The Tate conjecture for a concrete family of elliptic surfaces

Xiyuan Wang

Johns Hopkins University

November 14, 2020 (Joint work with Lian Duan)

Outline

1. Two conjectures

- The Tate conjecture
- The Fontaine-Mazur conjecture

2. A family of elliptic surfaces

- Geemen and Top's construction
- Geemen and Top's conjecture

3. The Tate conjecture for \mathcal{S}

- Main theorem
- Idea of the proof
- Main step

Two conjectures

The Tate conjecture
The Fontaine-Mazur conjecture

Set up

Xiyuan Wang

Two conjectures

Set up

- K : number field (eg. $K=\mathbb{Q}$)

Xiyuan Wang

Set up

- K : number field (eg. $K=\mathbb{Q}$)
- G_{K} : absolute Galois group $\operatorname{Gal}(\bar{K} / K)$

Set up

- K : number field (eg. $K=\mathbb{Q}$)
- G_{K} : absolute Galois group $\operatorname{Gal}(\bar{K} / K)$
- X : smooth projective variety over K

Set up

- K : number field (eg. $K=\mathbb{Q}$)
- G_{K} : absolute Galois group $\operatorname{Gal}(\bar{K} / K)$
- X : smooth projective variety over K
- $\mathcal{Z}^{i}(X)$: free abelian group $\mathbb{Z}\langle$ codimen i irred subvar of $X\rangle$

Set up

- K : number field (eg. $K=\mathbb{Q}$)
- G_{K} : absolute Galois group $\operatorname{Gal}(\bar{K} / K)$
- X : smooth projective variety over K
- $\mathcal{Z}^{i}(X)$: free abelian group $\mathbb{Z}\langle$ codimen i irred subvar of $X\rangle$
- $\mathrm{NS}^{i}(X)$: Neron-Severi group $\mathcal{Z}^{i}(X) / \sim_{\text {alg }}$

The Tate conjecture

The Tate conjecture

The cycle class map

$$
c^{i}: \mathrm{NS}^{i}(X) \rightarrow H_{e t}^{2 i}\left(X_{\bar{K}}, \mathrm{Q}_{\ell}(i)\right)^{G_{K}} .
$$

The Tate conjecture

The cycle class map

$$
c^{i}: \mathrm{NS}^{i}(X) \rightarrow H_{e t}^{2 i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(i)\right)^{G_{K}}
$$

The Tate conjecture

The map

$$
c^{i} \otimes \mathbb{Q}_{\ell}: \mathrm{NS}^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(i)\right)^{G_{K}}
$$

The Tate conjecture

The cycle class map

$$
c^{i}: \mathrm{NS}^{i}(X) \rightarrow H_{e t}^{2 i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(i)\right)^{G_{K}}
$$

The Tate conjecture

The map

$$
c^{i} \otimes \mathbb{Q}_{\ell}: \mathrm{NS}^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(i)\right)^{G_{K}}
$$

is surjective.

The Tate conjecture

The cycle class map

$$
c^{i}: \mathrm{NS}^{i}(X) \rightarrow H_{e t}^{2 i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(i)\right)^{G_{K}}
$$

The Tate conjecture

The map

$$
c^{i} \otimes \mathbb{Q}_{\ell}: \mathrm{NS}^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(i)\right)^{G_{K}}
$$

is surjective.

Slogan

Tate classes are algebraic!

Two conjectures

The Tate conjecture
The Fontaine-Mazur conjecture

Known cases

Two conjectures

Known cases

Divisor case ($i=1$)

Known cases

Divisor case ($i=1$)

- Abelian varieties

Known cases

Divisor case ($i=1$)

- Abelian varieties
- K3 surfaces

Known cases

Divisor case ($i=1$)

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0}=1$

Known cases

Divisor case ($i=1$)

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0}=1$
- Hilbert modular surfaces

Known cases

Divisor case ($i=1$)

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0}=1$
- Hilbert modular surfaces
- Elliptic modular surfaces

Known cases

Divisor case ($i=1$)

- Abelian varieties
- K3 surfaces
- Varieties with $h^{2,0}=1$
- Hilbert modular surfaces
- Elliptic modular surfaces
- ...

Two conjectures

The Tate conjecture
The Fontaine-Mazur conjecture

Some remarks on the proofs

Some remarks on the proofs

- Let X be a K3 surface. The Kuga-Satake construction

$$
X \vdash A \times A
$$

where A is an abelian variety.

Some remarks on the proofs

- Let X be a K3 surface. The Kuga-Satake construction

$$
X \vdash A \times A
$$

where A is an abelian variety.
Rk: $H^{2,0}(X)=1$ is a crucial input.

Some remarks on the proofs

- Let X be a K3 surface. The Kuga-Satake construction

$$
X \vdash A \times A
$$

where A is an abelian variety.
Rk: $H^{2,0}(X)=1$ is a crucial input.

