Analogues of Alladi's formula over global function fields

Biao Wang

State University of New York at Buffalo

joint work with Lian Duan and Shaoyun Yi

December 4, 2020

Johns Hopkins Junior Number Theory Days

Schedule

1 Alladi's formula and its generalizations

- Alladi's formula
- Dawsey's formula
- Sweeting-Woo's generalization
- Kural-McDonald-Sah's generalization

2 Analogues for function fields

- Main results
- Key ingredients
- 3 Conjecture: Ultimate Alladi's formula
 - Conjecture
 - Present Status

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's forr
000000		
Alladi's formula		

 $\mu(n)$: Möbius function. $\pi(x) := \# \{p : p \le x\}$ prime counting function. $\pi(x) \sim x/\log x$: Prime Number Theorem (PNT).

Alladi's formula and i	its generalizations
0000000	
Allodi'o formulo	

 $\mu(n)$: Möbius function. $\pi(x) := \# \{p : p \leq x\}$ prime counting function. $\pi(x) \sim x / \log x$: Prime Number Theorem (PNT).

The PNT is equivalent to $\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0$. Or equivalently,

$$-\sum_{n=2}^{\infty}\frac{\mu(n)}{n}=1.$$

Alladi's fe	ormula	and its	generaliz	ations
00000				
Allodi'o f	ormula			

 $\mu(n)$: Möbius function. $\pi(x) := \# \{ p : p \leq x \}$ prime counting function. $\pi(x) \sim x / \log x$: Prime Number Theorem (PNT).

The PNT is equivalent to $\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0$. Or equivalently,

$$-\sum_{n=2}^{\infty}\frac{\mu(n)}{n}=1.$$

Theorem (Alladi, 1977)

Let $k, \ell \ge 1$ be integers with $(\ell, k) = 1$. Then

$$-\sum_{\substack{n \ge 2\\ p_{\min}(n) \equiv \ell \pmod{k}}} \frac{\mu(n)}{n} = \frac{1}{\varphi(k)}.$$

Here $p_{\min}(n)$ is the smallest prime factor of *n*, and $\varphi(n)$ is Euler's totient function.

Alladi's fe	ormula	and its	generaliz	ations
00000				
Allodi'o f	ormula			

 $\mu(n)$: Möbius function. $\pi(x) := \# \{ p : p \leq x \}$ prime counting function. $\pi(x) \sim x / \log x$: Prime Number Theorem (PNT).

The PNT is equivalent to $\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0$. Or equivalently,

$$-\sum_{n=2}^{\infty}\frac{\mu(n)}{n}=1.$$

Theorem (Alladi, 1977)

Let $k, \ell \ge 1$ be integers with $(\ell, k) = 1$. Then

$$-\sum_{\substack{n \ge 2\\ p_{\min}(n) \equiv \ell \pmod{k}}} \frac{\mu(n)}{n} = \frac{1}{\varphi(k)}.$$

Here $p_{\min}(n)$ is the smallest prime factor of *n*, and $\varphi(n)$ is Euler's totient function.

PNT in arithmetic progressions: $\# \{ p \le x : p \equiv \ell \pmod{k} \} \sim \frac{1}{\varphi(k)} \pi(x)$.

Biao Wang Buffalo	Alladi's formula	December 4, 2020 4 / 23
-------------------	------------------	-------------------------

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
000000		
Alladi's formula		

Two key ingredients

1. Alladi's duality idea on prime factors of integers

Let $p_{\max}(n)$ be the largest prime factor of *n*. If f(1) = 0, $p_{\min}(1) = p_{\max}(1) = 1$, then

$$\sum_{d|n} \mu(d) f(p_{\min}(d)) = -f(p_{\max}(n)),$$
$$\sum_{d|n} \mu(d) f(p_{\max}(d)) = -f(p_{\min}(n)).$$

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
000000		
Alladi's formula		

Two key ingredients

1. Alladi's duality idea on prime factors of integers

Let $p_{\max}(n)$ be the largest prime factor of *n*. If f(1) = 0, $p_{\min}(1) = p_{\max}(1) = 1$, then

$$\begin{split} &\sum_{d\mid n} \mu(d) f(p_{\min}(d)) = -f(p_{\max}(n)), \\ &\sum_{d\mid n} \mu(d) f(p_{\max}(d)) = -f(p_{\min}(n)). \end{split}$$

Theorem (Alladi, 1977)

For any bounded function f and constant δ , we have

$$\sum_{n \leqslant x} f(p_{\max}(n)) \sim \delta \cdot x \tag{1}$$

if and only if

$$-\sum_{n=2}^{\infty} \frac{\mu(n)f(p_{\min}(n))}{n} = \delta.$$
 (2)

Alladi's formula and i	ts generalizations
00000000	
Alladi's formula	

Analogues for function fields

Conjecture: Ultimate Alladi's formula

Two key ingredients

2. Distribution of largest prime factors

Theorem (Alladi, 1977)

If $(\ell, k) = 1$, then

$$\sum_{\substack{n \leq x \\ p_{\max}(n) \equiv \ell \pmod{k}}} 1 = \frac{x}{\varphi(k)} + O\left(x \exp(-c(\log x)^{\frac{1}{3}})\right)$$

for some constant c > 0.

Alladi's formula a	nd its generalizations
00000000	
Alladi's formula	

Analogues for function fields

Conjecture: Ultimate Alladi's formula

Two key ingredients

2. Distribution of largest prime factors

 $p_{\rm n}$

Buffalo

Theorem (Alladi, 1977)

If $(\ell, k) = 1$, then

$$\sum_{\substack{n \leq x \\ \max(n) \equiv \ell \pmod{k}}} 1 = \frac{x}{\varphi(k)} + O\left(x \exp(-c(\log x)^{\frac{1}{3}})\right)$$

for some constant c > 0.

