL’ELG)
— which will make the global product convergent, and in fact finite — and then
multiply the product by Lg(sg) — the special value of the meromorphically

continued L-function at sg. This procedure would be problematic if Lg had a
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pole at sg, which, however, does not happen for semisimple groups.

26.4 The Tamagawa measure for reductive groups

(Take everything with a grain of salt in positive characteristic; I don’t under-
stand Picard groups of algebraic groups in that case, and need to check several
statements.)

26.5 The Tamagawa number of a reductive group

Weil conjectured that a simply connected semisimple group has Tamagawa num-
ber equal to 1. This was proven by Langlands for Chevalley groups, Lai for
quasisplit groups, and Kottwitz, using the trace formula, in the general case.
The general formula, including tori (a case treated by Ono), is:

Theorem 5.1. The Tamagawa number of a linear algebraic group G is:

[ Pic(G)rons]
%) = o)

Notice that the Picard group of a linear algebraic group (we explain it below)
is always finite in characteristic zero — when discussing more general cases,
including the Birch and Swinnerton-Dyer conjecture, we will replace it by its
torsion subgroup. III(G) is the kernel of the map of Galois cohomology groups:

1 - (G) — H'(k,G) — @ H' (k,,G);

v

in other words, it is the set of isomorphism classes of locally trivial G-torsors
over k.

26.6 Picard groups of algebraic groups

Picard groups were discussed in §?7. They were defined in terms of line bundles
in the Zariski topology, but there is a similar definition in the etale topology. It
turns out that the two notions coincide, see Milne, Etale cohomology, Remark
11.2 and Theorem 11.4. This can be seen as a generalization of Hilbert’s theorem
90: if X = speck, then a Zariski line bundle is obviously trivial, but an etale
line bundle is also trivial.

A line bundle is “the same” as a G,,-bundle. Thus, by general nonsense:

Pic(X) ~ HY(X,G,,) := H(X,0%),

or, equivalently (by the above-mentioned result), we can use the etale cohomol-
ogy group Hjy (X, Gp).

The reason for bringing in etale cohomology, is to prove the following iso-
morphism for torsion:
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Proposition 6.1. Let k be an algebraically closed field and X /k a proper vari-
ety. Then there is an isomorphism:

Pic(X)[n] ~ Hom(m e (X), Z).
Here ¢ is the etale fundamental group of X.

Proof. We have:
HX(X,7Z/n) = Hom(7(X), Z/n).

Furthermore, from the long exact cohomology sequence associated to:
00— up -G, -G, »1
we obtain an isomorphism:
Hey (X, pn) ~ He (X, Gy [n].

Here we used that k is algebraically closed and that X is proper over k; this
ensures that n-th power map is surjective on global invertible sections:

HY(X,0%) ~k* - k™ ~ H(X,0%).
Finally, since k is algebraically closed, we have p,, ~ Z/n. O

Now let us discuss covers of algebraic groups. The following is true, see here.

Proposition 6.2. Fvery finite etale cover of an algebraic group, in character-
istic zero, can be given the structure of an algebraic group if the fiber over the
identity has a point.

This statement is well-known and easy to prove for topological covers of Lie
groups. It does not hold in positive characteristic. This invites the definition
of algebraic fundamental group, which will parametrize central isogenies (which
may not be etale in positive characteristic!). In any case, I think that for the
torsion of the Picard group the statement of Proposition 7?7 holds whether we
use the etale or the algebraic fundamental group. In particular:

Corollary 6.3. Pic(G) is trivial if G is semisimple simply connected in the
sense of algebraic groups (i.e.: its coweight lattice is generated by coroots).

Remark. If G is a torus, there is an isomorphism: Pic(T) ~ H'(Gal(k/k), xE(T)).
See Colliot-Thélene, Proposition 4.23. This shows that the calculation of Tam-
agawa numbers of tori by Ono matches the aforementioned result.

Remark. For the computation of the Tamagawa number of an arbitrary reduc-
tive algebraic group from that of a simply connected one, see Sansuc, “Groupe
de Brauer et arithmétique des groupes algébriques linéaires sur un corps de
nombres.”

26.7 The work of Siegel on quadratic forms

TO BE ADDED.


http://mathoverflow.net/questions/49278/the-algebraic-fundamental-group-of-a-reductive-algebraic-group

Part IV

Automorphic
representations
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This part is very incomplete and by no means justifies the word
¢ ‘automorphic’’ in the title.



Chapter 27

Basic representation theory
of real and p-adic groups.

27.1 References

e Goodman and Wallach, Representations and invariants of the classical
groups.

e W. Schmid, Geometric Methods in Representation Theory. Notes from a
mini-course, available at:
www.math.harvard.edu/~schmid/articles/brussels_1_30_04.pdf

e M. Welleda Baldoni, General Representation Theory of Real Reductive Lie
Groups, in the Edinburgh Proceedings (PSPUM 61).

e Knapp, Lie groups beyond an introduction.

e T. Brocker and T. Tom Dieck, Representations of compact Lie groups.
e Varadarajan, Lie groups, Lie algebras and their representations.

e D. Bump, Lie groups.

e W. Casselman, Introduction to the theory of admissible representations of
p-adic reductive groups. Available online at:
http://www.math.ubc.ca/ cass/research/p-adic-book.dvi.

e J. Bernstein, Lectures on representations of reductive p-adic groups. Notes
by Karl Rumelhart. Available online at:
http://www.math.uchicago.edu/~mitya/langlands/Bernstein/Bernstein93new.dvi.

e J. Bernstein, Le “centre” de Bernstein. Edited by P. Deligne. Travaux
en Cours, Representations of reductive groups over a local field, 1-32,
Hermann, Paris, 1984.
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e P. Cartier, Representations of p-adic groups: A survey. In the Corvallis
proceedings, Vol 1. Available online at:
http://www.ams.org/online bks/pspum331/.

e C. Moeglin, Representations of GL(n, F') in the nonarchimedean case. In:
T. N. Bailey and A. W. Knapp, Representation Theory and Automorphic
forms, Proceedings of Symposia in Pure and Applied Mathematics, AMS
1997.

27.2 Continuous representations.

For the first part of the notes for this lecture, I'm just collecting the very basic
facts of representations of topological and Lie groups, many of which you can
find in more detail in the (concise and highly recommended) notes of Schmid or
the article of Welleda Baldoni.

Let G be a locally compact topological group, V' a complete, Hausdorff,
locally convex topological vector space (over C). A (continuous) representation
of G on V is a representation of G on V such that the action map: GxV —» V
is continuous.

A representation is called irreducible if V' does not have any proper closed

invariant subspaces.
Remark. Let V be a Banach space, and B(V) the Banach space of bounded
endomorphisms of V. Then one could require that G — B(V') is continuous.
However, this is too strong to ask. Exercise: The regular representation of R
on LP(R) (p < o0) is not continuous in this sense.

The assumptions on G and V imply that the following make sense:
o (Left and right) Haar measures on G (because of local compactness of G).

o (Lebesgue) integration of functions with values in V' (because of complete-
ness and local convexity of V).

e If M is a manifold, differentiable functions M — V (e.g. if M = R then
£(0) = limp_o f(h);f(o))'

In particular, for every f € C.(G) (continuous, compactly supported func-
tions on G), v € V the integral 7(f)v = { f(g)7(g9)vdg (where dg is a Haar
measure — assume here that G is unimodular, i.e. left Haar = right Haar to
avoid complications) is defined and convergent, which gives rise to a represen-
tation of the convolution algebra C.(G) on V. (Convolution: (f; * f2)(g) =
So f1(2) f2(x7 g)dz.) In fact, Co(G) is a #-algebra, i.e. equipped with a sesqui-

linear antiinvolution, which is: f — f*(g) := f(g~!), and the representation is
a x-representation.

Remark. Tt is more natural to think of convolution algebras of measures than
of functions, because then the action and the algebra structure does not depend
on choices of Haar measures. This is the approach that we will mostly follow.
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If V is a Hilbert space, the representation = is called wnitary if 7(g) is a
unitary automorphism for every g. Our main focus will be on representations of
groups on Hilbert spaces. However, they will not always be unitary. Therefore,
the norm of the space is in many cases irrelevant; we can instead speak of Hilber-
tian spaces, i.e. topological vector spaces which can be given the structure of a
Hilbert space. For instance, all finite-dimensional vector spaces are Hilbertian.
A representation m of G on a Hilbertian space V is unitarizable if V admits a
Hilbert structure which makes 7 unitary.

27.3 Continuous representations of compact groups.

Theorem 3.1 (Peter-Weyl). Let G be a compact group. Every representation
of G on a Hilbertian space V is unitarizable and decomposes into a Hilbert space
direct sum of irreducibles, all of which are finite-dimensional.

We first prove a slightly stronger theorem for the special case of V = L?(G).
Here we have an action of the group G x G by left and right multiplication.
Given a representation 7 of G, the matriz coefficient of T is the canonical map:
T®7* — C(G), where 7* denotes the dual.

Theorem 3.2. The matriz coefficients induce an isomorphism: L*(G) ~ @, (1 ® 7%),
the (orthogonal) sum ranging over all isomorphism classes of irreducible finite-
dimensional representations of G. Moreover, the dense subspace @, (T ® T*) is

also dense in C(G).

Proof (Sketch): Let L denote the left regular representation and R the right
one. One first proves:

Lemma 3.3. For a function f on G: f is left G-finite (i.e. spans a finite-
dimensional subspace under L(G)) <= it is right G-finite <= it is a matriz
coefficient for a finite-dimensional representation of G.

Given this, the proof of the theorem relies on the fact that for f € C(G) the
operator L(f) is compact, and if f = f* then it is self-adjoint. Applying the
spectral theorem, we get many finite-dimensional eigenspaces (corresponding to
all non-zero eigenvalues) which are R(G)-invariant and hence, by the lemma,
spaces of finite-dimensional matrix coefficients. (The rest and more detail you
can find e.g. in Bump’s book.) O

A representation of a group G on a vector space is called locally finite if the
G-span of every vector is finite dimensional.