- The Hodge conj. + The Mumford-Tate conj. \Rightarrow The Tate conj.

Two conjectures

Geometric Galois representations

Geometric Galois representations

Galois representations come from algebraic geometry.

Geometric Galois representations

Galois representations come from algebraic geometry.

$$
G_{K} \curvearrowright \quad H_{e t}^{i}\left(X_{\bar{K}}, \bar{Q}_{\ell}(j)\right)
$$

Geometric Galois representations

Galois representations come from algebraic geometry.

$$
G_{K} \curvearrowright V \subseteq H_{e t}^{i}\left(X_{\bar{K}}, \overline{\mathbb{Q}}_{\ell}(j)\right)^{\mathrm{ss}}
$$

Geometric Galois representations

Galois representations come from algebraic geometry.

$$
G_{K} \curvearrowright V \subseteq H_{e t}^{i}\left(X_{\bar{K}}, \overline{\mathbb{Q}}_{\ell}(j)\right)^{\mathrm{ss}}
$$

Properties of V

Geometric Galois representations

Galois representations come from algebraic geometry.

$$
G_{K} \curvearrowright V \subseteq H_{e t}^{i}\left(X_{\bar{K}}, \overline{\mathbb{Q}}_{\ell}(j)\right)^{\mathrm{ss}}
$$

Properties of V
(a) V unramified almost everywhere.

Geometric Galois representations

Galois representations come from algebraic geometry.

$$
G_{K} \curvearrowright V \subseteq H_{e t}^{i}\left(X_{\bar{K}}, \overline{\mathbb{Q}}_{\ell}(j)\right)^{\mathrm{ss}}
$$

Properties of V
(a) V unramified almost everywhere.
(b) V de Rham above ℓ.

Geometric Galois representations

Galois representations come from algebraic geometry.

$$
G_{K} \curvearrowright V \subseteq H_{e t}^{i}\left(X_{\bar{K}}, \overline{\mathbb{Q}}_{\ell}(j)\right)^{\mathrm{ss}}
$$

Properties of V
(a) V unramified almost everywhere.
(b) V de Rham above ℓ.

Definition (Geometric)

A Galois representation is geometric if it satisfies (a) and (b).

Two conjectures

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.
$M_{e t}$: Pure motives \rightarrow Galois representations

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.
$M_{e t}$: Pure motives \rightarrow Galois representations

- The FM conj. \Leftrightarrow EssImage $\left(M_{e t}\right)=\{$ geometric Galois rep $\}$

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.
$M_{e t}$: Pure motives \rightarrow Galois representations

- The FM conj. \Leftrightarrow Esslmage $\left(M_{e t}\right)=\{$ geometric Galois rep $\}$
- The Tate conj. $\Leftrightarrow M_{e t}$ is fully faithful

The Fontaine-Mazur conjecture

The Fontaine-Mazur conjecture

If a Galois representation is geometric, it comes from algebraic geometry.
$M_{e t}:$ Pure motives \rightarrow Galois representations

- The FM conj. \Leftrightarrow Esslmage $\left(M_{e t}\right)=\{$ geometric Galois rep $\}$
- The Tate conj. $\Leftrightarrow M_{e t}$ is fully faithful

Slogan

Geometric Galois representations are motivic!

Two conjectures
A family of elliptic surfaces The Tate conjecture for \mathcal{S}

Known cases, $n=\operatorname{dim} V$

Known cases, $n=\operatorname{dim} V$

$\mathrm{n}=1$ Class field theory + Classification of algebraic Hecke characters

Known cases, $n=\operatorname{dim} V$

$\mathrm{n}=1$ Class field theory+ Classification of algebraic Hecke characters
$\mathrm{n}=2 \quad K=\mathbb{Q}$!

Known cases, $n=\operatorname{dim} V$

$\mathrm{n}=1$ Class field theory+ Classification of algebraic Hecke characters $\mathrm{n}=2 \quad K=\mathbb{Q}$!

Two conjectures

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{Q}$ be the complex conjugation.

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.
$\{$ Distinct HT wts $\{$ odd

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.
$\begin{cases}\text { Distinct HT wts } \begin{cases}\text { odd } & \text { Modular forms of wt }>1\end{cases} \\ \end{cases}$

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.
$\left\{\right.$ Distinct HT wts $\left\{\begin{array}{c}\text { odd } \\ \text { even }\end{array} \quad\right.$ Modular forms of wt >1

$n=2$, Geometric Galois representations of $G_{\mathbb{Q}}$

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.
$\left\{\begin{array}{cc}\text { Distinct HT wts }\left\{\begin{array}{cc}\text { odd } \\ \text { even } & \text { Modular forms of wt }>1 \\ \text { Doesn't exists! }\end{array}\right. \\ \end{array}\right.$

$n=2$, Geometric Galois representations of G_{Q}

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathrm{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.

