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Spherical harmonics

SO2(R) < SO3(R) compact.

m(m) = dim Homgo,®)(7,C), 7 € Irr(SO3(R)).

» By Frobenius reciprocity,

m(r) = dim Homgo, k) (, Indgo () (C)).

Indgo? () (C) ~ L2(52).

[%(5%) ~ SO3(R) spectral decomposition.



Spherical harmonics

> By the theory of spherical harmonics,
202y TN
LX($*) =P, Hr
H; = spherical harmonics of deg. /, dim =2/+1,
Hy is an irr. rep. of SO3(R).

dim Homgo, ) (7, [2(S§%)) =1, for any 7 € Irr(SO3(R)).

m(m) = / ©x(h)dh, by Schur's orthogonality.
SO2(R)



Set up

» F local field of char. zero.

» W — V quadratic spaces /F.

> W split of odd dim.

» N = unipotent radical of the parabolic subgroup of SO(V)
stabilizing the full isotropic flag determined by W=

> G =SO(W) x SO(V).

» H=SO(W)x N < G, with A: SO(W) — G.

> ¢ = a generic character of N extending to H.

> (G, H,&) is called a Gan-Gross-Prasad triple.



Multiplicity one

> Set
m(m) = dim Homy gy (7, &), € Iir(G(F))

Theorem.
m(m) < 1.

» For F p-adic, proved by A. Aizenbud-D. Gourevitch-S.
Rallis-G. Schiffmann for r = 0, and W. Gan-B.Gross-D.Prasad
reducing the general case to r = 0.

» For F Archimedean, proved by B. Sun-C. Zhu for r = 0, and
D. Jiang-Sun-Zhu reducing the general case to r = 0.



Local Gan-Gross-Prasad conjecture

» The local Gan-Gross-Prasad conjecture suggests that m()
has more stable behavior by considering the local Vogan
packet attached to (G, H,¢).

» To introduce local Vogan packets, consider pure inner forms
of SO(W), parametrized by H*(F,SO(W)) ~ H(F, H).
» For a € HY(F, H), there exists

(W,, Vo = W, & W)

dim W, = dim W, discW,, = discW,
with a GGP triple
(Ga, Has €a)-

Moreover
L L
G, ~"G.



Local Gan-Gross-Prasad conjecture

Conjecture.(Gan-Gross-Prasad)
For any generic L-parameter ¢ : Wg — LG with L-packet M¢(¢),

o> mm) =1

a€HL(F,H) neMSa ()

Moreover, the non-vanishing of m(7) is detected by
representations of the component group A, attached to ¢, which
is related to the sign of the relevant local symplectic root numbers.

| 2

i generic,  L(s,y, Ad) is holomorphic at s =1
¥ tempered, Im(y) is bounded



Local Gan-Gross-Prasad conjecture: p-adic

» J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger
(generic) proved the conjecture completely when F is p-adic
(Assuming LLC for non quasi-split SO and quasi-split SO2,).

» The local GGP conjecture speculates parallel behaviors for
unitary groups. R. Beuzart-Plessis (tempered) and Gan-A.
Ichino (generic) proved the conjecture when F is p-adic.

» There are parallel conjectures for skew-hermitian unitary
groups and symplectic-metaplectic groups.
Gan-Ichino proved the conjecture for skew-hermitian unitary
groups, and H. Atobe for symplectic-metaplectic groups, via
theta correspondence when F is p-adic.



Local Gan-Gross-Prasad conjecture: Archimedean

» For unitary groups, when F = R,
Beuzart-Plessis proved the multiplicity part of the conjecture
for (o tempered.
H. He proved the conjecture for discrete series representations.
H. Xue proved the conjecture for ¢ tempered.

» For special orthogonal groups, when F = C,
J. Mdllers proved the conjecture for SO(n) x SO(n + 1).



The theorem

In the special orthogonal groups setting, we prove the following
theorem.

Theorem (L.)
For any tempered L-parameter o : Wg — LG,

oY m(r) =1

a€HI(F,H) 7eN%a(yp)

» We follow the approach of Waldspurger and Beuzart-Plessis.



Local trace formula

» For m € Temp(G(F)), by Frobenius reciprocity for unitary
representations,

Hompr (7, &F) ~ Homg ry(m, Indf&F)

where Ind{¢ = [2(H(F)\G(F), &F).
>

L2(H(F)\G(F),&f) ~ G(F) spectral decomposition.



Local trace formula

» Following Arthur,
L2(H(F)\G(F),&F) ~ C°(G(F)) via convolution.
» For f € C°(G(F)), x € G(F), ¢ € L2(H(F)\G(F),&F),
(RO = [ F(elebe)dg = [ Kilxy)elr)dy
G(F) H(F)\G(F)
where

Ke(x,y) = /H(F) f(x " thy)ée(h)dh, x,y € G(F).

» R(f) has an integral kernel K¢(x, y).



Local trace formula
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v

Formally,

Tr(R(f)) ~ / K(x, x)dx.
H(F)\G(F)

In general, RHS is not absolutely convergent.
Work with strongly cuspidal functions.
f € CZ(G(F)) is called strongly cuspidal if

/ f(mu)du=0, me M(F)
U(F)

for any proper parabolic subgroup P = MU of G.

Similarly, define strongly cuspidal functions in the
Harish-Chandra Schwartz space C(G(F)) of G(F), denoted as

Cscusp(G(F))-



Local trace formula

Theorem (L.)
For f € Cscusp(G(F)),

J(F) = / Ke (x, x)dx
HF)\G(F)

is absolutely convergent.

» Establish spectral and geometric expansions for J(f) through
comparing with Arthur’s local trace formula.



Spectral expansion

Theorem (L.)
For f € Cscusp(G(F)), set

Jspec(f) = /X(G(F)) D(m)0¢(m)m(m)dn.

Then Jspec(f) is absolutely convergent, and

J(f) = Jspec(f).

» X(G(F)):={(M,0)| o€ Ten(M(F))}/conj., where
Ten(M(F)) = elliptic representations introduced by Arthur.

> For 7 attached to (M, o), 0¢(7) = (—1)2¢ =M JS (o, f), where
JG (0, f) is the weighted character defined by Arthur.



Geometric multiplicity formula

Theorem (L.)
For m € Temp(G(F)),

m(7) = Mgeom () = / cr(x)DC(x) Y2 A(x) "1 2dx.
r(G,H)

» When F is p-adic it was proved by Waldspurger.



Geometric multiplicity formula: T(G, H)

| 2
MG, H) = | Teeg(F).
TeT
T is a set of subtori of SO(W).
>

TeT iff. T max ell in SOW")
where W” C W non-degenerate and dim(W /W") even.



Geometric multiplicity formula: definition of ¢,

Theorem (Harish-Chandra for p-adic, Barbasch-Vogan for
Archimedean)

For x € Ggs and X € w C gx a small neighborhood of 0, there
exists constants ¢, o(x) € C such that

lim DC(xe*)20,(xeX) = D(x)"/2 Y cro(x)i(0, X).
X—0
O€Nilreg(gx)

Here j(O, X) = F(Jo(-)).
» The definition of ¢, first appeared in the work of
Waldspurger, is the main technical ingredient.

» ¢ is nonzero only when Gy is quasi-split. When it is the case,
¢r = Cr,0 for a particular O € Nileg(gx).



Geometric multiplicity formula: definition of ¢,

» For unitary groups, Nﬂreg(gx) can be permuted by scaling.
The geometric multiplicity is independent of the orbit chosen.
Therefore set

cr(x) = 2 0eNilieg(ax) 0
" . ‘Nﬂreg (9x)|

> Benefit:
D (x")0x(x)

DC (x)1/2 : = li
(x)"“en(x) x’equl,rxn(F)%X’W(GX’ quvX)‘

where Tyq x C By C Gy.

» It is NOT the case for special orthogonal groups, really need
to pick up a particular regular nilpotent orbit.



Geometric multiplicity formula: definition of ¢,

» Nileg(s0(V)) # 0 iff. (V,q) is quasi-split.
For dim V is odd or < 2, |Nil,ee(s0(V))| = 1.

» For dimV =2mis even and > 4, set

AV F*/F*2, split
"\ Im(qan)/F*?, non-split.

Then AV <5 Nilyeg(s0(V)).
» Therefore

Nilieg(g) © NV, dim V is even > 4,
reg |8 NY  dim W is even > 4.



Geometric multiplicity formula: definition of ¢,

» Recall V=Wa& (vw)® Z.
» Set 19 = q(w). When dim V is even > 4, 1 € NV When
dim W is even > 4, —1p e NW.
> For x € Treg € T, set V,, (resp. W) = ker(1 —x) in V (resp.
W).
> Then
Gy =G, x G
with G/ = SO(V!) x SO(W!), G/ = T x T.
» When G, is quasi-split, set
Cr,0,,, dim V>4 even
cr(x) = {cmo_yo, dim W, > 4 even
Cr\Oreg > otherwise.



