Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000		00000	00000

Counting elliptic curves with a rational N-isogeny

Soumya Sankar (MSRI), joint work with Brandon Boggess (UW Madison)

Junior Number Theory Days 2020

December 5, 2020

Introduction ●00000	Quadratic twist families	Heights on Stacks	Back to modular curves 00000
Notation			

• Throughout the talk, E will denote an elliptic curve over \mathbb{Q} .

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
●00000		00000	00000
Notation			

- Throughout the talk, E will denote an elliptic curve over \mathbb{Q} .
- E: y² = x³ + Ax + B, A, B ∈ Z will be taken in minimal Weierstrass form (i.e. gcd(A³, B²) 12th power-free).

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
•00000		00000	00000

- Throughout the talk, E will denote an elliptic curve over \mathbb{Q} .
- E: y² = x³ + Ax + B, A, B ∈ Z will be taken in minimal Weierstrass form (i.e. gcd(A³, B²) 12th power-free).
- $N \in \mathbb{Z}_{\geq 1}$.

Notation

• We say that *E* has an *N*-isogeny if there is an isogeny $\phi: E \to E'$ such that $(\text{Ker } \phi)(\overline{\mathbb{Q}}) \cong \mathbb{Z}/N\mathbb{Z}$.

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
•00000		00000	00000

- Throughout the talk, E will denote an elliptic curve over \mathbb{Q} .
- E: y² = x³ + Ax + B, A, B ∈ Z will be taken in minimal Weierstrass form (i.e. gcd(A³, B²) 12th power-free).
- $N \in \mathbb{Z}_{\geq 1}$.

Notation

- We say that E has an N-isogeny if there is an isogeny $\phi: E \to E'$ such that $(\text{Ker } \phi)(\overline{\mathbb{Q}}) \cong \mathbb{Z}/N\mathbb{Z}$.
- Such an isogeny is rational if Ker ϕ is defined over \mathbb{Q} .

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000		00000	00000
Main Questi	ion		

How many elliptic curves have a rational N-isogeny?

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000		00000	00000
Main Ques	stion		

How many elliptic curves have a rational N-isogeny?

If N is small enough, there are infinitely many isomorphism classes of elliptic curves that have a rational N-isogeny,

Introduction ○●○○○○	Quadratic twist families	Heights on Stacks 00000	Back to modular curves
Main Quest	tion		

How many elliptic curves have a rational N-isogeny?

If N is small enough, there are infinitely many isomorphism classes of elliptic curves that have a rational N-isogeny, so we order them by naive height:

$$Ht_{naive}(E) := max\{|A|^3, |B|^2\}$$

Introduction 00000	Quadratic twist families	Heights on Stacks 00000	Back to modular curves
Main Ques	tion		

How many elliptic curves have a rational N-isogeny?

If N is small enough, there are infinitely many isomorphism classes of elliptic curves that have a rational N-isogeny, so we order them by naive height:

$$Ht_{naive}(E) := max\{|A|^3, |B|^2\}$$

More precise question

How many elliptic curves (up to \mathbb{Q} -isomorphism) of bounded naive height have a rational *N*-isogeny?

Introduction 000000	Quadratic twist families	Heights on Stacks	Back to modular curves 00000
Some more	notation		

For two real valued functions f(X) and g(X), we say that $f(X) \simeq g(X)$ if there are two positive constants K_1 and K_2 such that

$$K_1g(X) \leq f(X) \leq K_2g(X).$$

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000		00000	00000
Some mor	e notation		

For two real valued functions f(X) and g(X), we say that $f(X) \simeq g(X)$ if there are two positive constants K_1 and K_2 such that

$$K_1g(X) \leq f(X) \leq K_2g(X).$$

Counting function

 $\mathcal{N}(N, X) := \#\{E_{/\mathbb{Q}} \mid \mathsf{Ht}_{naive}(E) < X, E \text{ has a rational } N \text{-isogeny}\}$

