The Gross-Zagier-Zhang formula over function fields

Congling Qiu
Yale University

Dec 5, 2020

History: Gross-Zagier formula

- A: an elliptic curve over $\mathbb{Q}: A(\mathbb{Q})$: finitely generated abelian group.
- Birch and Swinnerton-Dyer conjecture: $\operatorname{rank}_{\mathbb{Z}} A(\mathbb{Q})=\operatorname{ord}_{s=1} L(A, s)$.
- Question: If $L(A, s)$ is odd, how to find a non-torsion point?

Theorem (Gross and Zagier)

For some imaginary quadratic fields E such that $L\left(A_{E}, s\right)$ is odd, there is an explicit $P \in A(E)$ such that

$$
\langle P, P\rangle_{\mathrm{NT}}=c \cdot L^{\prime}\left(A_{E}, 1\right)
$$

- Heegner point P : produced from $\phi(\mathcal{H} \bigcap E)$, where

$$
\phi: \mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau>0\} \rightarrow X_{0}(N) \xrightarrow{\text { Wiles et al. }} A .
$$

- Application: BSD in analytic rank 1 case (Kolyvagin's Euler system).

History: Analog over $F_{q}(T), q$ odd

- A: an elliptic curve over $F_{q}(T)$, split multiplicative reduction at $\infty=\left(\frac{1}{T}\right)$.

Theorem (Rück and Tipp)

For some separable quadratic extensions $E / F_{q}(T)$, nonsplit at ∞ (imaginary), such that $L\left(A_{E}, s\right)$ is odd, there is an explicit $P \in A(E)$ such that

$$
\langle P, P\rangle_{\mathrm{NT}}=c \cdot L^{\prime}\left(A_{E}, 1\right)
$$

- Heegner point P : produced from $\phi\left(\Omega_{\infty} \cap E\right)$, where

$$
\phi: \Omega_{\infty}=\text { Drinfeld upper half plane } \rightarrow M \xrightarrow{\text { Drinfeld }} A .
$$

- M: Drinfeld modular curve.

Generalization

S.Zhang, Yuan-W.Zhang-S.Zhang:

- F : totally real field; E imaginary quadratic extension;
- σ : cuspidal automorphic representation of $\mathrm{GL}_{2, F}$, holomorphic of weight 2 , such that $L\left(s, \sigma_{E}\right)$ is odd.
Q. 2019:
- F : arbitrary function field; E "arbitrary" quadratic extension;
- σ : arbitrary cuspidal automorphic representation of $\mathrm{GL}_{2, F}$ such that $L\left(s, \sigma_{E}\right)$ is odd.

Generalization

Q. 2019

- F : arbitrary function field; E arbitrary quadratic extension;
- σ : arbitrary cuspidal automorphic representation of $\mathrm{GL}_{2, F}$ such that $L\left(s, \sigma_{E}\right)$ is odd.
- Application: (full) BSD for abelian varieties (over F) of GL_{2}-type of "analytic rank 1" (Tate, Milne, Schneider, Kato and Trihan, Katz).
"odd" implies:
- there exists a place ∞ of F not split in E such that σ_{∞} is a discrete series ($\mathrm{JL}\left(\sigma_{\infty}\right)$ exists).
Conditions on abelian varieties:
- not everywhere (potential) good reduction;
- trivial central character up to twist (though we do not have this condition on σ.

Gross-Zagier-Zhang formula over function fields

- \mathbb{B} : incoherent quaternion algebra over \mathbb{A}_{F}, i.e. division at odd number of places. \mathbb{B}_{∞} is division. Fix $\mathbb{A}_{E} \hookrightarrow \mathbb{B}$.
- M_{U} / F : Drinfeld modular curves, indexed by $U \subset \mathbb{B}^{\times}$. Hecke action: \mathbb{B}^{\times}acts on $\lim M_{U}$.
- A / F : abelian variety such that (up to twist by a character)

$$
\pi_{A}:=\underset{U}{\lim _{\vec{~}}} \operatorname{Hom}\left(J\left(M_{U}\right), A\right)_{\mathbb{C}}=\mathrm{JL}_{\mathbb{B} \times}(\sigma)
$$

- $t^{\circ} \in\left(\lim _{\longleftarrow} J\left(M_{U}\right)\right)^{E^{\times}}$where $t \in E^{\times} \backslash \mathbb{A}_{E}^{\times}$.
- For $\phi \in \pi=\pi_{A}$, let

$$
P_{\pi}(\phi):=\int_{E \times \backslash \mathbb{A}_{E}^{\times} / \mathbb{A}_{F}^{\times}} \phi\left(t^{0}\right) \in A\left(E^{\mathrm{ab}}\right)_{\mathbb{C}}
$$

