TITLE	Plan	A Geometric J-L Transfer	Geometric Satake	Proof
•	o	0000000	00000000000000000000000000	00000000000000000000000000000000000

A Geometric Jacquet-Langlands Transfer for Automorphic Forms of Higher Weights

Jize Yu

Institute for Advanced Study

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PLAN OF PRESENTATION

► Main theorem 1:

A geometric Jacquet-Langlands transfer

► The principal ingredient: main theorem 2

The geometric Satake equivalence

- Discussion on the geometric Satake equivalence
- ► Sketch of the proof of main theorem 1

A GEOMETRIC JACQUET-LANGLANDS TRANSFER

Set up

Let (G_1, X_1) and (G_2, X_2) be two Hodge type Shimura data:

- G_i : reductive group over \mathbb{Q}
- ► $X_i: G_i(\mathbb{R})$ -conjugacy class of homomorphisms $\mu_i : \mathbb{S} := \operatorname{Res}_{\mathbb{R}}^{\mathbb{C}} \mathbb{G}_m \to G_{i\mathbb{R}}.$
- assumptions for Shimura data
- there exists an embedding $(G_i, X_i) \hookrightarrow (\operatorname{Sp}_{2n}, \mathcal{H}_n^{\pm})$, where

$$\mathcal{H}_n^{\pm} := \{ A \in M_n(\mathbb{C}) | A^T = A, \operatorname{Im}(A) \neq 0 \}.$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Title 0	Plan o	A Geometric J-L Transfer ○●○○○○○	Geometric Satake 00000000000000000000000000	Proof 00000000000000

► Let {µ_i} denote the conjugacy class of Hodge cocharacters determined by X_i.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Let E_i denote the reflex field of (G_i, X_i) .
- Let $K_i \subset G_i(\mathbb{A}_f)$ be a sufficiently small open compact subgroup.

Assumptions

- $\blacktriangleright \ \theta: G_{1,\mathbb{A}_f} \simeq G_{2,\mathbb{A}_f}.$
- there exists an inner twist $\Psi : G_1 \to G_2$.

•
$$K_{1,p}(\simeq K_{2,p})$$
 is hyperspecial.

Title 0	Plan o	A Geometric J-L Transfer 000000	Geometric Satake 00000000000000000000000000	Proof 00000000000000000000000000000000000

- ► Let $\underline{G_i}$ denote the integral model of G_{i,\mathbb{Q}_p} over \mathbb{Z}_p determined by $K_{i,p}$. Then $\underline{G_1} \simeq \underline{G_2}$.
- We identify their Langlands dual groups and write it as \hat{G} .
- Choose an isomorphism $\iota : \mathbb{C} \simeq \overline{\mathbb{Q}}_p$.
- Write σ for the arithmetic Frobenius morphism of \mathbb{F}_p .
- ► Let V_i := V_{µi} be the irreducible representation of G/Q_ℓ of highest weight µ_i.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	00000000000000

- Let $\nu \mid p$ be a place of E_1E_2 (determined by our choice of isomorphism ι).
- ► Let Sh_{μ_i} denote the mod *p* fiber of the canonical integral model for $\text{Sh}_{K_i}(G_i, X_i)$, base changed to \bar{k}_{ν} .
- Let \mathcal{H}^p denote the prime-to-*p* Hecke algebra.

THE CATEGORY $\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)$

- Let $\hat{G}\sigma$ be the coset in $\hat{G} \rtimes \langle \sigma \rangle$.
- Denote by $[\hat{G}\sigma/\hat{G}]$ the stack of unramified Langlands parameters over \mathbb{Q}_{ℓ} .
- Let $\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)$ denote the abelian category of coherent sheaves on $[\hat{G}\sigma/\hat{G}]$.
- Let \mathcal{J} denote the global section of the structure sheaf on $[\hat{G}\sigma/\hat{G}]$.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	00000000000000000

MAIN THEOREM 1

Let \mathcal{L}_i be an ℓ -adic the étale local system on Sh_{μ_i}. Under a mild technical assumption.

