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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Alladi’s formula

Alladi’s formula

µ(n): Möbius function.
π(x) := # {p : p 6 x} prime counting function.
π(x) ∼ x/ log x : Prime Number Theorem (PNT).

The PNT is equivalent to
∑∞

n=1
µ(n)

n = 0. Or equivalently,

−
∞∑

n=2

µ(n)
n

= 1.

Theorem (Alladi, 1977)

Let k , ` > 1 be integers with (`, k) = 1. Then

−
∑
n>2

pmin(n)≡`(mod k)

µ(n)
n

=
1

ϕ(k)
.

Here pmin(n) is the smallest prime factor of n, and ϕ(n) is Euler’s totient function.

PNT in arithmetic progressions: # {p ≤ x : p ≡ `(mod k)} ∼ 1
ϕ(k)π(x).
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Alladi’s formula

Two key ingredients

1. Alladi’s duality idea on prime factors of integers
Let pmax(n) be the largest prime factor of n. If f (1) = 0, pmin(1) = pmax(1) = 1, then∑

d|n
µ(d)f (pmin(d)) = −f (pmax(n)),

∑
d|n

µ(d)f (pmax(d)) = −f (pmin(n)).

Theorem (Alladi, 1977)

For any bounded function f and constant δ, we have∑
n6x

f (pmax(n)) ∼ δ · x (1)

if and only if

−
∞∑

n=2

µ(n)f (pmin(n))
n

= δ. (2)
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Alladi’s formula

Two key ingredients

2. Distribution of largest prime factors

Theorem (Alladi, 1977)

If (`, k) = 1, then ∑
n6x

pmax(n)≡`(mod k)

1 =
x

ϕ(k)
+ O

(
x exp(−c(log x)

1
3 )
)

for some constant c > 0.

Proof of Alladi’s formula. It follows immediately by taking f to be the indicator function
for primes in arithmetic progression `(mod k):

f (n) =

{
1, if n = p ≡ `(mod k);
0, otherwise.
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Dawsey’s formula

Dawsey’s formula: Chebotarev density

L/Q: finite Galois extension over Q;
G = Gal(L/Q): Galois group;[

L/Q
p

]
: Artin symbol;[

L/Q
p

]
:=
{[

L/Q
p

]
: p ⊆ OL and p|p

}
for p unramified.

Chebotarev Density Theorem (CDT): for any conjugacy class C ⊂ G, we have

#

{
p ≤ x unramified :

[
L/Q

p

]
= C

}
∼
|C|
|G|

π(x).

Theorem (Dawsey, 2017)

For any conjugacy class C ⊂ G, we have

−
∑
n>2[

L/Q
pmin(n)

]
=C

µ(n)
n

=
|C|
|G|

.

Alladi’s formula follows by taking L = Q(ζk ) and C = the conjugacy class of `, where ζk
is the k -th primitive unit root.
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Sweeting-Woo’s generalization

Sweeting-Woo’s formula: Number Fields

L/K : finite Galois extension over an arbitrary number field K ;
G = Gal(L/K ): Galois group;[

L/K
P

]
: Artin symbol;[

L/K
p

]
:=
{[

L/K
P

]
: P ⊆ OL and P|p

}
for p ⊂ OK unramified.

Ideal a ⊂ OK is called distinguishable (or salient): if a has a unique prime factor pmin(a)
attaining the smallest norm of prime factors of a. For any conjugacy class C ⊂ G, let

D(L/K ,C) :=

{
a ⊆ OK is distinguishable : pmin(a) unramified and

[
L/K

pmin(a)

]
= C

}
.

Theorem (Sweeting-Woo, 2019)

For any conjugacy class C ⊂ G, we have

− lim
X→∞

∑
2≤|a|≤X

a∈D(L/K ,C)

µ(a)

|a|
=
|C|
|G|

.
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Kural-McDonald-Sah’s generalization

Kural-McDonald-Sah’s formula: Natural density

K : an arbitrary number field;
P: the set of all prime ideals;
S ⊆ P: a subset of P;

δ(S) : natural density of S in P, if the following limit exists

δ(S) = lim
X→∞

# {p ∈ S : |p| 6 X}
# {p ∈ P : |p| 6 X}

.

D(K ,S) := {a ⊆ OK is distinguishable : pmin(a) ∈ S} .

Theorem (Kural-McDonald-Sah (KMS), 2019)

If S ⊆ P has natural density δ(S), then

− lim
X→∞

∑
2≤|a|≤X
a∈D(K ,S)

µ(a)

|a|
= δ(S).
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Kural-McDonald-Sah’s generalization

Remarks:
1. For any conjugacy class C ⊂ G, take

S =

{
p ∈ P : p unramified,

[
L/K
p

]
= C

}
.