Now we prove the Peter-Weyl theorem. (By the way, the last theorem is also
called “the Peter-Weyl theorem”.

Proof (Sketch): First, start with any Hilbert space norm, average it over G, this
will give a Hilbert space norm with respect to which the action is unitary.
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To prove the existence of invariant finite-dimensional subspaces, one acts
on V by an invariant finite-dimensional subspace of C'(G) — using the previous
theorem which says that these spaces span a dense subspace of C(G).

The decomposition is now a routine application of Zorn’s lemma and the fact
that the orthogonal complement of an invariant subspace is also invariant. [

27.4 Finite-dimensional representations of Lie groups.

We now discuss representations of real and complex Lie groups, which we will
throughout assume reductive and (for simplicity) algebraic and geometrically
connected.

A smooth representation of G on a topological vector space V as previously
is one such that for every v € V the orbit map g — w(g)v is smooth (i.e. C®).
It then extends to a representation of g. (Recall that a representation of a Lie
algebra is the same thing as a representation of its universal enveloping algebra.)
We will agree that for us smooth will also mean that V' is a Fréchet space — as
we will note, this is the case for the smooth vectors of a Banach representation.

Lemma 4.1. Let (7,V) be a smooth representation of a Lie group G. As-
sume that V' is finite-dimensional. Then every closed g-invariant subspace is
G-invariant (and vice versa, of course, which is obvious).

This Lemma does not hold without the assumption that V is finite-dimensional:
Consider the subspace of C*(G) consisting of functions supported in a given
closed set!

27.4.1 The unitarian trick

We start with an investigation of finite-dimensional representations.

Theorem 4.2. Every complex semisimple Lie group G admits a unique (up to
G-conjugacy) compact real form U < G.

Corollary 4.3. Every finite-dimensional representation (dm,V') of a complex
semusimple Lie algebra g is semisimple.

Proof. Let G be the simply connected complex semisimple group with Lie alge-
bra g, then the representation (dr,V) lifts to a representation (w,V) of G. If
U c G is as in the above theorem, then 7|y is semisimple. By Lemma 77, this
is equivalent to dr|, being semisimple. It follows that dm is semisimple. O

This is the “unitarian trick” of Weyl. There are purely algebraic proofs of
semisimplicity, see Goodman and Wallach.
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27.4.2 'Weights; the Cartan decomposition.

Let (®,V) be a root system, (®,V*) its dual root system. Let R = V* be
the lattice spanned by the co-roots. The weight lattice is the sublattice {v €
V| (v,7) € Z for all r € R}. Tt (properly, in general) contains the root lattice.

Let A be a torus, the weights of A are the characters of A.

Let G be a reductive group and (X, ®, X, ti>) its root datum. The weights of
G are the weights of its maximal torus, i.e. the elements of X. They do not, in
general, coincide with the weights of its Lie algebra (they do iff G is semisimple),
and therefore to distinguish them we often call them integral weights. If we fix
a Weyl chamber C, we call dominant the weights of G belonging to C.

Returning to the setting of Lie groups, we notice that if A is a complex torus
and T its compact real form, then the weights of A correspond precisely to the
(necessarily unitary) characters of T, i.e. the Plancherel dual of T'.

Now we discuss maximal compact subgroups of real reductive Lie groups
and the Cartan involution.

Theorem 4.4. Let G be a non-abelian, real, reductive (algebraic) group. There
is a unique up to conjugacy mazimal compact subgroup K. Let g, £ denote
the Lie algebras. There is a unique ( ad)(¥)-invariant subspace p of g with the
properties:

1. g=tPyp.

2. [p,p] < & equivalently (in combination with [¢,p] < p), € is the +1
eigenspace and p the —1 eigenspace of an involution 68 of g — the Car-
tan involution.

3. Fvery element of p is diagonalizable over R.
The map K x p — G: (k,X) — k-exp(X) is a diffeomorphism of manifolds.

The Cartan involution lifts to an involution of G. If g is semisimple and B
is the Killing form, it can also be characterized as follows:

Theorem 4.5. The Cartan involution is the unique — up to conjugacy — invo-
lution on g such that the symmetric bilinear form Be(X,Y) := —B(X,0Y) is
positive definite.

Moreover, notice that by the last statement of Theorem 7?7, the inclusion
K — (G is a strong deformation retract and, in particular, induces isomorphisms
of homotopy and homology groups.

We notice that the compact form U of G¢, which we talked about before, is
that with Lie algebra ¢®ip, and K = U n G as subgroups of Gc.

27.4.3 Highest weight theory

Let now G be a complex (algebraic) Lie group and U its compact real form
(Theorem ?7).
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Theorem 4.6. For each (integral) dominant weight A there is a unique (up to
isomorphism) irreducible finite-dimensional representation Vy of U with highest
weight A, and all irreducible finite-dimensional representations are of this form.

Weyl’s proof. Every finite-dimensional representation m must have a highest
weight. Notice that the character of m — which is a W-invariant function on
T' — is equal to the sum of weights appearing, with the multiplicity that they
appear. One writes down an “explicit” Z-basis for such functions on 72 and
then uses the orthogonality relations for characters x,, together with the Weyl
character formula, to show that each character should be precisely equal to one
element in this basis. Since the characters span the space of class functions
(this follows from the Peter-Weyl theorem), all elements of the basis should be
characters of some reprensentation. O

Corollaries of the character computation are:

1. Each irreducible representation has a unique highest weight A, which ap-
pears with multiplicity one.

2. The other weights appearing are (precisely) those u such that “u < A,
where " is a translate of y lying in the dominant Weyl chamber.

3. The characters are regular (polynomial) functions on U.

As a corollary of the third remark, all finite-dimensional representations of
U are algebraic. This, together with Corollary 77, implies:

There is an equivalence of categories between the category of al-
gebraic representations of G and locally finite (or Hilbertian, by
Peter-Weyl) representations of U.

Notice that algebraic (by definition, those whose matrix coefficients are regular
functions on G) representations are automatically locally finite, because matrix
coefficients embed the space spanned by any vector into C[G], and the action
of G on the latter is locally finite.

For this reason, Theorem 77 holds for algebraic representations of G, as
well. Of course there are also algebraic proofs of the theorem, see Goodman
and Wallach.

27.5 Infinite-dimensional representations of Lie
groups.

Here is a problem which we are facing with infinite dimensional representa-
tions: Which of them should be considered ‘equivalent’? For instance, all LP(RR)

IEach conjugacy class in U is represented by an element of T', unique modulo the W-action.
2It’s actually not as simple as that: One works with anti-symmetric instead of symmetric
functions first.
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(p < ) should be thought of as ‘equivalent’ representations of R, though they
are non-isomorphic as Banach spaces. There is a good answer to this ques-
tion (of algebraic nature, somehow) in the case that the representations under
consideration are admissible.

27.5.1 Admissibility

We return to the general setting of a topological vector space V as above, and
a representation of a Lie group G on V. We let K be the maximal compact
subgroup of G. It is natural to first restrict any representation = of G to K,
since the picture for compact groups is relatively simple.

Definition. A representation (7, V') as above is admissible if for every finite-
dimensional irreducible representation 7 of K we have dim Homg (7, 7) < 0.

It is not true that every irreducible representation of G (not even on a Banach
space) is admissible. However, Harish-Chandra’s admissibility theorem states:

Theorem 5.1. Every irreducible unitary representation of G is admissible.

27.5.2 Smooth and K-finite vectors.

Now, let (7, V') be a representation of G. We let V' denote the space of smooth
vectors in V, and Vi _g, the space of K-finite vectors. Then:

Theorem 5.2. If (w,V) is admissible then Vi g, is contained in V* and is
dense in V.

This is proved by considering the action of the algebras C?(G) and C(K) i -fin
and knowledge of density and regularity properties of these subalgebras of C.(G)
and C(K).

As a corollary, by applying the above to the case G = K, we get the below
theorem which for Hilbertian representations we know already from compact-
group generalities:

Corollary 5.3. FEwvery irreducible representation of K is finite dimensional.

27.5.3 Harish-Chandra modules.

Given a representation (m,V) of G we can now restrict our attention to the
dense subspace V* which is a g-module. There is a problem here: It may have
many g-invariant subspaces, even if V is irreducible.

Remark. The space V® is called the Garding space, and it can be given a natural
topology making it a topological vector space as in §77. If V is a Banach space,
then this topology makes V® into a Fréchet space. This still doesn’t solve
our problem: closed g-invariant subspaces of V' will not necessarily have G-
invariant closures in V.

The problem is solved via the following observation:
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Lemma 5.4. The space Vi _gn 1S g-invariant.

Proof. Indeed, for every v € Vi _s, the space dn(g)m(K)v is finite-dimensional
since g, and for every X € g,k € K we have: 7(k)dm(X)v = dr(A(k)X)w(k)v €
dm(g)m(K)v. O

Definition. A (g, K)-module is a triple (M, w,dp) where M is a (complex)
vector space (no topology!), 7 is a locally finite representation of K on V, dp
is a representation of g and m,dp are compatible, in the sense that dm = dp
and 7(k)dp(X)m(k™') = dp(Ad(k)X). A g-finitely generated and admissible
(g, K)-module is called a Harish-Chandra module.

We also define admissibility for a (g, K)-module in the same way that we
did for a G-representation. The notion of a (g, K)-module solves the problem of
invariant subspaces — this rests upon the fact that for admissible representations
the K-finite vectors are analytic. Moreover, every Harish-Chandre module can
be globalized, i.e. it comes from a smooth representation of G. All this is
contained in the Casselman-Wallach theorem, which states:

Theorem 5.5. The functor V — Vi g, is an equivalence of categories between
admissible, finitely generated smooth representations of G and Harish-Chandra
modules.