Theorem (Y.) *There exists a map*

 $\operatorname{Spc}:\operatorname{Hom}_{\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)}(\widetilde{V}_{1},\widetilde{V}_{2})\to\operatorname{Hom}_{\mathcal{H}^{p}\otimes\mathcal{J}}(\operatorname{H}^{*}_{c}(\operatorname{Sh}_{\mu_{1}},\mathcal{L}_{1}),\operatorname{H}^{*}_{c}(\operatorname{Sh}_{\mu_{2}},\mathcal{L}_{2})),$

which is compatible with compositions on the source and target. If $Sh_{\mu_1} = Sh_{\mu_2}$ is a Shimura set, the action of $End_{Coh^{\hat{G}}(\hat{G}\sigma)}(\tilde{V}_{\mu})$ on

$$\mathrm{H}^*_{c}(\mathrm{Sh}_{\mu}, \mathbb{Q}_{\ell}) \simeq C_{c}(G(\mathbb{Q}) \backslash G(\mathbb{A}_{f}) / K, \mathbb{Q}_{\ell})$$

coincides with the usual Hecke algebra action under the Satake isomorphism.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

- The theorem generalizes a previous construction of Xiao-Zhu
 - ► $\hat{G}_{\bar{\mathbb{Q}}_{\ell}}$.
 - \mathcal{L}_i equals to the constant sheaf.
- ► This result is about Q_ℓ-sheaves, but the integral coefficient geometric Satake equivalence is indispensable.

THE GEOMETRIC SATAKE EQUIVALENCE

Background: the Satake isomorphism

- ► Let *F* be a non-archimidean local field with \mathcal{O} its ring of integers and $k = \mathbb{F}_q$ its residue field. In other words, *F* is a finite extension of \mathbb{Q}_p or is isomorphic to $\mathbb{F}_q((\varpi))$.
- Let *G* be a split connected reductive group scheme over O.
- We fix a choice of a Borel subgroup and a maximal torus $T \subset B \subset G$.
- ▶ Let $X_{\bullet} := \text{Hom}(\mathbb{G}_m, G)$, and $X^{\bullet} := \text{Hom}(G, \mathbb{G}_m)$ denote the group of cocharacters and characters of *G*.
- ► Let W denote the Weyl group of T, and X⁺_• := X_•/W denote the semigroup of dominant cocharacters.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

THE SPHERICAL HECKE ALGEBRA

- ► We can endow a topology on *G*(*F*) such that it is a locally compact topological group.
- Let $K := G(\mathcal{O})$, then *K* is a maximal compact subgroup of G(F).
- Choose the unique Haar measure such that the volume of *K* equals to 1.

Definition

The *spherical Hecke algebra* of *G* is defined to be

 $\mathcal{H}_G := \mathcal{C}_c(K \backslash G/K, \mathbb{Z}).$

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000

The following results are well-known

► (*Gelfand's trick*⇒) the convolution of functions

$$(f * g)(x) := \int_G f(y)g(y^{-1}x)dy$$

endows \mathcal{H}_G with a commutative algebra structure.

(Cartan Decomposition theorem⇒) the set of characteristic functions

 $\{\mathbf{1}_{KgK} \mid g \in \mathbb{X}_{\bullet}^+\}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

forms a set of \mathbb{Z} -basis of \mathcal{H}_G .

THE LANGLANDS DUAL GROUP

- Let *E* be an algebraically closed field.
- Associate the root datum $(\mathbb{X}^{\bullet}, \mathbb{X}_{\bullet}, \Delta, \Delta^{\vee})$ to our choice of $T \subset B \subset G$.
- Let $(\mathbb{X}_{\bullet}, \mathbb{X}^{\bullet}, \Delta^{\vee}, \Delta)$ denote the dual root datum.

Definition

We define the Langlands dual group \hat{G}/E of *G* to be the unique (up to isomorphism) reductive group over *E* determined by the dual root datum ($\mathbb{X}_{\bullet}, \mathbb{X}^{\bullet}, \Delta^{\vee}, \Delta$).