$n=2$, Geometric Galois representations of G_{Q}

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathrm{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.

$$
\left\{\begin{array}{c}
\text { Distinct HT wts }\left\{\begin{array}{c}
\text { odd } \\
\text { even }
\end{array}\right. \\
\text { Same HT wts }\left\{\begin{array}{l}
\text { odd }
\end{array}\right.
\end{array}\right.
$$

Modular forms of wt >1 Doesn't exists!

$n=2$, Geometric Galois representations of G_{Q}

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathrm{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.

$$
\left\{\begin{array}{c}
\text { Distinct HT wts }\left\{\begin{array}{c}
\text { odd } \\
\text { even }
\end{array}\right. \\
\text { Same HT wts }\left\{\begin{array}{l}
\text { odd }
\end{array}\right.
\end{array}\right.
$$

Modular forms of wt >1 Doesn't exists!
Modular form of $w t=1$

$n=2$, Geometric Galois representations of G_{Q}

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathrm{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.
$\left\{\begin{array}{c}\text { Distinct HT wts }\left\{\begin{array}{c}\text { odd } \\ \text { even }\end{array}\right. \\ \text { Same HT wts }\left\{\begin{array}{c}\text { odd } \\ \text { even }\end{array}\right.\end{array}\right.$
Modular forms of wt > 1 Doesn't exists!
Modular form of $\mathrm{wt}=1$

$n=2$, Geometric Galois representations of G_{Q}

Let $c \in G_{Q}$ be the complex conjugation.

Definition (Odd)

A Galois representation $r: G_{\mathrm{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ is odd if $\operatorname{det} r(c)=-1$.
$\left\{\begin{array}{c}\text { Distinct HT wts }\left\{\begin{array}{c}\text { odd } \\ \text { even }\end{array}\right. \\ \text { Same HT wts }\left\{\begin{array}{c}\text { odd } \\ \text { even }\end{array}\right.\end{array}\right.$
Modular forms of wt > 1 Doesn't exists!
Modular form of $\mathrm{wt}=1$
Maass form with $\lambda=1 / 4$

Calegari's theorem

Calegari's theorem

Theorem (Calegari)

Let $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ be a geometric Galois representation. Suppose that $\ell>7$, and, furthermore, that
(1) $\left.r\right|_{G_{\ell}}$ has distinct Hodge-Tate weights,

Then r is modular.

Calegari's theorem

Theorem (Calegari)

Let $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ be a geometric Galois representation. Suppose that $\ell>7$, and, furthermore, that
(1) $\left.r\right|_{G_{\ell}}$ has distinct Hodge-Tate weights,
(2) $\left.\bar{r}\right|_{G_{Q_{\ell}}}$ is not a twist of a representation of the form

$$
\left(\begin{array}{cc}
\bar{\varepsilon}_{\ell} & * \\
0 & 1
\end{array}\right)
$$

where $\bar{\varepsilon}_{\ell}$ is the mod- ℓ cyclotomic character,
(3) \bar{r} is not of dihedral type,
(4) \bar{r} is absolutely irreducible.

Then r is modular.

Calegari's theorem

Theorem (Calegari)

Let $r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ be a geometric Galois representation.
Suppose that $\ell>7$, and, furthermore, that
(1) $\left.r\right|_{G_{\ell}}$ has distinct Hodge-Tate weights,
(2) $\left.\bar{r}\right|_{G_{\ell}}$ is not a twist of a representation of the form

$$
\left(\begin{array}{cc}
\bar{\varepsilon}_{\ell} & * \\
0 & 1
\end{array}\right)
$$

where $\bar{\varepsilon}_{\ell}$ is the mod- ℓ cyclotomic character,
(3) \bar{r} is not of dihedral type,
(4) \bar{r} is absolutely irreducible.

Then r is modular. In particular, r is odd.

Two conjectures
A family of elliptic surfaces
The Tate conjecture for \mathcal{S}

Geemen and Top's construction

Geemen and Top's conjecture

Elliptic surfaces

Elliptic surfaces

$$
\mathcal{E}_{a}: Y^{2}=X\left(X^{2}+2\left(\frac{(a+1)}{t^{2}}+a\right) X+1\right), a \in \mathbb{Q}
$$

Elliptic surfaces

$$
\mathcal{E}_{a}: Y^{2}=X\left(X^{2}+2\left(\frac{(a+1)}{t^{2}}+a\right) X+1\right), a \in \mathbb{Q}
$$

Define

Elliptic surfaces

$$
\mathcal{E}_{a}: Y^{2}=X\left(X^{2}+2\left(\frac{(a+1)}{t^{2}}+a\right) X+1\right), a \in \mathbb{Q}
$$

Define

$$
\begin{aligned}
& \mathcal{S}_{a} \longrightarrow \mathcal{X}_{a} \longrightarrow \mathcal{E}_{a} \\
& \downarrow \\
& \mathbb{P}_{z}^{1} \xrightarrow{j} \downarrow \mathbb{P}_{u}^{1} \longrightarrow{ }_{h}{ }^{\prime} \downarrow \mathbb{P}_{t}^{1}
\end{aligned}
$$

Elliptic surfaces

$$
\mathcal{E}_{a}: Y^{2}=X\left(X^{2}+2\left(\frac{(a+1)}{t^{2}}+a\right) X+1\right), a \in \mathbb{Q}
$$

Define

where $j: z \mapsto u=\left(z^{2}-1\right) / z$ and $h: u \mapsto t=\left(u^{2}-4\right) / 4 u$.

