Section 2.7
(B)

Let

\[f(t, y) = ty \]

Starting with \(y(1) = 1 \) compute approximations of \(y(2) \), \(y(3) \), and \(y(4) \) using Euler’s Method with a time difference \(= 1 \). You should do this by hand.

(This is not a good approximation but it serves to simplify the problem.)

Section 3.5
(C)

Just write down the appropriate guesses for the particular solutions \(Y_i \) for the method of undetermined coefficients. You should break up the guesses into guesses for \((t + 1)e^{-t}\), \((t + 1)e^t\), and for \(e^t sin(t)\). Make sure to write down to which of these each guess applies. DO NOT solve the problems and DO NOT solve for the coefficients in the guess.

(i) \(y'' - 2y' + y = (t + 1)e^{-t} + (t + 1)e^t + e^t sin(t) \)
(ii) \(y'' - y = (t + 1)e^{-t} + (t + 1)e^t + e^t sin(t) \)
(iii) \(y'' - y' - 2y = (t + 1)e^{-t} + (t + 1)e^t + e^t sin(t) \)
(iv) \(y'' - 2y' + 2y = (t + 1)e^{-t} + (t + 1)e^t + e^t sin(t) \)