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Same HT wts
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even Maass form with λ = 1/4
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Calegari’s theorem

Theorem (Calegari)

Let r : GQ → GL2(Q`) be a geometric Galois representation.
Suppose that ` > 7, and, furthermore, that
(1) r |GQ`

has distinct Hodge-Tate weights,

(2) r |GQ`
is not a twist of a representation of the form(

ε` ∗
0 1

)
where ε` is the mod-` cyclotomic character,

(3) r is not of dihedral type,
(4) r is absolutely irreducible.

Then r is modular.

In particular, r is odd.

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

The Tate conjecture
The Fontaine-Mazur conjecture

Calegari’s theorem

Theorem (Calegari)

Let r : GQ → GL2(Q`) be a geometric Galois representation.
Suppose that ` > 7, and, furthermore, that
(1) r |GQ`

has distinct Hodge-Tate weights,

(2) r |GQ`
is not a twist of a representation of the form(

ε` ∗
0 1

)
where ε` is the mod-` cyclotomic character,

(3) r is not of dihedral type,
(4) r is absolutely irreducible.

Then r is modular.

In particular, r is odd.

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

The Tate conjecture
The Fontaine-Mazur conjecture

Calegari’s theorem

Theorem (Calegari)

Let r : GQ → GL2(Q`) be a geometric Galois representation.
Suppose that ` > 7, and, furthermore, that
(1) r |GQ`

has distinct Hodge-Tate weights,

(2) r |GQ`
is not a twist of a representation of the form(

ε` ∗
0 1

)
where ε` is the mod-` cyclotomic character,

(3) r is not of dihedral type,
(4) r is absolutely irreducible.
Then r is modular.

In particular, r is odd.

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

The Tate conjecture
The Fontaine-Mazur conjecture

Calegari’s theorem

Theorem (Calegari)

Let r : GQ → GL2(Q`) be a geometric Galois representation.
Suppose that ` > 7, and, furthermore, that
(1) r |GQ`

has distinct Hodge-Tate weights,

(2) r |GQ`
is not a twist of a representation of the form(

ε` ∗
0 1

)
where ε` is the mod-` cyclotomic character,

(3) r is not of dihedral type,
(4) r is absolutely irreducible.
Then r is modular. In particular, r is odd.
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Properties of S

S X E

P1
z P1

u P1
t

y y

• Taking a good prime p, E → P1
Fp

has bad fibre at 0, ±i , and

±
√

1+a
1−a .

• The elliptic surface X is K3 with Picard number 19 or 20
(depending on a).
• dimH2(S) = 46, dimH2,0(S) = dimH0,2(S) = 3, and Picard

number ρ(SQ) = rank(NS1(SQ)) = 37, 38, 39, or 40
(depending on a).
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et(SQ,Q`(1)), ρ(SQ) = 37

(Taking semisimplification!!!)

H2
et(SQ,Q`(1)) ∼= (NS1(SQ)⊗Q`)⊕ Tran`(S)

∼= (NS1(SQ)⊗Q`)⊕ Tran`(X )⊕W`

46 = 37 + 3 + (43− 37)

By the construction of S , C4 y W`. We have

W`
∼= V` ⊕ V `,

where dimV` = dimV ` = 3.
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Geemen and Top’s conjecture

Several properties of V`

• V`
∼= V `

• h1,−1(V`) = h0,0(V`) = h−1,1(V`) = 1
• V`

∼= V ∗` , i.e., V` self-dual

Conjecture (van Geemen and Top, 1995)

For each a,
V`(−1) ∼= δ Sym2 T`E

for some elliptic curve E and some quadratic character δ.

Selfdual and non-selfdual 3-dimensional Galois representations, 1995
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Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Statement

Theorem (Duan and W., 2019)

If a ≡ 2, 3 mod 5 and none of 2(1+ a) or 2(1− a) is a square in
Q, then, for a density one subset of primes `, the Tate conjecture
for S is true, i.e.,

NS1(S)⊗Q`

∼=−→ H2
et(SQ,Q`(1))GQ .

