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1. A standard 12-hour clock has hour, minute, and second hands. How many times do two
hands cross between 1:00 and 2:00 (not including 1:00 and 2:00 themselves)?

Answer: 119

Solution: We know that the hour and minute hands cross exactly once. Let m be the
number of minutes past one o’clock that this happens. The angle between the minute
hand and the 12 must be equal to the angle between the hour hand and the 12. Since 1
minute is 360◦

60
= 6◦ on the clock and 1 hour is 360◦

12
= 30◦, we have 6m = 30(1 + m

60
), so

m = 60
11

= 5 5
11

. Note that the second hand is not at the same position at this time, so we
do not have to worry about a triple crossing.

On the other hand, the second hand crosses the hour hand once every minute, for a total
of 60 crossings. Also, the second hand crosses the minute hand once every minute except
the first and last, since those crossings take place at 1:00 and 2:00, for a total of 58
crossings. There is a grand total of 1 + 60 + 58 = 119 crossings.

2. Define a set of positive integers to be balanced if the set is not empty and the number
of even integers in the set is equal to the number of odd integers in the set. How many
strict subsets of the set of the first 10 positive integers are balanced?

Answer: 250

Solution: The set of the first ten positive integers contains five odd integers and five
integers. Therefore, there are

(
5
k

)
ways to choose k odd integers from five odd integers,

and also there are
(
5
k

)
ways to choose k even integers from five even integers. Therefore,

there are
(
5
k

)2
ways to pick a balanced subset containing k odd integers and k even integers.

Therefore, the answer is
4∑

i=1

(
5

i

)2

= 52 + 102 + 102 + 52 = 250 .

3. How many ordered sequences of 1’s and 3’s sum to 16? (Examples of such sequences are
{1, 3, 3, 3, 3, 3} and {1, 3, 1, 3, 1, 3, 1, 3}.)
Answer: 277

Solution: Notice that there are 6 sets of 1’s and 3’s that sum to 16. For a given set
suppose there are n 3’s we have a total of (16− 3n) + n = 16− 2n numbers so we want
to compute

(
16−2n

n

)
. Hence the total number of possible sequences is:

5∑
n=0

(
16− 2n

n

)
= 277 .

4. How many positive numbers up to and including 2012 have no repeating digits?

Answer: 1242

Solution: All one-digit numbers have no repeating digits, so that gives us 9 numbers.
For a two-digit number to have no repeating digits, the first digit must be between 1 and
9, while the second digit must not be equal to the first, giving us 9 · 9 = 81 numbers. For
a three-digit number to have no repeating digits, the first digit must be between 1 and
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9, the second digit must not be equal to the first, and the third digit must not be equal
to either of the two, giving us 9 · 9 · 8 = 648 numbers. For a four-digit number between
1000 and 1999 to have no repeating digits, the first digit must be 1, the second digit must
not be equal to the first, and so on, giving us 1 · 9 · 8 · 7 = 504 numbers. Finally, there
are no numbers between 2000 and 2012 inclusive with no repeating digits, so the total is
9 + 81 + 648 + 504 = 1242 .

5. Define a number to be boring if all the digits of the number are the same. How many
positive integers less than 10000 are both prime and boring?

Answer: 5

Solution: The one-digit boring primes are 2, 3, 5, and 7. The only two-digit boring
prime is 11, since 11 divides all other two-digit boring numbers. No three-digit boring
numbers are prime, since 111 divides all of them and 111 = 3× 37. No four-digit boring
numbers are prime since they are all divisible by 11. Therefore, there are 5 positive
integers less than 10000 which are both prime and boring.

6. A permutation of the first n positive integers is quadratic if, for some positive integers
a and b such that a + b = n, a 6= 1, and b 6= 1, the first a integers of the permutation
form an increasing sequence and the last b integers of the permutation form a decreasing
sequence, or if the first a integers of the permutation form a decreasing sequence and the
last b integers of the permutation form an increasing sequence. How many permutations
of the first 10 positive integers are quadratic?

Answer: 1020

Solution: Clearly, either 1 or 10 must be in the middle of the permutation. Assume
without loss of generality that 10 is; we can construct an equivalent permutation with 1
in the middle by replacing each number i with 11− i. We can pick any nonempty strict
subset of the first 9 positive integers, sort it, place it at the beginning of the permutation,
then place 10, then place the unchosen numbers in decreasing order. There are 29−2 = 510
ways to do this. Therefore, there are 2× 510 = 1020 quadratic permutations of the first
10 positive integers.

7. Two different squares are randomly chosen from an 8× 8 chessboard. What is the proba-
bility that two queens placed on the two squares can attack each other? Recall that queens
in chess can attack any square in a straight line vertically, horizontally, or diagonally from
their current position.

Answer: 13
36

Solution: All squares that are on the edge of the chessboard can hit 21 squares; there
are 28 such squares. Now consider the 6 × 6 chessboard that is obtained by removing
these bordering squares. The squares on the edge of this board can hit 23 squares; there
are 20 of these squares. Now we consider the 12 squares on the boundary of the 4 × 4
chessboard left; each of these squares can hit 25 squares. The remaining 4 can hit 27

squares. The probability then follows as
21× 28 + 23× 20 + 25× 12 + 27× 4

64× 63
=

13

36
.
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8. A short rectangular table has four legs, each 8 inches long. For each leg Bill picks a
random integer x, 0 ≤ x < 8 and cuts x inches off the bottom of that leg. After he’s cut
all four legs, compute the probability that the table won’t wobble (i.e. that the ends of
the legs are coplanar).