Elliptic surfaces

$$
\mathcal{E}_{a}: Y^{2}=X\left(X^{2}+2\left(\frac{(a+1)}{t^{2}}+a\right) X+1\right), \quad a \in \mathbb{Q}
$$

Define

$$
\begin{gathered}
\mathcal{S}_{a} \longrightarrow \mathcal{X}_{a} \longrightarrow \mathcal{E}_{a} \\
\downarrow \\
\left.\left.\mathbb{P}_{z}^{1} \xrightarrow{j}\right\lrcorner \mathbb{P}_{u}^{1} \longrightarrow{ }_{h}\right\lrcorner \downarrow \mathbb{P}_{t}^{1}
\end{gathered}
$$

where $j: z \mapsto u=\left(z^{2}-1\right) / z$ and $h: u \mapsto t=\left(u^{2}-4\right) / 4 u$.

Main player

$$
\mathcal{S}:=\mathcal{S}_{a}
$$

Two conjectures

A family of elliptic surfaces

 The Tate conjecture for \mathcal{S}
Geemen and Top's construction

 Geemen and Top's conjecture
Properties of \mathcal{S}

Properties of \mathcal{S}

Properties of \mathcal{S}

- Taking a good prime $p, \mathcal{E} \rightarrow \mathbb{P}_{\overline{\mathbb{F}}_{p}}$ has bad fibre at $0, \pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.

Properties of \mathcal{S}

- Taking a good prime $p, \mathcal{E} \rightarrow \mathbb{P}_{\overline{\mathbb{F}}_{p}}^{1}$ has bad fibre at $0, \pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.
- The elliptic surface \mathcal{X} is K 3 with Picard number 19 or 20 (depending on a).

Properties of \mathcal{S}

- Taking a good prime $p, \mathcal{E} \rightarrow \mathbb{P}_{\overline{\mathbb{F}}_{p}}^{1}$ has bad fibre at $0, \pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.
- The elliptic surface \mathcal{X} is K 3 with Picard number 19 or 20 (depending on a).
- $\operatorname{dim} H^{2}(\mathcal{S})=46, \operatorname{dim} H^{2,0}(\mathcal{S})=\operatorname{dim} H^{0,2}(\mathcal{S})=3$,

Properties of \mathcal{S}

- Taking a good prime $p, \mathcal{E} \rightarrow \mathbb{P}_{\overline{\mathbb{F}}_{p}}^{1}$ has bad fibre at $0, \pm i$, and $\pm \sqrt{\frac{1+a}{1-a}}$.
- The elliptic surface \mathcal{X} is K 3 with Picard number 19 or 20 (depending on a).
- $\operatorname{dim} H^{2}(\mathcal{S})=46, \operatorname{dim} H^{2,0}(\mathcal{S})=\operatorname{dim} H^{0,2}(\mathcal{S})=3$, and Picard number $\rho\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)=\operatorname{rank}\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)\right)=37,38,39$, or 40 (depending on a).

Two conjectures
A family of elliptic surfaces
The Tate conjecture for \mathcal{S}

Geemen and Top's construction

 Geemen and Top's conjecture
$H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathbb{Q}_{\ell}(1)\right), \rho\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)=37$

$H_{e t}^{2}\left(\mathcal{S}_{\widehat{Q}}, \mathbf{Q}_{\ell}(1)\right), \rho\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)=37$

(Taking semisimplification!!!)

$H_{e t}^{2}\left(\mathcal{S}_{\mathcal{O}^{0}}, Q_{\ell}(1)\right), \rho\left(\mathcal{S}_{\mathbb{Q}}\right)=37$

(Taking semisimplification!!!)

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right)
$$

$H_{e t}^{2}\left(\mathcal{S}_{\mathbb{O}}, Q_{\ell}(1)\right), \rho\left(\mathcal{S}_{\mathbb{Q}}\right)=37$

(Taking semisimplification!!!)

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathbf{Q}_{\ell}(1)\right) \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbf{Q}_{\ell}\right) \oplus
$$

$H_{e t}^{2}\left(\mathcal{S}_{\mathbb{O}}, Q_{\ell}(1)\right), \rho\left(\mathcal{S}_{\mathbb{Q}}\right)=37$

(Taking semisimplification!!!)

