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Notation

Throughout the talk, E will denote an elliptic curve over Q.

E : y2 = x3 + Ax + B, A,B ∈ Z will be taken in minimal
Weierstrass form (i.e. gcd(A3,B2) 12th power-free).

N ∈ Z≥1.

We say that E has an N-isogeny if there is an isogeny
φ : E → E ′ such that (Ker φ)(Q) ∼= Z/NZ.

Such an isogeny is rational if Ker φ is defined over Q.
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Main Question

Question

How many elliptic curves have a rational N-isogeny?

If N is small enough, there are infinitely many isomorphism classes
of elliptic curves that have a rational N-isogeny,so we order them
by naive height:

Htnaive(E ) := max{|A|3, |B|2}

More precise question

How many elliptic curves (up to Q-isomorphism) of bounded naive
height have a rational N-isogeny?
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Some more notation

For two real valued functions f (X ) and g(X ), we say that
f (X ) � g(X ) if there are two positive constants K1 and K2 such
that

K1g(X ) ≤ f (X ) ≤ K2g(X ).

Counting function

N (N,X ) := #{E/Q | Htnaive(E ) < X ,E has a rational N-isogeny}

So our goal is to find a function hN(X ) such that

N (N,X ) � hN(X ).

Example

If N = 1, we are counting integers in a box, and N (1,X ) � X 5/6.
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Main theorem

Theorem [BS, ’20]

N hN(X ) N hN(X )

2 X 1/2 8 X 1/6 log(X )

3 X 1/2 9 X 1/6 log(X )

4 X 1/3 12 X 1/6

5 X 1/6(log(X ))2 16 X 1/6

6 X 1/6 log(X ) 18 X 1/6

Table 1: Values of hN(X ), ordered by naive height
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Rephrasing our problem

Let X0(N) be the compactification of the classical modular
curve whose S points are given by:

Y0(N)(S) = {(E ,C ) | E/S an elliptic curve,C ∼=S Z/NZ},

where S is a Z[1/N]-scheme.

Therefore counting N (N,X )↔ counting rational points on
X0(N).

Fun fact!

X0(N) is not a scheme, but a stack.

Every point has the non-trivial automorphism [−1]. So, X0(N) is
actually a µ2-gerbe.
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Two strategies to count points on these stacks

Counting elliptic curves in quadratic twist families
(generalizing work of Harron and Snowden),

Counting points of bounded height on weighted projective
stacks (using framework of Ellenberg, Satriano and
Zureick-Brown).
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The Harron and Snowden framework

Let X be a scheme parametrizing elliptic curves with a certain
level structure, such that X ∼= P1 (e.g. X1(5)).

Then X has a universal family over it, i.e. there exist
polynomials f , g ∈ Q[t] coprime such that every elliptic curve
with said level structure is isomorphic to one of the form:

y2 = x3 + f (t)x + g(t).

Counting problem: count pairs (A,B) ∈ Z2 such that:

∃u, t ∈ Q such that A = u4f (t), B = u6g(t),
max{|A|3, |B|2} < X ,
gcd(A3,B2) not divisible by any twelfth powers.
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The problem with stacks

If X is a stack parametrizing elliptic curves, then there is no
universal family over it.

However, in our case, we can find a double cover that has one
(at least generically).
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Motivating example: X0(3)
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The case for general N :

For N ∈ {3, 4, 6, 8, 9, 12, 16, 18}, we consider the cover
ΦN : X1(N)→ X0(N), whose geometric fibers are isomorphic
to (Z/NZ)×.

Pick H ⊂ Z/NZ× of index 2 and let X1/2(N) denote the
fiberwise quotient of X1(N) by H.

Then, every (E ,C ) ∈ X0(N)(Q) has a quadratic twist
(Ed ,Cd) ∈ X1/2(N)(Q).

Proposition [BS, 2020]

Let N ∈ {3, 4, 6, 8, 9, 12, 16, 18}. Then for an appropriate choice of
H in each case, X1/2(N) is a stacky curve with at most one stacky
point, whose coarse space is isomorphic to P1.
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Modified counting problem

For N ∈ {3, 4, 6, 8, 9, 12, 16, 18} we are able to find fN , gN ∈ Q[t]
coprime, such that every elliptic curve giving a rational point on
X1/2(N)** is isomorphic to one of the form:

y2 = x3 + fN(t)x + gN(t).