Proof of Alladi's formula. It follows immediately by taking *f* to be the indicator function for primes in arithmetic progression $\ell(\mod k)$:

$$f(n) = \begin{cases} 1, & \text{if } n = p \equiv \ell(\text{mod } k); \\ 0, & \text{otherwise.} \end{cases}$$

Conjecture: Ultimate Alladi's formula

Dawsey's formula

Dawsey's formula: Chebotarev density

 $\begin{array}{l} L/\mathbb{Q} \text{: finite Galois extension over } \mathbb{Q} \text{;} \\ G = \operatorname{Gal}(L/\mathbb{Q}) \text{: Galois group;} \\ \left[\frac{L/\mathbb{Q}}{\mathfrak{p}}\right] \text{: Artin symbol;} \\ \left[\frac{L/\mathbb{Q}}{p}\right] \text{:= } \left\{ \left[\frac{L/\mathbb{Q}}{\mathfrak{p}}\right] : \mathfrak{p} \subseteq \mathcal{O}_L \text{ and } \mathfrak{p}|p \right\} \text{ for } p \text{ unramified.} \end{array}$

Conjecture: Ultimate Alladi's formula

Dawsey's formula

Dawsey's formula: Chebotarev density

 $\begin{array}{l} L/\mathbb{Q} \text{: finite Galois extension over } \mathbb{Q} \text{;} \\ G = \operatorname{Gal}(L/\mathbb{Q}) \text{: Galois group;} \\ \left[\frac{L/\mathbb{Q}}{\mathfrak{p}}\right] \text{: Artin symbol;} \\ \left[\frac{L/\mathbb{Q}}{p}\right] \text{:=} \left\{ \left[\frac{L/\mathbb{Q}}{\mathfrak{p}}\right] : \mathfrak{p} \subseteq \mathcal{O}_L \text{ and } \mathfrak{p}|p \right\} \text{ for } p \text{ unramified.} \end{array}$

Chebotarev Density Theorem (CDT): for any conjugacy class $C \subset G$, we have

$$\#\left\{p\leq x \text{ unramified}: \left[rac{L/\mathbb{Q}}{p}
ight]=C
ight\}\sim rac{|C|}{|G|}\pi(x).$$

Conjecture: Ultimate Alladi's formula

Dawsey's formula

Dawsey's formula: Chebotarev density

 $\begin{array}{l} L/\mathbb{Q} \text{: finite Galois extension over } \mathbb{Q} \text{;} \\ G = \operatorname{Gal}(L/\mathbb{Q}) \text{: Galois group;} \\ \left[\frac{L/\mathbb{Q}}{\mathfrak{p}}\right] \text{: Artin symbol;} \\ \left[\frac{L/\mathbb{Q}}{p}\right] \text{:=} \left\{ \left[\frac{L/\mathbb{Q}}{\mathfrak{p}}\right] : \mathfrak{p} \subseteq \mathcal{O}_L \text{ and } \mathfrak{p}|p \right\} \text{ for } p \text{ unramified.} \end{array}$

Chebotarev Density Theorem (CDT): for any conjugacy class $C \subset G$, we have

$$\#\left\{ p\leq x \text{ unramified}: \left[rac{L/\mathbb{Q}}{p}
ight]=C
ight\} \sim rac{|C|}{|G|}\pi(x).$$

Theorem (Dawsey, 2017)

For any conjugacy class $C \subset G$, we have

$$-\sum_{\substack{n \ge 2\\ \left[\frac{L/Q}{p_{\min}(n)}\right] = C}} \frac{\mu(n)}{n} = \frac{|C|}{|G|}.$$

Conjecture: Ultimate Alladi's formula

Dawsey's formula

Dawsey's formula: Chebotarev density

 $\begin{array}{l} L/\mathbb{Q} \text{: finite Galois extension over } \mathbb{Q} \text{;} \\ G = \operatorname{Gal}(L/\mathbb{Q}) \text{: Galois group;} \\ \left\lfloor \frac{L/\mathbb{Q}}{\mathfrak{p}} \right\rfloor \text{: Artin symbol;} \\ \left\lfloor \frac{L/\mathbb{Q}}{p} \right\rfloor \text{:=} \left\{ \left\lfloor \frac{L/\mathbb{Q}}{\mathfrak{p}} \right\rfloor \text{:} \mathfrak{p} \subseteq \mathcal{O}_L \text{ and } \mathfrak{p}|p \right\} \text{ for } p \text{ unramified.} \end{array}$

Chebotarev Density Theorem (CDT): for any conjugacy class $C \subset G$, we have

$$\#\left\{ p\leq x \text{ unramified}: \left[rac{L/\mathbb{Q}}{p}
ight]=C
ight\} \sim rac{|C|}{|G|}\pi(x).$$

Theorem (Dawsey, 2017)

For any conjugacy class $C \subset G$, we have

$$-\sum_{\substack{n\geqslant 2\\ \left[\frac{L/Q}{p_{\min}(n)}\right]=C}}\frac{\mu(n)}{n}=\frac{|C|}{|G|}.$$

Alladi's formula follows by taking $L = \mathbb{Q}(\zeta_k)$ and C = the conjugacy class of ℓ , where ζ_k is the *k*-th primitive unit root.