0 0 000000	000000000000000000000000000000000000000

・ロト・日本・日本・日本・日本・日本

Here is a list of examples to be kept in mind.

Example

G	GL_n	SL_n	SO_{2n+1}	SO_{2n}	E_8
Ĝ	GL_n	PGL_n	Sp_{2n}	SO_{2n}	E_8

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

THE CLASSICAL SATAKE ISOMORPHISM

- Let $\operatorname{Rep}_E(\hat{G})$ denote the category of finite-dimensional \hat{G} -representations over *E*.
- Let $R(\hat{G})$ denote the Grothendieck *K*-ring of $\operatorname{Rep}_E(\hat{G})$.

The Langlands' reinterpretation of the classical Satake isomorphism states the following.

Theorem *There exists an algebra isomorphism*

$$\mathcal{H}_G \otimes E \simeq R(\hat{G}) \otimes E.$$

SLOGAN OF GEOMETRIC SATAKE

Motivation:

"Categorify" the classical Satake isomorphism.

- Categorifying $R(\hat{G})$ gives rise to $\operatorname{Rep}_E(\hat{G})$.
- Question: how to categorify \mathcal{H}_G ?

The idea to answer the above question is

- Endow the quotient $G(F)/G(\mathcal{O})$ with an algebro-geometric structure.
- Consider the $G(\mathcal{O})$ -equivariant perverse sheaves on $G(F)/G(\mathcal{O})$.

AN ATTEMPT

Let $G = GL_n$ and $F = \mathbb{Q}_p$.

- By a lattice in F^n , we mean
 - a finitely generated projective O-module Λ , together with
 - an isomorphism $\Lambda \otimes_{\mathcal{O}} F \simeq F^n$.
- Write $\Lambda_0 := \mathcal{O}^n$ for the standard lattice.
- ► The quotient *G*/*K* maybe identified with the set of lattices via

$$gK \in G/K \longmapsto g\Lambda_0.$$

• Let $w_i := \text{diag}\{1^{i}0^{n-i}\}$ be viewed as a dominant cocharater. The quotient $K \varpi^{w_i} K / K$ maybe identified with lattices

 $\{\Lambda \mid \varpi \mathcal{O}^n \subset \Lambda \subset \mathcal{O}^n, \text{ and length } (\mathcal{O}^n / \Lambda) = i\}.$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ト ◆ 回 ト ◆ 回 ト

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE
0	0	0000000	000000000000000000000000000000000000000

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

There is a canonical bijection between $K\varpi^{w_i}K/K$ and the set of *k*-points of the Grassmannian variety Gr(n - i, n) of (n - i)-planes in a fixed n-dimensional space.

WHY GEOMETRIC SATAKE

The geometric Satake equivalence has found profound applications in

- Langlands program: V. Lafforgue proved Langlands correspondence for reductive groups over function fields.
- number theory: Xiao-Zhu proved the "generic" case of the Tate conjecture on the mod *p* fibres of some Shimura varieties.

THE WITT VECTOR AFFINE GRASSMANNIAN

We slightly change our setups.

- ► Let *k* be a fixed algebraically closed field of characteristic *p* > 0.
- ► Let *W*(*R*) denote the ring of (*p*-typical) Witt vectors of any perfect *k*-algebra *R*.
- ► Let *F* be a totally ramified finite extension of *W*(*k*), and *O* its ring of integers.
- Choose $\varpi \in \mathcal{O}$ to be a uniformizer.
- Let *G* be a split connected reductive group over O.
- Let Λ = Z_ℓ or F_ℓ be the coefficient ring of sheaves considered later.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000

Let *R* be a perfect *k*-algebra, and *H* an affine group scheme of finite type defined over O.

