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Bloch–Kato conjecture

Let

K be a number field

ρ : Gal(K/K )→ GLd(Qp) a geometric Galois representation (i.e.
unramified almost everywhere and de Rham at all p-adic places)

⇒ L-function L(ρ, s) and (conjectural) functional equation

Λ(ρ∗(1),−s) = ε(ρ, s)Λ(ρ, s)

Conjecture (Bloch–Kato)

ords=0 L(ρ∗(1), s) = dim H1
f (K , ρ)− dim H0(K , ρ)
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Bloch–Kato conjecture

Suppose
K is imaginary quadratic (or CM)
ρc ∼= ρ∗(1) (i.e. ρ is polarised)
s = 0 is critical and H0(K , ρ) = 0

Then zero is the centre of the functional equation and ε := ε(ρ, 0) = ±1.

Conjecture
1 If ε = +1 and L(ρ, 0) 6= 0, then

H1
f (K , ρ) = 0.

2 If ε = −1 and L′(ρ, 0) 6= 0, then

dim H1
f (K , ρ) = 1.
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Elliptic curves I

p is an odd prime ≥ 5
E/Q elliptic curve, good reduction at p, non-CM, square-free
conductor
ρ : Gal(K/K )→ GL(Vp(E )) which satisfies ρc ∼= ρ∗(1) ∼= ρ

Assume ε = +1.

Theorem (Waldspurger, ...)

There exists a definite quaternion algebra D, cusp form f : D×A → C and
embedding K ↪→ D such that:∣∣∣∣∣

∫
[A×

K ]
f (x)dx

∣∣∣∣∣
2

≈ L(ρ, 0) = L(E/K , 1)

⇒ if L(E/K , 1) 6= 0 can construct ramified classes in H1(K , ρ) which force
H1
f (K , ρ) = 0
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Elliptic curves II
Assume ε = −1. There exists

Indefinite quaternion algebra D, with embedding K ↪→ D

morphism Y (D)→ E

⇒ Heegner points Pm ∈ E (K [m]) related under
tr
K [`m]
K [m] : E (K [`m])→ E (K [m])

Theorem (Gross–Zagier, ...)

Let P := tr
K [1]
K P1. Then

height(P) ≈ L′(E/K , 1)

⇒ Euler system argument of Kolyvagin, ... implies

H1
f (K , ρ) = Qp · κ(P)

when L′(E/K , 1) 6= 0

Andrew Graham (Imperial College London (LSGNT)) 4th December 2020 5 / 20



A possible generalisation

Idea: Replace

The embedding ResK/Q GL1 ↪→ GL2 with the embedding

ResK/Q GLn ↪→ GL2n

The elliptic curve with cuspidal automorphic representation Π of
GL2n(AK ) satisfying Πc ∼= Π∨ ∼= Π.

Then set ρ = ρΠ(n), where ρΠ is the Galois representation associated with
Π.
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The case ε = +1
Assume ε = +1.

Conjecture
There exists a pair of unitary groups U(n)× U(n) ⊂ U(2n) such that Π
descends to an automorphic representation π of U(2n) and∫

[U(n)(A)×U(n)(A)] φ(x)dx 6= 0
for some φ ∈ π

⇔ L(ρ, 0) = L(Π, 1/2) 6= 0

Evidence:
If U(2n) is quasi-split then Pollack–Wan–Zydor prove the ⇒
implication
Also related to work of Wei Zhang, Spencer Leslie on comparison of
RTFs

One expects to produce ramified classes in H1(K , ρ) similar to the work of
Liu–Tian–Xiao–Zhang–Zhu ⇒ H1

f = 0
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The case ε = −1
Assume ε = −1. Consider the embedding

H = U(1, n − 1)× U(0, n) ↪→ U(1, 2n − 1) = G

Then under reasonable conditions:
Π descends to an automorphic representation π of G
ρ appears in the étale cohomology of the Shimura variety Y (G )

Theorem (G.–Shah)
For every m divisible by only primes that split in K , and every Galois stable
lattice T ⊂ ρ, there exist classes cm ∈ H1(K [m],T ) that are related under
corestriction.

Forthcoming work of Jetchev–Nekovář–Skinner

⇒ if c := cores
K [1]
K c1 is non-torsion (+ big image assumption)

then H1
f (K , ρ) = Qp · c

Andrew Graham (Imperial College London (LSGNT)) 4th December 2020 8 / 20



The construction – trivial coefficients

Y (G ) = (pro-)Shimura variety associated with G , of dimension 2n− 1

Hi
et(Y (G )) := Hi

et(Y (G )K ,Qp(n)) étale cohomology

Z ∈ CHn(Y (G )K ) cohomologically trivial codimensional n cycle,
obtained from (components of) Shimura varieties for H

Different perspective:

πf =

{
Galois equivariant maps

H2n−1
et (Y (G ))→ ρ

}
(assuming πf appears with multiplicity one)

Andrew Graham (Imperial College London (LSGNT)) 4th December 2020 9 / 20



The construction – trivial coefficients

Definition
Define classes

c(φ) := φ (AJ(Z)) ∈ lim−→
K⊃L⊃K

H1 (L, ρ)

for φ ∈ πf .