Gross-Zagier-Zhang formula over function fields

- $\mathcal{P}_{\pi}:=\left(\phi \otimes \tilde{\phi} \mapsto\left\langle P_{\pi}(\phi), P_{\pi}(\tilde{\phi})\right\rangle_{\mathrm{NT}}\right) \in \operatorname{Hom}_{\mathbb{A}_{E}^{\times} \times \mathbb{A}_{E}^{\times}}(\pi \otimes \tilde{\pi}, \mathbb{C})$.
- Tunnell-Saito: $\operatorname{dim} \operatorname{Hom}_{E_{v}^{\times}}\left(\pi_{v}, \mathbb{C}\right)=1$ by choosing \mathbb{B}.
- $\alpha_{\pi_{v}} \in \operatorname{Hom}_{E_{v}^{\times} \times E_{v}^{\times}}\left(\pi_{v} \otimes \tilde{\pi}_{v}, \mathbb{C}\right)$: an explicit generator.

Theorem (Q.)

There is an explicit constant $c \neq 0$ such that

$$
\mathcal{P}_{\pi}=c \cdot L^{\prime}\left(1 / 2, \pi_{E}\right) \cdot \prod_{v} \alpha_{\pi_{v}}
$$

- Note that $\pi_{E} \cong \sigma_{E}$ up to a twist. The general form of this theorem applies to $L^{\prime}\left(1 / 2, \pi_{E} \otimes \Omega\right)$ where Ω is a Hecke character of E^{\times}.

Arithmetic variants of Jacquet's relative trace formulas

- Consider all such π 's together, get a distribution H on $C_{c}^{\infty}\left(\mathbb{B}^{\times}\right)$:

$$
H: C_{c}^{\infty}\left(\mathbb{B}^{\times}\right) \xrightarrow{\text { Hecke action }} \bigoplus_{\pi} \pi \otimes \tilde{\pi} \xrightarrow{\oplus_{\pi} \mathcal{P}_{\pi}} \mathbb{C} .
$$

- $Z(f)$: Hecke correspondence. Then

$$
H(f)=\int_{E^{\times} \backslash \mathbb{A}_{E}^{\times} / \mathbb{A}_{F}^{\times}} \int_{E^{\times} \backslash \mathbb{A}_{E}^{\times}}^{*}\left\langle Z(f)_{*} t_{1}^{\circ}, t_{2}^{\circ}\right\rangle_{\mathrm{NT}} d t_{2} d t_{1},
$$

- Find another group with subgroup actions, which
- give the same quotient space $E^{\times} \backslash B^{\times} / E^{\times}$. Here B is an F-quaternion algebra.
- Encode the problem we are looking at.

Arithmetic variants of Jacquet's relative trace formulas

- $G=\mathrm{GL}_{2, E}, A$ the diagonal torus, $H=\mathrm{GU}\left(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$. Then

$$
E^{\times} \backslash B^{\times} / E^{\times \prime}=" A \backslash G / H
$$

- For $f^{\prime} \in C_{c}^{\infty}\left(G\left(\mathbb{A}_{E}\right)\right)$, a kernel function $K_{f^{\prime}}$ on $\left(G(E) \backslash G\left(\mathbb{A}_{E}\right)\right)^{2}$ represents the Hecke action. Define another distribution

$$
I\left(f^{\prime}\right):=\left.\frac{d}{d s}\right|_{s=0} \int_{[A]} \int_{[H]} K_{f^{\prime}}(a, h)|a|^{s} d a d h
$$

- The integral over $[A]$ encodes L-function; The integral over $[H]$ tests base change.

Strategy

$$
\begin{aligned}
& 1 \text { plus } 2 \\
& \bigoplus_{\Pi}^{\oplus} I_{\Pi}=I\left(f^{\prime}\right) \xlongequal{\text { unfold }} \sum_{v} \sum_{\gamma \in A \backslash G / H} O\left(0, \gamma, f^{\prime v}\right) O^{\prime}\left(0, \gamma, f_{v}^{\prime}\right)
\end{aligned}
$$

Strategy

$$
\begin{aligned}
\bigoplus_{\pi} \alpha_{\pi} \xlongequal{\text { goal }} \bigoplus_{\pi} \mathcal{P}_{\pi}= & H(f) \xlongequal{1} \sum_{v} \sum_{E^{\times} \backslash B(v)^{\times} / E^{\times}} \cdots \\
\bigoplus_{\Pi} \|_{\Pi}= & I\left(f^{\prime}\right) \xlongequal{\text { unfold } 2} \sum_{v} \sum_{\gamma \in A \backslash G / H} O\left(0, \gamma, f^{\prime v}\right) O^{\prime}\left(0, \gamma, f_{v}^{\prime}\right)
\end{aligned}
$$

- Intersection theory on integral models \mathcal{M}_{U} of modular curves:

$$
H(f)=\sum_{v} i(f)_{v}+j(f)_{v},
$$

where $i(f)_{v}$ is the horizontal intersection and $j(f)_{v}$ the rest.