Harish-Chandra had defined two representations V7, V5 of G to be equivalent
if Vi ~ V3® as smooth representations. On the other hand, we say that V; and
Vo are infinitesimally equivalent if Vikx _gn = Vak _fin as (g, K)-modules. The
theorem of Casselman and Wallach tells us that these two notions coincide for
finitely generated, admissible representations.

27.6 Representations of [-groups: the Hecke al-
gebra.

The situation is significantly simpler from the analytic point of view for p-adic
groups. (On the other hand, it is much more complicated from the algebraic /
representation-theoretic point of view: classifying irreducible representations is
much harder.)

Let G be a locally compact, totally disconnected group. (Such a group is
called an [-group; a topological space which is Hausdorff, locally compact and
totally disconnected is called an I-space.) The identity has a topological basis
consisting of open, compact subgroups (exercise!). A representation of G on
a vector space V (no topology?®) is called smooth if every v € V has an open
stabilizer. We let H(G) denote the convolution algebra of locally constant,
compactly supported measures on G — it is called the Hecke algebra and acts
on every smooth representation of V. It is an idempotented algebra: for every

30ne can actually endow a smooth representation with a natural topology, see “Bernstein’s
Center”, but that doesn’t help much.
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finite set {f;};  H(G) there exists an idempotent e (i.e. € = e) such that
ef; = fie for all . In fact, such idempotents are the characteristic measures ey
of compact open subgroups K. A module V for H(G) is called non-degenerate
or unital if H(G)V = V. The following is easy:

Theorem 6.1. The natural functor is an equivalence of categories between
smooth G-representations and non-degenerate H(G)-modules.

Let K be an open compact subgroup of G. We define admissibility as pre-
viously: A representation (m, V) of G is admissible if for every admissible 7
of K the space Homg (7, 7) is finite dimensional. Notice that this notion does
not depend on the choice of K. For smooth representations, there is also the
following equivalent formulation:

(m,V) is admissible if for every compact open K — G the space VE
(of K-invariants) is finite dimensional.

Given a smooth representation m we denote by 7* its dual and by 7 the
space of smooth vectors in 7*. The following is straightforward:

Lemma 6.2. 7 is admissible if and only if ™ < 7 is an isomorphism.

There are many interesting non-admissible representations, for instance (usu-
ally) the space C%(X) when X is an [-space with a G-action.

Since we do not consider any topology on the space of a smooth representa-
tion, irreducibility will be defined in the algebraic way: If there are no proper,
non-zero, invariant subspaces. We have Schur’s lemma:

Theorem 6.3. Assume that G is “countable at infinity”, i.e. its one-point
compactification has a countable basis of neighbourhoods, i.e. G is a countable
unton of compact subsets. Let V' be an irreducible smooth representation. Then
EndgV =C.

Proof. See Bernstein’s notes, §4.2. O

For any compact open subgroup K < G, let H(G,K) = ex * H(G) x ex =
the convolution algebra of K-biinvariant measures on GG. This is the K-Hecke
algebra. On the relation between Hecke modules and irreducible smooth repre-
sentations, we have:

Theorem 6.4. Let (w,V) be a smooth representation of G. It is irreducible if
and only if for every open compact subgroup K the module VX of H(G, K) is
irreducible.
Two irreducible representations (w1, V1) and (ma, V) are equivalent if and
only if for some K the H(G, K)-modules Vi, V& are non-zero and equivalent.
Finally, every irreducible H(G, K)-module is equal to VX, for some irre-
ducible representation V of G.

Proof. See Bernstein’s notes, §4.2. O
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Let now G denote the group of k-points of a reductive group over k, a p-adic
field. The following is a combination of theorems of Harish-Chandra, Jacquet
and Howe:

Theorem 6.5. For every representation w of G on a topological vector space
(as in §77) the space V* of smooth vectors is dense. Every irreducible unitary
representation of G is admissible. Every irreducible smooth representation of G
s admissible.

Proof. The first statement is obtained easily by integrating a vector over a very
small subgroup. The second follows from the other two. So the third is really
the essential part. This is proven first for a certain class of representations
called “supercuspidal” and then by showing that all irreducible representations
are obtained as subquotients of: (start with supercuspidal on a Levi subgroup)
> (consider it as a representation of a parabolic subgroup with this Levi) v
(induce to G). These are topics which we will discuss in a future lecture. O



Chapter 28

Automorphic forms and the
Hecke algebra.

In this lecture we will see several “approximations” to the notion of an auto-
morphic form and automorphic representation, and eventually give a proper
definition. We will also discuss several sources of interest in the subject.

28.1 The case of SL, — classical approach.

Let H = {z € C|3(2) > 0}, the complex upper-half-plane. The group G =
SL2(R) acts on the left by fractional linear transformations: ( i b ) Sz =

d
%}:3. The action is transitive, and the stabilizer of z = ¢ is the compact form

of SO, to be denoted by K. Hence we can write: H = G/K,.

Remark. Notice that the center of SLy(R) acts trivially, therefore we should
really think of the action of SLy(R)/{£1}. However, this is not the same as
PSLy(R) = PGLy(R)!

Any discrete subgroup I' of G acts properly discontinuously on H (= for
any x,y € H there exist neighbourhoods U,, U, such that {y € T'|yU, n U, #
&} is finite. Therefore, the quotient T\H is well-defined as a locally compact,
Hausdorff topological space. In fact, more is true: If T (or T'/{+1}) acts freely
(which in this case is equivalent to having trivial stabilizers at all points) then
there is a canonical complex structure for the quotient. v

If T' = SLy(Z) then it doesn’t act freely (the stabilizers of z = 4, e and their
translates are non-trivial), but the quotient can still be endowed with a complex

structure. We notice that SLy(Z) is generated by the elements ( 1 1 ) and
1
-1 :

164
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We start ‘approximating’ the notion of an automorphic form, in the case of
SLo. (In this case there are two distinct families of automorphic forms: Maaf
forms and holomorphic modular forms. We will see later where this distinction
comes from. In the beginning we will take an approach leading us to Maaf}
forms.)

O0th approximation: Automorphic forms on T'\H are functions on
T\H.

This is too crude; we have to specify what kind of functions. The idea,
eventually, will be that we have a space X together with the action of a group
G and hence a representation of G on the space of functions on X. Then we
single out the functions which belong to ‘irreducible subspaces’, as a particularly
good ‘basis’ for functions on X. Let us however postpone the group-theoretic
approach, and stick to a classical point of view for now.

The space H admits a hyperbolic metric ds = d;gly, with respect to which it

is complete. The group SLy(R)/{£1} is simultaneously the group of conformal
transformations and the group of isometries! In particular, the metric descends
to the quotient T'\H. We consider the hyperbolic Laplace-Beltrami operator:!
A=—y? (aa; + a(%)'

So, we pose the problem: describe the spectrum of A — find its eigenfunctions
on I'\H.

The problem is not very meaningful a priori — we need to discuss what kind
of spectrum we have. Let us assume for a moment that I'"\H is compact. As
we have seen, this is not the case with arithmetic subgroups of SLo, but it is
true for arithmetic subgroups of quaternion division algebras. It is also true for
non-arithmetic subgroups I' which appear as fundamental groups of compact,
genus> 1 Riemann surfaces.

Remarks. 1. At this point we should explain the connection to Riemann
surfaces, which also explains the interest of other areas of mathematics
in the space which we are discussing: Let X be a compact, connected
Riemann surface of genus> 1. Then its fundamental cover (as a complex
manifold) is precisely the upper half plane H, and hence X = I'\H, where
I' = m1(X). (The group T acts freely in this case.) By the way, it often
happens that problems which people want to solve for general Riemann
surfaces are not approachable, in which case one may be able to do better
in the special case that I' is arithmetic, in which we have more tools. See,
for instance, the area of “arithmetic quantum chaos”.

2. While we are there: In contrast to PSLy(R), the arithmeticity (or arith-
metic rigidity) theorem of Margulis asserts that, if G is a connected
semisimple Lie group with trivial center, no compact factors and real

INote on the sign conventions: Usual definitions of the Laplacian are as Af = div grad f,
and another definition using the complex of differential forms and the d,§ operators (A =
dé + 0d). The latter is minus the former, and it is the convention that we follow here.
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rank greater than one, then any discrete subgroup of cofinite volume is
arithmetic.

Returning to the Laplacian, one can show that when the quotient T\H is
compact then A is a self-adjoint (unbounded) operator on L?(I'\H). There-
fore, spectral theory together with the fact that the Laplacian is elliptic implies
that L?(I'\H) admits an orthonormal basis of eigenvectors for A, with the se-
quence of real (non-negative, in the case of the Laplacian) eigenvalues tending
to infinity and that all eigenvectors will be smooth functions. Here is a better
approximation to the notion of an automorphic form:

1st approximation: Automorphic forms on I'\H are eigenfunctions
for A on I'\H.

In fact, we have just defined the notion of Maafl forms. (In the non-compact
case, we would have to add some growth condition to the definition.)

28.2 Representation-theoretic approach.

We now want to interpret the above representation-theoretically. The first step
is easy: we lift our functions to G. Let’s agree from now on that we will consider
smooth functions only — we have motivated this by observing that eigenfunctions
of the Laplacian will always be smooth. Hence, instead of thinking of functions
on IH, we think of K-invariant functions (those are also called spherical
functions) on I'\G. The benefit here is that we have an action of the group G
on this space. Therefore, depending on which category of representations we
prefer to work in, we may consider the space generated by G-translates of these
functions, which is a smooth representation of GG, or we may choose to consider
the (g, Ky )-module generated by those functions, to preserve the property of
K -finiteness.

What does this have to do with the Laplacian which we were considering
earlier? The group G does not act on functions on I'\H, and neither does its
Lie algebra. However, the center 3(g) of the universal enveloping algebra acts,
since it commutes with the action of K! In the case of SLo, 3(g) is generated by
the Casimir element C, and it turns out that C = —2A.