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{S})
$$

$H_{e t}^{2}\left(\mathcal{S}_{\mathcal{Q}}, \mathbf{Q}_{\ell}(1)\right), \rho\left(\mathcal{S}_{\mathbb{Q}}\right)=37$

(Taking semisimplification!!!)

$$
\begin{aligned}
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) & \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{S}) \\
& \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell}
\end{aligned}
$$

$H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right), \rho\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)=37$

(Taking semisimplification!!!)

$$
\begin{aligned}
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) & \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{S}) \\
& \cong\left(\operatorname{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\
& =\quad 37+3+(43-37)
\end{aligned}
$$

$H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right), \rho\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)=37$

(Taking semisimplification!!!)

$$
\begin{aligned}
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) & \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{S}) \\
& \cong\left(\operatorname{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\
& =\quad 37+3+(43-37)
\end{aligned}
$$

By the construction of $\mathcal{S}, C_{4} \curvearrowright W_{\ell}$.

$H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right), \rho\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)=37$

(Taking semisimplification!!!)

$$
\begin{aligned}
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) & \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{S}) \\
& \cong\left(\operatorname{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\
& =\quad 37+3+(43-37)
\end{aligned}
$$

By the construction of $\mathcal{S}, C_{4} \curvearrowright W_{\ell}$. We have

$$
W_{\ell} \cong V_{\ell} \oplus \bar{V}_{\ell}
$$

$H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathbb{Q}_{\ell}(1)\right), \rho\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right)=37$

(Taking semisimplification!!!)

$$
\begin{aligned}
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) & \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{S}) \\
& \cong\left(\operatorname{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus W_{\ell} \\
& =\quad 37+3+(43-37)
\end{aligned}
$$

By the construction of $\mathcal{S}, C_{4} \curvearrowright W_{\ell}$. We have

$$
W_{\ell} \cong V_{\ell} \oplus \bar{V}_{\ell}
$$

where $\operatorname{dim} V_{\ell}=\operatorname{dim} \bar{V}_{\ell}=3$.

Geemen and Top's conjecture

Geemen and Top's conjecture

Several properties of V_{ℓ}

Geemen and Top's construction
Geemen and Top's conjecture

Geemen and Top's conjecture

Several properties of V_{ℓ}

- $V_{\ell} \cong \bar{V}_{\ell}$

Geemen and Top's construction
 Geemen and Top's conjecture

Geemen and Top's conjecture

Several properties of V_{ℓ}

- $V_{\ell} \cong \bar{V}_{\ell}$
- $h^{1,-1}\left(V_{\ell}\right)=h^{0,0}\left(V_{\ell}\right)=h^{-1,1}\left(V_{\ell}\right)=1$

Geemen and Top's conjecture

Several properties of V_{ℓ}

- $V_{\ell} \cong \bar{V}_{\ell}$
- $h^{1,-1}\left(V_{\ell}\right)=h^{0,0}\left(V_{\ell}\right)=h^{-1,1}\left(V_{\ell}\right)=1$
- $V_{\ell} \cong V_{\ell}^{*}$, i.e., V_{ℓ} self-dual

Geemen and Top's conjecture

Several properties of V_{ℓ}

- $V_{\ell} \cong \bar{V}_{\ell}$
- $h^{1,-1}\left(V_{\ell}\right)=h^{0,0}\left(V_{\ell}\right)=h^{-1,1}\left(V_{\ell}\right)=1$
- $V_{\ell} \cong V_{\ell}^{*}$, i.e., V_{ℓ} self-dual

Conjecture (van Geemen and Top, 1995)

For each a,

$$
V_{\ell}(-1) \cong \delta \operatorname{Sym}^{2} T_{\ell} E
$$

for some elliptic curve E and some quadratic character δ.

Geemen and Top's conjecture

Several properties of V_{ℓ}

- $V_{\ell} \cong \bar{V}_{\ell}$
- $h^{1,-1}\left(V_{\ell}\right)=h^{0,0}\left(V_{\ell}\right)=h^{-1,1}\left(V_{\ell}\right)=1$
- $V_{\ell} \cong V_{\ell}^{*}$, i.e., V_{ℓ} self-dual

Conjecture (van Geemen and Top, 1995)

For each a,

$$
V_{\ell}(-1) \cong \delta \operatorname{Sym}^{2} T_{\ell} E
$$

for some elliptic curve E and some quadratic character δ.
Selfdual and non-selfdual 3-dimensional Galois representations, 1995

Two conjectures

Main theorem
Idea of the proof Main step

Statement

Statement

Theorem (Duan and W., 2019)

If $a \equiv 2,3 \bmod 5$ and none of $2(1+a)$ or $2(1-a)$ is a square in Q, then, for a density one subset of primes ℓ, the Tate conjecture for \mathcal{S} is true,

Statement

Theorem (Duan and W., 2019)