Biao Wang Buffalo	Alladi's formula	December 4, 2020 7 / 23

Analogues for function fields

Conjecture: Ultimate Alladi's formula

Sweeting-Woo's generalization

Sweeting-Woo's formula: Number Fields

 $\begin{array}{l} L/K: \mbox{ finite Galois extension over an arbitrary number field K;} \\ G = \mbox{Galois group;} \\ \left[\frac{L/K}{\mathfrak{P}} \right]: \mbox{ Artin symbol;} \\ \left[\frac{L/K}{\mathfrak{p}} \right]: = \left\{ \left[\frac{L/K}{\mathfrak{P}} \right]: \mathfrak{P} \subseteq \mathcal{O}_L \mbox{ and } \mathfrak{P}|\mathfrak{p} \right\} \mbox{ for } \mathfrak{p} \subset \mathcal{O}_K \mbox{ unramified.} \end{array}$

Conjecture: Ultimate Alladi's formula

Sweeting-Woo's generalization

Sweeting-Woo's formula: Number Fields

 $\begin{array}{l} L/K: \text{ finite Galois extension over an arbitrary number field } K; \\ G = \operatorname{Gal}(L/K): \text{ Galois group;} \\ \left[\frac{L/K}{\mathfrak{P}}\right]: \text{ Artin symbol;} \\ \left[\frac{L/K}{\mathfrak{p}}\right]:= \left\{ \left[\frac{L/K}{\mathfrak{P}}\right]: \mathfrak{P} \subseteq \mathcal{O}_L \text{ and } \mathfrak{P}|\mathfrak{p} \right\} \text{ for } \mathfrak{p} \subset \mathcal{O}_K \text{ unramified.} \end{array}$

Ideal $\mathfrak{a} \subset \mathcal{O}_{\mathcal{K}}$ is called *distinguishable* (or salient): if \mathfrak{a} has a unique prime factor $\mathfrak{p}_{min}(\mathfrak{a})$ attaining the smallest norm of prime factors of \mathfrak{a} .

Conjecture: Ultimate Alladi's formula

Sweeting-Woo's generalization

Sweeting-Woo's formula: Number Fields

 $\begin{array}{l} L/K: \text{ finite Galois extension over an arbitrary number field } K; \\ G = \operatorname{Gal}(L/K): \text{ Galois group;} \\ \left[\frac{L/K}{\mathfrak{P}}\right]: \text{ Artin symbol;} \\ \left[\frac{L/K}{\mathfrak{p}}\right]: = \left\{ \left[\frac{L/K}{\mathfrak{P}}\right]: \mathfrak{P} \subseteq \mathcal{O}_L \text{ and } \mathfrak{P}|\mathfrak{p} \right\} \text{ for } \mathfrak{p} \subset \mathcal{O}_K \text{ unramified.} \end{array}$

Ideal $\mathfrak{a} \subset \mathcal{O}_{\mathcal{K}}$ is called *distinguishable* (or salient): if \mathfrak{a} has a unique prime factor $\mathfrak{p}_{min}(\mathfrak{a})$ attaining the smallest norm of prime factors of \mathfrak{a} . For any conjugacy class $C \subset G$, let

$$\mathfrak{D}(L/\mathcal{K}, \mathcal{C}) := \left\{ \mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}} \text{ is distinguishable} : \mathfrak{p}_{\mathsf{min}}(\mathfrak{a}) \text{ unramified and } \left[\frac{L/\mathcal{K}}{\mathfrak{p}_{\mathsf{min}}(\mathfrak{a})} \right] = \mathcal{C} \right\}.$$

Conjecture: Ultimate Alladi's formula

Sweeting-Woo's generalization

Sweeting-Woo's formula: Number Fields

 $\begin{array}{l} L/K: \text{ finite Galois extension over an arbitrary number field } K; \\ G = \operatorname{Gal}(L/K): \text{ Galois group;} \\ \left[\frac{L/K}{\mathfrak{P}}\right]: \text{ Artin symbol;} \\ \left[\frac{L/K}{\mathfrak{P}}\right] := \left\{ \left[\frac{L/K}{\mathfrak{P}}\right]: \mathfrak{P} \subseteq \mathcal{O}_L \text{ and } \mathfrak{P}|\mathfrak{p} \right\} \text{ for } \mathfrak{p} \subset \mathcal{O}_K \text{ unramified.} \end{array}$

Ideal $\mathfrak{a} \subset \mathcal{O}_{\mathcal{K}}$ is called *distinguishable* (or salient): if \mathfrak{a} has a unique prime factor $\mathfrak{p}_{min}(\mathfrak{a})$ attaining the smallest norm of prime factors of \mathfrak{a} . For any conjugacy class $\mathcal{C} \subset \mathcal{G}$, let

$$\mathfrak{D}(L/K, \mathcal{C}) := \left\{ \mathfrak{a} \subseteq \mathcal{O}_K \text{ is distinguishable} : \mathfrak{p}_{\min}(\mathfrak{a}) \text{ unramified and } \left[\frac{L/K}{\mathfrak{p}_{\min}(\mathfrak{a})} \right] = \mathcal{C} \right\}$$

Theorem (Sweeting-Woo, 2019)

For any conjugacy class $C \subset G$, we have

$$-\lim_{X\to\infty}\sum_{\substack{2\leq |\mathfrak{a}|\leq X\\\mathfrak{a}\in\mathfrak{D}(L/K,C)}}\frac{\mu(\mathfrak{a})}{|\mathfrak{a}|}=\frac{|C|}{|G|}.$$

Analogues for function fields

Conjecture: Ultimate Alladi's formula

Kural-McDonald-Sah's formula: Natural density

K: an arbitrary number field; \mathcal{P} : the set of all prime ideals; $S \subseteq \mathcal{P}$: a subset of \mathcal{P} ;

Kural-McDonald-Sah's formula: Natural density

 $\begin{array}{l} \mathcal{K}: \text{ an arbitrary number field;} \\ \mathcal{P}: \text{ the set of all prime ideals;} \\ \mathcal{S} \subseteq \mathcal{P}: \text{ a subset of } \mathcal{P}; \\ \delta(\mathcal{S}): \text{ natural density of } \mathcal{S} \text{ in } \mathcal{P}, \text{ if the following limit exists} \end{array}$

$$\delta(S) = \lim_{X \to \infty} rac{\# \left\{ \mathfrak{p} \in S : |\mathfrak{p}| \leqslant X
ight\}}{\# \left\{ \mathfrak{p} \in \mathcal{P} : |\mathfrak{p}| \leqslant X
ight\}}.$$

