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Algebra Subject Test

1. [1025] For each positive integer n, let in denote the exponential tower(((
ii
)i)···)i

︸ ︷︷ ︸
n times

where i =
√
−1; for example, i1 = i, i2 = ii, and i3 =

(
ii
)i. Find i2011.

Answer: −i Note that (((
ii
)i)···)i

= ii
2010

= i−1 = −i.

Alternate Solution: We work out the first few terms and then try to uncover the general pattern. By
definition, i1 = i. Next, notice that we can write i = eiπ/2 and so i2 = ii =

(
eiπ/2

)i
= e−π/2. Therefore,

i3 =
(
e−π/2

)i
= e−iπ/2 = −i, i4 = (−i)i =

(
e−iπ/2

)i
= eπ/2, and i5 =

(
eπ/2

)i
= eiπ/2 = i = i1. Hence

we see that the tower repeats in cycles of 4 and in particular, for an integer 4n + 1, i4n+1 = i. It
immediately follows that i2009 = i, and then going two more into the cycle, i2011 = −i.

2. [1026] Consider the curves x2 + y2 = 1 and 2x2 + 2xy + y2 − 2x − 2y = 0. These curves intersect at
two points, one of which is (1, 0). Find the other one.

Answer:
(
−3

5
,

4
5

)
From the first equation, we get that y2 = 1− x2. Plugging this into the second

one, we are left with

2x2 − 2x
√

1− x2 + 1− x2 − 2x+ 2
√

1− x2 = 0⇒ x2 − 2x+ 1 = (x− 1)2 = 2
√

1− x2(x− 1)

⇒ x− 1 = 2
√

1− x2 assuming x 6= 1

⇒ x2 − 2x+ 1 = 4− 4x2 ⇒ 5x2 − 2x− 3 = 0.

The quadratic formula yields that x = 2±8
10 = 1,− 3

5 (we said that x 6= 1 above but we see that it is still
valid). If x = 1, the first equation forces y = 0 and we easily see that this solves the second equation.

If x = − 3
5 , then y =

√
1− 9

25 =
√

16
25 = 4

5 . Hence the other point is
(
− 3

5 ,
4
5

)
.

Remark: A shorter solution, albeit one requiring knowledge of abstract algebra is presented: to find
the solutions, we compute a Gröbner basis for the ideal I = (2x2+2xy+y2−2x−2y, x2+y2−1) ⊂ R[x, y]
using the lexicographic monomial order x > y to eliminate x, obtaining g1 = 2x + y2 + 5y3 − 2 and
g2 = 5y4− 4y3. Hence 5y4 = 4y3 and y = 0 or y = 4

5 . Substituting these values into g1 = 0 and solving
for x we find the two intersection points are the same as above.

3. [1028] Let F (x) be a real-valued function defined for all real x 6= 0, 1 such that

F (x) + F

(
x− 1
x

)
= 1 + x.

Find F (2).

Answer:
3
4

Setting x = 2, we find that F (2) + F
(

1
2

)
= 3. Now take x = 1

2 , to get that F
(

1
2

)
+

F (−1) = 3
2 . Finally, setting x = −1, we get that F (−1) + F (2) = 0. Then we find that

F (2) = 3− F
(

1
2

)
= 3−

(
3
2
− F (−1)

)
=

3
2

+ F (−1) =
3
2
− F (2)

⇒ F (2) =
3
4
.
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Alternate Solution: We can explicitly solve for F (x) and then plug in x = 2. Notice that for x 6= 0, 1,
F (x) + F

(
x−1
x

)
= 1 + x so

F

(
x− 1
x

)
+ F

(
1

1− x

)
= 1 +

x− 1
x

and F

(
1

1− x

)
+ F (x) = 1 +

1
1− x

.

Thus

2F (x) = F (x) + F

(
x− 1
x

)
− F

(
x− 1
x

)
− F

(
1

1− x

)
+ F

(
1

1− x

)
+ F (x)

= 1 + x−
(

1 +
x− 1
x

)
+ 1 +

1
1− x

= 1 + x+
1− x
x

+
1

1− x
.

It follows that F (x) = 1
2

(
1 + x+ 1−x

x + 1
1−x

)
and the result follows by taking x = 2.

4. [1032] Let p be a monic cubic polynomial such that the sum of the coefficients, the sum of the roots,
and the sum of each root squared are all equal to 1. Find p. Note: monic means that the leading
coefficient of p is 1.
Answer: x3 − x2 + 1 Let p(x) = x3 +ax2 + bx+ c. By Vieta’s Formulas, the sum of all the roots of p
is −a1 = −a, which we are told is 1, so a = −1. Since the sum of the coefficients is 1, 1 + a+ b+ c = 1,
and since a = −1, b+ c = 1. If Si = ri1 + ri2 + ri3 (where rj are the roots), then S2 + aS1 + 2b = 0 (this
can be proved using symmetric polynomials). As we are given S1 = S2 = 1, and we already determined
a = −1, 1 − 1 + 2b = 0, so b = 0. Finally, as b + c = 1 from before, it follows that c = 1 and so
p(x) = x3 − x2 + 1.

5. [1040] The line y = cx is drawn such that it intersects the curve f(x) = 2x3 − 9x2 + 12x at two points
in the first quadrant, creating the two shaded regions as shown in the diagram (not to scale). If the
areas of the two shaded regions are the same, what is c?

