Anticyclotomic Euler systems for conjugate self-dual representations of GL(2n)

Andrew Graham

Imperial College London (LSGNT)

4th December 2020

Bloch-Kato conjecture

Let

K be a number field

 ρ: Gal(K/K) → GL_d(Q_p) a geometric Galois representation (i.e. unramified almost everywhere and de Rham at all *p*-adic places)

 \Rightarrow L-function $L(\rho, s)$ and (conjectural) functional equation

$$\Lambda(
ho^*(1),-s)=arepsilon(
ho,s)\Lambda(
ho,s)$$

Conjecture (Bloch–Kato)

$$\operatorname{ord}_{s=0} L(\rho^*(1), s) = \dim H^1_f(K, \rho) - \dim H^0(K, \rho)$$

Bloch-Kato conjecture

Suppose

- K is imaginary quadratic (or CM)
- $\rho^{c} \cong \rho^{*}(1)$ (i.e. ρ is polarised)
- s = 0 is critical and $H^0(K, \rho) = 0$

Then zero is the centre of the functional equation and $\varepsilon := \varepsilon(\rho, 0) = \pm 1$.

Conjecture

• If
$$\varepsilon = +1$$
 and $L(\rho, 0) \neq 0$, then

 $\mathsf{H}^1_f(K,\rho)=0.$

2) If
$$\varepsilon = -1$$
 and $L'(
ho, 0) \neq 0$, then

 $\dim \mathsf{H}^1_f(K,\rho) = 1.$

Elliptic curves I

- p is an odd prime ≥ 5
- E/\mathbb{Q} elliptic curve, good reduction at p, non-CM, square-free conductor
- $\rho \colon \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}(V_p(E))$ which satisfies $\rho^c \cong \rho^*(1) \cong \rho$

Assume $\varepsilon = +1$.

Theorem (Waldspurger, ...)

There exists a definite quaternion algebra D, cusp form $f: D^{\times}_{\mathbb{A}} \to \mathbb{C}$ and embedding $K \hookrightarrow D$ such that:

$$\left|\int_{[\mathbb{A}_{K}^{\times}]}f(x)dx\right|^{2}\approx L(\rho,0)=L(E/K,1)$$

 \Rightarrow if $L(E/K,1)\neq 0$ can construct ramified classes in $H^1(K,\rho)$ which force $H^1_f(K,\rho)=0$

Elliptic curves II

Assume $\varepsilon = -1$. There exists

- Indefinite quaternion algebra D, with embedding $K \hookrightarrow D$
- morphism $Y(D) \to E$

 $\begin{array}{l} \Rightarrow \text{ Heegner points } P_m \in E(\mathcal{K}[m]) \text{ related under} \\ \operatorname{tr}_{\mathcal{K}[m]}^{\mathcal{K}[\ell m]} \colon E(\mathcal{K}[\ell m]) \rightarrow E(\mathcal{K}[m]) \end{array}$

Theorem (Gross-Zagier, ...)

Let $P := \operatorname{tr}_{K}^{K[1]} P_{1}$. Then

 $height(P) \approx L'(E/K, 1)$

 \Rightarrow Euler system argument of Kolyvagin, ... implies

$$\mathsf{H}^{1}_{f}(K,\rho) = \mathbb{Q}_{p} \cdot \kappa(P)$$

when $L'(E/K, 1) \neq 0$

A possible generalisation

Idea: Replace

 \bullet The embedding $\mathsf{Res}_{\mathcal{K}/\mathbb{Q}}\,\mathsf{GL}_1 \hookrightarrow \mathsf{GL}_2$ with the embedding

 $\operatorname{\mathsf{Res}}_{\mathcal{K}/\mathbb{Q}}\operatorname{\mathsf{GL}}_n \hookrightarrow \operatorname{\mathsf{GL}}_{2n}$

• The elliptic curve with cuspidal automorphic representation Π of $\operatorname{GL}_{2n}(\mathbb{A}_K)$ satisfying $\Pi^c \cong \Pi^{\vee} \cong \Pi$.

Then set $\rho = \rho_{\Pi}(n)$, where ρ_{Π} is the Galois representation associated with Π .

The case $\varepsilon = +1$

Assume $\varepsilon = +1$.

