The Tate conjecture for a concrete family of elliptic surfaces

Xiyuan Wang

Johns Hopkins University

November 14, 2020 (Joint work with Lian Duan)

Xiyuan Wang

Outline

1. Two conjectures

- The Tate conjecture
- The Fontaine-Mazur conjecture

2. A family of elliptic surfaces

- Geemen and Top's construction
- Geemen and Top's conjecture

3. The Tate conjecture for ${\cal S}$

- Main theorem
- Idea of the proof
- Main step

The Tate conjecture

A family of elliptic surfaces The Tate conjecture for ${\cal S}$

The Tate conjecture The Fontaine-Mazur conjecture

Set up

• K : number field (eg. $K = \mathbb{Q}$)

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

The Tate conjecture The Fontaine-Mazur conjecture

- K : number field (eg. $K = \mathbb{Q}$)
- G_K : absolute Galois group $Gal(\overline{K}/K)$

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

The Tate conjecture The Fontaine-Mazur conjecture

- K : number field (eg. $K = \mathbb{Q}$)
- G_K : absolute Galois group $Gal(\overline{K}/K)$
- X : smooth projective variety over K

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

The Tate conjecture The Fontaine-Mazur conjecture

- K : number field (eg. $K = \mathbb{Q}$)
- G_K : absolute Galois group $Gal(\overline{K}/K)$
- X : smooth projective variety over K
- $\mathcal{Z}^i(X)$: free abelian group $\mathbb{Z}\langle \mathsf{codimen}\ i \ \mathsf{irred}\ \mathsf{subvar}\ \mathsf{of}\ X
 angle$

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

The Tate conjecture The Fontaine-Mazur conjecture

- K : number field (eg. $K = \mathbb{Q}$)
- G_K : absolute Galois group $Gal(\overline{K}/K)$
- X : smooth projective variety over K
- $\mathcal{Z}^i(X)$: free abelian group $\mathbb{Z}\langle \mathsf{codimen}\ i \ \mathsf{irred}\ \mathsf{subvar}\ \mathsf{of}\ X
 angle$
- $\mathrm{NS}^i(X)$: Neron-Severi group $\mathcal{Z}^i(X)/\sim_{\mathsf{alg}}$

A family of elliptic surfaces The Tate conjecture for S

The Tate conjecture The Fontaine-Mazur conjecture

The Tate conjecture

A family of elliptic surfaces The Tate conjecture for ${\cal S}$

The Tate conjecture The Fontaine-Mazur conjecture

The Tate conjecture

The cycle class map

$$c^{i}: \mathrm{NS}^{i}(X) \to H^{2i}_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell}(i))^{\mathcal{G}_{K}}.$$

The Tate conjecture The Fontaine-Mazur conjecture

The Tate conjecture

The cycle class map

$$c^{i}: \mathrm{NS}^{i}(X) \to H^{2i}_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell}(i))^{\mathcal{G}_{K}}.$$

The Tate conjecture

The map

$$c^i \otimes \mathbb{Q}_\ell : \mathrm{NS}^i(X) \otimes \mathbb{Q}_\ell o H^{2i}_{\mathrm{et}}(X_{\overline{K}}, \mathbb{Q}_\ell(i))^{\mathcal{G}_K}$$

The Tate conjecture The Fontaine-Mazur conjecture

The Tate conjecture

The cycle class map

$$c^{i}: \mathrm{NS}^{i}(X) \to H^{2i}_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell}(i))^{G_{K}}.$$

The Tate conjecture

The map

$$c^i \otimes \mathbb{Q}_\ell : \mathrm{NS}^i(X) \otimes \mathbb{Q}_\ell o H^{2i}_{\mathrm{et}}(X_{\overline{K}}, \mathbb{Q}_\ell(i))^{\mathcal{G}_K}$$

is surjective.

The Tate conjecture The Fontaine-Mazur conjecture

The Tate conjecture

The cycle class map

$$c^{i}: \mathrm{NS}^{i}(X) \to H^{2i}_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell}(i))^{\mathcal{G}_{K}}.$$

The Tate conjecture

The map

$$c^i \otimes \mathbb{Q}_\ell : \mathrm{NS}^i(X) \otimes \mathbb{Q}_\ell \to H^{2i}_{et}(X_{\overline{K}}, \mathbb{Q}_\ell(i))^{\mathcal{G}_K}$$

is surjective.

Slogan

Tate classes are algebraic!

Xiyuan Wang

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

The Tate conjecture The Fontaine-Mazur conjecture

Known cases

A family of elliptic surfaces The Tate conjecture for S

The Tate conjecture The Fontaine-Mazur conjecture

Known cases

Divisor case (i = 1)

Xiyuan Wang

A family of elliptic surfaces The Tate conjecture for ${\cal S}$

The Tate conjecture The Fontaine-Mazur conjecture

Known cases

Divisor case (i = 1)

• Abelian varieties

A family of elliptic surfaces The Tate conjecture for ${\cal S}$

The Tate conjecture The Fontaine-Mazur conjecture

Known cases

- Abelian varieties
- K3 surfaces

A family of elliptic surfaces The Tate conjecture for ${\cal S}$

Known cases

The Tate conjecture The Fontaine-Mazur conjecture

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0} = 1$

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

The Tate conjecture The Fontaine-Mazur conjecture

Known cases

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0} = 1$
- Hilbert modular surfaces

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

Known cases

The Tate conjecture The Fontaine-Mazur conjecture

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0} = 1$
- Hilbert modular surfaces
- Elliptic modular surfaces

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

Known cases

The Tate conjecture The Fontaine-Mazur conjecture

Divisor case (i = 1)

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0} = 1$
- Hilbert modular surfaces
- Elliptic modular surfaces

• . . .