So, how does the requirement that our functions be eigenvectors of the Lapla-
cian arise from representation theory? Let (m,V) be an irreducible Harish-
Chandra-module of a Lie group G. (Equivalently, we could talk about an ir-
reducible admissible representation.) Then 3(g) acts by a scalar on 7 (this is
Schur’s lemma, which I forgot to write about, but follows easily from admissi-
bility), i.e. there is an eigencharacter ¢ of 3(g) such that w(D)v = ¢(D)v for
every D € 3(g). Therefore, we can strengthen approximation 1 in a natural
representation-theoretic way as:

2nd approximation: An automorphic representation on I'H is
an irreducible Harish-Chandra module 7 of G, possessing a K-
invariant vector, together with an embedding v : 71 — C*(T'\G).
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Of course, as we shall see, the requirement that there are spherical vectors is
irrelevant, and removing it will lead us to automorphic forms other than the
Maaf forms which we have been discussing so far.

The above is, in fact, an almost precise definition for an automorphic repre-
sentation on I'\G. (Though the adelic definition which we will give in a while
is a bit finer because it decomposes the 7w-isotypic space further with respect
to the action of G(Ay).) The word “almost” refers to the fact that, since the
categories of representations which we are considering are not semi-simple, it is
not justified to embed only irreducible representations.

28.3 Automorphic forms: precise definition (clas-
sical).

Let G,T be as above and v : # — C*(I'\G) and embedding of an irreducible
Harish-Chandra module. Functions in the image of v satisfy the following prop-
erties:

1. They are K -finite.
2. They are 3(g)-finite.

3. (If I'\G is non-compact) they satisfy a certain condition of moderate
growth at the cusps.

Definition. Functions on I'\G with the above properties are called automorphic
forms for T\G.

Automorphic representations will be defined as irreducible subquotients of
the space of automorphic forms, however in order to obtain a reasonable notion
which doesn’t include every representation, we have to give this definition later,
when considering the action of a much larger group.

Automorphic forms do not necessarily belong to the space of an irreducible
automorphic representation, or to a finite sum of such spaces. However, the
following fundamental theorem of Harish-Chandra ensures, in particular, that
the invariant subspace generated by an automorphic form is admissible and of
finite length:

Theorem 3.1 (Harish-Chandra). Fiz a Ky -type (i.e. irreducible representa-
tion) T and an ideal J of 3(g) of finite codimension. Then A(I\G)s -, the
T-isotypic component of the space of automorphic forms on T\G annihilated by
J, is finite-dimensional.

28.4 Hecke operators
We return to the most “classical” setting, but from now on I" will be an arith-

metic subgroup. Hecke observed that in this case the problem has more sym-
metries. For instance, let I' = SLoy(Z). Let a € GL2(Q)™, a rational matrix with
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positive determinant. (Don’t let yourselves be confused with the appearance of
GL2; you can restrict you attention to SLo(Q) if you want. But in fact, since the
center acts trivially, we want to consider the elements of PSLy(Q) = PGL2(Q)
which preserve the upper-half plane. These are precisely the images of elements
in GL2(Q)*, while SL2(Q) does not account for all of them.) If f is a func-
tion on I'\H, or, equivalently, a I'-invariant function on H, then L, f, defined as
L.f(z) = f(az), is not T-invariant any more. However, it will be invariant by
a subgroup which is commensurable to I'. Now, consider the double coset T'al’
and decompose it into (a finite number of) left cosets:

Fal’ = 0l (Ta;.

We define the operation: T, : f — f|q as: flo = >, = 1"Lof. Then fl|, is I'-
invariant! We call the subalgebra of End(Fns(I"\H)) generated by the operators
T, the Hecke algebra.

Remark. Later on, the name ‘Hecke algebra’ will be used for an abstract al-
gebra which admits a natural homomorphism into End(Fns(I'\H)), for every
arithmetic subgroup I', whose image is the ‘Hecke algebra’ we just defined. But
one should be aware of the fact that, in the literature, the term ‘Hecke algebra’
may refer to this subalgebra of End(Fns(I'\H)).

Fact. For I’ = SLy(Z), the algebra of Hecke operators is commutative.

Now observe: The Hecke operators commute with the Laplacian! Hence, we
can diagonalize them simultaneously and postulate:

3rd approximation: Automorphic forms on I'\H are simultaneous
eigenfunctions for A and the Hecke algebra on I'\H.

We won’t discuss here what happens when I' is not SLo(Z), because this will
be subsumed from our discussion of the adelic point of view.

28.5 Adelic formulation. Definition of automor-
phic representations.

Finally, we want to take into account the Hecke operators in a representation-
theoretic way. For this, we need to move to the adelic picture. From now on, G
will not denote SLy(R) but just SLs as an algebraic group over Q. As we saw in
a previous lecture, if K is a compact-open subgroup of the finite adeles G(A™)
of G then G(Q)\G(A)/K® is a finite union of spaces of the form I"\G(R), as a
G(R)-space. For simplicity, let us assume that there is only one such space, i.e.:

GQ\G(A)/E” =T\G(R).

We can do what we did in the real case: Lift our functions from G(Q)\G(A)/K®
to G(Q)\G(A), and consider the space that they generate under the G(A)-action.
This is now a smooth representation of G(A). What is the Hecke algebra in this
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setting? Assume that K = [[, K}, where K}, = SL2(Zp). (This corresponds
to the case of I' = SLy(Z) which we discussed before.)

We saw in the previous lecture that H, = H(G(Q,), K,) acts on C*(G(Q)\G(A))EK».
So, the algebra H := ®; <o Hp, where the restricted tensor product is taken with
respect to the characteristic measures of the subgroups K, acts on C*(G(Q)\G(A))%».
Its image in End(C*(G(Q)\G(A))¥») is the same as that of the operators T},
defined previously (check!). The commutativity of the T,’s follows from the
Satake isomorphism which we will discuss below. The important part to keep
in mind here is that, by our discussion of the Hecke algebra in the previous
lecture, the information about the eigenvalues of the Hecke algebra is contained
in the information about the representation of G(A).

Now the space of automorphic forms (for all arithmetic subgroups I' to-
gether!) can be thought of as the space of functions on G(k)\G(A) which are:

1. Smooth under G(A™) (i.e. invariant under a compact-open subgroup K %),
9. K,-finite,
3. 3(g)-finite and

4. (if G is k-isotropic) satisfy a certain condition of moderate growth at the
cusps (expressed in terms of coordinates of a Siegel domain).

Definition. An automorphic representation is an irreducible subquotient of the
space of automorphic forms under the G(A)-action.

Remark. Strictly speaking, this definition makes no sense because there is no
G4 action but just (g, Ko )-action. But via the finiteness theorem of Harish-
Chandra and the (Casselman-Wallach) theorem about equivalence between Harish-
Chandra modules and admissible smooth representations of finite type, we can
indeed talk about the corresponding smooth representation of G(A).

In fact, it is more natural to think of automorphic representations as abstract
(not necessarily irreducible) admissible, finite-type representations of G(A) to-
gether with embeddings v : 7 — C(G(k)\G(A)), because the images of those
automatically satisfy the required conditions and generate the space of auto-
morphic forms.

Finally, the question of “which representations are automorphic” is not ob-
scurred by the issue of embedding vs. subquotient, because the question can
be reduced to certain (“cuspidal”) embeddings, as Langlands showed using his
theory of Eisenstein series. But for now, this is probably too much technical
discussion already, and we will come back to such issues when the time is ripe.

28.6 The unitary spectrum of SL;(R); holomor-
phic modular forms.



Chapter 29

The Satake isomorphism
and automorphic
L-functions.

29.1 The tensor product theorem and unrami-
fied representations.

First we start with the tensor product theorem of Flath:

Theorem 1.1. An irreducible admissible representation m of G(A) is uniquely
isomorphic to ®. m, where:

e T, is an irreducible admissible representation of G.,.

e For almost all v, m, is unramified, and comes with a distinguished unram-
ified vectore ud

-
o The restricted tensor product is taken with respect to the ul’s.

We need to explain the second condition. It only makes sense at non-
archimedean places where G is unramified. In those places, G, has one or
more conjugacy classes of distinguished maximal compact subgroups K, called
special. They satisfy the Twasawa decomposition G, = P,K, where P, denotes
(the k,-points of) a minimal parabolic defined over k,. For our purposes, it
is enough to consider a smaller class of maximal compact subgroups called hy-
perspecial. By definition, a hyperspecial maximal compact subgroup of G, is a
subgroup of the form G(o,), for some smooth model of G over 0,. Such a model
will not exist at every place, but will exist at almost every place if G is defined
over a global field.

More precisely, let G be defined over a global field k. Then there exists
a finite number of places S such that G has a smooth model over og (the S-
integers of k, i.e. integers outside of S) — this is obvious. Moreover, if we fix
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two such models G' and G? and set K! = G(0,) then K! = K2 for almost
every v. Therefore, for the (local) discussion that follows we will have fixed a
“good” maximal compact open subgroup K, of G,. Locally there may be many
conjugacy classes of such subgroups, but we will remember that we started from
a globally defined group G and that almost all K, arose through the procedure
we just described — in particular, the definitions which we will give will coincide
at almost every place.

We drop the indices v for now because the whole discussion will be over
a non-archimedean local field (to be denoted simply by k). We are given an
unramified reductive group G over k and a “good” (=special) maximal compact
subgroup K. An irreducible smooth representation 7 is called unramified if
7% # 0. This notion depends on the conjugacy class of K. By Theorem 77, 7
is an irreducible H(G, K)-module. We will study the structure of the algebra
H(G, K) to discover that it is commutative. It will follow that an irreducible
H(G, K)-module is one-dimensional, and hence to each irreducible unramified
representation we can attach a character of the spherical Hecke algebra H(G, K).