Conjecture

There exists a pair of unitary groups $U(n) \times U(n) \subset U(2n)$ such that Π descends to an automorphic representation π of U(2n) and

$$\int_{\substack{[U(n)(\mathbb{A})\times U(n)(\mathbb{A})]\\\text{for some }\phi\in\pi}} \phi(x)dx \neq 0 \qquad \Leftrightarrow \quad L(\rho,0) = L(\Pi,1/2) \neq 0$$

Evidence:

- If U(2n) is quasi-split then Pollack–Wan–Zydor prove the \Rightarrow implication
- Also related to work of Wei Zhang, Spencer Leslie on comparison of RTFs

One expects to produce ramified classes in $H^1(K, \rho)$ similar to the work of Liu–Tian–Xiao–Zhang–Zhu $\Rightarrow H^1_f = 0$

The case $\varepsilon = -1$

Assume $\varepsilon = -1$. Consider the embedding

$$H = U(1, n-1) \times U(0, n) \hookrightarrow U(1, 2n-1) = G$$

Then under reasonable conditions:

- Π descends to an automorphic representation π of ${\it G}$
- ρ appears in the étale cohomology of the Shimura variety Y(G)

Theorem (G.–Shah)

For every *m* divisible by only primes that split in *K*, and every Galois stable lattice $T \subset \rho$, there exist classes $c_m \in H^1(K[m], T)$ that are related under corestriction.

Forthcoming work of Jetchev-Nekovář-Skinner

$$\Rightarrow \quad \text{if } c := \operatorname{cores}_{\mathcal{K}}^{\mathcal{K}[1]} c_1 \text{ is non-torsion } (+ \text{ big image assumption}) \\ \text{ then } H^1_f(\mathcal{K}, \rho) = \overline{\mathbb{Q}}_p \cdot c$$

The construction - trivial coefficients

- Y(G) = (pro-)Shimura variety associated with G, of dimension 2n-1
- $\mathsf{H}^{i}_{\mathrm{\acute{e}t}}(Y(G)) := \mathsf{H}^{i}_{\mathrm{\acute{e}t}}(Y(G)_{\overline{K}}, \overline{\mathbb{Q}}_{p}(n))$ étale cohomology
- Z ∈ CHⁿ(Y(G)_K) cohomologically trivial codimensional n cycle, obtained from (components of) Shimura varieties for H

Different perspective:

$$\pi_f = \left\{ egin{array}{c} {\sf Galois\ equivariant\ maps} \ {\sf H}^{2n-1}_{
m et}(Y({\cal G})) o
ho \end{array}
ight\}$$

(assuming π_f appears with multiplicity one)

The construction - trivial coefficients

Definition

Define classes

$$c(\phi) := \phi(\mathsf{AJ}(\mathcal{Z})) \in \varinjlim_{\overline{K} \supset L \supset K} \mathsf{H}^1(L, \rho)$$

for $\phi \in \pi_f$.

- Then $c_m := c(\phi_m)$ for suitable choices $\phi_m \in \pi_f$.
- To prove the Euler system relations, we need to compare $c(\phi_{\ell m})$ and $c(\phi_m)$, where $\phi_{\ell m}$ and ϕ_m differ only at the prime ℓ .
- By working locally at $\ell,$ and passing to the $\chi\text{-part},$ one has a linear map

$$c(-)^{\chi} \colon \pi_{\ell} \to \mathbb{C}(\chi)$$

which is $H(\mathbb{Q}_{\ell})$ -equivariant.

Relation to spherical varieties

Locally at ℓ :

- $G(\mathbb{Q}_{\ell}) = \operatorname{GL}_{2n}(\mathbb{Q}_{\ell})$
- $H(\mathbb{Q}_{\ell}) = \operatorname{GL}_n(\mathbb{Q}_{\ell}) \times \operatorname{GL}_n(\mathbb{Q}_{\ell})$

 \Rightarrow spherical pair of reductive groups

Proposition

• Hom_{*H*}(π_{ℓ} , $\mathbb{C}(\chi)$) is at most one-dimensional

3 If non-zero, then π_{ℓ} admits a Shalika model and we have an explicit basis

 $Z_{\chi} \in \operatorname{Hom}_{H}(\pi_{\ell}, \mathbb{C}(\chi))$

obtained from a zeta integral.

 \Rightarrow Can prove Euler system relations explicitly using this zeta integral and a combination of U_ℓ Hecke operators.

Some remarks

- We actually use unitary similitude groups
- 2 is only cohomologically trivial after passing to ordinary parts for a Siegel U_p-operator
- We have Euler system relations in the "p-direction", i.e. classes c_{p^r} ∈ H¹(K[p^r], T) for r ≥ 1 which are compatible under corestriction.