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
00000		00000	00000
Some mor	e notation		

For two real valued functions f(X) and g(X), we say that $f(X) \simeq g(X)$ if there are two positive constants K_1 and K_2 such that

$$K_1g(X) \leq f(X) \leq K_2g(X).$$

Counting function

 $\mathcal{N}(N, X) := \#\{E_{/\mathbb{Q}} \mid \mathsf{Ht}_{naive}(E) < X, E \text{ has a rational } N \text{-isogeny}\}$

So our goal is to find a function $h_N(X)$ such that

 $\mathcal{N}(N,X) \asymp h_N(X).$

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000		00000	00000
Some mor	e notation		

For two real valued functions f(X) and g(X), we say that $f(X) \simeq g(X)$ if there are two positive constants K_1 and K_2 such

that

$$K_1g(X) \leq f(X) \leq K_2g(X).$$

Counting function

 $\mathcal{N}(N, X) := \#\{E_{/\mathbb{Q}} \mid \mathsf{Ht}_{naive}(E) < X, E \text{ has a rational } N \text{-isogeny}\}$

So our goal is to find a function $h_N(X)$ such that

 $\mathcal{N}(N,X) \asymp h_N(X).$

Example

If N = 1, we are counting integers in a box, and $\mathcal{N}(1, X) \asymp X^{5/6}$.

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curve
000000		00000	00000

Main theorem

Theorem [BS, '20]

Ν	$h_N(X)$	N	$h_N(X)$
2	$X^{1/2}$	8	$X^{1/6}\log(X)$
3	X ^{1/2}	9	$X^{1/6}\log(X)$
4	X ^{1/3}	12	$X^{1/6}$
5	$X^{1/6}(\log(X))^2$	16	X ^{1/6}
6	$X^{1/6}\log(X)$	18	X ^{1/6}

Table 1: Values of $h_N(X)$, ordered by naive height

Introduction
000000

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

Rephrasing our problem

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
0000●0	000000	00000	00000
Rephrasin	g our problem		

• Let $\mathcal{X}_0(N)$ be the compactification of the classical modular curve whose S points are given by:

 $\mathcal{Y}_0(N)(S) = \{(E, C) \mid E_{/S} \text{ an elliptic curve}, C \cong_S \mathbb{Z}/N\mathbb{Z}\},\$

where S is a $\mathbb{Z}[1/N]$ -scheme.

Introduction 000000	Quadratic twist families	Heights on Stacks	Back to modular curves
Rephrasin	g our problem		

• Let $\mathcal{X}_0(N)$ be the compactification of the classical modular curve whose *S* points are given by:

 $\mathcal{Y}_0(N)(S) = \{(E, C) \mid E_{/S} \text{ an elliptic curve}, C \cong_S \mathbb{Z}/N\mathbb{Z}\},\$

where S is a $\mathbb{Z}[1/N]$ -scheme.

• Therefore counting $\mathcal{N}(N, X) \leftrightarrow$ counting rational points on $\mathcal{X}_0(N)$.

• Let $\mathcal{X}_0(N)$ be the compactification of the classical modular curve whose *S* points are given by:

 $\mathcal{Y}_0(N)(S) = \{(E, C) \mid E_{/S} \text{ an elliptic curve}, C \cong_S \mathbb{Z}/N\mathbb{Z}\},\$

where S is a $\mathbb{Z}[1/N]$ -scheme.

• Therefore counting $\mathcal{N}(N, X) \leftrightarrow$ counting rational points on $\mathcal{X}_0(N)$.

Fun fact!

 $\mathcal{X}_0(N)$ is not a scheme, but a stack.

Every point has the non-trivial automorphism [-1]. So, $\mathcal{X}_0(N)$ is actually a μ_2 -gerbe.

