Time limit: 1 hour.

Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise. Only answers written on the answer sheet will be considered for grading.
No calculators.

1. In preparation for the annual USA Cow Olympics, Bessie is undergoing a new training regime. However, she has procrastinated on training for too long, and now she only has exactly three weeks to train. Bessie has decided to train for 45 hours. She spends a third of the time training during the second week as she did during the first week, and she spends a half of the time training during the third week as during the second week. How much time did she spend training during the second week?

2. The Tribonacci numbers T_n are defined as follows: $T_0 = 0$, $T_1 = 1$, and $T_2 = 1$. For all $n \geq 3$, we have $T_n = T_{n-1} + T_{n-2} + T_{n-3}$. Compute the smallest Tribonacci number greater than 100 which is prime.

3. Steve works 40 hours a week at his new job. He usually gets paid 8 dollars an hour, but if he works for more than 8 hours on a given day, he earns 12 dollars an hour for every additional hour over 8 hours. If x is the maximum number of dollars that Steve can earn in one week by working exactly 40 hours, and y is the minimum number of dollars that Steve can earn in one week by working exactly 40 hours, what is $x - y$?

4. There are 100 people in a room. 60 of them claim to be good at math, but only 50 are actually good at math. If 30 of them correctly deny that they are good at math, how many people are good at math but refuse to admit it?

5. A standard 12-hour clock has hour, minute, and second hands. How many times do two hands cross between 1:00 and 2:00 (not including 1:00 and 2:00 themselves)?

6. Define a number to be boring if all the digits of the number are the same. How many positive integers less than 10000 are both prime and boring?

7. Given a number n in base 10, let $g(n)$ be the base-3 representation of n. Let $f(n)$ be equal to the base-10 number obtained by interpreting $g(n)$ in base 10. Compute the smallest positive integer $k \geq 3$ that divides $f(k)$.

8. $ABCD$ is a parallelogram. $AB = BC = 12$, and $\angle ABC = 120^\circ$. Calculate the area of parallelogram $ABCD$.

9. Given a 1962-digit number that is divisible by 9, let x be the sum of its digits. Let the sum of the digits of x be y. Let the sum of the digits of y be z. Compute the maximum possible value of z.

10. A circle with radius 1 has diameter AB. C lies on this circle such that $\widehat{AC} / \widehat{BC} = 4$. AC divides the circle into two parts, and we will label the smaller part Region I. Similarly, BC also divides the circle into two parts, and we will denote the smaller one as Region II. Find the positive difference between the areas of Regions I and II.