 $\mathfrak{D}(K,S):=\left\{\mathfrak{a}\subseteq\mathcal{O}_{K}\text{ is distinguishable}:\mathfrak{p}_{\mathsf{min}}(\mathfrak{a})\in S\right\}.$

Kural-McDonald-Sah's formula: Natural density

- *K*: an arbitrary number field;
- \mathcal{P} : the set of all prime ideals;
- $S \subseteq \mathcal{P}$: a subset of \mathcal{P} ;

 $\delta(S)$: natural density of S in \mathcal{P} , if the following limit exists

$$\delta(\mathcal{S}) = \lim_{X \to \infty} rac{\# \left\{ \mathfrak{p} \in \mathcal{S} : |\mathfrak{p}| \leqslant X
ight\}}{\# \left\{ \mathfrak{p} \in \mathcal{P} : |\mathfrak{p}| \leqslant X
ight\}}.$$

 $\mathfrak{D}(K,S):=\left\{\mathfrak{a}\subseteq\mathcal{O}_{K}\text{ is distinguishable}:\mathfrak{p}_{\mathsf{min}}(\mathfrak{a})\in S\right\}.$

Theorem (Kural-McDonald-Sah (KMS), 2019)

If $S \subseteq \mathcal{P}$ has natural density $\delta(S)$, then

$$-\lim_{X\to\infty}\sum_{\substack{2\leq |\mathfrak{a}|\leq X\\\mathfrak{a}\in\mathfrak{D}(K,S)}}\frac{\mu(\mathfrak{a})}{|\mathfrak{a}|}=\delta(S).$$

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
0000000		
Kural-McDonald-Sah's generalization		

1. For any conjugacy class $C \subset G$, take

$$\mathcal{S} = \left\{ \mathfrak{p} \in \mathcal{P} : \mathfrak{p} \text{ unramified}, \left[\frac{L/\mathcal{K}}{\mathfrak{p}} \right] = \mathcal{C} \right\}.$$

Then CDT gives

$$\delta(S) = \frac{|C|}{|G|}.$$

Hence KMS' formula generalizes all of the previous results.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
0000000		
Kural-McDonald-Sah's generalization		

1. For any conjugacy class $C \subset G$, take

$$\mathcal{S} = \left\{ \mathfrak{p} \in \mathcal{P} : \mathfrak{p} \text{ unramified}, \left[rac{L/K}{\mathfrak{p}}
ight] = \mathcal{C}
ight\}.$$

Then CDT gives

$$\delta(S) = \frac{|C|}{|G|}.$$

Hence KMS' formula generalizes all of the previous results.

2. In 2017, Ono-Schneider-Wagner showed a partition-theoretic analogue to Alladi's formula.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
0000000		
Kural-McDonald-Sah's generalization		

1. For any conjugacy class $C \subset G$, take

$$\mathcal{S} = \left\{ \mathfrak{p} \in \mathcal{P} : \mathfrak{p} \text{ unramified}, \left[rac{L/K}{\mathfrak{p}}
ight] = \mathcal{C}
ight\}.$$

Then CDT gives

$$\delta(S) = rac{|C|}{|G|}.$$

Hence KMS' formula generalizes all of the previous results.

2. In 2017, Ono-Schneider-Wagner showed a partition-theoretic analogue to Alladi's formula.

3. For $K = \mathbb{Q}$, the speaker generalizes KMS' formula for the μ replaced by $\mu * a$, where the arithmetic function *a* satisfies certain simple analytic properties.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
0000000		
Kural-McDonald-Sah's generalization		

1. For any conjugacy class $C \subset G$, take

$$\mathcal{S} = \left\{ \mathfrak{p} \in \mathcal{P} : \mathfrak{p} \text{ unramified}, \left[rac{L/K}{\mathfrak{p}}
ight] = \mathcal{C}
ight\}.$$

Then CDT gives

$$\delta(S) = rac{|C|}{|G|}.$$

Hence KMS' formula generalizes all of the previous results.

2. In 2017, Ono-Schneider-Wagner showed a partition-theoretic analogue to Alladi's formula.

3. For $K = \mathbb{Q}$, the speaker generalizes KMS' formula for the μ replaced by $\mu * a$, where the arithmetic function *a* satisfies certain simple analytic properties. E.g. we can take $\mu * a$ to be the Liouville function or the Ramanujan sum.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
0000000		
Kural-McDonald-Sah's generalization		

1. For any conjugacy class $C \subset G$, take

$$\mathcal{S} = \left\{ \mathfrak{p} \in \mathcal{P} : \mathfrak{p} \text{ unramified}, \left[\frac{L/K}{\mathfrak{p}} \right] = \mathcal{C} \right\}.$$

Then CDT gives

$$\delta(S) = \frac{|C|}{|G|}.$$

Hence KMS' formula generalizes all of the previous results.

2. In 2017, Ono-Schneider-Wagner showed a partition-theoretic analogue to Alladi's formula.

3. For $K = \mathbb{Q}$, the speaker generalizes KMS' formula for the μ replaced by $\mu * a$, where the arithmetic function *a* satisfies certain simple analytic properties.

E.g. we can take $\mu * a$ to be the Liouville function or the Ramanujan sum.

Recently, Ono-Schneider-Wagner showed a partition-theoretic analogue to this kind of generalization.