Back to modular curves 00000

Two strategies to count points on these stacks

• Counting elliptic curves in quadratic twist families (generalizing work of Harron and Snowden),

Back to modular curves 00000

Two strategies to count points on these stacks

- Counting elliptic curves in quadratic twist families (generalizing work of Harron and Snowden),
- Counting points of bounded height on weighted projective stacks (using framework of Ellenberg, Satriano and Zureick-Brown).

Introduction 000000	Quadratic twist families •00000	Heights on Stacks 00000	Back to modular curves 00000
Plan			

Quadratic twist families

3 Heights on Stacks

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	000000	00000	

The Harron and Snowden framework

 Let X be a scheme parametrizing elliptic curves with a certain level structure, such that X ≅ P¹ (e.g. X₁(5)).

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	000000	00000	

The Harron and Snowden framework

- Let X be a scheme parametrizing elliptic curves with a certain level structure, such that X ≅ P¹ (e.g. X₁(5)).
- Then X has a universal family over it, i.e. there exist polynomials f, g ∈ Q[t] coprime such that every elliptic curve with said level structure is isomorphic to one of the form:

$$y^2 = x^3 + f(t)x + g(t).$$

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
	00000		

The Harron and Snowden framework

- Let X be a scheme parametrizing elliptic curves with a certain level structure, such that X ≅ P¹ (e.g. X₁(5)).
- Then X has a universal family over it, i.e. there exist polynomials f, g ∈ Q[t] coprime such that every elliptic curve with said level structure is isomorphic to one of the form:

$$y^2 = x^3 + f(t)x + g(t).$$

- Counting problem: count pairs $(A, B) \in \mathbb{Z}^2$ such that:
 - $\exists u, t \in \mathbb{Q}$ such that $A = u^4 f(t), B = u^6 g(t)$,
 - $\max\{|A|^3, |B|^2\} < X$,
 - $gcd(A^3, B^2)$ not divisible by any twelfth powers.

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

The problem with stacks

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

The problem with stacks

• If \mathcal{X} is a *stack* parametrizing elliptic curves, then there is no universal family over it.

Quadratic twist families

Heights on Stacks 00000 Back to modular curves 00000

The problem with stacks

- If \mathcal{X} is a *stack* parametrizing elliptic curves, then there is no universal family over it.
- However, in our case, we can find a double cover that has one (at least generically).

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

Motivating example: $\mathcal{X}_0(3)$

Introduction 000000	Quadratic twist families	Heights on Stacks 00000	Back to modular curves
The case	for general N:		

 For N ∈ {3,4,6,8,9,12,16,18}, we consider the cover Φ_N : X₁(N) → X₀(N), whose geometric fibers are isomorphic to (Z/NZ)[×].

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	0000€0	00000	
The case	for general N .		

- For $N \in \{3, 4, 6, 8, 9, 12, 16, 18\}$, we consider the cover $\Phi_N : \mathcal{X}_1(N) \to \mathcal{X}_0(N)$, whose geometric fibers are isomorphic to $(\mathbb{Z}/N\mathbb{Z})^{\times}$.
- Pick $H \subset \mathbb{Z}/N\mathbb{Z}^{\times}$ of index 2 and let $\mathcal{X}_{1/2}(N)$ denote the fiberwise quotient of $\mathcal{X}_1(N)$ by H.

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	0000●0	00000	00000
The case f	or general N:		

- For N ∈ {3,4,6,8,9,12,16,18}, we consider the cover Φ_N : X₁(N) → X₀(N), whose geometric fibers are isomorphic to (Z/NZ)[×].
- Pick $H \subset \mathbb{Z}/N\mathbb{Z}^{\times}$ of index 2 and let $\mathcal{X}_{1/2}(N)$ denote the fiberwise quotient of $\mathcal{X}_1(N)$ by H.
- Then, every $(E, C) \in \mathcal{X}_0(N)(\mathbb{Q})$ has a quadratic twist $(E^d, C^d) \in \mathcal{X}_{1/2}(N)(\mathbb{Q}).$

Introduction 000000	Quadratic twist families	Heights on Stacks 00000	Back to modular curves
The case f	or general N:		