- $\blacktriangleright W_{\mathcal{O},n}(R) := W(R) \otimes_{W(k)} \mathcal{O}/\varpi^n$
- $\blacktriangleright W_{\mathcal{O}}(R) := \varprojlim_n W_{\mathcal{O},n}(R)$
- $\blacktriangleright D_R := \operatorname{Spec}(W_{\mathcal{O}}(R))$

$$\blacktriangleright D_R^{\times} := \operatorname{Spec}(W_{\mathcal{O}}(R)[1/\varpi])$$

Definition

The the (*p*-adic) jet group (resp. *p*-adic loop group) of *H* is defined as the presheaf

 $L^+H(R) := H(W_{\mathcal{O}}(R))(\text{resp. } LH(R) := H(W_{\mathcal{O}}(R)[1/\varpi]))$

over the opposite category of perfect *k*-algebras.

0 0 0000000 00000000000 00000000 000000	TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
	0	0	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Definition

The *Witt vector affine Grassmannian* of *G* over *k* is defined as the fpqc quotient

$$Gr_G := [LG/L^+G],$$

over the opposite the category of perfect *k*-algebras. It also has the following moduli interpretation

(

$$Gr_G(R) := \left\{ (\mathcal{E}, \phi) / \cong \begin{vmatrix} \mathcal{E} \to D_R \text{ is a G-torsor, and} \\ \phi : \mathcal{E} \mid_{D_R^{\times}} \cong \mathcal{E}^0 \mid_{D_R^{\times}} \end{vmatrix} \right\},$$

where \mathcal{E}^0 denotes the trivial *G*-torsor.

TITLE	Plan	A Geometric J-L Transfer	
0	0	000000	

Question:

Is *Gr_G representable* by nice geometric objects?

Answer

YES!

Theorem (Bhatt-Scholze)

The Witt vector affine Grassmannian Gr_G is represented by an inductive limit of the perfection of projective varieties over \mathbb{F}_p .

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

THE GEOMETRY OF AFFINE GRASSMANNIAN

- Let β be a modification of two *G*-torsors \mathcal{E}_1 and \mathcal{E}_2 .
- Choose isomorphisms $\phi_i : \mathcal{E}_i \simeq \mathcal{E}^0$.

Considering the following diagram

$$\begin{array}{c|c} & & \beta \\ \mathcal{E}_1 & \cdots & \mathcal{E}_2 \\ & & \downarrow \\ \phi_1 & & & \downarrow \\ \phi_2 & & \phi_2 \beta \phi_1^{-1} \\ & & \mathcal{E}^0 & \cdots & \mathcal{E}^0 \end{array}$$

The *Cartan decomposition* identifies $\phi_2 \beta \phi_1^{-1}$ as an element in \mathbb{X}_{\bullet}^+ .

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000

Definition We denote the dominant cocharacter $\phi_2 \beta \phi_1^{-1}$ by $Inv(\beta)$ and call it the *relative position*.

Definition For each $\mu \in \mathbb{X}_{\bullet}^+$, we define the *Schubert cell* (resp. *Schubert variety*) Gr_{μ} (resp. $Gr_{\leq \mu}$) as

 $Gr_{\mu} := \{(\mathcal{E}, \phi) \mid \operatorname{Inv}(\phi) = \mu\}(\operatorname{resp.} Gr_{\leq \mu} := \{(\mathcal{E}, \phi) \mid \operatorname{Inv}(\phi) \leq \mu\}).$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	000000	000000000000000000000000000000000000000	0000

Lemma

Let $\mu, \nu \in \mathbb{X}^+_{\bullet}$, then

► the Schubert variety Gr_{≤µ} is the perfection of a projective variety defined over k,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- L^+G acts on $Gr_{\leq \mu}$ through a finite type quotient,
- $Gr_{\mu} \subset Gr_{\nu}$ if and only if $\mu \leq \nu$,
- the Zariski closure of Gr_{μ} equals to $Gr_{\leq \mu}$, and $Gr_{\leq \mu} = \bigcup_{\mu' \leq \mu} Gr_{\mu'}$.

Title 0	Plan o	A Geometric J-L Transfer 0000000	GEOMETRIC SATAKE	Proof 00000000000000000000000000000000000

Example (Minuscule case)

Let $G = GL_n$, and $w_i = \text{diag}\{1^i 0^{n-i}\}$. An element $(\mathcal{E}, \beta) \in Gr_{w_i}(R)$ maybe identified with a $W_{\mathcal{O}}(R)$ -*lattice* i.e.