29.2 The Satake isomorphism.

We continue in the same setting. For simplicity, let us assume first that G
is split. Let A* be the maximal torus of its dual group G. Hence, C[A*] is
the group algebra, over C, of X(A)*, the co-character group of A. We have an
action of the Weyl group W on A* and hence on its coordinate ring. The Satake
isomorphism states:

Theorem 2.1. There is a canonical isomorphism: H(G, K) ~ C[A*]W.

The categorical quotient A*//W := spec(C[A*]") is also equal to the geo-
metric quotient A* /W (and is a non-singular variety), and therefore the char-
acters of H(G, K) can be identified with points of A*/W, or in other words:

Corollary 2.2. The spherical Hecke algebra H(G, K) is commutative, and its
characters are in canonical bijection with semisimple conjugacy classes in G.

Before we discuss the general quasi-split case (which you may want to skip
at first reading, anyway), let us discuss the split case a bit more. First of all, we
notice that the dual group G is essentially absent from the above formulation:
Only its maximal torus and Weyl group are appearing. But different groups
(for example, Sp,,, and SOg,4+1) may have isomorphic maximal tori and Weyl
groups.

The best way to put the dual group into the picture is by introducing its
(algebraic) representations. First, recall the Chevalley isomorphism:

Theorem 2.3 (Chevalley). If G is a complex (connected) reductive group with
mazximal torus A* and Weyl group W then restriction of reqular functions to
the mazimal torus induces an isomorphism: C[G]¢ ~ C[A*]W (where G acts
on the left side by conjugation).
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Now, a basis for conjugation-invariant rational functions on G is given by
characters of irreducible (highest-weight) algebraic representations. Those span
a Z-lattice inside of C[G]¢ which can be identified with the algebra of isomor-
phism classes of virtual representations of G. (The algebra structure comes from
tensor product, which is translated to multiplication of characters.)

There is a better version of the Satake isomorphism, where one starts with
the Z-lattice of integral-valued measures in H(G, K) and establishes a natural
isomorphism with this Z-lattice in C[G]%!. This makes clearer the relevance of
G. For more details, see the article of Gross “On the Satake Isomorphism” in
the Bulletin of the AMS.

A yet better isomorphism — because it is not of combinatorial nature — has
been proven in the context of the Geometric Langlands program. (By Mircovic
and Vilonen following, I understand, a suggestion of Drinfeld.) Here instead
of algebras you have categories with extra (tensor, etc.) structure, of which
the Hecke algebra — resp. the ring of invariant polynomials on G — are just
shadows. More precisely, the Hecke algebra is substituted by a category of
perverse sheaves on the “affine Grassmannian” of G' (and the map back to the
Hecke algebra is by Grothendieck’s “function-sheaf correspondence”), and it is
shown that this category has extra structure which makes it equivalent to the
category of representations of a reductive group G. Hence, the group G arises
naturally from this category associated to G and not vice-versa.>

Unramified principal series. While the above remarks were for general
educational purposes and in order to read some foreign words, now we will
discuss an aspect of the Satake isomorphism which is very basic to us: The
torus A* can be identified with the torus of unramified characters of A (where
A is a maximal, split torus of G). Here unramified means the same as above, but
the maximal compact subgroup Ag of A can easily be described: It is the kernel
of all characters of the form a — |x(a)| where x € X(A) and | e | denotes p-adic
absolute value. Hence, unramified characters are of the form (non-uniquely):
[x1]%* - |x2|%2 - - - |xr|°", where the x;’s are algebraic characters and s; € C.

Exercise. Prove that A* can be canonically identified with the group of unram-
ified characters of A.

Let B be a Borel subgroup containing A. An unramified character x of A
can be considered also as a character of B via the quotient map: B —» A. The
induced representation: I(x) = Ind§(xd2) = {f : G — C|f(bg) = x62 (b)f(g)}
(we will describe later what ¢ is, for now ignore it) is called an unramified
principal series. Why is it unramified? Because of the Iwasawa decomposition:
G = BK, there is a unique line of unramified vectors in I(x), represented by
functions which are constant on K.

IThis is slightly imprecise, one needs a ring larger than Z to make it an isomorphism.

2The setting of the Geometric Langlands program does not include, unfortunately, a local
or global field in characteristic zero, and hence the results are not easily transferable. Some
very important bridges, however, have recently been created, which led, in particular, to the
proof of the Fundamental Lemma.
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We will discuss these representations in more detail later (their construc-
tion entails the following general feature: one understands representations of G
with the help of some basic “building blocks” 4 induction of the correspond-
ing “building blocks” for Levi subgroups), for now I'm just writing some general
properties: The representation I(y) is not always irreducible, but it has a unique
unramified irreducible subquotient which we will call m,,. (Why unique? Be-
cause “K-invariants” is an exact functor! If you want to start understanding
these representations, try to understand th this statement and why it is true!)
Moreover, T, is isomorphic to mw, for every w € W. So, let me hasten to tell
you what is the explicit truth behind the Satake isomorphism: The irreducible
character of H(G, K) corresponding to a point [x] € A*/W corresponds to the
irreducible unramified representation I(x) of G.

We notice also the following straightforward reformulation: There is a bijec-
tion:

{ semisimple conjugacy

conjugacy classes of unramified
classes in G }

(i.e. inertia is in the kernel) homomorphisms
with semisimple image: Wy — G

where W, is the Weil group of k& (not to be confused with W}, which will stand
for the relative Weyl group of G). The correspondence is simply:

(conjugacy class of g) < (conjugacy class of the map Frob — z).

In the general (quasi-split, but not necessarily split) case we let P be a min-
imal k-parabolic of G and M a Levi subgroup of it. Hence, M is the centralizer
of a maximal k-split torus S. We let W, = N(S)/Z(S) be the relative Weyl
group. It acts on the group of unramified characters of M. Let X denote the
group of these unramified characters; again, it naturally has the structure of a
complex torus. Then:

Theorem 2.4. There is a canonical (up to scalar multiplication) isomorphism:
H(G,K) ~ C[X]W.

Again, of course, the representation corresponding to a given point on X /Wy,
is the representation induced from the corresponding character of M, considered
1
as a character of P, i.e. the representation I (x) := Ind%(x63). (Again, §p will
be explained below.) Moreover, there is a bijection:

conjugacy classes of unramified
X/Wy < < (i-e. inertia is in the kernel) homomorphisms
with semisimple image: W, — LG over W

where “over W;” means that the composition Wy, — LG — Gal(k/k) is the
identity on Wy. (Recall that for unramified groups, Gal(k/k) acts on G via its
unramified quotient.)

For more details, see the article of Cartier in the Corvallis proceedings.
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29.3 Sketch of proof of the Satake isomorphism.

First, we explain the meaning of the modular character dp: It is the absolute
value of the modular character 0p for P = M x N, look back at the section on
Tamagawa measures. In other words, it is the quotient between right and left
Haar measure on P. For P = B we have denoted dp simply by 6.

The idea of the proof is to let H(G, K) act faithfully on a space whose
structure we understand. Having in the back of our heads that the eigenfunction
of H(G, K) corresponding to a given x € X lives in I§(x)¥, and thinking of
Ig(x)K as a subspace of the space of functions on N\G, the space in question
will be related to N\G.

More precisely, let My denote the common kernel of all unramified characters
of M (equivalently, the maximal compact subgroup of M). The quotient M /M,
is a lattice A, and the group ring C[A] is by definition the same as the coordi-
nate ring C[X] (unfortunately the same notation for group rings and coordinate
rings!). Let M(N\G) denote the space of compactly supported, smooth mea-
sures on N\G. The group M x G acts on it (with M acting “on the left” and G
acting “on the right”). By convention, we normalize the action of M so that it
is “unitary”: m - f(Nz) = 5;%(m)f(me). (The word “unitary” makes sense
only if we identify those measures with functions in L?, by fixing a G-invariant
measure on N\G; in any case, by normalizing the action of M this way on all
possible spaces of functions, measures etc. on N\G we have the benefit that
C*(N\Q) is the smooth dual of M(N\G) under the M x G action.)

The subspace M(N\G)Mo*K is a module for H(M, My)@H(G, K). Clearly,
H(M, My) ~ C[A] as an algebra. Moreover, by the Iwasawa decomposition:
N\G/K = A, therefore M(N\G)Mo*E can naturally be identified as a vector
space with C[A]. To make this identification H (M, Mp)-equivariant, we nor-
malize this identification as follows:

it M(N\G)ME 5 1y s ip(m) = 652 (m)u(NmK) € M(N\G)Mox K.

This way, the action map H(M, My) : h — h * 1n1x, where 1x1x denotes the
characteristic measure of N1K, gives rise to a commutative diagram:

H(M,My) —— C[A]

| |

M(N\G)MoxE L, C[A].

Up to now we only considered the action of M to justify our statement
that “we understand the structure of the space M(N\G)Mo*K”  Now let us
consider the action of H(G, K), more precisely let S : H(G, K) — C[A] be the
composition of the action map: H(G,K) 3 h — h# 1y1x with the map i. (S
is called the Satake map.) Given that the actions of H(G, K) and H(M, My)
commute, we get immediately:

S is a homomorphism of rings.
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Therefore, the Satake isomorphism rests upon showing that:

Lemma 3.1. S is injective and its image is C[A]"*.
Injectivity is easy; the statement about the image is less straightforward.
See Cartier’s article for more details.

29.4 Automorphic L-functions.

Let k be a global field and G a reductive group over k. Fix a finite set of
primes S, which includes the archimedean primes and those primes where G
is ramified. By the tensor product theorem and the Satake isomorphism, for
every collection {t,},¢s of (twisted) semisimple conjugacy classes in G, we get
a unique isomorphism class of everywhere unramified representations of G(A®):
T = ®'m,, where 7, is the unramified representation of G, with Satake param-
eter t,. The question is: which such collections {t,} give rise to automorphic
representations? It turns out that the requirement that a representation be au-
tomorphic imposes very strong conditions on the ¢,’s. We certainly don’t know
or don’t understand all those conditions, but we can express some of them in
the language of L-functions.