Xiyuan Wang

The Tate conjecture The Fontaine-Mazur conjectur

A family of elliptic surfaces The Tate conjecture for ${\mathcal S}$

Some remarks on the proofs

The Tate conjecture The Fontaine-Mazur conjecture

Some remarks on the proofs

• Let X be a K3 surface. The Kuga-Satake construction

$X \vdash A \times A$

where A is an abelian variety.

The Tate conjecture The Fontaine-Mazur conjecture

Some remarks on the proofs

• Let X be a K3 surface. The Kuga-Satake construction

 $X \vdash A \times A$

where A is an abelian variety.

Rk: $H^{2,0}(X) = 1$ is a crucial input.

The Tate conjecture The Fontaine-Mazur conjecture

Some remarks on the proofs

• Let X be a K3 surface. The Kuga-Satake construction

 $X \vdash A \times A$

where A is an abelian variety.

Rk: $H^{2,0}(X) = 1$ is a crucial input.

• The Hodge conj. + The Mumford-Tate conj. \Rightarrow The Tate conj.

A family of elliptic surfaces The Tate conjecture for S

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

Galois representations come from algebraic geometry.

Xiyuan Wang

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

Galois representations come from algebraic geometry.

$$G_{K} \curvearrowright H^{i}_{et}(X_{\overline{K}}, \overline{\mathbb{Q}}_{\ell}(j))$$

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

Galois representations come from algebraic geometry.

$$G_{\mathcal{K}} \curvearrowright \mathcal{V} \subseteq H^{i}_{et}(X_{\overline{\mathcal{K}}}, \overline{\mathbb{Q}}_{\ell}(j))^{\mathrm{ss}}$$

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

Galois representations come from algebraic geometry.

$$G_{\mathcal{K}} \curvearrowright \mathcal{V} \subseteq H^{i}_{et}(X_{\overline{\mathcal{K}}}, \overline{\mathbb{Q}}_{\ell}(j))^{\mathrm{ss}}$$

Properties of V

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

Galois representations come from algebraic geometry.

$$G_{\mathcal{K}} \frown V \subseteq H^{i}_{et}(X_{\overline{\mathcal{K}}}, \overline{\mathbb{Q}}_{\ell}(j))^{\mathrm{ss}}$$

Properties of V

(a) V unramified almost everywhere.

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

Galois representations come from algebraic geometry.

$$G_{\mathcal{K}} \frown V \subseteq H^{i}_{et}(X_{\overline{\mathcal{K}}}, \overline{\mathbb{Q}}_{\ell}(j))^{\mathrm{ss}}$$

Properties of V

- (a) V unramified almost everywhere.
- (b) V de Rham above ℓ .

The Tate conjecture The Fontaine-Mazur conjecture

Geometric Galois representations

Galois representations come from algebraic geometry.

$$G_{\mathcal{K}} \frown V \subseteq H^{i}_{et}(X_{\overline{\mathcal{K}}}, \overline{\mathbb{Q}}_{\ell}(j))^{\mathrm{ss}}$$

Properties of V

- (a) V unramified almost everywhere.
- (b) V de Rham above ℓ .

Definition (Geometric)

A Galois representation is geometric if it satisfies (a) and (b).

Xiyuan Wang

A family of elliptic surfaces The Tate conjecture for S

The Tate conjecture The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

The Tate conjecture The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.

The Tate conjecture The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.

 M_{et} : Pure motives \rightarrow Galois representations

The Tate conjecture The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.

 M_{et} : Pure motives \rightarrow Galois representations

• The FM conj. $\Leftrightarrow EssImage(M_{et}) = \{\text{geometric Galois rep}\}$

The Tate conjecture The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.

 M_{et} : Pure motives \rightarrow Galois representations

- The FM conj. $\Leftrightarrow EssImage(M_{et}) = \{\text{geometric Galois rep}\}$
- The Tate conj. $\Leftrightarrow M_{et}$ is fully faithful

The Tate conjecture The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.

 M_{et} : Pure motives \rightarrow Galois representations

- The FM conj. $\Leftrightarrow EssImage(M_{et}) = \{\text{geometric Galois rep}\}$
- The Tate conj. $\Leftrightarrow M_{et}$ is fully faithful

Slogan

Geometric Galois representations are motivic!