The relations in this case are related to the work of Loeffler on norm relations in Iwasawa theory via spherical varieties

Future work

Goal: Relate the non-vanishing of $c \in H^1_f(K, \rho)$ to the *L*-function/*p*-adic *L*-function for ρ

Consequence: Obtain cases of the Bloch–Kato conjecture for ρ

Anticyclotomic characters

Definition

Let Σ^{ac} denote the set of all *anticyclotomic* characters, i.e. all Hecke characters $\chi \colon \mathbb{A}_{K}^{\times} \to \mathbb{C}^{\times}$ with infinity type (j, -j).

Recall:

- Π is a regular algebraic cuspidal automorphic representation of $GL_{2n}(\mathbb{A}_K)$ satisfying $\Pi^c \cong \Pi^{\vee} \cong \Pi$
- Π corresponds to an algebraic representation $V \boxtimes V^*$ of $GL_{2n} \times GL_{2n}$, where highest weight of V is

$$\mu = (a_1, \ldots, a_n, -a_n, \ldots, -a_1)$$

Idea: Study the behaviour of $L(\rho \otimes \chi, s)$ and V in different subsets of Σ^{ac}

Geometric region

Definition

$$\Sigma^{\text{geom}} = \{ \chi \in \Sigma^{\text{ac}} : |j| \le a_n \}$$

For $\chi \in \Sigma^{\text{geom}}$, the sign of $L(\rho \otimes \chi, s)$ is -1 and there exist Euler system classes

$$c^{\chi} \in \mathsf{H}^{1}_{f}(K, \rho \otimes \chi)$$

e.g. $c^{\text{triv}} = c$ as before

• Follows from the fact one has a $GL_n \times GL_n$ -equivariant embedding

$$\mathsf{det}^j \boxtimes \mathsf{det}^{-j} \hookrightarrow V$$

• Construct classes by passing to the map on local systems

Geometric region: expectation

Expectation: One can *p*-adically interpolate $\{c^{\chi} : \chi \in \Sigma^{\text{geom}}\}$ to obtain classes

$$c^{\chi} \in \mathsf{H}^{1}(\mathsf{K}, \rho \otimes \chi) \qquad \quad \chi \in \Sigma^{\mathrm{ac}}$$

Idea: *p*-adically interpolate the branching law $\det^j \boxtimes \det^{-j} \hookrightarrow V$

- Follows a similar strategy to Jetchev–Loeffler–Zerbes on Heegner points in Coleman families
- Also similar to work of Bertolini–Seveso–Venerucci on Reciprocity Laws for Balanced Diagonal Classes

Analytic region

Definition

$$\Sigma^{\mathrm{an}} = \{\chi \in \Sigma^{\mathrm{ac}} : a_n + 1 \le |j| \le \max(a_n + 1, a_{n-1})\}$$

For $\chi \in \Sigma^{\mathrm{an}}$ the sign of $L(\rho \otimes \chi, s)$ is +1 and we expect

$$\exists \phi \in \pi \text{ s.t. } \int_{[H]} \phi(x)\chi(x)dx \neq 0 \qquad \Leftrightarrow \qquad L(\rho \otimes \chi, 0) \neq 0$$

Analytic region: expectation

Expectation: There exists a *p*-adic *L*-function $\mathscr{L} \colon \Sigma^{\mathrm{ac}} \to \mathbb{C}_p$ such that

$$\mathscr{L}(\chi) pprox \int_{[H]} \phi(x) \chi(x) dx \qquad \chi \in \Sigma^{\mathrm{an}}$$

for suitable $\phi \in \pi$

To construct this:

- Express automorphic period as a pairing in coherent cohomology (Su, 2019). The pairing will be in degrees n 1, n
- P-adically interpolate this pairing using Higher Hida/Coleman theory of Boxer–Pilloni

The two regions

Explicit reciprocity law

Following the strategy of Loeffler–Zerbes (On the Bloch–Kato conjecture for GSp(4)) we expect

Expectation: For $\chi \in \Sigma^{\mathrm{ac}}$ one has

$$\mathscr{L}(\chi) pprox \langle \log_{\mathrm{BK}}(\boldsymbol{c}^{\chi}), \eta_{\phi}
angle \qquad ext{some } \eta_{\phi} \in \mathsf{D}_{\mathrm{dR}}(
ho)$$

In particular

$$\mathscr{L}(1) \neq 0 \quad \Rightarrow \quad c \neq 0 \quad \Rightarrow \quad \mathsf{H}^{1}_{f}(K, \rho) = \overline{\mathbb{Q}}_{p} \cdot c$$

Remark

Also expect applications to the anticyclotomic main conjecture for ρ .