- ► a finitely generated projective $W_{\mathcal{O}}(R)$ -module Λ , with
- an isomorphism $\beta : \Lambda \otimes_{W_{\mathcal{O}}(R)} W_{\mathcal{O}}(R)[1/\varpi] \simeq W_{\mathcal{O}}(R)[1/\varpi]^n$. Then $\operatorname{Inv}(\beta) = w_i$ if and only if
 - β extends to a genuine map $\Lambda \subset \Lambda_0 := W_{\mathcal{O}}(R)^n$
 - $\blacktriangleright \ \varpi \Lambda_0 \subset \Lambda$
 - length $(\Lambda_0/\Lambda) = i$.

Then $Gr_{w_i} \cong Gr(n - i, n)$ which agrees with our previous discussion.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	00000000000000

Example (Non-minuscule case) Let $G = GL_2$, and $\mu = (2, 0)$.

• $Gr_{\leq \mu}$ has the following moduli interpretation

 $Gr_{\leq \mu}(R) = \{\Lambda_2 \subset \Lambda_0 \mid \text{length} (\Lambda_0/\Lambda_2) = 2\}.$

• $Gr_{\leq \mu}$ admits a resolution $\widetilde{Gr_{\leq \mu}} \rightarrow Gr_{\leq \mu}$, where

$$\widetilde{Gr}_{\leq \mu}(R) := \left\{ \Lambda_2 \subset \Lambda_1 \subset \Lambda_0 \middle| \begin{array}{length} (\Lambda_0 / \Lambda_1) = 1 \\ \text{length} (\Lambda_1 / \Lambda_2) = 1 \end{array} \right\},$$

In fact, the resolution $\widetilde{Gr}_{\leq \mu}$ is isomorphic to the Hirzebruch surface $\Sigma_2 := \mathbb{P}(\mathcal{O}_{\mathbb{P}_1} \bigoplus \mathcal{O}_{\mathbb{P}_1}(-2)).$

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

THE SATAKE CATEGORY

It makes sense to consider the category $P_{L+G}(Gr_{\leq \mu}, \Lambda)$ of Λ -coefficient L^+G equivariant perverse sheaves on $Gr_{\leq \mu}$. Finally, we define our principal object of study.

Definition

We define the category of Λ -coefficient L^+G -equivariant perverse sheaves on Gr_G to be

$$P_{L^+G}(Gr_G,\Lambda):=\varinjlim_{\mu}P_{L^+G}(Gr_{\leq \mu},\Lambda).$$

We call this category the *Satake category* and will denote it by $Sat_{G,\Lambda}$ for simplicity. In fact, $Sat_{G,\Lambda}$ can be endowed with a monoidal structure " \star ".

THE GEOMETRIC SATAKE EQUIVALENCE

Now we have two monoidal categories

- The Satake category $Sat_{G,\Lambda}$
- The category of finitely generated Ĝ-modules over Λ Rep_Λ(Ĝ).

The expected relation between these two categories is established by the following theorem.

Theorem (Y.)

There is an equivalence of monoidal categories

$$\operatorname{Sat}_{G,\Lambda} \simeq \operatorname{Rep}_{\Lambda}(\hat{G}).$$

・ロト・(型ト・(ヨト・(型ト・(ロト)))

HISTORICAL REMARK

The geometric Satake equivalence in different settings are proved by

- Lusztig-Ginzburg-Beilinson-Drinfeld-Mirković-Vilonen
 - *G* is a connected reductive group over \mathbb{C} .
 - Λ is a Noetherian local domain of finite global dimension.
- ► Zhu
 - G is a connected split reductive group scheme over the ring of integers of a mixed characteristic local field.
 - $\blacktriangleright \Lambda = \bar{\mathbb{Q}}_{\ell}.$
- in current setting, Scholze announced the geometric Satake equivalence for integral coefficients using the theory of diamonds.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