Two conjectures

A family of elliptic surfaces The Tate conjecture for S The Tate conjecture The Fontaine-Mazur conjecture

Known cases, $n = \dim V$

The Tate conjecture The Fontaine-Mazur conjecture

Known cases, $n = \dim V$

n=1 Class field theory+ Classification of algebraic Hecke characters

The Tate conjecture The Fontaine-Mazur conjecture

Known cases, $n = \dim V$

n=1 Class field theory+ Classification of algebraic Hecke characters n=2 $\ {\cal K}=Q!$

The Tate conjecture The Fontaine-Mazur conjecture

Known cases, $n = \dim V$

n=1 Class field theory+ Classification of algebraic Hecke characters n=2 $K = \mathbb{Q}!$

Two conjectures A family of elliptic surfaces

The Tate conjecture for S

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Xiyuan Wang

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

Distinct HT wts

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

$$\int \text{Distinct HT wts} \begin{cases} \text{odd} \\ \end{cases}$$

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \mathrm{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

Distinct HT wts
$$\begin{cases} odd \\ \end{cases}$$
 Modular forms of wt > 1

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \mathrm{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

Distinct HT wts $\begin{cases} odd \\ even \end{cases}$ Modular forms of wt > 1

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r:G_{\mathbb{Q}} \to \mathrm{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c)=-1.

Distinct HT wts $\begin{cases} odd \\ even \end{cases}$

Modular forms of wt > 1 Doesn't exists!

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \mathrm{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

Distinct HT wts { odd even Same HT wts

Modular forms of wt > 1 Doesn't exists!

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r:G_{\mathbb Q}\to {\rm GL}_2(\overline{\mathbb Q}_\ell)$ is odd if $\det r(c)=-1.$

 $\left\{\begin{array}{l}
\text{Distinct HT wts} \begin{cases} \text{odd} \\ \text{even} \\ \\
\text{Same HT wts} \end{cases}\right\}$

Modular forms of wt > 1 Doesn't exists!

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \mathrm{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

 $\left\{\begin{array}{l}
\text{Distinct HT wts} \begin{cases} \text{odd} \\
\text{even} \\
\text{Same HT wts} \\ \end{array}\right.$

Modular forms of wt > 1 Doesn't exists! Modular form of wt = 1

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r:G_{\mathbb Q}\to {\rm GL}_2(\overline{\mathbb Q}_\ell)$ is odd if $\det r(c)=-1.$

Modular forms of wt > 1 Doesn't exists! Modular form of wt = 1

The Tate conjecture The Fontaine-Mazur conjecture

n = 2, Geometric Galois representations of G_Q

Let $c \in G_{\mathbb{Q}}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_\ell)$ is odd if det r(c) = -1.

 $\begin{cases} \text{Distinct HT wts} \begin{cases} \text{odd} \\ \text{even} \end{cases} \\ \text{Same HT wts} \begin{cases} \text{odd} \\ \text{even} \end{cases} \end{cases}$

Modular forms of wt > 1 Doesn't exists! Modular form of wt = 1 Maass form with $\lambda = 1/4$

Two conjectures

A family of elliptic surfaces The Tate conjecture for \mathcal{S}

The Tate conjecture The Fontaine-Mazur conjecture

Calegari's theorem

The Tate conjecture The Fontaine-Mazur conjecture

Calegari's theorem

Theorem (Calegari)

Let $r : G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell})$ be a geometric Galois representation. Suppose that $\ell > 7$, and, furthermore, that (1) $r|_{G_{\mathbb{Q}_{\ell}}}$ has distinct Hodge-Tate weights,

Then r is modular.

Xiyuan Wang

The Tate conjecture The Fontaine-Mazur conjecture

Calegari's theorem

Theorem (Calegari)

Let $r : G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell})$ be a geometric Galois representation. Suppose that $\ell > 7$, and, furthermore, that (1) $r|_{G_{\mathbb{Q}_{\ell}}}$ has distinct Hodge-Tate weights, (2) $\overline{r}|_{G_{\mathbb{Q}_{\ell}}}$ is not a twist of a representation of the form

$$egin{pmatrix} \overline{arepsilon}_\ell & * \ 0 & 1 \end{pmatrix}$$

where $\overline{\epsilon}_{\ell}$ is the mod- ℓ cyclotomic character,

- (3) \overline{r} is not of dihedral type,
- (4) \overline{r} is absolutely irreducible.

Then r is modular.

The Tate conjecture The Fontaine-Mazur conjecture

Calegari's theorem

Theorem (Calegari)

Let $r : G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell})$ be a geometric Galois representation. Suppose that $\ell > 7$, and, furthermore, that (1) $r|_{G_{\mathbb{Q}_{\ell}}}$ has distinct Hodge-Tate weights, (2) $\overline{r}|_{G_{\mathbb{Q}_{\ell}}}$ is not a twist of a representation of the form

$$egin{pmatrix} ar{arepsilon}_\ell & * \ 0 & 1 \end{pmatrix}$$

where $\overline{\epsilon}_{\ell}$ is the mod- ℓ cyclotomic character,

- (3) \overline{r} is not of dihedral type,
- (4) \overline{r} is absolutely irreducible.

Then r is modular. In particular, r is odd.