Xiyuan Wang
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Idea of the proof
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Tate classes are not transcendental

Up to semisimplification

H2
et(SQ,Q`(1)) ∼= (NS1(SQ)⊗Q`)⊕ Tran`(X )⊕ V` ⊕ V `.

Taking GQ-invariant part

H2
et(SQ,Q`(1))GQ ∼= (NS1(S)⊗Q`)⊕ {0} ⊕ V

GQ

` ⊕ V
GQ

` .

V
GQ

` = {0}?

Goal
To prove ρ := V ss

` is absolutely irreducible.
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Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.

• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r ,

r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction.

We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Odd and even

Assume that ρ : GQ → GL3(Q`) is not absolutely irreducible.
• (1+ 1+ 1): ρ ∼= χ1 ⊕ χ2 ⊕ χ3

• (1+ 2) : ρ ∼= ψ⊕ r , r : GQ → GL2(Q`) self-dual

Calegari’s FM Theorem odd

r

??? even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Elementary idea

Remember that r is self-dual.

??? = det r trivial

Main step
To prove

det r = 1.

In summary,

The FM conj⇒ r is motivic⇐⇒ r odd

self-dual

⇐===⇒ det r 6= 1

The Tate conj⇒ r is not motivic⇐⇒ r even

self-dual

⇐===⇒ det r = 1
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Determinant

Since r is self-dual, det r is a quadratic character. There is an
integer D, such that

det r(Frobp) = (
D

p
),

for any p - D.

Goal
To prove

D = 1

(up to a square).

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Determinant

Since r is self-dual, det r is a quadratic character.

There is an
integer D, such that

det r(Frobp) = (
D

p
),

for any p - D.

Goal
To prove

D = 1

(up to a square).

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Determinant

Since r is self-dual, det r is a quadratic character. There is an
integer D,

such that

det r(Frobp) = (
D

p
),

for any p - D.

Goal
To prove

D = 1

(up to a square).

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Determinant

Since r is self-dual, det r is a quadratic character. There is an
integer D, such that

det r(Frobp) = (
D

p
),

for any p - D.

Goal
To prove

D = 1

(up to a square).

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Determinant

Since r is self-dual, det r is a quadratic character. There is an
integer D, such that

det r(Frobp) = (
D

p
),

for any p - D.

Goal
To prove

D = 1

(up to a square).

Xiyuan Wang



Two conjectures
A family of elliptic surfaces
The Tate conjecture for S

Main theorem
Idea of the proof
Main step

Determinant and trace

For g ∈ GQ,

det(λI − ρ(g)) = det(λI − ρ(g)∗).

Considering the eigenvalue {α, β,γ} of ρ(g), then

{α, β,γ} = {α−1, β−1,γ−1}.

• α = ±1, β = ±1, and γ = ±1.
• αβ = 1(α 6= ±1), and γ = ±1.

Lemma

If tr ρ(g2) 6= 3 or tr ρ(g) 6= ±1, then det r(g) = 1.
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Trace of Frobi
p

There is a trace formula

tr ρε−1
` (Frobi

p) =
#S(Fpi )−#X (Fpi )

2
.

The fibers are elliptic curves. Counting points fiber by fiber.
• Need input from geometry.
• Still very hard to obtain an explicit answer.
• A small observation: 8|#Smfiber(Fpi ) !
• Counting the point on bad fibers carefully.

Proposition

If
(

2(1+a)
p

)
=
(

2(1−a)
p

)
= −1, then tr(ρ(Frob2

p)) = −1 mod 8.
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End of the proof

Proposition+ Lemma⇒ det r(Frobp) = 1, for some primes p.

Assume D is not 1, in those primes, find a p such that

det r(Frobp) =

(
D

p

)
= −1.

This is a contradiction. We are done !

Xiyuan Wang
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Final remarks

• Checking that r satisfies the additional conditions in Calegari’s
theorem is non-trivial.
• An on-going project with Ariel and Lian about compatible

systems of Galois representations and hypergeometric motives.
• van Geemen and Top’s conjecture? Potential automorphy.

Xiyuan Wang
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Thank you for your listening!

Xiyuan Wang
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