DIFFICULTIES

The following new difficulties arise in our setting

- Lack of mixed characteristic analogue of *Beilinson-Drinfeld Grassmannians* (without appealing to Scholze's theory of diamonds).
- The integral coefficient Satake category is NOT semisimple.
- For a general object *F* ∈ Sat_{G,Λ}, H^{*}(Gr_G, *F*) may have torsions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sketch of Proof of Main Theorem 1

We explain some of the main ingredients of the proof

► Local Hecke stacks

► Moduli of local Shtukas

*Cohomological correspondences*From now on *R* will denote a perfect *k*-algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LOCAL HECKE STACKS

Let
$$\mu_{\bullet} = (\mu_1, \mu_2, \cdots, \mu_n) \in (\mathbb{X}_{\bullet}^+)^n, \nu_{\bullet} = (\nu_1, \cdots, \nu_m) \in (\mathbb{X}_{\bullet}^+)^m$$
.
Definition

• The *local Hecke stack* $\operatorname{Hk}_{\mu_{\bullet}}^{\operatorname{loc}}(R)$ classifies the chain of modifications

$$\mathcal{E}_n \dashrightarrow \mathcal{E}_{n-1} \dashrightarrow \cdots \dashrightarrow \mathcal{E}_0$$

of *G*-torsors on D_R with relative positions $\leq \mu_n, \dots, \leq \mu_1$.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Definition The stack $\operatorname{Hk}_{\mu_{\bullet}\mid\nu_{\bullet}}^{0,\operatorname{loc}}(R)$ classifies the rectangles of modifications

of *G*-torsors on D_R with relative positions $\leq \mu_n, \dots, \leq \mu_1$ and $\leq \nu_m, \dots, \leq \nu_1$.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

We need the finite type version of the local Hecke stacks

► $Hk_{\mu_{\bullet}}^{loc(s)}$.

► $\operatorname{Hk}_{\mu_{\bullet}|\nu_{\bullet}}^{0,\operatorname{loc}(s)}$.

to apply the $\ell\text{-adic}$ formalism.

MODULI OF LOCAL SHTUKAS

Let
$$\mu_{\bullet} = (\mu_1, \mu_2, \cdots, \mu_n) \in (\mathbb{X}_{\bullet}^+)^n, \nu_{\bullet} = (\nu_1, \cdots, \nu_m) \in (\mathbb{X}_{\bullet}^+)^m$$
.
Definition

The *moduli of local Shtukas* $Sht_{\mu_{\bullet}}^{loc}(R)$ classifies sequences of modifications

$$\mathcal{E}_n \xrightarrow{\ldots} \mathcal{E}_{n-1} \xrightarrow{\ldots} \cdots \xrightarrow{\sigma} \mathcal{E}_0 \xrightarrow{\simeq} {}^{\sigma} \mathcal{E}_n$$

of *G*-torsors over D_R with relative positions $\leq \mu_n, \dots, \leq \mu_1$. There is a natural morphism

$$\psi : \operatorname{Sht}_{\mu_{\bullet}}^{\operatorname{loc}} \longrightarrow \operatorname{Hk}_{\mu_{\bullet}}^{\operatorname{loc}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Similar to the local Hecke stacks, we define

- Sht^{loc}_{$\mu_{\bullet}|\nu_{\bullet}$} and its substack Sht^{$\lambda$,loc}_{$\mu_{\bullet}|\nu_{\bullet}$}.
- $\operatorname{Sht}_{\mu_{\bullet}}^{\operatorname{loc}(m,n)}$ and $\operatorname{Sht}_{\mu_{\bullet}|\nu_{\bullet}}^{\lambda,\operatorname{loc}(m,n)}$.