Answer: 43
512

Solution: We can describe a table by a, b, c, d (1 ≤ a, b, c, d ≤ 8), giving the final lengths
of each of the four legs in clockwise order. How much a table is tipped north to south
will be determined by the difference between the lengths a, b and c, d, and east to west
by the difference between the lengths a, c and b, d. Hence, for the table to not wobble we
must have a− c = b− d ⇐⇒ a− b = c− d ⇐⇒ a + d = b + c.

We can therefore split into cases based on S = a + d = b + c. The number of ordered
pairs (x, y) such that x + y = S and 1 ≤ x, y ≤ 8 is TS = 8 − |S − 9| (similar to adding
the values on two 8-sided dice). The number of choices for (a, d) is therefore TS and the
number of choices for (b, c) is TS, so the number of choices for (a, b, c, d) is T 2

S .

Summing over all possible values of S this is

T 2
2 + . . . T 2

16 = (8− |2− 9|)2 + · · ·+ (8− |16− 9|)2

= 12 + 22 + · · ·+ 72 + 82 + 72 + · · ·+ 22 + 12

= 2
(
12 + · · ·+ 72

)
+ 82

= 2 · 7 · 8 · 15

6
+ 82

= 7 · 8 · 5 + 82

= 8 (7 · 5 + 8) .

Hence, the probability is

8 (7 · 5 + 8)

84
=

7 · 5 + 8

83
=

43

512
.

9. Two ants are on opposite vertices of a regular octahedron (an 8-sized polyhedron with
6 vertices, each of which is adjacent to 4 others), and make moves simultaneously and
continuously until they meet. At every move, each ant randomly chooses one of the four
adjacent vertices to move to. Eventually, they will meet either at a vertex (that is, at
the completion of a move) or on an edge (that is, in the middle of a move). Find the
probability that they meet on an edge.

Answer: 2
11

Solution: If the two ants are not on the same vertex, they can either be on opposite
vertices or on adjacent vertices. Let x and y be the probabilities that the ants will
eventually meet on an edge when starting out from opposite vertices and from adjacent
vertices, respectively. From opposite vertices, one of the ants must move to one of the
remaining four vertices, which are all equivalent with respect to the other ant. That ant
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can either meet the first ant at a vertex, become adjacent to it (two ways to do this), or
again become opposite from it. So

x =
1

4
x +

1

2
y.

If the two ants are adjacent, the cases become slightly more complicated. If the first
ant moves towards the second ant, the second ant can move towards it (meeting on an
edge); otherwise they will be adjacent. If the first ant moves away from the second ant,
they will become adjacent no matter what the second ant does. If the first ant moves to
the side (two ways to do this), they will be opposite if the second ant chooses the other
direction, and will meet at a vertex if it chooses the same direction. Otherwise they will
be adjacent. So

y =
1

8
x +

11

16
y +

1

16
.

This system of equations is easily solved to obtain x =
2

11
.

10. We say that two polynomials F (x) and G(x) are equivalent mod 5 if and only if F (x)−
G(x) = 5 ·H(x) for some integer polynomial H(x). We say that F (x) has n as a root mod
5 if and only if 5 | F (n). How many inequivalent integer polynomials mod 5 of degree at
most 3 do not have any integer roots mod 5?

Answer: 204

Solution: Observe that a polynomial

Ia(X) = 1− (X − a)p−1

takes value 1 at a and 0 elsewhere in mod p, by Fermat’s little theorem. Thus for any
polynomial F mod p, we have

F (n) =

p−1∑
a=0

F (a)Ia(n) (mod p)

for all n. Now the polynomial of degree ≤ p− 1

F (X)−
p−1∑
a=0

F (a)Ia(X)

has 0, 1, · · · , (p − 1) as roots, thus it should be zero mod p. This means that poly-
nomials mod p of degree less than p have one-to-one correspondence to p-tuples of
(F (0), F (1), · · · , F (p − 1)) mod p. Since F not having any roots is equivalent to that
none of F (a) is zero, there are (p− 1)p ways to choose (F (0), F (1), · · · , F (p− 1)). This
gives the answer to the first part.
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For the second part, note that coefficient of Xp−1 in
∑p−1

a=0 F (n)Ia(X) is −
∑

F (a), so it
is equivalent to find number of p-tuples (F (0), F (1), · · · , F (p − 1)) satisfying F (a) 6= 0
(mod p) for all a and

∑
F (a) = 0 (mod p). We define

An = the number of n tuples (a1, · · · , an) satisfying

1 ≤ ai ≤ p− 1, p | a1 + · · ·+ an

and the problem is to find Ap. We establish the recurrence relation on An. For the initial
condition we have A1 = 0 and A2 = p − 1. For n > 2, note that if (a1, a2, · · · , an) is
counted in An, then an is uniquely chosen to be ≡ −(a1 + · · · + an−1) (mod p) unless
a1 + · · · + an−1 is not divisible by p. This is equivalent to say that An is same as the
number of (n− 1)-tuples with their sum not divisible by p. This gives the recurrence

An = (p− 1)n−1 − An−1

and by solving it we have

An = (p− 1)n−1 − (p− 1)n−2 + (p− 1)n−3 − · · ·+ (−1)n−2(p− 1).

So the answer is Ap = (p−1)np+(−1)p−1(p−1)
(p−1)+1

= (p−1)p−(p−1)
p

. Evaluating at p = 5, we get
45−4
5

= 1020
5

= 204 .