Geometric multiplicity formula: definition of ¢,

Lemma (L.)
For any O € Nil,e(gx), define

Cp0(x) = Z cr,0(x).

meNC(p)
Then
Cp,0(x) = cp0r(x)
for any O, 0" € Nilyeg(gx)-
In particular,
D (x) ¢, 0(x) =IW(Gy, Taax)| ™
lim De(xX) > Ox(x).

x'eT, F)—x
ad x(F) ren6 ()



Geometric expansion

Theorem (L.)
For f € Cscusp(G(F)), set

Jgeom () = / cr(x)DC(x)Y2A(x) "2 dx.
r(G,H)

Then Jgeom(f) is absolutely convergent, and

J(f) = Jgeom(f).



Geometric expansion: definitions

> Set
0r(x) = (~1)% 20 DS (x) 725 (x, F).
Then 0¢(x) is conjugation invariant.
» |t is a quasi-character, i.e.

lim DC(xeX)/20¢(xeX) = DC(x)? Y~ ¢, 0(x)i(0,X).
X—0 X
O€Nilreg (gx)

» Define
Co;,0,,» dim Vi >4 even

cr(x) =4 cor,0,,, dimW; >4 even
COr,Oreg otherwise.



Geometric expansion: localization

» By partition of unity,

neighborhood of x = 1
neighborhood of x =1

supp 6¢ C {
» For x € SO(W)ss, when x # 1,
(GXa HX?§X) = (G>/<7 H>/<7§>/<) X (G>,</> H>/<,a 1)'

(G, H., &) is a GGP triple of smaller dimension, and
(GI,HI, 1) is A: HI < HI x H! = Gl

» Induction on dim G and Arthur’s local trace formula.



Geometric expansion: Lie algebra variant

» For supp ¢ C neighborhood of x = 1, via exponential,
descent to Lie algebra variants J4¢ (f) and JYe¢(f).

geom
» Jseom(f) contains asymptotic of weighted orbital integrals
near singular locus, but Arthur’s local trace formula only has
regular semi-simple locus. Cannot compare directly.



Geometric expansion: Lie algebra variant

» Perform a Fourier transform on h = LieH to resolve the
possible singularities,

Lie(£ ) — -1 _ s ‘
Kt = [ exe er()ax = [ Fla Xg)ox

JHe(f) = / dg /_ flg ' Xg)dX.
HIF\G(F) — J=+pt



Geometric expansion: Lie algebra variant

» After truncation and changing integration order, compare with
Arthur's weighted orbital integrals.

» For f € Sscusp(9(F)),
JHe(f) = / D€ (X)M20(X)dX.
F(=Z+bt)

» (= +bht) = G(F)-conjugacy classes of regular semi-simple
elements in = + bt



Geometric expansion: Lie algebra variant

» Take Fourier inversion back for JX(f).

» For any O € Nil;eg(g),
00 = [ DY)
g

> j(X,) = F(J(X, ")) and

lim  DO(X,tY)j(X,Y)=D(V)"2 Y To(X)(0,).
teF*2 t—0 -
O€Nilreg(g)

(Shalika when F is p-adic, Beuzart-Plessis when F
Archimedean)



Regular germ formula

Theorem (L.)

For G a quasi-split reductive algebraic group, X € g"(F) and
O € Nilyeg(g), set T = Gx. Then

1, inv(X)inv(Tg) = invr,(O),
Fo(X) = {0, otherwise.

When F is p-adic the result was already proved by D. Shelstad.

> We also compute the invariants % explicitly for any

X € g™ without eigenvalue 0, following the work of
Waldspurger.



Regular germ formula

» Fix an F-splitting for G.

» The invariants inv(T¢),inv(X) and inv7,(O) all lie in
HY(F, T¢).

» invy,(O) measures the difference between O and the regular
nilpotent determined by the fixed F-splitting.

» inv(T¢) is connected with the Langlands-Shelstad transfer
factor Ag.

» inv(X) is connected with the Langlands-Shelstad transfer
factor Ayj.



Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem.

Theorem (L.)

Fo(X) =1 if and only if the G(F)-orbit of X and O lie in the
G(F)-orbit of a common Kostant's section.

» Kostant constructed a section for g — g / G ~ t/W, whose
image in g contains only regular elements, and meets every
regular stable Ad(G)-orbit exactly once.

> gt :={X € g| dimCenty(X)=dimt}. Regular elements
are not necessarily semi-simple, e.g. regular nilpotent
elements.

» The restriction of g — t/W to an Ad(G)-orbit of a Kostant's

section is a smooth submersion. The measures on the fibers
are given by the relevant orbital integrals.



Thank you!