Automorphic L-functions are defined as Euler products (i.e. products of
the form HU L,, where L, is called the “local L-factor” and the product is
over all places of k). The problem is that we don’t know in all cases how to
define the local L-factor, unless we are given the validity of the Local Langlands
Conjecture. Therefore, we will define partial L-functions of the form: L% =
HU¢ g L, and discuss properties of those. These won’t cover all desired properties
of automorphic L-functions (e.g. the generalized Riemann Hypothesis), but still
the properties that they cover are already very important.

First, we discuss the case of the group G = GL,,. Let 7 = ®/ m, be an
automorphic representation of G, and let S be a finite set of places which in-
cludes the places where G is ramified, the places where 7 is ramified and the
archimedean places. We define the partial L-function L°(r,s) as a function of
one complex variable s by the product: L(7,s) = [Logs L3 (m,s) for Rs » 0,
where L, depends only on m,. More precisely, to 7, corresponds by the Satake
isomorphism a semisimple conjugacy class ¢, in GL,(C), and if {ay, as,...,a,}
are the eigenvalues of t,, then we set:

= 1
L,(s) = —_
U( ) E 1 _ aans
Here is a very strong property that the ¢,’s satisfy:

L3(m,s) admits meromorphic continuation to the whole complex
plane.

This was proven by Godement and Jacquet, whose proof was inspired by the
thesis of Tate which treated the case n = 1. More is true; for instance the
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L-function satisfies a functional equation. But this would require defining all
local L-factors, and we will skip it for now. Some further expected properties of
automorphic L-functions will be understood in the when we discuss the “Galois
side” of the Langlands conjectures and Artin L-functions.

In fact, it is expected that one should be able to “play” with the coefficients a;
and still produce L-functions with the same properties. This can be understood
via the functoriality principle, which will be discussed in the next lecture, so for
now we will confine ourselves to defining these automorphic L-functions which
are expected to have (at least) meromorphic continuation.

Let G be a reductive group over k, 7 = ®) m, an automorphic representation
of Gand p: G — GL,(C)xGal(k/k) an algebraic representation of its L-group
over Gal(k/k). We define the partial L-function L (7, p,s) = [Logs Lo(m, p,5)
for Rs » 0 where L,(m,p,s) depends only on 7, and p as follows: Let T, €
GL,,(C) be the image of the Frobenius under the composite:

Frob — G — GL,

where the first map is the Satake map and the second is p. Then:

1

Lv ) = 377 o —sm 1\
(m,0:5) = GotT = 4=

Of course, this definition coincides with the previous one when G = GL,, and p
is the identity representation.
Part of the Langlands conjectures is:

L(m, p, s) has meromorphic continuation to all s.

Concluding, it should be remarked that from the point of view of analytic
number theory, L-functions are the most important objects and their coefficients
such as a; (above) have arithmetic significance. The fact that combinations of
those (expressed by the representations p of the dual group) always give Euler
products with analytic properties such as meromorphic continuation has very
strong consequences, and I have heard Langlands say that “functoriality was
invented to prove properties of L-functions”.? Even proving a special case of
“L(m, p, s) has certain properties” (which in practice means proving a special
case of functoriality) is considered to be a “big deal”.

3At Arthur’s birthday conference; possibly not an exact quote.



Chapter 30

The Langlands conjectures
and arithmetic.

30.1 Weil groups and Weil-Deligne groups.

Let k be a local field, and let W} denote its Weil group. Recall that class field
theory establishes a canonical isomorphism:

WP ~ k.

In fact, we have only explained what is the Weil group in the case of local non-
archimedean fields. We give here the general definition: a Weil group for a local
field k£ is a topological group Wy together with a continuous homomorphism:
Wi, — Gal(k/k) with continuous image, as well as an isomorphism WP ~ k.
It is required to satisfy certain natural conditions, for instance the composed
map: kX — Gal(k/k)* should be that of local class field theory. See the article
of Tate in the Corvallis proceedings for details. A Weil group over a global field
is defined in precisely the same way, except that one should substitute k> with
the idele class group A} /k*. Weil groups exist and are unique up to unique
isomorphism.

I remind that for local non-archimedean fields the Weil group can be con-
sidered as the preimage in Gal(k/k) of (Frob) under:

—

1 — I — Gal(k/k) — (Frob) — 1

where I}, denotes inertia. The same essentially holds for global function fields:
If X is a smooth projective curve over F, then one has a short exact sequence:

1 = Gal(Fy (X)/Fy (X)) — Gal(F,(X)/F, (X)) - [Frob) — 1

where Frob denotes the “geometric Frobenius” (which generates Gal(F,(X)/F,(X))).
Again, the Weil group is the subgroup of the Galois group which maps to powers
of the Frobenius.

177
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If £k = C then W), = C*. If £ = R then W}, is generated by C* and an
element j such that j2 = —1 and jzj~! = Z for z € C*. For number fields there
is no simple explicit way to describe the Weil group.

At first reading, one might find all these definitions too technical and un-
motivated, and could think of the Weil group as some incarnation of the Galois
group. The truth is that it contains more information than the Galois group:
for instance in the case of a local non-archimedean field, we don’t just have the
Galois group of k% /k (which is ~ Z) but also a distinguished topological gen-
erator for it, namely the Frobenius. And local class ﬁe;lii theory is not just an
isomorphism between the completions Gal(k/k)*” and k*, but also between the
distinguished dense subgroups W and k£*. Dually, if you want to parametrize
representations (characters) of k* you will use the Weil group, not its comple-
tion. The characters of W}, which extend to the Galois group are precisely those
of finite order, and the corresponding characters of k* are called “of Galois
type”.

The truth is also that the Weil group is not the end of the story for global
number fields. There should be some extension of it which parametrizes (au-
tomorphic) representations. But we will discuss this problem below. For now,
I mention one more complication: In the case of non-archimedean local fields
one needs to introduce the Weil-Deligne group WDy, := Wy, x Go(C) (I write
G4 (C) instead of C to keep in mind that all representations we will encounter
should be algebraic in this factor) where the semidirect product is defined by:
wzw™ = |w|z. Let [ be a prime different from the residue characteristic of k,
and let G be an algebraic group over Q. The following fact is true:

There is a natural bijection between continuous representations:
Wy, — G(Q) and continuous representations (algebraic in the G-
factor): WDy, — G(C).

Therefore, if you want, the natural setting might be that of [-adic representa-
tions, in which case there would be no need for the Weil-Deligne group. But
since we prefer to work with complex representations, we introduce the Weil-
Deligne group. (I also remark that while switching from complex to l-adic
representations is very easy over a local, non-archimedean field, since we always
take [ to be other than the residue characteristic, over a number field this is
not the case and there is a very rich theory of l-adic representations which is
vigorously being developed at the moment — usually called the p-adic Langlands
program, where p stands for !.)

From now on, when we talk about “representation” of Wy, or W Dy, into some
complex algebraic group, we will automatically and without further mentioning
assume the following two conditions (except, of course, for continuity):

1. Any Frobenius element is mapped to a semisimple element. (Equivalently,
all elements of Wy have semisimple image.)

2. The representation is algebraic on the G,-factor of W Dj,.
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In what follows we will denote by £y, (for “Langlands group of the field”) the
WEeil group of k, if k£ is an archimedean local field, and the Weil-Deligne group
of k, if k is a non-archimedean local field.

30.2 Local Langlands Conjecture

The local Langlands conjecture generalizes the statement of local class field
theory (in its dual form:

{Homomorphisms: L — G,,(C)} < {Irreducible representations of G,,(k)})

to an arbitrary connected reductive group G, which (roughly speaking) takes
the form of G,,, on the right hand side, while its L-group “G takes the form of
G,,, on the left hand side.

Before we proceed, I will describe the picture for PGL5 over a non-archimedean
local field. (Notice: discussing representations of PGLy is exactly the same as
discussing representations of GLy with trivial central character.)

Example 2.1. Let G = PGLy over k: a non-archimedean local field. We let B
denote a Borel subgroup, A a maximal torus in B (hence A ~ G,,,) and I(x) =

Indgglz;()@%), for any character y of A (thought of as a character of B). The

representations I(y) are irreducible with I(x) ~ I(*Y), except when x = wé*z,
where w is a quadratic character. In those cases, I(x) has two subquotients,
one of which is the one-dimensional space of the character w (considered as a
character of PGLy(k)), and the other is an infinite-dimensional representation
which in the case of w = 1 is called the Steinberg or special representation. (For
all w, let us call those the Steinberg-type representations.) Which of the two
shows up as a subrepresentation, and which shows up as a quotient depends on
whether we induce from wd? or from wd~ 2.

To those representations we want to associate a homomorphism: WD) —
GL2(C) up to GLy(C)-conjugacy, called a Langlands parameter. First, to the
unramified ones we will associate the homomorphism which is compatible with
the Satake isomorphism: The group W Dy has a cyclic quotient generated by
Frobenius, and the map will be:

VV[)]C - <FI‘Ob> i GLQ(C)

where Frob is mapped to an element in the conjugacy class of x. (Recall that
unramified characters of A(k) can be identified with elements of A*, the maximal
torus of the dual group.)

More generally, for every character x of A(k) we have by local class field
theory a homomorphism: Wy — G,,,(C) = A* and the composite:

WDk- g Wk —>A*

is the map that we associate to I(x), if it is irreducible, or to its one-dimensional
subquotient, if it is reducible.
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Finally, we need to describe the Langlands parameter for the Steinberg
representation and the similar subquotients of I (wéé). Recall that WDy, =
Wi x G4(C). We map again Wy, to A* according to local class field theory, and
we map G, to a unipotent subgroup normalized by A*. Check that this is a
homomorphism of groups!