COHOMOLOGICAL CORRESPONDENCES

- Let *k* be a perfect filed of characteristic p > 0
- All stacks will be algebraic stacks which are perfectly of finite presentation in the opposite category of perfect *k*-algebras

Definition

Let X_1, X_2 be two stacks and $\mathcal{F}_i \in D(X_i, \Lambda)$. A *cohomological correspondence* $(C, u) : (X_1, \mathcal{F}_1) \to (X_2, \mathcal{F}_2)$ is a stack $C \xrightarrow{c_1 \times c_2} X_1 \times X_2$, and $u : c_1^* \mathcal{F}_1 \to c_2^! \mathcal{F}_2$. We define the space of cohomological correspondences by $\operatorname{Corr}_C((X_1, \mathcal{F}_1), (X_2, \mathcal{F}_2))$, and

$$\operatorname{Corr}_{C}((X_{1},\mathcal{F}_{1}),(X_{2},\mathcal{F}_{2})) \cong \operatorname{Hom}_{D(C,\Lambda)}(c_{1}^{*}\mathcal{F}_{1},c_{2}^{!}\mathcal{F}_{2}).$$

Key Theorem

Let $V \in \operatorname{Rep}_{\Lambda}(\hat{G}_{\Lambda})$, we produce a perverse sheaf $S(\widetilde{V})$ on $\operatorname{Sht}^{\operatorname{loc}}$ as follows

• *integral geometric Satake equivalence* \Rightarrow $S(V) \in Sat_{G,\Lambda}$.

• descent
$$\Rightarrow$$
 $S(V) \in P(Hk^{loc})$.

• pullback along
$$\psi \Rightarrow$$

$$\Psi: \mathrm{P}(\mathrm{Hk}^{\mathrm{loc}}) \longrightarrow \mathrm{P}(\mathrm{Sht}^{\mathrm{loc}})$$

 $S(\widetilde{V}):=\Psi(S(V)).$

We write the support of $S(\tilde{V})$ as $\operatorname{Sht}_{V}^{\operatorname{loc}(m,n)}$ for some proper choice of integers (m, n). We similarly define $\operatorname{Sht}_{V|W}^{\operatorname{loc}(m',n')}$.

Title 0	Plan o	A Geometric J-L Transfer 0000000	GEOMETRIC SATAKE	Proof 00000000000000000000000000000000000

Theorem (Y.)

For any projective Λ -modules $V_1, V_2 \in \operatorname{Rep}_{\Lambda}(\hat{G}_{\Lambda})$, choose appropriate integers (m_1, n_1, m_2, n_2) and a dominant cocharacter λ . Consider the Hecke correspondence

$$\operatorname{Sht}_{V_1}^{\operatorname{loc}(m_1,n_1)} \xleftarrow{h_{V_1}^{\leftarrow}} \operatorname{Sht}_{V_1|V_2}^{\lambda,\operatorname{loc}(m_1,n_1)} \xrightarrow{h_{V_2}^{\rightarrow}} \operatorname{Sht}_{V_2}^{\operatorname{loc}(m_2,n_2)}$$

Then there exists the following map

$$\operatorname{Hom}_{\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)}(\widetilde{V}_{1},\widetilde{V}_{2}) \xrightarrow{\mathcal{S}_{V_{1},V_{2}}} \operatorname{Corr}_{\operatorname{Sht}^{\operatorname{loc}}_{V_{1}|V_{2}}}(S(\widetilde{V}_{1}),S(\widetilde{V}_{2})), \quad (1)$$

which is in independent of auxiliary choices.

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

We make the following remarks

- for $\Lambda = \overline{\mathbb{Q}}_{\ell}$, the operators are constructed by Xiao-Zhu.
- ► the map S_{V,W} may be regarded as a local analogue of V. Lafforgue's S-operators.

< □ > < @ > < E > < E > E のQ@

PROOF OF THE MAIN THEOREM 1

Recall our main theorem 1.

Theorem (Y.)

Under a mild technical assumption, there exists a map

$$\operatorname{Spc}:\operatorname{Hom}_{\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)}(\widetilde{V}_{1},\widetilde{V}_{2})\to\operatorname{Hom}_{\mathcal{H}^{p}\otimes\mathcal{J}}(\operatorname{H}^{*}_{c}(\operatorname{Sh}_{\mu_{1}},\mathcal{L}_{1}),\operatorname{H}^{*}_{c}(\operatorname{Sh}_{\mu_{2}},\mathcal{L}_{2})),$$

which is compatible with compositions on the source and target. If $\operatorname{Sh}_{\mu_1} = \operatorname{Sh}_{\mu_2}$ is a Shimura set, the action of $\operatorname{End}_{\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)}(\tilde{V}_{\mu})$ on

$$\mathrm{H}^*_{c}(\mathrm{Sh}_{\mu}, \mathbb{Q}_{\ell}) \simeq C_{c}(G(\mathbb{Q}) \backslash G(\mathbb{A}_{f}) / K, \mathbb{Q}_{\ell})$$

coincides with the usual Hecke algebra action under the Satake isomorphism.