Geemen and Top's construction Geemen and Top's conjecture

Elliptic surfaces

Geemen and Top's construction Geemen and Top's conjecture

Elliptic surfaces

$$\mathcal{E}_{a}: Y^{2} = X(X^{2} + 2(\frac{(a+1)}{t^{2}} + a)X + 1), \ a \in \mathbb{Q}$$

Geemen and Top's construction Geemen and Top's conjecture

Elliptic surfaces

$$\mathcal{E}_{a}: Y^{2} = X(X^{2} + 2(rac{(a+1)}{t^{2}} + a)X + 1), \ a \in \mathbb{Q}$$

Define

Xiyuan Wang

Geemen and Top's construction Geemen and Top's conjecture

Elliptic surfaces

$$\mathcal{E}_{a}: Y^{2} = X(X^{2} + 2(\frac{(a+1)}{t^{2}} + a)X + 1), \ a \in \mathbb{Q}$$

Define

Geemen and Top's construction Geemen and Top's conjecture

Elliptic surfaces

$$\mathcal{E}_{a}: Y^{2} = X(X^{2} + 2(rac{(a+1)}{t^{2}} + a)X + 1), \ a \in \mathbb{Q}$$

Define

where $j: z \mapsto u = (z^2 - 1)/z$ and $h: u \mapsto t = (u^2 - 4)/4u$.

Geemen and Top's construction Geemen and Top's conjecture

Elliptic surfaces

$$\mathcal{E}_{a}: Y^{2} = X(X^{2} + 2(rac{(a+1)}{t^{2}} + a)X + 1), \ a \in \mathbb{Q}$$

Define

where
$$j: z \mapsto u = (z^2 - 1)/z$$
 and $h: u \mapsto t = (u^2 - 4)/4u$.

Main player

$$\mathcal{S} := \mathcal{S}_a$$

Xiyuan Wang

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's construction Geemen and Top's conjecture

Properties of ${\cal S}$

• Taking a good prime $p, \mathcal{E} \to \mathbb{P}^1_{\overline{\mathbb{F}}_p}$ has bad fibre at 0, $\pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.

Geemen and Top's construction Geemen and Top's conjecture

- Taking a good prime $p, \mathcal{E} \to \mathbb{P}^1_{\overline{\mathbb{F}}_p}$ has bad fibre at 0, $\pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.
- The elliptic surface X is K3 with Picard number 19 or 20 (depending on a).

Geemen and Top's construction Geemen and Top's conjecture

- Taking a good prime $p, \mathcal{E} \to \mathbb{P}^1_{\overline{\mathbb{F}}_p}$ has bad fibre at 0, $\pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.
- The elliptic surface \mathcal{X} is K3 with Picard number 19 or 20 (depending on *a*).
- dim $H^2(S) = 46$, dim $H^{2,0}(S) = \dim H^{0,2}(S) = 3$,

Geemen and Top's construction Geemen and Top's conjecture

- Taking a good prime $p, \mathcal{E} \to \mathbb{P}^1_{\overline{\mathbb{F}}_p}$ has bad fibre at 0, $\pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.
- The elliptic surface \mathcal{X} is K3 with Picard number 19 or 20 (depending on *a*).
- dim $H^2(S) = 46$, dim $H^{2,0}(S) = \text{dim } H^{0,2}(S) = 3$, and Picard number $\rho(S_{\overline{\mathbb{Q}}}) = \text{rank}(\text{NS}^1(S_{\overline{\mathbb{Q}}})) = 37$, 38, 39, or 40 (depending on *a*).

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's construction Geemen and Top's conjecture

(Taking semisimplification!!!)

Geemen and Top's construction Geemen and Top's conjecture

$H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)), \rho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

 $H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell(1))$

Geemen and Top's construction Geemen and Top's conjecture

$H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)), \, \rho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

 $\mathit{H}^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}},\mathbb{Q}_\ell(1))\cong(\mathrm{NS}^1(\mathcal{S}_{\overline{\mathbb{Q}}})\otimes\mathbb{Q}_\ell)\oplus$

Geemen and Top's construction Geemen and Top's conjecture

$H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)), \, ho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

$$H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) \cong (\mathrm{NS}^1(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{S})$$

Geemen and Top's construction Geemen and Top's conjecture

$H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))$, $ho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

$$\begin{split} H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}},\mathbb{Q}_{\ell}(1)) &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}})\otimes\mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{S}) \\ &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}})\otimes\mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus \mathcal{W}_{\ell} \end{split}$$

Geemen and Top's construction Geemen and Top's conjecture

$H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))$, $ho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

$\begin{aligned} H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{S}) \\ &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\ 46 &= 37 + 3 + (43 - 37) \end{aligned}$

Geemen and Top's construction Geemen and Top's conjecture

 $H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)), \rho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

$$\begin{aligned} H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) &\cong (\mathrm{NS}^1(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{S}) \\ &\cong (\mathrm{NS}^1(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\ 46 &= 37 + 3 + (43 - 37) \end{aligned}$$

By the construction of S, $C_4 \frown W_{\ell}$.