Analogues for function fields

Divisors of function fields

Goal:

Find the analogue of KMS' formula over function fields:

$$-\lim_{X\to\infty}\sum_{\substack{2\leq |\mathfrak{a}|\leq X\\\mathfrak{a}\in\mathfrak{D}(K,S)}}\frac{\mu(\mathfrak{a})}{|\mathfrak{a}|}=\delta(S).$$

Divisors of function fields

Goal:

Find the analogue of KMS' formula over function fields:

$$-\lim_{X\to\infty}\sum_{\substack{2\leq |\mathfrak{a}|\leq X\\\mathfrak{a}\in\mathfrak{D}(K,S)}}\frac{\mu(\mathfrak{a})}{|\mathfrak{a}|}=\delta(S).$$

 \mathbb{F}_q : a finite field of q elements. In $\mathbb{F}_q[x]$, we have

$$F = \prod_{i=1}^{r} P_{i}^{\alpha_{i}} \longleftrightarrow \sum_{i=1}^{r} \alpha_{i} \cdot P_{i}$$

Multiplicative semigroup \longleftrightarrow Abelian semigroup.

Divisors of function fields

Goal:

Find the analogue of KMS' formula over function fields:

$$-\lim_{X\to\infty}\sum_{\substack{2\leq |\mathfrak{a}|\leq X\\\mathfrak{a}\in\mathfrak{D}(K,S)}}\frac{\mu(\mathfrak{a})}{|\mathfrak{a}|}=\delta(S).$$

 \mathbb{F}_q : a finite field of q elements. In $\mathbb{F}_q[x]$, we have

$$F = \prod_{i=1}^{r} P_{i}^{\alpha_{i}} \longleftrightarrow \sum_{i=1}^{r} \alpha_{i} \cdot P_{i}$$

Multiplicative semigroup \longleftrightarrow Abelian semigroup.

E.g.,

$$F = (1+x)^2 (3+x)^1 (1+x-x^2)^5$$
$$\longleftrightarrow F = 2 \cdot (1+x) + 1 \cdot (3+x) + 5 \cdot (1+x-x^2)$$

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
	0000000	
Main results		
Notation		

 $K/\mathbb{F}_q(x)$: a global function field (or simply a function field).

 \mathcal{P} : all prime divisors of K. The letter P always denotes a prime divisor.

 \mathcal{D} : the free Abelian semigroup generated by \mathcal{P} (i.e., the set of effective divisors).

 $D = \sum_{P} a_{P} \cdot P$ (formal sum): an effective divisor of K, $a_{P} \ge 0$.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
	0000000	
Main results		
Notation		

 $K/\mathbb{F}_q(x)$: a global function field (or simply a function field). \mathcal{P} : all prime divisors of K. The letter P always denotes a prime divisor. \mathcal{D} : the free Abelian semigroup generated by \mathcal{P} (i.e., the set of effective divisors). $D = \sum_P a_P \cdot P$ (formal sum): an effective divisor of K, $a_P \ge 0$. $|D| = \prod_P |P|^{a_P}$, where $|P| = q^{\deg P}$. $\mu(D)$: the Möbius function for divisors.

$$\mu(D) = \begin{cases} 1 & \text{if } D = 0, \\ (-1)^k & \text{if } D = P_1 + \dots + P_k, P'_i s \text{ are distinct}, \\ 0 & \text{otherwise.} \end{cases}$$

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
	0000000	
Main results		

Notation

 $K/\mathbb{F}_q(x)$: a global function field (or simply a function field).

 \mathcal{P} : all prime divisors of K. The letter P always denotes a prime divisor.

 \mathcal{D} : the free Abelian semigroup generated by \mathcal{P} (i.e., the set of effective divisors).

 $D = \sum_{P} a_{P} \cdot P$ (formal sum): an effective divisor of K, $a_{P} \ge 0$.

 $|D| = \prod_{P} |P|^{a_P}$, where $|P| = q^{\deg P}$.

 $\mu(D)$: the Möbius function for divisors.

$$\mu(D) = \begin{cases} 1 & \text{if } D = 0, \\ (-1)^k & \text{if } D = P_1 + \dots + P_k, P'_i s \text{ are distinct}, \\ 0 & \text{otherwise.} \end{cases}$$

 $d_{-}(D) := \min \{ \deg P : P \mid D \}.$

D is *distinguishable*: if there is a unique prime factor, say $P_{\min}(D)$, of *D* attaining the minimal degree $d_{-}(D)$.

e.g. $(1 + x)(2 + x)(1 + x + x^5)$ is NOT distinguishable; $(1 + x)(1 + x + x^5)$ is distinguishable.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
	0000000	
Main results		

Notation

 $K/\mathbb{F}_q(x)$: a global function field (or simply a function field).

 \mathcal{P} : all prime divisors of K. The letter P always denotes a prime divisor.

 \mathcal{D} : the free Abelian semigroup generated by \mathcal{P} (i.e., the set of effective divisors).

 $D = \sum_{P} a_{P} \cdot P$ (formal sum): an effective divisor of K, $a_{P} \ge 0$.

 $|D| = \prod_{P} |P|^{a_P}$, where $|P| = q^{\deg P}$.

 $\mu(D)$: the Möbius function for divisors.

$$\mu(D) = \begin{cases} 1 & \text{if } D = 0, \\ (-1)^k & \text{if } D = P_1 + \dots + P_k, P'_i s \text{ are distinct}, \\ 0 & \text{otherwise.} \end{cases}$$

 $d_{-}(D) := \min \{ \deg P : P \mid D \}.$

D is *distinguishable*: if there is a unique prime factor, say $P_{\min}(D)$, of *D* attaining the minimal degree $d_{-}(D)$.

e.g. $(1 + x)(2 + x)(1 + x + x^5)$ is NOT distinguishable; $(1 + x)(1 + x + x^5)$ is distinguishable.