- For N ∈ {3,4,6,8,9,12,16,18}, we consider the cover Φ_N : X₁(N) → X₀(N), whose geometric fibers are isomorphic to (Z/NZ)[×].
- Pick $H \subset \mathbb{Z}/N\mathbb{Z}^{\times}$ of index 2 and let $\mathcal{X}_{1/2}(N)$ denote the fiberwise quotient of $\mathcal{X}_1(N)$ by H.
- Then, every $(E, C) \in \mathcal{X}_0(N)(\mathbb{Q})$ has a quadratic twist $(E^d, C^d) \in \mathcal{X}_{1/2}(N)(\mathbb{Q})$.

Proposition [BS, 2020]

Let $N \in \{3, 4, 6, 8, 9, 12, 16, 18\}$. Then for an appropriate choice of H in each case, $\mathcal{X}_{1/2}(N)$ is a stacky curve with at most one stacky point, whose coarse space is isomorphic to \mathbb{P}^1 .

Introduction 000000	Quadratic twist families	Heights on Stacks	Back to modular curves

Modified counting problem

For $N \in \{3, 4, 6, 8, 9, 12, 16, 18\}$ we are able to find $f_N, g_N \in \mathbb{Q}[t]$ coprime, such that every elliptic curve giving a rational point on $\mathcal{X}_{1/2}(N)^{**}$ is isomorphic to one of the form:

$$y^2 = x^3 + f_N(t)x + g_N(t).$$

Introduction 000000	Quadratic twist families	Heights on Stacks 00000	Back to modular curves

Modified counting problem

For $N \in \{3, 4, 6, 8, 9, 12, 16, 18\}$ we are able to find $f_N, g_N \in \mathbb{Q}[t]$ coprime, such that every elliptic curve giving a rational point on $\mathcal{X}_{1/2}(N)^{**}$ is isomorphic to one of the form:

$$y^2 = x^3 + f_N(t)x + g_N(t).$$

Counting problem:

Count pairs $(A, B) \in \mathbb{Z}^2$ such that:

• $\exists u, t \in \mathbb{Q}$ such that $A = u^2 f_N(t), B = u^3 g_N(t)$,

• max
$$\{|A|^3, |B|^2\} < X$$
,

• $gcd(A^3, B^2)$ not divisible by any twelfth powers.

Introduction 000000	Quadratic twist families	Heights on Stacks	Back to modular curves 00000

Modified counting problem

For $N \in \{3, 4, 6, 8, 9, 12, 16, 18\}$ we are able to find $f_N, g_N \in \mathbb{Q}[t]$ coprime, such that every elliptic curve giving a rational point on $\mathcal{X}_{1/2}(N)^{**}$ is isomorphic to one of the form:

$$y^2 = x^3 + f_N(t)x + g_N(t).$$

Counting problem:

Count pairs $(A, B) \in \mathbb{Z}^2$ such that:

• $\exists u, t \in \mathbb{Q}$ such that $A = u^2 f_N(t), \ B = u^3 g_N(t)$,

• max
$$\{|A|^3, |B|^2\} < X$$
,

• $gcd(A^3, B^2)$ not divisible by any twelfth powers.

**for N = 3, we want an open substack of $\mathcal{X}_{1/2}(N)$.

Introduction 000000	Quadratic twist families	Heights on Stacks	Back to modular curves 00000
DL			
Plan			

Quadratic twist families

3 Heights on Stacks

Quadratic twist families 000000 Heights on Stacks 0●000 Back to modular curves 00000

Heights on projective varieties

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
		0000	

Heights on projective varieties

Let $x \in \mathbb{P}^k(\mathbb{Q})$. We can write $x = [x_0 : x_1 \ldots : x_k]$, with: $x_i \in \mathbb{Z}$ and $gcd(x_0, x_1 \ldots x_k) = 1$.