Title 0	Plan o	A Geometric J-L Transfer 0000000	GEOMETRIC SATAKE	Proof 0000000000000000

Sketch of Proof

- Choose a lattice $\Lambda_i \in \operatorname{Rep}_{\mathbb{Z}_\ell}(\hat{G}_{\mathbb{Z}_\ell})$ of V_i .
- $\blacktriangleright \operatorname{Hom}_{\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)}(\widetilde{V}_{1},\widetilde{V}_{2}) \cong \operatorname{Hom}_{\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)}(\widetilde{\Lambda}_{1},\widetilde{\Lambda}_{2}) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$
- Key Theorem \Rightarrow

$$\operatorname{Hom}_{\operatorname{Coh}^{\hat{G}}(\hat{G}\sigma)}(\widetilde{V}_{1},\widetilde{V}_{2}) \to \operatorname{Corr}_{\operatorname{Sht}^{\operatorname{loc}}}(S(\widetilde{\Lambda}_{1}),S(\widetilde{\Lambda}_{2})) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$$

• "the mild technical assumption" \Rightarrow

 $\underbrace{\operatorname{Corr}_{\operatorname{Sht}^{\operatorname{loc}}}(S(\widetilde{\Lambda}_{1}), S(\widetilde{\Lambda}_{2})) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}}_{\operatorname{Pullback}} \operatorname{Corr}_{\operatorname{Sh}_{\mu_{1}|\mu_{2}}}((\operatorname{Sh}_{\mu_{1}}, \mathbb{Z}_{\ell}\langle d_{1} \rangle), (\operatorname{Sh}_{\mu_{2}}, \mathbb{Z}_{\ell}\langle d_{2} \rangle)) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$

・ロト (四) (日) (日) (日) (日) (日)

TITLE	Plan	A Geometric J-L Transfer	GEOMETRIC SATAKE	Proof
0	0	0000000	000000000000000000000000000000000000000	0000000000000000

• "construct on each level" \rightsquigarrow

$$Corr_{Sh_{\mu_{1}|\mu_{2}}}((Sh_{\mu_{1}}, \mathbb{Z}_{\ell}\langle d_{1}\rangle), (Sh_{\mu_{2}}, \mathbb{Z}_{\ell}\langle d_{2}\rangle)) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$$

$$\rightarrow Corr_{Sh_{\mu_{1}|\mu_{2}}}((Sh_{\mu_{1}}, \mathcal{L}_{W,\mathbb{Q}_{\ell}}\langle d_{1}\rangle), (Sh_{\mu_{2}}, \mathcal{L}_{W,\mathbb{Q}_{\ell}}\langle d_{2}\rangle))$$

pushforward the cohomological correspondence

 $Corr_{Sh_{\mu_{1}|\mu_{2}}}((Sh_{\mu_{1}}, \mathcal{L}_{W,\mathbb{Q}_{\ell}}\langle d_{1}\rangle), (Sh_{\mu_{2}}, \mathcal{L}_{W,\mathbb{Q}_{\ell}}\langle d_{2}\rangle)) \\ \rightarrow Hom_{\mathcal{H}^{p}\otimes\mathcal{J}}(H^{*}_{c}(Sh_{\mu_{1}}, \mathcal{L}_{W,\mathbb{Q}_{\ell}}\langle d_{1}\rangle), H^{*}_{c}(Sh_{\mu_{2}}, \mathcal{L}_{W,\mathbb{Q}_{\ell}}\langle d_{2}\rangle))$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

TITLE	Plan	A Geometric J-L Transfer
0	0	000000

Thank You!

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで