(1) Sketch a direction field for \(y' = y(5 - y)(y + 5) \)

(2) Mark the order and whether the equation is linear OR nonlinear
 (i) \(t^2y''' + \sin(t)y = e^t \cos(t) \)
 (ii) \(yy' + t = 5 \)
 (iii) \(y(4) + ty^2 = \cos t \)
 (iv) \((t + \sin t)(y + y') = e^t \)

(3) Solve the initial value problem:
 \[ty' - 6y = t^3 + t \]
 \[y(1) = 1 \]

(4) Find the general solution to
 \[y' + \cos(t)y = \cos t \]
 in terms of \(y(0) = y_0 \)

(5) Solve the following initial value problem and determine the interval of existence
 \[y' = \frac{-4x^3}{4y^3 + 6y} \]
 \[y(0) = -1 \]

(6) Solve the following differential equation using the substitution \(v = \frac{y}{x} \)
 \[x^2y' = y^2 + 6xy + 6x^2 \]

(7) Using the Existence and Uniqueness Th. for Linear Equations, what is the interval of existence of the initial value problem
 \[t(t - 3)y' + t(t - 1)y + (t - 2) = 0 \]
\(y(4) = 2 \)

(8) Consider
\[y' = (y - 1)^2(y^2 + 1)^3(y - 3)(y - 5)^4(y - 7) \]

Draw the phase line. What are the equilibrium solutions and what are their stabilities?

(9) Consider
\[y' = (y + a)(y^3 - a) \]

Draw the bifurcation diagram for this differential equation.

(10) Check that the following equation is exact and then solve for general solution
\[(e^x + 3x^2y + y + y^2)dx + (x^3 + x + 2xy)dy \]

(11) Find the integrating factor \(\mu \) of
\[(2xy)dx + (3x^2 + yx^2)dy = 0 \]
using the appropriate one of the following:
\[\mu' = \frac{M_y - N_x}{N} \mu \]
OR
\[\mu' = \frac{N_x - M_y}{M} \mu \]

(12) Approximate \(y(2), y(3), y(4) \) using Euler’s Method with time step \(= 1 \) for
\[y' = 2x + y \]
(13) Using the Method of Undetermined Coefficients, solve the initial value problem
\[y'' + 4y = e^t \]
\[y(0) = \frac{1}{5} \]
\[y'(0) = 1 \]

(14) Use reduction of order to find a second fundamental solution to
\[t^2 y'' + 3ty' + y = 0 \]
\[y_1 = \frac{1}{t} \]

(15) Consider the linear differential equation
\[L[y] = t^2 e^t + e^{2t} \sin(t) + \cos(t) \]
with characteristic polynomial
\[(r - 1)^5(r^2 - 4r + 5)^3(r^2 + 2)(r + 2)^2 \]

(i) What are the solutions to the homogeneous solution?
(ii) Write down guesses \(Y_1, Y_2, Y_3 \) for the Method of Undetermined Coefficients. Do NOT solve.

(16) Use variation of parameters to solve
\[y'' + 4y = g(t) \]

(17) Consider the following differential equation:
\[t(t - 1)^2(t + 2)^3(t + 3)y''' + (t - 1)^2 y'' + t(t + 3)y' = (t + 2)^2 \]
Using the Theorem of Existence and Uniqueness for linear equations what is the interval of existence for the following initial value problems?
(i) \(y(-1) = 1, y'(-1) = 0, y''(-1) = 0 \)
(ii) \(y(5) = 10^7, y'(5) = 0, y''(5) = 0 \)
(iii) For the same differential equation, can you say for sure without solving that the following intial value problem has a solution?
\(y(-1) = 1, y'(-1) = 1, y''(-1) = 1, y'''(-1) = 1 \)