Introduction

Quadratic twist families 000000

Heights on Stacks

Back to modular curves

Heights on projective varieties

Let $x \in \mathbb{P}^k(\mathbb{Q})$. We can write $x = [x_0 : x_1 \dots : x_k]$, with: $x_i \in \mathbb{Z}$ and $gcd(x_0, x_1 \dots x_k) = 1$.

Definition

The naive height of x is

$$Ht(x) := \prod_{\nu \in M_{\mathbb{Q}}} \max_{i} \{ |x_{i}|_{\nu} \} = \max_{i} \{ |x_{i}| \}.$$

Introduction	Quadratic twist families	Heights on Stacks	Back to r
		00000	

Heights on projective varieties

Let $x \in \mathbb{P}^k(\mathbb{Q})$. We can write $x = [x_0 : x_1 \dots : x_k]$, with: $x_i \in \mathbb{Z}$ and $gcd(x_0, x_1 \dots x_k) = 1$.

modular curves

Definition

The naive height of x is

$$Ht(x) := \prod_{\nu \in M_{\mathbb{Q}}} \max_{i} \{ |x_{i}|_{\nu} \} = \max_{i} \{ |x_{i}| \}.$$

Let X be a projective variety and \mathcal{L} an ample line bundle. Then for some *n* we can use the sections of $\mathcal{L}^{\otimes n}$ to embed X into some \mathbb{P}^k :

$$\phi_{\mathcal{L},n}: X \hookrightarrow \mathbb{P}^k.$$

Introduction	

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

Heights on projective varieties

Let $x \in \mathbb{P}^k(\mathbb{Q})$. We can write $x = [x_0 : x_1 \dots : x_k]$, with: $x_i \in \mathbb{Z}$ and $gcd(x_0, x_1 \dots x_k) = 1$.

Definition

The naive height of x is

$$Ht(x) := \prod_{\nu \in M_{\mathbb{Q}}} \max_{i} \{ |x_{i}|_{\nu} \} = \max_{i} \{ |x_{i}| \}.$$

Let X be a projective variety and \mathcal{L} an ample line bundle. Then for some *n* we can use the sections of $\mathcal{L}^{\otimes n}$ to embed X into some \mathbb{P}^k :

$$\phi_{\mathcal{L},n}: X \hookrightarrow \mathbb{P}^k.$$

If $x \in X(\mathbb{Q})$ define the height of x as:

$$\operatorname{Ht}_{\mathcal{L}}(x) := \operatorname{Ht}(\phi_{\mathcal{L},n}(x))^{1/n}.$$

Quadratic twist families 000000

Heights on Stacks

Back to modular curves 00000

What to do about stacks

Here are a few of the problems with stacks:

• No embedding into projective space.

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

What to do about stacks

Here are a few of the problems with stacks:

- No embedding into projective space.
- No valuative criterion of properness.

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

What to do about stacks

Here are a few of the problems with stacks:

- No embedding into projective space.
- No valuative criterion of properness.
- Defining height in a way that is multiplicative can produce bad results, e.g. height with respect to perfectly good line bundles can be identically zero.

Quadratic twist families

Heights on Stacks

Back to modular curves 00000

What to do about stacks

Here are a few of the problems with stacks:

- No embedding into projective space.
- No valuative criterion of properness.
- Defining height in a way that is multiplicative can produce bad results, e.g. height with respect to perfectly good line bundles can be identically zero.
- Sometimes, no good line bundles to work with (e.g. $B\mathbb{F}_p$).

Back to modular curves 00000

What to do about stacks

Here are a few of the problems with stacks:

- No embedding into projective space.
- No valuative criterion of properness.
- Defining height in a way that is multiplicative can produce bad results, e.g. height with respect to perfectly good line bundles can be identically zero.
- Sometimes, no good line bundles to work with (e.g. $B\mathbb{F}_p$).

Fixing these

In a forthcoming paper, Ellenberg, Satriano and Zureick-Brown suggest a definition of height that fixes all of these. We will denote their height as: $Ht_{\mathcal{L},ESZB}(x)$.

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	000000	00000	

Let $a_0, a_1 \dots a_k$ be positive integers. Consider the \mathbb{G}_m action on \mathbb{A}^{k+1} given by:

$$\lambda \cdot (x_0, x_1 \dots x_k) := (\lambda^{a_0} x_0, \lambda^{a_1} x_1 \dots \lambda^{a_k} x_k).$$

Introduction 000000	Heights on Stacks 00000	Back to modular curves

Let $a_0, a_1 \dots a_k$ be positive integers. Consider the \mathbb{G}_m action on \mathbb{A}^{k+1} given by:

$$\lambda \cdot (x_0, x_1 \dots x_k) := (\lambda^{a_0} x_0, \lambda^{a_1} x_1 \dots \lambda^{a_k} x_k).$$

Definition

The weighted projective stack $\mathbb{P}(a_0, a_1 \dots a_k)$ is defined as $[(\mathbb{A}^{k+1} \setminus \{0\})/\mathbb{G}_m].$

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	000000	000●0	

Let $a_0, a_1 \dots a_k$ be positive integers. Consider the \mathbb{G}_m action on \mathbb{A}^{k+1} given by:

$$\lambda \cdot (x_0, x_1 \dots x_k) := (\lambda^{a_0} x_0, \lambda^{a_1} x_1 \dots \lambda^{a_k} x_k).$$

Definition

The weighted projective stack $\mathbb{P}(a_0, a_1 \dots a_k)$ is defined as $[(\mathbb{A}^{k+1} \setminus \{0\})/\mathbb{G}_m].$

Example: $\mathbb{P}(1, 1, \ldots 1) \cong \mathbb{P}^k$.

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	000000	00000	00000

Let $a_0, a_1 \dots a_k$ be positive integers. Consider the \mathbb{G}_m action on \mathbb{A}^{k+1} given by:

$$\lambda \cdot (x_0, x_1 \dots x_k) := (\lambda^{a_0} x_0, \lambda^{a_1} x_1 \dots \lambda^{a_k} x_k).$$

Definition

The weighted projective stack $\mathbb{P}(a_0, a_1 \dots a_k)$ is defined as $[(\mathbb{A}^{k+1} \setminus \{0\})/\mathbb{G}_m].$

Example: $\mathbb{P}(1, 1, ..., 1) \cong \mathbb{P}^k$. Example: $\mathbb{P}(2, 3)$ is a weighted \mathbb{P}^1 with two stacky points with automorphism groups μ_2 and μ_3 .

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	000000	000●0	

Let $a_0, a_1 \dots a_k$ be positive integers. Consider the \mathbb{G}_m action on \mathbb{A}^{k+1} given by:

$$\lambda \cdot (x_0, x_1 \dots x_k) := (\lambda^{a_0} x_0, \lambda^{a_1} x_1 \dots \lambda^{a_k} x_k).$$

Definition

The weighted projective stack $\mathbb{P}(a_0, a_1 \dots a_k)$ is defined as $[(\mathbb{A}^{k+1} \setminus \{0\})/\mathbb{G}_m].$

Example: $\mathbb{P}(1, 1, ..., 1) \cong \mathbb{P}^k$. Example: $\mathbb{P}(2, 3)$ is a weighted \mathbb{P}^1 with two stacky points with automorphism groups μ_2 and μ_3 .

Idea

We're going to map our stacks into weighted projective stacks.