Geemen and Top's construction Geemen and Top's conjecture

 $H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))$, $ho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

$$\begin{aligned} H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{S}) \\ &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\ 46 &= 37 + 3 + (43 - 37) \end{aligned}$$

By the construction of \mathcal{S} , $C_4 \curvearrowright W_\ell$. We have

 $W_{\ell}\cong V_{\ell}\oplus \overline{V}_{\ell}$,

Geemen and Top's construction Geemen and Top's conjecture

 $H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)), \ \rho(\mathcal{S}_{\overline{\mathbb{Q}}}) = 37$

(Taking semisimplification!!!)

$$\begin{aligned} H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{S}) \\ &\cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\ 46 &= 37 + 3 + (43 - 37) \end{aligned}$$

By the construction of \mathcal{S} , $\mathit{C}_4 \curvearrowright \mathit{W}_\ell.$ We have

 $W_{\ell}\cong V_{\ell}\oplus \overline{V}_{\ell}$,

where dim $V_{\ell} = \dim \overline{V}_{\ell} = 3$.

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's conjecture

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's conjecture

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's conjecture

•
$$V_{\ell} \cong \overline{V}_{\ell}$$

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's conjecture

- $V_{\ell} \cong \overline{V}_{\ell}$
- $h^{1,-1}(V_{\ell}) = h^{0,0}(V_{\ell}) = h^{-1,1}(V_{\ell}) = 1$

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's conjecture

- $V_{\ell} \cong \overline{V}_{\ell}$
- $h^{1,-1}(V_{\ell}) = h^{0,0}(V_{\ell}) = h^{-1,1}(V_{\ell}) = 1$
- $V_\ell\cong V_\ell^*$, i.e., V_ℓ self-dual

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's conjecture

Several properties of V_ℓ

• $V_{\ell} \cong \overline{V}_{\ell}$

•
$$h^{1,-1}(V_{\ell}) = h^{0,0}(V_{\ell}) = h^{-1,1}(V_{\ell}) = 1$$

•
$$V_\ell\cong V_\ell^*$$
, i.e., V_ℓ self-dual

Conjecture (van Geemen and Top, 1995)

For each a,

$$V_{\ell}(-1) \cong \delta \operatorname{Sym}^2 T_{\ell} E$$

for some elliptic curve E and some quadratic character δ .

Geemen and Top's construction Geemen and Top's conjecture

Geemen and Top's conjecture

Several properties of V_ℓ

• $V_{\ell} \cong \overline{V}_{\ell}$

•
$$h^{1,-1}(V_{\ell}) = h^{0,0}(V_{\ell}) = h^{-1,1}(V_{\ell}) = 1$$

•
$$V_\ell\cong V_\ell^*$$
, i.e., V_ℓ self-dual

Conjecture (van Geemen and Top, 1995)

For each a,

$$V_{\ell}(-1) \cong \delta \operatorname{Sym}^2 T_{\ell} E$$

for some elliptic curve E and some quadratic character δ .

Selfdual and non-selfdual 3-dimensional Galois representations, 1995

Main theorem Idea of the proof Main step

Statement

Main theorem Idea of the proof Main step

Statement

Theorem (Duan and W., 2019)

If $a \equiv 2, 3 \mod 5$ and none of 2(1 + a) or 2(1 - a) is a square in \mathbb{Q} , then, for a density one subset of primes ℓ , the Tate conjecture for S is true,

Main theorem Idea of the proof Main step

Statement

Theorem (Duan and W., 2019)

If $a \equiv 2, 3 \mod 5$ and none of 2(1 + a) or 2(1 - a) is a square in \mathbb{Q} , then, for a density one subset of primes ℓ , the Tate conjecture for S is true, i.e.,

$$\mathrm{NS}^1(\mathcal{S})\otimes \mathbb{Q}_\ell \xrightarrow{\cong} H^2_{\mathrm{et}}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell(1))^{\mathcal{G}_{\mathbb{Q}}}.$$

Main theorem Idea of the proof Main step

Tate classes are not transcendental

Main theorem Idea of the proof Main step

Tate classes are not transcendental

Up to semisimplification

Main theorem Idea of the proof Main step

Tate classes are not transcendental

Up to semisimplification

$$H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) \cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \overline{V}_{\ell}.$$

Main theorem Idea of the proof Main step

Tate classes are not transcendental

Up to semisimplification

$$H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) \cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \overline{V}_{\ell}.$$

Taking G_Q -invariant part

Main theorem Idea of the proof Main step

Tate classes are not transcendental

Up to semisimplification

$$H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) \cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \overline{V}_{\ell}.$$

Taking G_Q -invariant part

 $H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{O}}}, \mathbb{Q}_{\ell}(1))^{\mathcal{G}_{\mathbb{Q}}} \cong (\mathrm{NS}^{1}(\mathcal{S}) \otimes \mathbb{Q}_{\ell}) \oplus \{\mathbf{0}\} \oplus V^{\mathcal{G}_{\mathbb{Q}}}_{\ell} \oplus \overline{V}^{\mathcal{G}_{\mathbb{Q}}}_{\ell}.$

Main theorem Idea of the proof Main step

Tate classes are not transcendental

Up to semisimplification

$$H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) \cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \overline{V}_{\ell}.$$

Taking $G_{\mathbb{Q}}$ -invariant part

$$\begin{split} H^2_{et}(\mathcal{S}_{\overline{\mathbb{Q}}},\mathbb{Q}_{\ell}(1))^{\mathcal{G}_{\mathbb{Q}}} &\cong (\mathrm{NS}^1(\mathcal{S})\otimes\mathbb{Q}_{\ell}) \oplus \{0\} \oplus V^{\mathcal{G}_{\mathbb{Q}}}_{\ell} \oplus \overline{V}^{\mathcal{G}_{\mathbb{Q}}}_{\ell}.\\ V^{\mathcal{G}_{\mathbb{Q}}}_{\ell} &= \{0\}? \end{split}$$