Remark. In general, the additional “unipotent” parameter coming with the G-
factor of W Dy, has to do with the fact that a certain induced representation is
reducible.

To finish the list of irreducible representations of G(k), there are those which
are not subquotients of any parabolically induced representation, called super-
cuspidals. We know now that those are in bijection with conjugacy classes of
homomorphisms: WDy — GL2(C), which factor through the quotient Wy but
such that the image of Wy, is not contained in a Levi of GLa (with ‘Levi’, in this
case, meaning just ‘torus’). In other words, they are parametrized by something
which is genuinely out of the scope of class field theory, and which sees deeper
than the abelian quotient of W,.

We return to a general G. To every irreducible admissible representation of
G(k) one should be able to associate a conjugacy class of representations

o: L, -G

over Gal(k/k) (i.e. compatible with the maps of both sides to Gal(k/k)), called
a Langlands parameter. Recall that we have required from all representations
of L}, to satisfy certain conditions, see the previous subsection.

If the group is not quasi-split, then the Langlands parameter should satisfy
some extra conditions (recall that quasi-split forms and their inner forms have
the same L-group). More precisely, the image of the Langlands parameters
cannot lie inside the Levi of a proper (standard) parabolic of G, unless the
dual of that parabolic is a k-rational parabolic of G. (Such Levi subgroups are
called “relevant”. The notion of “dual parabolic” has to do with the fact that
standard parabolics are in bijection with subsets of the set of simple roots, and
that the sets of simple roots of G and G are in bijection by passing from a root
to its co-root.) For instance, for the multiplicative groups D* of quaternion
division algebras we only have Langlands parameters which are the analogs
of supercuspidal and “Steinberg-type” parameters, not those corresponding to
principal series. This is related to the fact that there are no k-rational Borel
subgroups to induce from. Notice that even the trivial representation of D* has
ramified parameters; it turns out that its parameters are the same as those for
the Steinberg representation of GLy!

In the case of GL,, this should be a one-to-one correspondence:

{Conjugacy classes of Langlands parameters ¢ : £, — GL,,(C)}

< {Isomorphism classes of irreducible admissible representations of GL,,(k)}.

In the general case, this is no longer true. For every conjugacy class of Lang-
lands parameters ¢ one should have a finite, non-empty set 114 of isomorphism
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classes of irreducible representations (the L-packet), and these L-packets are a
disjoint partition of the set of all irreducible representations. Representations in
the same L-packet are called L-indistinguishable and the existence of L-packets
is the dual phenomenon to the fact that the k-points of a G(k)-conjugacy class
can split into several G(k)-conjugacy classes, although the relation between
these two phenomena can only be understood when we talk about the trace
formula.

Hence in the general case we write:
{Isomorphism classes of irreducible admissible representations of G(k)}

— {Conjugacy classes of Langlands parameters ¢ : £, — “G}.

It is essentially known how elements of an L-packet should be parametrized.
See Vogan, The Local Langlands Conjectures.

30.3 The Global Langlands Conjecture

Let now k be a global field, and G a connected reductive group over k. There
should be a “Langlands group” for k& which should be used to parametrize au-
tomorphic representations. For function fields, this is just the Weil group. For
number fields we don’t know what it is, but it is expected to be an extension of
the Weil group. (Here I should say “extension of the Weil group by a compact
group, but then I should have chosen a different — equivalent — incaranation
of the Weil-Deligne group locally, and that would be confusing at this point.)
It should be equipped with maps Ly, — Ly, for every place v, such that the
following diagram commutes:

Ly, —— Wi,

| |

Ly —— Wy

To each automorphic representation 7 one should be able to attach a Lang-
lands parameter:

é: L, — LG

over Gal(k/k), satisfying again similar conditions as in the local case. It should
have the property that if 7 ~ ®! m, then the Langlands parameter for m, should
be the composite: Ly, — L — LG. Vice versa, for every Langlands parameter
one should have a non-empty packet of automorphic representations (the L-
packet) and the set of all automorphic representations should be the disjoint
union of all L-packets. Again, for GL,, the L-packets should be singletons.
This compatibility with the local Langlands correspondence is a very in-
formative and meaningful statement, even when we don’t completely know or
understand the local Langlands correspondence. Indeed, recall that m, is un-
ramified for almost every v, and for those representations we know the local
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Langlands parameters. We notice that every local L-packet should have at
most one unramified representation (for a given special maximal compact sub-
group). Therefore, two automorphic representations in a global L-packet should
have the same unramified local parameters almost everywhere.

30.4 Functoriality

Although the global Langlands conjecture cannot be properly formulated with-
out knowing what the Langlands group should be, it already has some striking
consequences which can be formulated quite precisely. Namely, let G1, G5 be two
reductive groups and let p be a homomorphism of their L-groups over Gal(k/k):

p: gy - L@,

Then, composing every Langlands parameter into “G; with p, we get a
Langlands parameter into “Gy. This tells us: to every automorphic representa-
tion of Gy should correspond, via p, an automorphic representation of G2. The
word “correspond”, here, has a very strong meaning by our knowledge of local
Langlands for unramified representations. Indeed, by the Satake parameter the
map p provides an association m, v II, from unramified representations of
G1(ky) to unramified representations of Gy (k,) (for fixed special maximal com-
pact subgroups). Therefore, if 7 ~ ®/ m, is an automorphic representation of
(1, then there should be an automorphic representation 7 ~ ®/ 7, of G with
Ty =~ II,, almost everywhere.

Notice that if G2 = GL,, then we get an n-dimensional representation of G
over Gal(k/k), and the L-function L(m, p,s) of an automorphic representation 7
of G is equal to the “standard” L-function L(7, s) of its functorial lift 7 to GL,,
(at least, the partial L-functions outside of a finite set of places S are equal,
since we have not discussed local L-factors for “bad” places yet). In particular,
if functoriality holds then every automorphic L-function is equal to a standard
L-function for GL,; in particular, the results of Godement and Jacquet hold.
Hence, through functoriality one would establish good analytic properties for
automorphic L-functions, e.g. meromorphic continuation.

Finally, we mention another “game” that one can play with Langlands pa-
rameters. The Langlands groups should behave like Galois groups, for instance
if E/k is an extension then L£g should be the preimage of Gal(k/E) < Gal(k/k)
in L. Hence, if 7 is an automorphic representation of G over k, by restricting
its Langlands parameter to Lg one gets a Langlads parameter for G regarded
as an algebraic group over E (i.e. for G Xgpeck spec E), and hence to every au-
tomorphic representation of G over k should correspond (in the same sense as
above) an automorphic representation of G over E called the base change of
m. This is, in fact, a special case of functoriality (as I ask you to prove in the
exercises).



Chapter 31

Complex representations of
p-adic groups.

31.1 references

o W. Casselman, Introduction to the theory of admissible representations of
p-adic reductive groups. Available online at:
http://www.math.ubc.ca/ cass/research/p-adic-book.dvi.

e J. Bernstein, Lectures on representations of reductive p-adic groups. Notes
by Karl Rumelhart. Available online at:
http://www.math.uchicago.edu/~mitya/langlands/Bernstein/Bernstein93new.dvi.

e J. Bernstein, Le “centre” de Bernstein. Edited by P. Deligne. Travaux
en Cours, Representations of reductive groups over a local field, 1-32,
Hermann, Paris, 1984.

e P. Cartier, Representations of p-adic groups: A survey. In the Corvallis
proceedings, Vol 1. Available online at:
http://www.ams.org/online_bks/pspum331/.

e C. Moeglin, Representations of GL(n, F') in the nonarchimedean case. In:
T. N. Bailey and A. W. Knapp, Representation Theory and Automorphic
forms, Proceedings of Symposia in Pure and Applied Mathematics, AMS
1997.

Rami: The following outline is just an example — feel free to not follow it.

31.2 Introduction

Motivation from automorphic forms: We want to do harmonic analysis on the
space G(Q)\G(A), i.e. to study functions on the space as a representation of
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the group G(A). Two steps: First understand abstract representations of G(A),
then try to understand which ones are automorphic, i.e. “show up” in functions
on this space. Understanding representations of G(A) is essentially the same as
understanding representations of G(k,), for every completion v.

Historical remark: In the beginning, people were considering just the space
NGR) = GQ\G(A)/K¢ (K a compact open subgroup of the finite adeles
of G) as a G(R)-space: Ky -types, invariant differential operators (i.e. action
of U(g)). But they knew (for arithmetic I only, not for arbitrary discrete
subgroup!) that there are more symmetries to the problem, certain operators
(Hecke operators) which commute with G(R) action (for instance, commute
with Laplacian=Casimir.) Gelfand and Graev first understood that there is an
action of G(Q,) hiding behind that.

What is the correct category of representations? The space G(Q)\G(A)
carries an invariant measure, so one can study L?(G(Q)\G(A)); in particular
we can restrict our attention to unitary representations. This turns out too
difficult to do from the very beginning, will study a more “algebraic” category of
(infinite-dimensional, in general) representations and then we can ask ourselves
which ones are unitarizable.

31.3 Smooth representations

From now on, we think G = the topological group of points of a reductive group
over a local non-archimedean field.! Some general definitions:

Define smooth representation. Define Hecke algebra as the convolution alge-
bra of locally constant, compactly supported distributions (= measures) on G.
Remark: Choice of Haar measure makes this isomorphic to smooth, compactly
supported functions, but this is not a canonical way to think about them.

Hecke algebra is an idempotented algebra. Equivalence of categories between
smooth representations of G and non-degenerate / unital modules for H(G).

Remark (not for the class): The idempotents define projections, and you
can take inverse limit 7. These can be thought of as distributions on G which,
when convolved with an open compact subgroup, become compactly supported.
The center of G (the center of the category of smooth representations) can now
canonically be identified with the center of .