 $S \subset \mathcal{P}$: a subset of prime divisors. $\mathfrak{D}(K, S) := \{ D \in \mathcal{D} : D \text{ is distinguishable and } P_{\min}(D) \in S \}.$

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
	0000000	
Main results		

 $K/\mathbb{F}_q(x)$: a global function field (or simply a function field).

 \mathcal{P} : all prime divisors of K. The letter P always denotes a prime divisor.

 \mathcal{D} : the free Abelian semigroup generated by \mathcal{P} (i.e., the set of effective divisors).

 $D = \sum_{P} a_{P} \cdot P$ (formal sum): an effective divisor of K, $a_{P} \ge 0$.

 $|D| = \prod_{P} |P|^{a_P}$, where $|P| = q^{\deg P}$.

 $\mu(D)$: the Möbius function for divisors.

$$\mu(D) = \begin{cases} 1 & \text{if } D = 0, \\ (-1)^k & \text{if } D = P_1 + \dots + P_k, P'_i s \text{ are distinct}, \\ 0 & \text{otherwise.} \end{cases}$$

 $d_{-}(D) := \min \{ \deg P : P \mid D \}.$

D is *distinguishable*: if there is a unique prime factor, say $P_{\min}(D)$, of *D* attaining the minimal degree $d_{-}(D)$.

e.g. $(1 + x)(2 + x)(1 + x + x^5)$ is NOT distinguishable; $(1 + x)(1 + x + x^5)$ is distinguishable. $S \subset \mathcal{P}$: a subset of prime divisors. $\mathfrak{D}(K, S) := \{D \in \mathcal{D} : D \text{ is distinguishable and } P_{\min}(D) \in S\}.$ $\delta(S) = \lim_{n \to \infty} \frac{\#\{P \in S: \deg P = n\}}{\#\{P \in S: \deg P = n\}}$: natural density of *S*.

Notation

Main Theorem

Theorem (Duan-W.-Yi (DWY), 2020)

Given a global function field K, if $S \subset \mathcal{P}$ has a natural density $\delta(S)$, then

$$-\lim_{n\to\infty}\sum_{\substack{1\leq \deg D\leq n\\ D\in\mathfrak{D}(K,S)}}\frac{\mu(D)}{|D|}=\delta(S).$$

Main Theorem

Theorem (Duan-W.-Yi (DWY), 2020)

Given a global function field K, if $S \subset \mathcal{P}$ has a natural density $\delta(S)$, then

$$-\lim_{n\to\infty}\sum_{\substack{1\leq \deg D\leq n\\ D\in\mathfrak{D}(K,S)}}\frac{\mu(D)}{|D|}=\delta(S).$$

Remark. Duan later found that the main theorem also holds for varieties.

Conjecture: Ultimate Alladi's formula

Main results

Application 1: Chebotarev Density Theorem for function fields

L/K: a geometric Galois extension of function fields. G = Gal(L/K): Galois group. (P, L/K): Frobenius at *P* for *P* unramified.

15/23

Main results

Application 1: Chebotarev Density Theorem for function fields

L/K: a geometric Galois extension of function fields. G = Gal(L/K): Galois group. (P, L/K): Frobenius at *P* for *P* unramified.

By Chebotarev Density Theorem for function fields, we have

Corollary 1 (DWY, 2020)

For any conjugacy class $C \subseteq G$, we have

$$-\lim_{n\to\infty}\sum_{\substack{D\in\mathfrak{D}(K,\mathcal{P}),1\leq \deg D\leq n\\(P_{\min}(D),L/K)=C}}\frac{\mu(D)}{|D|}=\frac{\#C}{\#G}$$

Biao Wang	Buffalo	Alladi's formula	December 4, 2020
-----------	---------	------------------	------------------

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
0000000	00000000	00000
Mala annulu		

/lain results

Application 2: Prime Polynomial Theorem for arithmetic progressions

S: a subset of monic irreducible polynomials of $\mathbb{F}_q[x]$. $\mathfrak{D}(q, S) := \{F \in \mathbb{F}_q[x] : F \text{ is monic and distinguishable, and } p_{\min}(F) \in S\}$.

Application 2: Prime Polynomial Theorem for arithmetic progressions

S: a subset of monic irreducible polynomials of $\mathbb{F}_q[x]$. $\mathfrak{D}(q, S) := \{F \in \mathbb{F}_q[x] : F \text{ is monic and distinguishable, and } p_{\min}(F) \in S\}$.

Corollary 2 (DWY, 2020)

Let $q \ge 2$ be fixed. If $S \subset \mathcal{P}$ has a natural density $\delta(S)$, then we have that

$$-\lim_{n\to\infty}\sum_{\substack{1\leq\deg F\leq n\\F\in\mathfrak{D}(q,S)}}\frac{\mu(F)}{|F|}=\delta(S).$$

Application 2: Prime Polynomial Theorem for arithmetic progressions

S: a subset of monic irreducible polynomials of $\mathbb{F}_q[x]$. $\mathfrak{D}(q, S) := \{F \in \mathbb{F}_q[x] : F \text{ is monic and distinguishable, and } p_{\min}(F) \in S\}$.

Corollary 2 (DWY, 2020)

Let $q \ge 2$ be fixed. If $S \subset \mathcal{P}$ has a natural density $\delta(S)$, then we have that

$$-\lim_{n\to\infty}\sum_{\substack{1\leq \deg F\leq n\\ F\in\mathfrak{D}(q,S)}}\frac{\mu(F)}{|F|}=\delta(S).$$

By Prime Polynomial Theorem for arithmetic progressions, we get that

Corollary 3 (DWY, 2020)

For relatively prime $f, g \in \mathbb{F}_q[x]$, we have

$$-\lim_{n\to\infty}\sum_{\substack{F\in\mathfrak{D}(q,\mathcal{P}),1\leq \deg F\leq n\\p_{\min}(F)\equiv f(\mod g)}}\frac{\mu(F)}{|F|}=\frac{1}{\varphi(g)}.$$

Here $\varphi(g)$ is the function field Euler totient function.