Main theorem Idea of the proof Main step

Tate classes are not transcendental

Up to semisimplification

$$H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)) \cong (\mathrm{NS}^{1}(\mathcal{S}_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}_{\ell}) \oplus \mathrm{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \overline{V}_{\ell}.$$

Taking $G_{\mathbb{Q}}$ -invariant part

$$H^{2}_{et}(\mathcal{S}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))^{\mathcal{G}_{\mathbb{Q}}} \cong (\mathrm{NS}^{1}(\mathcal{S}) \otimes \mathbb{Q}_{\ell}) \oplus \{0\} \oplus V^{\mathcal{G}_{\mathbb{Q}}}_{\ell} \oplus \overline{V}^{\mathcal{G}_{\mathbb{Q}}}_{\ell}.$$

 $V^{\mathcal{G}_{\mathbb{Q}}}_{\ell} = \{0\}?$

Goal

To prove $\rho := V_{\ell}^{ss}$ is absolutely irreducible.

Xiyuan Wang

Main theorem Idea of the proof Main step

Odd and even

Main theorem Idea of the proof Main step

Odd and even

Assume that $\rho: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GL}_3(\mathbb{Q}_\ell)$ is not absolutely irreducible.

Xiyuan Wang

Main theorem Idea of the proof Main step

Odd and even

Assume that $\rho: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GL}_3(\mathbb{Q}_\ell)$ is not absolutely irreducible.

• (1+1+1): $\rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$

Main theorem Idea of the proof Main step

Odd and even

•
$$(1+1+1)$$
: $\rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$

•
$$(1+2)$$
 : $ho \cong \psi \oplus r$,

Main theorem Idea of the proof Main step

Odd and even

•
$$(1+1+1)$$
: $ho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$

•
$$(1+2)$$
 : $ho \cong \psi \oplus r$, $r : G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell})$ self-dual

Main theorem Idea of the proof Main step

Odd and even

•
$$(1+1+1): \rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$$

• $(1+2): \rho \cong \psi \oplus r, r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell})$ self-dual
Calegari's FM Theorem \Longrightarrow odd

Main theorem Idea of the proof Main step

Odd and even

•
$$(1+1+1): \rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$$

• $(1+2): \rho \cong \psi \oplus r, r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell}) \text{ self-dual}$
Calegari's FM Theorem \Longrightarrow odd
 r
???

Main theorem Idea of the proof Main step

Odd and even

•
$$(1+1+1): \rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$$

• $(1+2): \rho \cong \psi \oplus r, r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell}) \text{ self-dual}$
Calegari's FM Theorem \Longrightarrow odd
 r
??? \longrightarrow even

Main theorem Idea of the proof Main step

Odd and even

Assume that $\rho: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GL}_3(\mathbb{Q}_\ell)$ is not absolutely irreducible.

•
$$(1+1+1): \rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$$

• $(1+2): \rho \cong \psi \oplus r, r: G_{\mathbb{Q}} \to \operatorname{GL}_2(\overline{\mathbb{Q}}_{\ell}) \text{ self-dual}$
Calegari's FM Theorem \Longrightarrow odd
 r
??? \Longrightarrow even

This is a contradiction.

Main theorem Idea of the proof Main step

Odd and even

Assume that $\rho: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GL}_3(\mathbb{Q}_\ell)$ is not absolutely irreducible.

•
$$(1+1+1): \rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$$

• $(1+2) : \rho \cong \psi \oplus r, r : G_Q \to GL_2(\overline{\mathbb{Q}}_\ell)$ self-dual
Calegari's FM Theorem \implies odd
 r
??? ==== even

This is a contradiction. We are done!

Xiyuan Wang

Main theorem Idea of the proof Main step

Odd and even

Assume that $\rho: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GL}_3(\mathbb{Q}_\ell)$ is not absolutely irreducible.

•
$$(1+1+1): \rho \cong \chi_1 \oplus \chi_2 \oplus \chi_3$$

• $(1+2): \rho \cong \psi \oplus r, r: G_Q \to GL_2(\overline{\mathbb{Q}}_\ell)$ self-dual
Calegari's FM Theorem \implies odd
 r
??? ==== even

This is a contradiction. We are done!

What is ??? ?

Xiyuan Wang

Main theorem Idea of the proof Main step

Elementary idea

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

Xiyuan Wang

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

Main step		
To prove		
	$\det r = 1.$	

In summary,

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

In summary,

The FM conj \Rightarrow *r* is motivic

The Tate conj

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

In summary,

The FM conj \Rightarrow *r* is motivic

The Tate conj \Rightarrow *r* is not motivic

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

In summary,

The FM conj \Rightarrow *r* is motivic $\Leftarrow \Rightarrow$ *r* odd

The Tate conj \Rightarrow *r* is not motivic $\Leftarrow \Rightarrow$ *r* even

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

In summary,

The FM conj \Rightarrow *r* is motivic $\Leftarrow \Rightarrow$ *r* odd $\Leftarrow \Rightarrow \Rightarrow$ det *r* \neq 1

The Tate conj \Rightarrow *r* is not motivic $\Leftarrow \Rightarrow$ *r* even $\Leftarrow \Rightarrow$ det *r* = 1

Main theorem Idea of the proof Main step

Elementary idea

Remember that r is self-dual.