If $a \equiv 2,3 \bmod 5$ and none of $2(1+a)$ or $2(1-a)$ is a square in Q, then, for a density one subset of primes ℓ, the Tate conjecture for \mathcal{S} is true, i.e.,

$$
\mathrm{NS}^{1}(\mathcal{S}) \otimes \mathrm{Q}_{\ell} \xrightarrow{\cong} H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right)^{G_{\mathrm{Q}}} .
$$

Two conjectures
A family of elliptic surfaces The Tate conjecture for \mathcal{S}

Main theorem
Idea of the proof
Main step

Tate classes are not transcendental

Two conjectures

Tate classes are not transcendental

Up to semisimplification

Tate classes are not transcendental

Up to semisimplification

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \bar{V}_{\ell}
$$

Tate classes are not transcendental

Up to semisimplification

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathbf{Q}}}, \mathbb{Q}_{\ell}(1)\right) \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathbf{Q}}}\right) \otimes \mathbf{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \bar{V}_{\ell}
$$

Taking G_{Q}-invariant part

Tate classes are not transcendental

Up to semisimplification

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbf{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \bar{V}_{\ell} .
$$

Taking G_{Q}-invariant part

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right)^{G_{Q}} \cong\left(\mathrm{NS}^{1}(\mathcal{S}) \otimes \mathbb{Q}_{\ell}\right) \oplus\{0\} \oplus V_{\ell}^{G_{\mathrm{Q}}} \oplus \bar{V}_{\ell}^{G_{\mathrm{Q}}}
$$

Tate classes are not transcendental

Up to semisimplification

$$
H_{e t}^{2}\left(\mathcal{S}_{\bar{Q}^{\prime}} \mathrm{Q}_{\ell}(1)\right) \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathrm{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \bar{V}_{\ell} .
$$

Taking G_{Q}-invariant part

$$
\begin{gathered}
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right)^{G_{Q}} \cong\left(\mathrm{NS}^{1}(\mathcal{S}) \otimes \mathrm{Q}_{\ell}\right) \oplus\{0\} \oplus V_{\ell}^{G_{Q}} \oplus \bar{V}_{\ell}^{G_{Q}} . \\
V_{\ell}^{G_{Q}}=\{0\} ?
\end{gathered}
$$

Tate classes are not transcendental

Up to semisimplification

$$
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right) \cong\left(\mathrm{NS}^{1}\left(\mathcal{S}_{\overline{\mathrm{Q}}}\right) \otimes \mathbb{Q}_{\ell}\right) \oplus \operatorname{Tran}_{\ell}(\mathcal{X}) \oplus V_{\ell} \oplus \bar{V}_{\ell}
$$

Taking G_{Q}-invariant part

$$
\begin{gathered}
H_{e t}^{2}\left(\mathcal{S}_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}(1)\right)^{G_{\mathrm{Q}}} \cong\left(\mathrm{NS}^{1}(\mathcal{S}) \otimes \mathrm{Q}_{\ell}\right) \oplus\{0\} \oplus V_{\ell}^{G_{\mathrm{Q}}} \oplus \bar{V}_{\ell}^{G_{\mathrm{Q}}} \\
V_{\ell}^{G_{\mathrm{Q}}}=\{0\} ?
\end{gathered}
$$

Goal
To prove $\rho:=V_{\ell}^{\text {ss }}$ is absolutely irreducible.

Two conjectures
A family of elliptic surfaces The Tate conjecture for \mathcal{S}

Main theorem
Idea of the proof
Main step

Odd and even

Xiyuan Wang

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r$,

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r, r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ self-dual

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r, r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ self-dual Calegari's FM Theorem \Longrightarrow odd \rightarrow

$$
r
$$

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r, r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ self-dual Calegari's FM Theorem \Longrightarrow odd

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r, r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ self-dual Calegari's FM Theorem \Longrightarrow odd r even

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r, r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ self-dual Calegari's FM Theorem \Longrightarrow odd

This is a contradiction.

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r, r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ self-dual Calegari's FM Theorem \Longrightarrow odd

This is a contradiction. We are done!

Odd and even

Assume that $\rho: G_{Q} \rightarrow \mathrm{GL}_{3}\left(\mathrm{Q}_{\ell}\right)$ is not absolutely irreducible.

- $(1+1+1): \rho \cong \chi_{1} \oplus \chi_{2} \oplus \chi_{3}$
- $(1+2): \rho \cong \psi \oplus r, r: G_{Q} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathrm{Q}}_{\ell}\right)$ self-dual Calegari's FM Theorem \Longrightarrow odd

This is a contradiction. We are done!
What is ??? ?

Two conjectures

Main theorem
Idea of the proof
Main step

Elementary idea

Elementary idea

Remember that r is self-dual.

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove
$\operatorname{det} r=1$.