Counting problem:

Count pairs (A,B) ∈ Z2 such that:

∃u, t ∈ Q such that A = u2fN(t), B = u3gN(t),

max{|A|3, |B|2} < X ,

gcd(A3,B2) not divisible by any twelfth powers.

**for N = 3, we want an open substack of X1/2(N).
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Heights on projective varieties

Let x ∈ Pk(Q). We can write x = [x0 : x1 . . . : xk ], with: xi ∈ Z
and gcd(x0, x1 . . . xk) = 1.

Definition

The naive height of x is

Ht(x) :=
∏
ν∈MQ

max
i
{|xi |ν} = max

i
{|xi |}.

Let X be a projective variety and L an ample line bundle. Then for
some n we can use the sections of L⊗n to embed X into some Pk :

φL,n : X ↪→ Pk .

If x ∈ X (Q) define the height of x as:

HtL(x) := Ht(φL,n(x))1/n.
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What to do about stacks

Here are a few of the problems with stacks:

No embedding into projective space.

No valuative criterion of properness.

Defining height in a way that is multiplicative can produce
bad results, e.g. height with respect to perfectly good line
bundles can be identically zero.

Sometimes, no good line bundles to work with (e.g. BFp).

Fixing these

In a forthcoming paper, Ellenberg, Satriano and Zureick-Brown
suggest a definition of height that fixes all of these. We will denote
their height as: HtL,ESZB(x).
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Weighted projective stacks

Let a0, a1 . . . ak be positive integers. Consider the Gm action on
Ak+1 given by:

λ · (x0, x1 . . . xk) := (λa0x0, λ
a1x1 . . . λ

akxk).

Definition

The weighted projective stack P(a0, a1 . . . ak) is defined as
[(Ak+1 \ {0})/Gm].

Example: P(1, 1, . . . 1) ∼= Pk .
Example: P(2, 3) is a weighted P1 with two stacky points with
automorphism groups µ2 and µ3.

Idea

We’re going to map our stacks into weighted projective stacks.
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ESZB Height on a nice enough stack

Proposition, [ESZB, ’20]

Let X be a stack over SpecZ, let L be a line bundle on X such
that L⊗n is generically globally generated by sections
s0, s1, s2 · · · sk . Let x : SpecQ→ X and for each i , let xi = x∗(si ).
Suppose you can scale x0, x1, . . . , xk so that each xi ∈ Z and for
every prime p, there is some xi such that vp(xi ) < n. Then the
height is given by:

log HtL,ESZB(x) =
1

n
log max{|x0|, |x1|, . . . |xk |}+ OX (Q)(1).
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Interpretation of Naive Height

Recall that we defined the naive height of E as
Htnaive(E ) = max{|A|3, |B|2}.
Recall that modular forms of weight k are sections of λ⊗k ,
where λ is the Hodge bundle.

A↔ E4 ∈ λ⊗4, B ↔ E6 ∈ λ⊗6, and E 3
4 and E 2

6 globally
generate λ⊗12.

Corollary

Consider (E ,C ) ∈ X0(N)(Q), then

Htnaive(E ) = const · Htλ,ESZB(E )12.
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Rings of modular forms

Theorem, [HT ’11]

Let M(N) denote the ring of modular forms of X0(N). The
following are the generators and relations of M(N):

N Degrees of generators Relations

2 (2, 4) None

3 (2, 4, 6) b2 − ac

4 (2, 2) None

5 (2, 4, 4) b2 − c(a2 + 4b − 8c)

6 (2, 2, 2) b2 − ac

8 (2, 2, 2) b2 − ac

9 (2, 2, 2) b2 − ac

Table 2: Ring of modular forms of low level
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The final problem

Now we have reduced our counting integers in a box with
certain relations between them, e.g. for X0(3), we count
triples (a, b, c) such that |a| < X 1/6, |b| < X 1/3 and
|c | < X 1/2, b2 = ac and gcd{a6, b3, c2} is 12th power free.
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Thank you for listening!
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