 $??? = \det r \text{ trivial}$

In summary,

The FM conj
$$\Rightarrow$$
 r is motivic $\Leftarrow \Rightarrow$ *r* odd $\stackrel{\text{self-dual}}{\longleftrightarrow}$ det *r* \neq 1

The Tate $\operatorname{conj} \Rightarrow r$ is not motivic $\Leftarrow \Rightarrow r$ even $\stackrel{\mathsf{self-dual}}{\longleftrightarrow} \det r = 1$

Two conjecturesMain theoremA family of elliptic surfacesIdea of the proofThe Tate conjecture for SMain step

Determinant

Two conjecturesMain theoremA family of elliptic surfacesIdea of the proofThe Tate conjecture for SMain step

Determinant

Since r is self-dual, det r is a quadratic character.

Determinant

Since r is self-dual, det r is a quadratic character. There is an integer D,

Two conjecturesMain theoremA family of elliptic surfacesIdea of the proofThe Tate conjecture for SMain step

Determinant

Since r is self-dual, det r is a quadratic character. There is an integer D, such that

$$\det r(\operatorname{Frob}_p) = (\frac{D}{p}),$$

for any $p \nmid D$.

Two conjecturesMain theoremA family of elliptic surfacesIdea of the proofThe Tate conjecture for SMain step

Determinant

Since r is self-dual, det r is a quadratic character. There is an integer D, such that

$$\det r(\operatorname{Frob}_p) = (\frac{D}{p}),$$

for any $p \nmid D$.

Goal	
To prove	
D	= 1
(up to a square).	

Main theorem Idea of the proof Main step

Determinant and trace

Main theorem Idea of the proof Main step

Determinant and trace

For $g\in {\it G}_{{\Bbb Q}}$,

$$\det(\lambda I - \rho(g)) = \det(\lambda I - \rho(g)^*).$$

Main theorem Idea of the proof Main step

Determinant and trace

For $g \in G_{\mathbb{Q}}$,

$$\det(\lambda I - \rho(g)) = \det(\lambda I - \rho(g)^*).$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$,

Main theorem Idea of the proof Main step

Determinant and trace

For $g \in G_{\mathbb{Q}}$,

$$\det(\lambda I - \rho(g)) = \det(\lambda I - \rho(g)^*).$$

Considering the eigenvalue $\{ \alpha, \beta, \gamma \}$ of ho(g), then

$$\{\alpha, \beta, \gamma\} = \{\alpha^{-1}, \beta^{-1}, \gamma^{-1}\}.$$

Main theorem Idea of the proof Main step

Determinant and trace

For $g \in G_{\mathbb{Q}}$,

$$\det(\lambda I - \rho(g)) = \det(\lambda I - \rho(g)^*).$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$, then

$$\{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}\}=\{\boldsymbol{\alpha}^{-1},\boldsymbol{\beta}^{-1},\boldsymbol{\gamma}^{-1}\}.$$

• $\alpha = \pm 1$, $\beta = \pm 1$, and $\gamma = \pm 1$.

Main theorem Idea of the proof Main step

Determinant and trace

For $g \in G_{\mathbb{Q}}$,

$$\det(\lambda I - \rho(g)) = \det(\lambda I - \rho(g)^*).$$

Considering the eigenvalue $\{ \alpha, \beta, \gamma \}$ of ho(g), then

$$\{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}\}=\{\boldsymbol{\alpha}^{-1},\boldsymbol{\beta}^{-1},\boldsymbol{\gamma}^{-1}\}.$$

•
$$\alpha = \pm 1$$
, $\beta = \pm 1$, and $\gamma = \pm 1$.

•
$$\alpha\beta = 1(\alpha \neq \pm 1)$$
, and $\gamma = \pm 1$.

Main theorem Idea of the proof Main step

Determinant and trace

For $g \in G_{\mathbb{Q}}$,

$$\det(\lambda I - \rho(g)) = \det(\lambda I - \rho(g)^*).$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$, then

$$\{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}\}=\{\boldsymbol{\alpha}^{-1},\boldsymbol{\beta}^{-1},\boldsymbol{\gamma}^{-1}\}.$$

•
$$\alpha = \pm 1$$
, $\beta = \pm 1$, and $\gamma = \pm 1$.

•
$$\alpha\beta = 1 (\alpha \neq \pm 1)$$
, and $\gamma = \pm 1$.

Lemma

If
$$\operatorname{tr} \rho(g^2) \neq 3$$
 or $\operatorname{tr} \rho(g) \neq \pm 1$, then $\det r(g) = 1$.