Biao Wang	Buffalo	Alladi's formula	December 4, 2020	16/23

Key ingredients in the proof of Main Theorem

Strategy: follow Alladi's work and KMS' work.

Conjecture: Ultimate Alladi's formula

Key ingredients

Key ingredients in the proof of Main Theorem

Strategy: follow Alladi's work and KMS' work.

1. Duality between prime factors of divisors

Recall that S is a set of prime divisors of K.

For a divisor $A \in \mathcal{D}$, we let

 $d^+(A) := \max \{ \deg P : P | A \}$

 $Q_{\mathcal{S}}(\mathcal{A}) := \# \left\{ \mathcal{P} \in \mathcal{S} : \deg \mathcal{P} = d^+(\mathcal{A}), \mathcal{P}|\mathcal{A} \right\}$

Conjecture: Ultimate Alladi's formula

Key ingredients

Key ingredients in the proof of Main Theorem

Strategy: follow Alladi's work and KMS' work.

1. Duality between prime factors of divisors

Recall that S is a set of prime divisors of K.

For a divisor $A \in \mathcal{D}$, we let

 $d^+(A) := \max \left\{ \deg P : P|A \right\}$

 $Q_S(A) := \# \left\{ P \in S : \deg P = d^+(A), P|A
ight\}$

Lemma (Duality Lemma, DWY, 2020)

Suppose $f : \mathbb{N} \to \mathbb{C}$, f(0) = 0. Then the following identity holds

$$\sum_{A>B} \mu(B) \mathbb{1}_{\mathfrak{D}(K,S)}(B) f(d_{-}(B)) = -Q_{S}(A) f(d^{+}(A)).$$

Here $1_{\mathfrak{D}(K,S)}$ is the indicator function on $\mathfrak{D}(K,S)$.

Biao Wang	
-----------	--

Buffalo

Theorem (DWY, 2020)

For any bounded arithmetic function f with f(0) = 0, we have that

$$\sum_{\deg A=n} Q_{\mathcal{S}}(A) f(d^{+}(A)) \sim \delta(\mathcal{S}) c_{\mathcal{K}} q^{n}$$
(3)

if and only if

$$-\lim_{n\to\infty}\sum_{\substack{1\leq \deg A\leq n\\ A\in\mathfrak{D}(K,S)}}\frac{\mu(A)f(d_{-}(A))}{|A|}=\delta(S),\tag{4}$$

where $c_K > 0$ is a constant.

Theorem (DWY, 2020)

For any bounded arithmetic function f with f(0) = 0, we have that

$$\sum_{\deg A=n} Q_S(A) f(d^+(A)) \sim \delta(S) c_K q^n$$
(3)

if and only if

$$-\lim_{n\to\infty}\sum_{\substack{1\leq \deg A\leq n\\A\in\mathfrak{D}(K,S)}}\frac{\mu(A)f(d_{-}(A))}{|A|}=\delta(S),$$
(4)

where $c_K > 0$ is a constant.

2. Asymptotic estimate for $Q_S(A)$

Theorem (DWY, 2020)

For any fixed subset $S \subseteq \mathcal{P}$ with natural density $\delta(S)$, we have

c

$$\sum_{\log A=n} Q_S(A) = \delta(S) c_K q^n + o(q^n).$$
(5)

Biao Wang Buffalo Alladi's formula

Theorem (DWY, 2020)

For any bounded arithmetic function f with f(0) = 0, we have that

$$\sum_{\deg A=n} Q_{\mathcal{S}}(A) f(d^{+}(A)) \sim \delta(\mathcal{S}) c_{\mathcal{K}} q^{n}$$
(3)

if and only if

$$-\lim_{n\to\infty}\sum_{\substack{1\leq \deg A\leq n\\A\in\mathfrak{D}(K,S)}}\frac{\mu(A)f(d_{-}(A))}{|A|}=\delta(S),$$
(4)

where $c_K > 0$ is a constant.

2. Asymptotic estimate for $Q_S(A)$

Theorem (DWY, 2020)

For any fixed subset $S \subseteq \mathcal{P}$ with natural density $\delta(S)$, we have

$$\sum_{\deg A=n} Q_S(A) = \delta(S) c_K q^n + o(q^n).$$
(5)

Main tools: PNT for function fields, smooth divisors (analogous to smooth numbers), zero-free region of zeta function, elementary sieve.

Biao Wang Buffalo	Alladi's formula	December 4, 2020	18/23

Conjecture: Ultimate Alladi's formula

Elements of Alladi's formula

 $(G, |\cdot|)$: a normed free Abelian semigroup generated by prime elements \mathcal{P} .

- Norm $|\cdot|$: either archimedean or nonarchimedean.
- $S \subseteq \mathcal{P}$: a subset of \mathcal{P} with natural density $\delta(S)$.

 $\mu(g)$: the Möbius function.

 $\mathfrak{D}(G, S)$: the set of distinguishable elements whose $p_{\min}(g) \in S$.

(One may add more natural conditions on G for the need of the proof.)

Elements of Alladi's formula

 $(G, |\cdot|)$: a normed free Abelian semigroup generated by prime elements \mathcal{P} .

- Norm $|\cdot|$: either archimedean or nonarchimedean.
- $S \subseteq \mathcal{P}$: a subset of \mathcal{P} with natural density $\delta(S)$.

 $\mu(g)$: the Möbius function.

 $\mathfrak{D}(G, S)$: the set of distinguishable elements whose $p_{\min}(g) \in S$.

(One may add more natural conditions on G for the need of the proof.)

The Riemann zeta function on G:

$$\zeta_G(s) := \sum_{g \in G} \frac{1}{|g|^s} = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{|p|^s}\right)^{-1}.$$

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
Conjecture		

Suppose

- Numerator function b(g): the Dirichlet series $\sum_{g \in G} b(g)|g|^{-s}$ is "near" to $1/\zeta'_G(s)$ for some positive real number *r* (or even complex). The power *r* is called the order of $\sum_{g \in G} b(g)|g|^{-s}$.
- **2** Denominator function h(g): it is multiplicative and "near" to |g|, say $\varphi(g), \sigma(g)$. The case h(g) = |g| is essential.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
		00000
Conjecture		

Suppose

■ Numerator function b(g): the Dirichlet series $\sum_{g \in G} b(g)|g|^{-s}$ is "near" to $1/\zeta'_G(s)$ for some positive real number *r* (or even complex). The power *r* is called the order of $\sum_{g \in G} b(g)|g|^{-s}$.

2 Denominator function h(g): it is multiplicative and "near" to |g|, say $\varphi(g), \sigma(g)$. The case h(g) = |g| is essential.

Conjecture: Ultimate Alladi's formula (W., 2020)

$$-\lim_{X\to\infty}\sum_{\substack{1<|g|\leq X\\g\in\mathfrak{D}(G,S)}}\frac{b(g)}{h(g)}=\delta(S).$$

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
		00000
Conjecture		

Suppose

■ Numerator function b(g): the Dirichlet series $\sum_{g \in G} b(g)|g|^{-s}$ is "near" to $1/\zeta'_G(s)$ for some positive real number *r* (or even complex). The power *r* is called the order of $\sum_{g \in G} b(g)|g|^{-s}$.

2 Denominator function h(g): it is multiplicative and "near" to |g|, say $\varphi(g), \sigma(g)$. The case h(g) = |g| is essential.

Conjecture: Ultimate Alladi's formula (W., 2020)

$$-\lim_{X\to\infty}\sum_{\substack{1<|g|\leq X\\g\in\mathfrak{D}(G,S)}}\frac{b(g)}{h(g)}=\delta(S).$$

Motivation/Observation.

- Analytic number theory aspect: when $\sum_{g \in G} b(g)|g|^{-s}$ is "near" to $1/\zeta_G^r(s)$, it is "near" to the Euler product $\prod_{p \in \mathcal{P}} \left(1 \frac{r}{|p|^s}\right)$, the probability of each prime *p* of the same weight *r* is equal in the Euler product.
- Combinatorics aspect: Alladi's duality idea on prime factors holds for G using the principle of inclusion-exclusion.

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
		00000
Present Status		

Key variables. The norm $|\cdot|$ and the function b(g).

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
		00000
Present Status		

Key variables. The norm $|\cdot|$ and the function b(g).

Known results.

- **I** Kural-McDonald-Sah's formula, 2019: $G = \mathcal{O}_K$, $b(g) = \mu(g)$, h(g) = |g|, where *K* is a number field $(| \cdot | \text{ is archimedean})$.
- **2** W., 2020: $G = \mathbb{N}$, $b(g) = \mu * a$, $h(g) = |g|, \varphi(g)$. (It may be generalized to number fields.)
- **I** Duan-W.-Yi, 2020: G = D, the effective divisors of a global function field, $b(g) = \mu(g)$. (It may be generalized to the general free Abelian semigroup with nonarchimedean norm, at least for the norm $|g| = q^{\deg g}$ (q > 1 is real).)

Alladi's formula and its generalizations	Analogues for function fields	Conjecture: Ultimate Alladi's formula
		00000
Present Status		

Key variables. The norm $|\cdot|$ and the function b(g).

Known results.

- **1** Kural-McDonald-Sah's formula, 2019: $G = \mathcal{O}_K$, $b(g) = \mu(g)$, h(g) = |g|, where *K* is a number field $(| \cdot | \text{ is archimedean})$.
- **2** W., 2020: $G = \mathbb{N}$, $b(g) = \mu * a$, $h(g) = |g|, \varphi(g)$. (It may be generalized to number fields.)
- I Duan-W.-Yi, 2020: G = D, the effective divisors of a global function field, $b(g) = \mu(g)$. (It may be generalized to the general free Abelian semigroup with nonarchimedean norm, at least for the norm $|g| = q^{\deg g} (q > 1 \text{ is real})$.)

Unknown cases.

The case r = 1 for general $(G, |\cdot|)$ and b(g). This would unify all of currently known results.

0000000	0000000	00000
Present Status		

Key variables. The norm $|\cdot|$ and the function b(g).

Known results.

- **I** Kural-McDonald-Sah's formula, 2019: $G = \mathcal{O}_K$, $b(g) = \mu(g)$, h(g) = |g|, where *K* is a number field $(|\cdot|)$ is archimedean).
- **2** W., 2020: $G = \mathbb{N}$, $b(g) = \mu * a$, $h(g) = |g|, \varphi(g)$. (It may be generalized to number fields.)
- **I** Duan-W.-Yi, 2020: G = D, the effective divisors of a global function field, $b(g) = \mu(g)$. (It may be generalized to the general free Abelian semigroup with nonarchimedean norm, at least for the norm $|g| = q^{\deg g}$ (q > 1 is real).)

Unknown cases.

- The case r = 1 for general $(G, |\cdot|)$ and b(g). This would unify all of currently known results.
- **2** Until now, there is no any case known for $r \neq 1$. E.g., prove that

$$-\sum_{\substack{n \ge 2\\ p_{\min}(n) \equiv \ell \pmod{k}}} \frac{\lambda(n) 2^{\omega(n)}}{n} = \frac{1}{\varphi(k)}.$$
$$\sum_{n=1}^{\infty} \frac{\lambda(n) 2^{\omega(n)}}{n^s} = \frac{\zeta(2s)}{\zeta(s)^2}.$$

Note that

Thank you!