Schur’s lemma. (Prove it if you want.) Remark: There is a bijection between
the set of irreducible representations of G and irreducible subspaces of C*(G)
under the G x G action (via matrix coefficients), or (by dualizing) irreducible
quotients of CX(G).

In fact, to dualize in the above statement, you need reflexivity of irreducible
representations, so: Define admissible representations. Define contragradient
(smooth dual) 7 of .

Lemma 3.1. The following are equivalent:

1But you can give the definitions in the generality you consider appropriate, for instance
l-groups and [-spaces.
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1. w is admissible.
2. 7 is admissible.
3. 7=m.

Admissibility of irreducibles follows from their construction as subquotients
of parabolically induced. Example of non-admissible: The space of smooth,
compactly supported functions on a non-compact G-space.

31.4 Induction, restriction.

Define induced, compactly induced representations. Induction is right-adjoint
to restriction (Frobenius reciprocity), but in general there is no left-adjoint.
Compact induction is left-adjoint if subgroup is compact open. For parabolic
subgroups, induction and compact induction agree.

Parabolic induction (twist by 61%, to preserve unitarity) and Jacquet restric-
tion. Preserves admissibility. Supercuspidals < matrix coefficients have com-
pact support modulo center < both injective and projective in the category of
smooth w-representations, where w is the central character.

Talk about the Bernstein center.

31.5 Intertwining operators

Talk about distributions on [-spaces and show an example of how we find in-
tertwining operators between parabolically induced representations: Write the
filtration of your space by orbits, show how to compute the Jacquet module of
the graded piece corresponding to each orbit, show how you can represent the
equivariant distribution on that orbit by an integral and say that a “natural”
way to extend this distribution to the whole space is by making sense of the
same integral: It will typically converge somewhere, and have rational continu-
ation. Do not do that at the level of general statements, just an example, e.g.
principal series on GL,,.



Appendix A

Some category theory

A.1 Some category theory

This is by no means any complete account of any of the topics — consult a
textbook such as Gelfand and Manin, Methods of homological algebra. We view
category theory as just a language which allows us to avoid repeating the same
arguments over and over again — hence the abstract definitions are less important
than the actual properties.

A.2 Some universal objects

We start by reminding the universal properties defining some objects. (As
usual, a universal property defines the object, if it exists, uniquely up to unique
isomorphism.)

A.2.1

The (direct) product X x Y is an object Z together with morphisms Z — X
Z — Y such that “any pair of morphisms Z' — X,Z’ — Y factors uniquely
throught Z”. (The expression in the quotation marks means that there is a
unique morphism Z’ — Z such that the given morphisms are obtained via the
obvious compositions.)

A.2.2

The fiber product X xgY of a diagram X — S « Y (“fiber product of X
and Y over S”) “is” the direct product in a new category Cs whose objects are
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morphisms X — S and whose morphisms are commutative diagrams:

X—Y

.

S

We put the word “is” in quotation marks because we think of the fiber product
as an object Z in C with morphisms X < Z — Y such that the compositions
with the maps to S coincide. A diagram:

7 ——Y
X——S5
where Z is the fiber product of X and Y is called cartesian. (So, notice that

“cartesian” is much stronger than “commutative”; it’s not enough that the
composition of the arrows is the same over all paths.)

A.2.3

The coproduct X u'Y “is” the product in the opposite category C°. (Similarly:
the fibered coproduct or pushout X ug Y, the notion of cocartesian square etc.)

Ezercise. Describe those objects in the categories of sets, vector spaces, topo-
logical spaces, and Banach spaces.

A.24

An epimorphism is a morphism f : A — B with the property that for any

commutative diagram:
g1

xLy3z
g2
we have g1 = go.

A monomorphism is a morphism which is an epimorphism in the opposite
category.

An isomorphism is both a monomorphism and an epimorphism, but the
opposite is not always true. Example: in the category of topological spaces, the
map:

[0,1) 20— ™0 e ST,

A.2.5

An object P is projective if the functor:

Hom(P,e) : C — Sets
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preserves epimorphisms, that is: every epimorphism Y — X lifts to a morphism:
P — Y. (“Lifts” means that the resulting diagram:

P——Y

N\

X

is commutative.)
An object is injective if it is projective in the opposite category.

A.2.6

To be added: limits and colimits.

A.3 Abelian categories
A.3.1 Axiom 1

The sets Hom(X,Y") are abelian groups, and the composition of morphisms is
bi-additive (i.e. satisfies the distributive law on both the left and the right).

A.3.2 Axiom 2

There exists a zero object 0 in C, that is, an object such that Hom(0, 0) is the
zero group. (This implies that both Hom(0, X') and Hom(X, 0) are zero for all
objects X.)

A.3.3

Assume that Axioms 1 and 2 are satisfied. The kernel of a morphism X 2y
is a morphism K %, X such that ¢ ® k = 0 and which is a final object for

the category of these morphisms. (That is, for any K’ ., X there is a unique
K' — K with ¥’ = koh.)
A cokernel is a kernel in the opposite category.

Ezercise. Define kernels and cokernels in the categories of vector spaces and
topological abelian groups (or Banach spaces, if you prefer).

A.3.4 Axiom 3
pP1 P2

For any two objects X, X there exist an object Y and morphisms X; S Y 2
11 12
Xo such that p1iy = Idx,, paio = ldx,,i1p1 + tap2 = Idy, pois = p1iz = 0.
A corollary of the axiom is: Y is both the product and the coproduct of X;
and X5. However, the axiom is slightly stronger than that.
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A.3.5

A category which satisfies Axioms 1-3 is called an additive category.

A.3.6 Axiom 4

Kernels and cokernels exist, and moreover any morphism ¢ : X — Y fits into a

sequence: K ExLrly LN K’ with the properties:
1. joi=¢;
2. K — X is the kernel of ¢, and Y — K’ is the cokernel,
3. I is both the kernel of j and the cokernel of i.

Remark. Think of I as the “image” of ¢.

A.3.7 Monomorphisms and epimorphisms

An additive category which satisfies Axiom 4 is called abelian. We will now see
some properties of abelian categories — from now on all categories are abelian
without mentioning it:

Lemma 3.1. A morphism is a monomorphism iff its kernel is zero, and an
epimorphism iff its cokernel is zero. If both the kernel and cokernel are zero,
then it is an isomorphism.

Ezercise. Show that this fails for the category of Banach spaces (or, more simply,
the category of topological abelian groups). Which of the axioms fails in this
case, and how?

A.3.8 Simple objects

A simple object in an abelian category is an object A such that any monomor-
phism B — A is either 0 or an isomorphism.

Lemma 3.2. If A is a simple object then any morphism m : B — A is either
0 or an epimorphism.

Proof. If we split m as in Axiom 4, we have:
0-K—->B—->I—>A->K —0.

Then I — A is a monomorphism, hence either an isomorphism (in which
case K’ is zero and m is an epimorphism) or zero (in which case m is zero). O

Ezercise. Show that we could have defined simple objects in the dual way, i.e.
applying this definition to the opposite category.

Corollary 3.3 (of the lemma and the exercise). Let A, B be simple objects.
Then either they are isomorphic, or any morphism: A — B is zero.
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A.3.9 The splitting lemma

A sequence -+ — X %, i1 o, Xiyo — -+ is called exact if, for all 4,
ker(¢;41) = coker(¢;).

Lemma 3.4. For short exact sequence 0 — A > B 2,050 the following are
equivalent:

e « splits (i.e. there is a morphism a : B — A such that a o o = 1d);
o [ splits (i.e. there is a morphism b : C — B such that fob=1d);

e B is isomorphic to AU C (direct product, or direct sum, is the same since
the category is abelian).

Proof. Let us first prove that the first implies the second: Given a splitting of «,
we first construct a morphism: o' : B — B as follows: V' = Idg —a oa. (Recall
that the Hom sets are abelian groups.)

The composition of « and ¥’ is zero. By the universal property of cokernels
(since C' is the cokernel of the map B — A), we have a unique b : C' — B such
that b’ = bo 3.

We now show that 5 ob = Ide. The morphisms 5 = Idg o8 and Bobo 3:

B—-Cz3C
coincide since:
BoboB=pB0b =po(ldg—aoca)=Loldg,

given that foa = 0.

But since B — C is an epimorphism, this implies that the two arrows from
C' to C coincide, that is: fob = Ide.

The fact that the second statement implies the first follows in exactly the
same manner.

Now we prove the third part assuming the other two (the converse is easy):

From a and § we get a morphism: B LAavc (by the universal property
of direct products). We claim that it is a monomorphism. Indeed, assume that

D % B has the property that its composition with j is zero. That means that
B o ¢ is zero; but then ¢ factors through a, i.e. ¢ = a0 ¢’ for some ¢' : D — A
(since A is the kernel of §); but we also have ao ¢ =aoao ¢’ = ¢’ is equal to
zero, hence ¢ is zero. This implies that the kernel of B — A U C' is zero.
Similarly, we can prove that j is an epimorphism (exercise!). Therefore it is
an isomorphism! O

A.3.10 Jordan—Holder theorem

A finite composition series for an object A in an abelian category is a sequence
of monomorphisms:

O:A0—>A1—>A2—>--'An:A,
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such that the graded pieces (gr A); := A;/A;_1 are all simple objects (hence
non-zero). (For simplicity of notation, we have denoted here by A;/A;_; the
cokernel of A;_1 — A;.)

An object which admits a finite composition series is said to be of finite
length. Tts length is a well-defined integer, as the following theorem shows.

Theorem 3.5 (Jordan—Hélder). If A is an object of finite length, then all com-
position series of A have the same length, and the (unordered) set of simple
objects

JH(A) := {(gr A)i}ie

(the Jordan—Holder content of A) is “the same” (=bijection of isomorphic ob-
jects) for all composition series of A.

Proof. Exercise! O
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