Then CDT gives

δ(S) =
|C|
|G|

.

Hence KMS’ formula generalizes all of the previous results.

2. In 2017, Ono-Schneider-Wagner showed a partition-theoretic analogue to Alladi’s
formula.

3. For K = Q, the speaker generalizes KMS’ formula for the µ replaced by µ ∗ a, where
the arithmetic function a satisfies certain simple analytic properties.
E.g. we can take µ ∗ a to be the Liouville function or the Ramanujan sum.
Recently, Ono-Schneider-Wagner showed a partition-theoretic analogue to this kind of
generalization.
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Analogues for function fields
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Main results

Divisors of function fields

Goal:
Find the analogue of KMS’ formula over function fields:

− lim
X→∞

∑
2≤|a|≤X
a∈D(K ,S)

µ(a)

|a|
= δ(S).

Fq : a finite field of q elements. In Fq [x ], we have

F =
r∏

i=1

Pαi
i ←→

r∑
i=1

αi · Pi

Multiplicative semigroup←→ Abelian semigroup.

E.g.,
F = (1 + x)2(3 + x)1(1 + x − x2)5

←→ F = 2 · (1 + x) + 1 · (3 + x) + 5 · (1 + x − x2)
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Find the analogue of KMS’ formula over function fields:

− lim
X→∞

∑
2≤|a|≤X
a∈D(K ,S)

µ(a)

|a|
= δ(S).

Fq : a finite field of q elements. In Fq [x ], we have

F =
r∏

i=1

Pαi
i ←→

r∑
i=1

αi · Pi

Multiplicative semigroup←→ Abelian semigroup.

E.g.,
F = (1 + x)2(3 + x)1(1 + x − x2)5
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Main results

Notation

K/Fq(x): a global function field (or simply a function field).
P: all prime divisors of K . The letter P always denotes a prime divisor.
D: the free Abelian semigroup generated by P (i.e., the set of effective divisors).
D =

∑
P aP · P (formal sum): an effective divisor of K , aP ≥ 0.

|D| =
∏

P |P|aP , where |P| = qdeg P .
µ(D): the Möbius function for divisors.

µ(D) =


1 if D = 0,
(−1)k if D = P1 + · · ·+ Pk ,P′i s are distinct,
0 otherwise.

d−(D) := min {degP : P | D}.
D is distinguishable: if there is a unique prime factor, say Pmin(D), of D attaining the
minimal degree d−(D).

e.g. (1 + x)(2 + x)(1 + x + x5) is NOT distinguishable;
(1 + x)(1 + x + x5) is distinguishable.

S ⊂ P: a subset of prime divisors.
D(K ,S) := {D ∈ D : D is distinguishable and Pmin(D) ∈ S} .
δ(S) = limn→∞

#{P∈S:deg P=n}
#{P∈P:deg P=n} : natural density of S.
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Main results

Main Theorem

Theorem (Duan-W.-Yi (DWY), 2020)

Given a global function field K , if S ⊂ P has a natural density δ(S), then

− lim
n→∞

∑
1≤deg D≤n
D∈D(K ,S)

µ(D)

|D|
= δ(S).

Remark. Duan later found that the main theorem also holds for varieties.
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Main results

Application 1: Chebotarev Density Theorem for function fields

L/K : a geometric Galois extension of function fields.
G = Gal(L/K ): Galois group.
(P, L/K ): Frobenius at P for P unramified.

By Chebotarev Density Theorem for function fields, we have

Corollary 1 (DWY, 2020)

For any conjugacy class C ⊆ G, we have

− lim
n→∞

∑
D∈D(K ,P),1≤deg D≤n

(Pmin(D),L/K )=C

µ(D)

|D|
=

#C
#G

.
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Main results

Application 2: Prime Polynomial Theorem for arithmetic progressions

S: a subset of monic irreducible polynomials of Fq [x ].
D(q,S) := {F ∈ Fq [x ] : F is monic and distinguishable, and pmin(F ) ∈ S} .

Corollary 2 (DWY, 2020)

Let q ≥ 2 be fixed. If S ⊂ P has a natural density δ(S), then we have that

− lim
n→∞

∑
1≤deg F≤n
F∈D(q,S)

µ(F )

|F |
= δ(S).

By Prime Polynomial Theorem for arithmetic progressions, we get that

Corollary 3 (DWY, 2020)

For relatively prime f , g ∈ Fq [x ], we have

− lim
n→∞

∑
F∈D(q,P),1≤deg F≤n

pmin(F )≡f (mod g)

µ(F )

|F |
=

1
ϕ(g)

.

Here ϕ(g) is the function field Euler totient function.
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Key ingredients

Key ingredients in the proof of Main Theorem

Strategy: follow Alladi’s work and KMS’ work.