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove

$$
\operatorname{det} r=1
$$

In summary,

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove

$$
\operatorname{det} r=1
$$

In summary,
The FM conj

The Tate conj

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove

$$
\operatorname{det} r=1
$$

In summary,
The FM conj $\Rightarrow r$ is motivic

The Tate conj

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove

$$
\operatorname{det} r=1 \text {. }
$$

In summary,
The FM conj $\Rightarrow r$ is motivic

The Tate conj $\Rightarrow r$ is not motivic

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove

$$
\operatorname{det} r=1
$$

In summary,
The FM conj $\Rightarrow r$ is motivic $\Leftarrow \Rightarrow r$ odd

The Tate conj $\Rightarrow r$ is not motivic $\Leftarrow \Rightarrow r$ even

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove

$$
\operatorname{det} r=1
$$

In summary,
The FM conj $\Rightarrow r$ is motivic $\Longleftrightarrow \Rightarrow r$ odd $\Longleftrightarrow \operatorname{det} r \neq 1$

The Tate conj $\Rightarrow r$ is not motivic $\Longleftrightarrow \Rightarrow r$ even $\Longleftrightarrow \operatorname{det} r=1$

Elementary idea

Remember that r is self-dual.

$$
? ? ?=\operatorname{det} r \text { trivial }
$$

Main step

To prove

$$
\operatorname{det} r=1
$$

In summary,
The FM conj $\Rightarrow r$ is motivic $\Longleftrightarrow \Rightarrow r$ odd $\stackrel{\text { self-dual }}{\Longleftrightarrow} \operatorname{det} r \neq 1$

The Tate conj $\Rightarrow r$ is not motivic $\Leftarrow \Rightarrow r$ even $\stackrel{\text { self-dual }}{\Longleftrightarrow} \operatorname{det} r=1$

Two conjectures
A family of elliptic surfaces The Tate conjecture for \mathcal{S}

Main theorem
Idea of the proof
Main step

Determinant

Xiyuan Wang

Determinant

Since r is self-dual, det r is a quadratic character.

Determinant

Since r is self-dual, det r is a quadratic character. There is an integer D,

Determinant

Since r is self-dual, det r is a quadratic character. There is an integer D, such that

$$
\operatorname{det} r\left(\operatorname{Frob}_{p}\right)=\left(\frac{D}{p}\right)
$$

for any $p \nmid D$.

Determinant

Since r is self-dual, det r is a quadratic character. There is an integer D, such that

$$
\operatorname{det} r\left(\operatorname{Frob}_{p}\right)=\left(\frac{D}{p}\right)
$$

for any $p \nmid D$.
Goal
To prove

$$
D=1
$$

(up to a square).

Two conjectures

Determinant and trace

Determinant and trace

For $g \in G_{Q}$,

$$
\operatorname{det}(\lambda I-\rho(g))=\operatorname{det}\left(\lambda I-\rho(g)^{*}\right)
$$

Determinant and trace

For $g \in G_{Q}$,

$$
\operatorname{det}(\lambda I-\rho(g))=\operatorname{det}\left(\lambda I-\rho(g)^{*}\right)
$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$,

Determinant and trace

For $g \in G_{Q}$,

$$
\operatorname{det}(\lambda I-\rho(g))=\operatorname{det}\left(\lambda I-\rho(g)^{*}\right)
$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$, then

$$
\{\alpha, \beta, \gamma\}=\left\{\alpha^{-1}, \beta^{-1}, \gamma^{-1}\right\}
$$

Determinant and trace

For $g \in G_{Q}$,

$$
\operatorname{det}(\lambda I-\rho(g))=\operatorname{det}\left(\lambda I-\rho(g)^{*}\right)
$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$, then

$$
\{\alpha, \beta, \gamma\}=\left\{\alpha^{-1}, \beta^{-1}, \gamma^{-1}\right\}
$$

- $\alpha= \pm 1, \beta= \pm 1$, and $\gamma= \pm 1$.

Determinant and trace

For $g \in G_{Q}$,

$$
\operatorname{det}(\lambda I-\rho(g))=\operatorname{det}\left(\lambda I-\rho(g)^{*}\right)
$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$, then

$$
\{\alpha, \beta, \gamma\}=\left\{\alpha^{-1}, \beta^{-1}, \gamma^{-1}\right\}
$$

- $\alpha= \pm 1, \beta= \pm 1$, and $\gamma= \pm 1$.
- $\alpha \beta=1(\alpha \neq \pm 1)$, and $\gamma= \pm 1$.

Determinant and trace

For $g \in G_{Q}$,

$$
\operatorname{det}(\lambda I-\rho(g))=\operatorname{det}\left(\lambda I-\rho(g)^{*}\right)
$$

Considering the eigenvalue $\{\alpha, \beta, \gamma\}$ of $\rho(g)$, then

$$
\{\alpha, \beta, \gamma\}=\left\{\alpha^{-1}, \beta^{-1}, \gamma^{-1}\right\}
$$

- $\alpha= \pm 1, \beta= \pm 1$, and $\gamma= \pm 1$.
- $\alpha \beta=1(\alpha \neq \pm 1)$, and $\gamma= \pm 1$.