Xiyuan Wang

Main theorem Idea of the proof Main step

Trace of $\operatorname{Frob}_{p}^{i}$

Main theorem Idea of the proof Main step

There is a trace formula

Trace of Frob'

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{p}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{p^{i}}) - \# \mathcal{X}(\mathbb{F}_{p^{i}})}{2}.$$

Main theorem Idea of the proof Main step

There is a trace formula

Trace of $Frob'_{p}$

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{\rho}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{\rho^{i}}) - \# \mathcal{X}(\mathbb{F}_{\rho^{i}})}{2}$$

The fibers are elliptic curves.

Main theorem Idea of the proof Main step

Trace of $Frob'_p$

There is a trace formula

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{\rho}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{\rho^{i}}) - \# \mathcal{X}(\mathbb{F}_{\rho^{i}})}{2}.$$

Main theorem Idea of the proof Main step

Trace of Frob_p^i

There is a trace formula

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{p}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{p^{i}}) - \# \mathcal{X}(\mathbb{F}_{p^{i}})}{2}.$$

The fibers are elliptic curves. Counting points fiber by fiber.

• Need input from geometry.

Main theorem Idea of the proof Main step

Trace of $\operatorname{Frob}_{p}^{\prime}$

There is a trace formula

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{p}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{p^{i}}) - \# \mathcal{X}(\mathbb{F}_{p^{i}})}{2}.$$

- Need input from geometry.
- Still very hard to obtain an explicit answer.

Main theorem Idea of the proof Main step

Trace of $\operatorname{Frob}_{p}^{i}$

There is a trace formula

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{p}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{p^{i}}) - \# \mathcal{X}(\mathbb{F}_{p^{i}})}{2}.$$

- Need input from geometry.
- Still very hard to obtain an explicit answer.
- A small observation: $8|\#Smfiber(\mathbb{F}_{p^i})|$

Main theorem Idea of the proof Main step

Trace of $\operatorname{Frob}_{p}^{i}$

There is a trace formula

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{p}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{p^{i}}) - \# \mathcal{X}(\mathbb{F}_{p^{i}})}{2}.$$

- Need input from geometry.
- Still very hard to obtain an explicit answer.
- A small observation: $8|\#Smfiber(\mathbb{F}_{p^i})|$
- Counting the point on bad fibers carefully.

Main theorem Idea of the proof Main step

Trace of $\operatorname{Frob}_{p}^{i}$

There is a trace formula

$$\operatorname{tr} \rho \epsilon_{\ell}^{-1}(\operatorname{Frob}_{p}^{i}) = \frac{\# \mathcal{S}(\mathbb{F}_{p^{i}}) - \# \mathcal{X}(\mathbb{F}_{p^{i}})}{2}$$

The fibers are elliptic curves. Counting points fiber by fiber.

- Need input from geometry.
- Still very hard to obtain an explicit answer.
- A small observation: $8|\#Smfiber(\mathbb{F}_{p^i})|$
- Counting the point on bad fibers carefully.

Proposition

If
$$\left(\frac{2(1+a)}{p}\right) = \left(\frac{2(1-a)}{p}\right) = -1$$
, then $\operatorname{tr}(\rho(\operatorname{Frob}_p^2)) = -1 \mod 8$.

Main theorem Idea of the proof Main step

End of the proof

Main theorem Idea of the proof Main step

End of the proof

Proposition + Lemma $\Rightarrow \det r(\operatorname{Frob}_p) = 1$, for some primes *p*.

Main theorem Idea of the proof Main step

End of the proof

Proposition + Lemma
$$\Rightarrow \det r(\operatorname{Frob}_p) = 1$$
, for some primes *p*.

Assume D is not 1, in those primes, find a p such that

$$\det r(\operatorname{Frob}_p) = \left(\frac{D}{p}\right) = -1.$$

Main theorem Idea of the proof Main step

End of the proof

Proposition + Lemma
$$\Rightarrow \det r(\operatorname{Frob}_p) = 1$$
, for some primes *p*.

Assume D is not 1, in those primes, find a p such that

$$\det r(\operatorname{Frob}_p) = \left(\frac{D}{p}\right) = -1.$$

This is a contradiction.

Main theorem Idea of the proof Main step

End of the proof

Proposition + Lemma
$$\Rightarrow \det r(\operatorname{Frob}_p) = 1$$
, for some primes *p*.

Assume D is not 1, in those primes, find a p such that

$$\det r(\operatorname{Frob}_p) = \left(\frac{D}{p}\right) = -1.$$

This is a contradiction. We are done !

Main theorem Idea of the proof Main step

Final remarks

Main theorem Idea of the proof Main step

Final remarks

• Checking that *r* satisfies the additional conditions in Calegari's theorem is non-trivial.

Main theorem Idea of the proof Main step

Final remarks

- Checking that *r* satisfies the additional conditions in Calegari's theorem is non-trivial.
- An on-going project with Ariel and Lian about compatible systems of Galois representations and hypergeometric motives.

Main theorem Idea of the proof Main step

Final remarks

- Checking that *r* satisfies the additional conditions in Calegari's theorem is non-trivial.
- An on-going project with Ariel and Lian about compatible systems of Galois representations and hypergeometric motives.
- van Geemen and Top's conjecture? Potential automorphy.

Two conjecturesMain theoremA family of elliptic surfacesIdea of the proofThe Tate conjecture for SMain step

Thank you for your listening!