Then cm := c(φm) for suitable choices φm ∈ πf .
To prove the Euler system relations, we need to compare c(φ`m) and
c(φm), where φ`m and φm differ only at the prime `.
By working locally at `, and passing to the χ-part, one has a linear
map

c(−)χ : π` → C(χ)

which is H(Q`)-equivariant.
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Relation to spherical varieties

Locally at `:
G (Q`) = GL2n(Q`)

H(Q`) = GLn(Q`)× GLn(Q`)

⇒ spherical pair of reductive groups

Proposition
1 HomH(π`,C(χ)) is at most one-dimensional
2 If non-zero, then π` admits a Shalika model and we have an explicit

basis
Zχ ∈ HomH(π`,C(χ))

obtained from a zeta integral.

⇒ Can prove Euler system relations explicitly using this zeta integral and a
combination of U` Hecke operators.
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Some remarks

1 We actually use unitary similitude groups

2 Z is only cohomologically trivial after passing to ordinary parts for a
Siegel Up-operator

3 We have Euler system relations in the “p-direction”, i.e. classes
cpr ∈ H1(K [pr ],T ) for r ≥ 1 which are compatible under
corestriction.

The relations in this case are related to the work of Loeffler on norm
relations in Iwasawa theory via spherical varieties
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Future work

Goal: Relate the non-vanishing of c ∈ H1
f (K , ρ) to the L-function/p-adic

L-function for ρ

Consequence: Obtain cases of the Bloch–Kato conjecture for ρ
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Anticyclotomic characters

Definition
Let Σac denote the set of all anticyclotomic characters, i.e. all Hecke
characters χ : A×K → C× with infinity type (j ,−j).

Recall:
Π is a regular algebraic cuspidal automorphic representation of
GL2n(AK ) satisfying Πc ∼= Π∨ ∼= Π

Π corresponds to an algebraic representation V � V ∗ of GL2n×GL2n,
where highest weight of V is

µ = (a1, . . . , an,−an, . . . ,−a1)

Idea: Study the behaviour of L(ρ⊗ χ, s) and V in different subsets of Σac
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Geometric region

Definition

Σgeom = {χ ∈ Σac : |j | ≤ an}

For χ ∈ Σgeom, the sign of L(ρ⊗ χ, s) is −1 and there exist Euler system
classes

cχ ∈ H1
f (K , ρ⊗ χ)

e.g. ctriv = c as before

Follows from the fact one has a GLn×GLn-equivariant embedding

detj � det−j ↪→ V

Construct classes by passing to the map on local systems
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Geometric region: expectation

Expectation: One can p-adically interpolate {cχ : χ ∈ Σgeom} to obtain
classes

cχ ∈ H1(K , ρ⊗ χ) χ ∈ Σac

Idea: p-adically interpolate the branching law detj � det−j ↪→ V

Follows a similar strategy to Jetchev–Loeffler–Zerbes on Heegner
points in Coleman families

Also similar to work of Bertolini–Seveso–Venerucci on Reciprocity
Laws for Balanced Diagonal Classes
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Analytic region

Definition

Σan = {χ ∈ Σac : an + 1 ≤ |j | ≤ max(an + 1, an−1)}

For χ ∈ Σan the sign of L(ρ⊗ χ, s) is +1 and we expect

∃φ ∈ π s.t.
∫

[H]
φ(x)χ(x)dx 6= 0 ⇔ L(ρ⊗ χ, 0) 6= 0
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Analytic region: expectation

Expectation: There exists a p-adic L-function L : Σac → Cp such that

L (χ) ≈
∫

[H]
φ(x)χ(x)dx χ ∈ Σan

for suitable φ ∈ π

To construct this:

1 Express automorphic period as a pairing in coherent cohomology (Su,
2019). The pairing will be in degrees n − 1, n

2 p-adically interpolate this pairing using Higher Hida/Coleman theory
of Boxer–Pilloni
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The two regions
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Explicit reciprocity law

Following the strategy of Loeffler–Zerbes (On the Bloch–Kato conjecture
for GSp(4)) we expect

Expectation: For χ ∈ Σac one has

L (χ) ≈ 〈logBK(cχ), ηφ〉 some ηφ ∈ DdR(ρ)

In particular

L (1) 6= 0 ⇒ c 6= 0 ⇒ H1
f (K , ρ) = Qp · c

Remark
Also expect applications to the anticyclotomic main conjecture for ρ.
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