Lemma

If $\operatorname{tr} \rho\left(g^{2}\right) \neq 3$ or $\operatorname{tr} \rho(g) \neq \pm 1$, then $\operatorname{det} r(g)=1$.

Two conjectures
A family of elliptic surfaces The Tate conjecture for \mathcal{S}

Main theorem
Idea of the proof
Main step

Trace of Frob ${ }_{p}^{i}$

Trace of Frob ${ }_{p}^{i}$

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

Trace of Frob ${ }_{p}^{i}$

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

The fibers are elliptic curves.

Trace of Frob ${ }_{p}^{i}$

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

The fibers are elliptic curves. Counting points fiber by fiber.

Trace of Frob $_{p}^{i}$

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

The fibers are elliptic curves. Counting points fiber by fiber.

- Need input from geometry.

Trace of Frob $_{p}^{i}$

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

The fibers are elliptic curves. Counting points fiber by fiber.

- Need input from geometry.
- Still very hard to obtain an explicit answer.

Trace of Frob $_{p}^{i}$

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

The fibers are elliptic curves. Counting points fiber by fiber.

- Need input from geometry.
- Still very hard to obtain an explicit answer.
- A small observation: 8|\#Smfiber $\left(\mathbb{F}_{p^{i}}\right)$!

Trace of Frob_{p}^{i}

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

The fibers are elliptic curves. Counting points fiber by fiber.

- Need input from geometry.
- Still very hard to obtain an explicit answer.
- A small observation: 8|\#Smfiber $\left(\mathbb{F}_{p^{i}}\right)$!
- Counting the point on bad fibers carefully.

Trace of Frob_{p}^{i}

There is a trace formula

$$
\operatorname{tr} \rho \epsilon_{\ell}^{-1}\left(\operatorname{Frob}_{p}^{i}\right)=\frac{\# \mathcal{S}\left(\mathbb{F}_{p^{i}}\right)-\# \mathcal{X}\left(\mathbb{F}_{p^{i}}\right)}{2}
$$

The fibers are elliptic curves. Counting points fiber by fiber.

- Need input from geometry.
- Still very hard to obtain an explicit answer.
- A small observation: 8|\#Smfiber $\left(\mathbb{F}_{p^{i}}\right)$!
- Counting the point on bad fibers carefully.

Proposition

$$
\text { If }\left(\frac{2(1+a)}{p}\right)=\left(\frac{2(1-a)}{p}\right)=-1, \text { then } \operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}^{2}\right)\right)=-1 \bmod 8 .
$$

Two conjectures
A family of elliptic surfaces The Tate conjecture for \mathcal{S}

Main theorem
Idea of the proof
Main step

End of the proof

End of the proof

Proposition + Lemma $\Rightarrow \operatorname{det} r\left(\operatorname{Frob}_{p}\right)=1$, for some primes p.

End of the proof

Proposition + Lemma $\Rightarrow \operatorname{det} r\left(\operatorname{Frob}_{p}\right)=1$, for some primes p.

Assume D is not 1 , in those primes, find a p such that

$$
\operatorname{det} r\left(\operatorname{Frob}_{p}\right)=\left(\frac{D}{p}\right)=-1
$$

End of the proof

Proposition + Lemma $\Rightarrow \operatorname{det} r\left(\operatorname{Frob}_{p}\right)=1$, for some primes p.

Assume D is not 1 , in those primes, find a p such that

$$
\operatorname{det} r\left(\operatorname{Frob}_{p}\right)=\left(\frac{D}{p}\right)=-1
$$

This is a contradiction.

End of the proof

Proposition + Lemma $\Rightarrow \operatorname{det} r\left(\operatorname{Frob}_{p}\right)=1$, for some primes p.

Assume D is not 1 , in those primes, find a p such that

$$
\operatorname{det} r\left(\operatorname{Frob}_{p}\right)=\left(\frac{D}{p}\right)=-1
$$

This is a contradiction. We are done!

Two conjectures
A family of elliptic surfaces The Tate conjecture for \mathcal{S}

Main theorem
Idea of the proof
Main step

Final remarks

Final remarks

- Checking that r satisfies the additional conditions in Calegari's theorem is non-trivial.

Final remarks

- Checking that r satisfies the additional conditions in Calegari's theorem is non-trivial.
- An on-going project with Ariel and Lian about compatible systems of Galois representations and hypergeometric motives.

Final remarks

- Checking that r satisfies the additional conditions in Calegari's theorem is non-trivial.
- An on-going project with Ariel and Lian about compatible systems of Galois representations and hypergeometric motives.
- van Geemen and Top's conjecture? Potential automorphy.

Thank you for your listening!