1: Local computation of $i(f)_{\infty}$ (and $\left.j(f)_{\infty}\right)$

- $\hat{\Sigma}_{n}$: Drinfeld's n-th formal covering of the upper half plane over F_{∞}.
- let $B=B(\infty)$ (the modification of \mathbb{B} at ∞, then

$$
\hat{\mathcal{M}}_{U}=B^{\times} \backslash\left(\hat{\Sigma}_{n} \times \mathbb{B}^{\infty, \times} / U^{\infty}\right)
$$

- Decompose $i(f)_{\infty}$ into a sum along $E^{\times} \backslash B^{\times} / E^{\times}$. For $f=f^{\infty} f_{\infty}$, $\delta \in B^{\times}$, the summand is $O\left(\delta, f^{\infty}\right)$ times

$$
i\left(\delta, f_{\infty}\right):=\int_{E_{\infty}^{\times} / F_{\infty}^{\times}} \int_{E_{\infty}^{\times}}\left(\int_{\mathbb{B}_{\infty}^{\times}} f_{\infty}(g) m_{\infty}\left(t_{1}^{-1} \delta t_{2}, g^{-1}\right) d g\right) d t_{2} d t_{1}
$$

- Define

$$
m_{\infty} \in C^{\infty}\left(B_{\infty}^{\times} \times \mathbb{B}_{\infty}^{\times}-\{(1,1)\}\right)
$$

as follows: $B_{\infty}^{\times} \times \mathbb{B}_{\infty}^{\times}$acts on $\hat{\Sigma}_{n}$, and $m_{\infty}\left(g_{1}, g_{2}\right)$ is the intersection of $\left(g_{1}, g_{2}\right) z$ and z. Here $z \in \hat{\Sigma}_{n}$ is a CM point

2: Orbital comparison

$$
\begin{aligned}
\bigoplus_{\pi} \alpha_{\pi} \xlongequal{\text { goal }} \bigoplus_{\pi} \mathcal{P}_{\pi}= & H(f) \xlongequal{=} \sum_{v} \sum_{E^{\times} \backslash B(v)^{\times} / E^{\times}} \cdots \\
\bigoplus_{\Pi} \|_{\Pi} l_{\text {plus 2 }} & I\left(f^{\prime}\right) \xlongequal{\text { unfold }} \sum_{v} \sum_{\gamma \in A \backslash G / H} O\left(0, \gamma, f^{\prime v}\right) O^{\prime}\left(0, \gamma, f_{v}^{\prime}\right)
\end{aligned}
$$

- $E_{\infty}^{\times} \backslash B_{\infty}^{\times} / E_{\infty}^{\times "}=" A_{\infty} \backslash G_{\infty} / H_{\infty}, \delta \leftrightarrow \gamma$ (regular orbits).
- Compare $O\left(\delta, f^{\infty}\right) i\left(\delta, f_{\infty}\right)$ with $O\left(0, \gamma, f^{\prime \infty}\right) O^{\prime}\left(0, \gamma, f_{\infty}^{\prime}\right)$.
- Also need $O\left(\delta, f_{\infty}\right)=O\left(0, \gamma, f_{\infty}^{\prime}\right)$!

2: Orbital comparison

Proposition

Let $f_{\infty}=1 U_{\infty}$. Then there exists f_{∞}^{\prime} such that for all $\delta \leftrightarrow \gamma$ (regular orbits), we have

$$
O\left(\delta, f_{\infty}\right)=O\left(0, \gamma, f_{\infty}^{\prime}\right)
$$

and

$$
i\left(\delta, f_{\infty}\right)=O\left(0, \gamma, f^{\prime \infty}\right)+\text { an orbital integral on } B_{\infty}^{\times}
$$

Proposition

Let $f_{\infty}=1_{U_{\infty}}$. Then $j\left(\delta, f_{\infty}\right)$ equals an orbital integral on B_{∞}^{\times}.

Remarks

- Why the RTF method? If we follow Yuan-Zhang-Zhang and use theta lifting, we get the same results only in odd characertistics.
- The same method should work over number fields, and reprove Yuan-Zhang-Zhang's result.
- Potential application to higher weights representations of $\mathrm{GL}_{2}(\mathbb{Q})$ (with more ramifications).
- Potential application to higher derivatives of L-functions of GL_{2} (not just PGL_{2}) over function fields (with more ramifications).

The End
 Thank you