1. Duality between prime factors of divisors

Recall that S is a set of prime divisors of K .

For a divisor A ∈ D, we let

d+(A) := max {degP : P|A}

QS(A) := #
{

P ∈ S : degP = d+(A),P|A
}

Lemma (Duality Lemma, DWY, 2020)

Suppose f : N→ C, f (0) = 0. Then the following identity holds∑
A≥B

µ(B)1D(K ,S)(B)f (d−(B)) = −QS(A)f (d
+(A)).

Here 1D(K ,S) is the indicator function on D(K ,S).
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Key ingredients

Theorem (DWY, 2020)

For any bounded arithmetic function f with f (0) = 0, we have that∑
deg A=n

QS(A)f (d
+(A)) ∼ δ(S)cK qn (3)

if and only if

− lim
n→∞

∑
1≤deg A≤n
A∈D(K ,S)

µ(A)f (d−(A))
|A|

= δ(S), (4)

where cK > 0 is a constant.

2. Asymptotic estimate for QS(A)

Theorem (DWY, 2020)

For any fixed subset S ⊆ P with natural density δ(S), we have∑
deg A=n

QS(A) = δ(S)cK qn + o(qn). (5)

Main tools: PNT for function fields, smooth divisors (analogous to smooth numbers),
zero-free region of zeta function, elementary sieve.
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Conjecture

Elements of Alladi’s formula

(G, | · |): a normed free Abelian semigroup generated by prime elements P.
Norm | · |: either archimedean or nonarchimedean.
S ⊆ P: a subset of P with natural density δ(S).
µ(g): the Möbius function.
D(G,S): the set of distinguishable elements whose pmin(g) ∈ S.
(One may add more natural conditions on G for the need of the proof.)

The Riemann zeta function on G:

ζG(s) :=
∑
g∈G

1
|g|s

=
∏

p∈P

(
1−

1
|p|s

)−1
.
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Conjecture

Conjecture

Suppose
1 Numerator function b(g): the Dirichlet series

∑
g∈G b(g)|g|−s is "near“ to 1/ζr

G(s)
for some positive real number r (or even complex). The power r is called the order
of
∑

g∈G b(g)|g|−s .

2 Denominator function h(g): it is multiplicative and "near“ to |g|, say ϕ(g), σ(g).
The case h(g) = |g| is essential.

Conjecture: Ultimate Alladi’s formula (W., 2020)

− lim
X→∞

∑
1<|g|≤X
g∈D(G,S)

b(g)
h(g)

= δ(S).

Motivation/Observation.
1 Analytic number theory aspect: when

∑
g∈G b(g)|g|−s is “near” to 1/ζr

G(s), it is

“near” to the Euler product
∏

p∈P

(
1− r

|p|s

)
, the probability of each prime p of

the same weight r is equal in the Euler product.
2 Combinatorics aspect: Alladi’s duality idea on prime factors holds for G using the

principle of inclusion-exclusion .
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Alladi’s formula and its generalizations Analogues for function fields Conjecture: Ultimate Alladi’s formula

Present Status

Present Status

Key variables. The norm | · | and the function b(g).

Known results.
1 Kural-McDonald-Sah’s formula, 2019: G = OK , b(g) = µ(g), h(g) = |g|, where K

is a number field (| · | is archimedean).
2 W., 2020: G = N, b(g) = µ ∗ a, h(g) = |g|, ϕ(g). (It may be generalized to

number fields.)
3 Duan-W.-Yi, 2020: G = D, the effective divisors of a global function field,

b(g) = µ(g). (It may be generalized to the general free Abelian semigroup with
nonarchimedean norm, at least for the norm |g| = qdeg g (q > 1 is real).)

Unknown cases.
1 The case r = 1 for general (G, | · |) and b(g). This would unify all of currently

known results.
2 Until now, there is no any case known for r 6= 1. E.g., prove that

−
∑
n>2

pmin(n)≡`(mod k)

λ(n)2ω(n)

n
=

1
ϕ(k)

.

Note that
∞∑

n=1

λ(n)2ω(n)

ns
=
ζ(2s)
ζ(s)2

.
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b(g) = µ(g). (It may be generalized to the general free Abelian semigroup with
nonarchimedean norm, at least for the norm |g| = qdeg g (q > 1 is real).)

Unknown cases.
1 The case r = 1 for general (G, | · |) and b(g). This would unify all of currently

known results.
2 Until now, there is no any case known for r 6= 1. E.g., prove that

−
∑
n>2

pmin(n)≡`(mod k)

λ(n)2ω(n)

n
=

1
ϕ(k)

.

Note that
∞∑

n=1

λ(n)2ω(n)

ns
=
ζ(2s)
ζ(s)2

.
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Thank you!
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