Heights on Stacks 0000● Back to modular curves 00000

ESZB Height on a nice enough stack

Proposition, [ESZB, '20]

Let \mathcal{X} be a stack over Spec \mathbb{Z} , let \mathcal{L} be a line bundle on \mathcal{X} such that $\mathcal{L}^{\otimes n}$ is generically globally generated by sections $s_0, s_1, s_2 \cdots s_k$. Let $x : \operatorname{Spec} \mathbb{Q} \to \mathcal{X}$ and for each i, let $x_i = x^*(s_i)$. Suppose you can scale x_0, x_1, \ldots, x_k so that each $x_i \in \mathbb{Z}$ and for every prime p, there is some x_i such that $v_p(x_i) < n$. Then the height is given by:

$$\log \operatorname{Ht}_{\mathcal{L}, ESZB}(x) = rac{1}{n} \log \max\{|x_0|, |x_1|, \dots |x_k|\} + O_{\mathcal{X}(\mathbb{Q})}(1).$$

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000		00000	●0000
Plan			

Quadratic twist families

3 Heights on Stacks

Quadratic twist families 000000

Heights on Stacks

Back to modular curves $0 \bullet 000$

Interpretation of Naive Height

Quadratic twist families

Heights on Stacks

Back to modular curves ○●○○○

Interpretation of Naive Height

• Recall that we defined the naive height of E as $Ht_{naive}(E) = max\{|A|^3, |B|^2\}.$

Quadratic twist families

Heights on Stacks

Back to modular curves 0000

Interpretation of Naive Height

- Recall that we defined the naive height of E as $Ht_{naive}(E) = max\{|A|^3, |B|^2\}.$
- Recall that modular forms of weight k are sections of λ^{⊗k}, where λ is the Hodge bundle.

Quadratic twist families

Heights on Stacks

Back to modular curves 0000

Interpretation of Naive Height

- Recall that we defined the naive height of E as $Ht_{naive}(E) = max\{|A|^3, |B|^2\}.$
- Recall that modular forms of weight k are sections of λ^{⊗k}, where λ is the Hodge bundle.
- $A \leftrightarrow E_4 \in \lambda^{\otimes 4}$, $B \leftrightarrow E_6 \in \lambda^{\otimes 6}$, and E_4^3 and E_6^2 globally generate $\lambda^{\otimes 12}$.

Quadratic twist families

Heights on Stacks

Back to modular curves 0000

Interpretation of Naive Height

- Recall that we defined the naive height of *E* as $Ht_{naive}(E) = max\{|A|^3, |B|^2\}.$
- Recall that modular forms of weight k are sections of λ^{⊗k}, where λ is the Hodge bundle.
- $A \leftrightarrow E_4 \in \lambda^{\otimes 4}$, $B \leftrightarrow E_6 \in \lambda^{\otimes 6}$, and E_4^3 and E_6^2 globally generate $\lambda^{\otimes 12}$.

Corollary

Consider $(E, C) \in \mathcal{X}_0(N)(\mathbb{Q})$, then

$$\operatorname{Ht}_{naive}(E) = const \cdot \operatorname{Ht}_{\lambda, ESZB}(E)^{12}.$$

Heights on Stacks

Back to modular curves

Rings of modular forms

Theorem, [HT '11]

Let M(N) denote the ring of modular forms of $\mathcal{X}_0(N)$. The following are the generators and relations of M(N):

N	Degrees of generators	Relations
2	(2,4)	None
3	(2, 4, 6)	b² — ac
4	(2,2)	None
5	(2, 4, 4)	$b^2 - c(a^2 + 4b - 8c)$
6	(2, 2, 2)	b ² – ac
8	(2, 2, 2)	b ² – ac
9	(2, 2, 2)	b ² – ac

Table 2: Ring of modular forms of low level

Introduction	Quadratic twist families

Heights on Stacks 00000 Back to modular curves 00000

The final problem

• Now we have reduced our counting integers in a box with certain relations between them, e.g. for $\mathcal{X}_0(3)$, we count triples (a, b, c) such that $|a| < X^{1/6}$, $|b| < X^{1/3}$ and $|c| < X^{1/2}$, $b^2 = ac$ and $gcd\{a^6, b^3, c^2\}$ is 12th power free.

Introduction	Quadratic twist families	Heights on Stacks	Back to modular curves
000000	000000	00000	0000●

Thank you for listening!