Answer: 3 Every cubic polynomial f is point symmetric, meaning there exists a point such that
f is antisymmetric about that point. By translating f to the origin about this point, f becomes an
odd function. Thus we simply need to the determine this point. Let g be f translated to the origin
(so g is an odd function). Then g takes the form g(x) = ax(x − c)(x + c) = ax(x2 − c2) because
x = 0 is one root, and the other two roots are additive inverses of each other, ±c (the a term is simply
the coefficient on the highest order term). To shift f to the origin, we need a horizontal shift and a
vertical shift. That is, there exists (b, d) such that a(x− b)((x− b)2− c2) + d = ax(x2− c2). The point
(b, d) is the point around which f is symmetric. In the problem, f(x) = 2x3 − 9x2 + 12x, so we set
2x3 − 9x2 + 12x = a(x− b)((x− b)2 − c2) + d. This gives a system of (nonlinear) equations:

a = 2 − 3ab = −9 3ab2 − ac2 = 12 − ab(b2 − c2) + d = 0.

Solving gives (b, d) = (1.5, 4.5). Now, the function g(x) := f(x + 1.5) − 4.5 is odd. This means that
for any line `(x) through the origin, if ±a are the x-coordinates of the points of intersection of `(x)
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and g(x), the areas between −a and 0, and 0 and a bounded by the two functions are the same. If
we translate g(x) back to f(x), then the areas still have to agree and the only line `(x) = cx passing
through (1.5, 4.5) is `(x) = 3x.
Alternate (Calculus) Solution: As we see, the line cx intersects the curve at two points in the first
quadrant, say α and β with α < β. Since the areas of the shaded regions must be equal, this means∫ α

0

2x3 − 9x2 + 12x− cx dx =
∫ β

α

cx− 2x3 + 9x2 − 12x dx.

If F (x) denotes the antiderivative of f(x), then the above gives that

F (α)− cα2

2
=
cβ2

2
− F (β)− cα2

2
+ F (α)

since F (0) = 0. Rearranging,

F (β) =
β4

2
− 3β3 + 6β2 =

cβ2

2
⇒ β2 − 6β + 12 = c,

where division division by β is allowed because β > 0. However, going back to our original function, by
definition β is a solution to f(β) = cβ, or 2β2 − 9β + 12 = c. Setting this expression equal to the one
above for c, setting a common denominator, and combining terms gives that β = 3. Finally, because
2β2 − 9β + 12 = c, using β = 3 shows that c = 3.

6. [1056] Let p(x) = (x3 + x+ 1)2011. Let ω = e2πi/5. Compute p(ω)p(ω2)p(ω3)p(ω4).
Answer: 1 Note that as ω is a fifth root of unity, all of ω, ω2, ω3, ω4 are roots of t4+t3+t2+t+1 = 0.
Then t3 + t+ 1 = −t4 − t2. Therefore, for x = ω, ω2, ω3, ω4,

p(x) = (−x4 − x2)2011 = −x4022(x2 + 1)2011 = x4022(i+ x)2011(i− x)2011.

Finally, one has A4 +A3 +A2 +A+ 1 = (1−ω)(1−ω2)(1−ω3)(1−ω4) as a property of roots of unity,
so

p(ω)p(ω2)p(ω3)p(ω4) = (ω1+2+3+4)4022(i4 + i3 + i2 + i+ 1)2011(i4 − i3 + i2 − i+ 1)2011 = 1.

7. [1088] Find all integers x for which |x3 + 6x2 + 2x− 6| is prime.
Answer: 1,−1 The whole equation is ≡ 0(mod 3), so x3 + 6x2 + 2x − 6 should be 3 or −3. The
equation (x3 + 6x2 + 2x− 6)2 = 32 is same as (x− 1)(x2 + 7x− 9)(x+ 1)(x2 + 5x− 3) = 0, so only 1
and −1 work for x.

8. [1152] Find the final non-zero digit in 100!. For example, the final non-zero digit of 7200 is 2.
Answer: 4 We first claim that 100! ends in 24 zeroes. Indeed, it suffices to count the number of 5’s
in the prime factorization of 100!. There are 20 multiples of 5 up to 100, which gives 20 zeroes, and
then 25, 50, 75, and 100 each contribute one more for a total of 24. Now, let p(k) denote the product
of the first k positive multiples of 5, and notice that p(k) = 5k · k!. Also, by cancelling terms of p(k),
we have that (5k)!

p(k) ≡ (1 · 2 · 3 · 4)k ≡ (−1)k (mod 5). From our claim, we can write 100! = M · 1024,
where

M = 2−24 · 100!
p(20)

· 20!
p

(4) · 4! ≡ (24)−6 · (−1)20 · (−1)4 · (−1) ≡ −1 (mod 5).

Since more 2’s than 5’s divide 100!, the last nonzero digit must be even, and so it is 4.

9. [1280] Let Tn denote the number of terms in (x+y+z)n when simplified, i.e. expanded and like terms
collected, for non-negative integers n ≥ 0. Find

2010∑
k=0

(−1)kTk = T0 − T1 + T2 − · · · − T2009 + T2010
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Answer: 10062 First note that the expression (x+ y + z)n is equal to∑ n!
a!b!c!

xaybzc

where the sum is taken over all non-negative integers a, b, and c with a + b + c = n. The number of
non-negative integer solutions to a+ b+ c = n is

(
n+2

2

)
, so Tk =

(
k+2
2

)
for k ≥ 0. It is easy to see that

Tk = 1 + 2 + · · ·+ (k + 1), so Tk is the (k + 1)st triangular number. If k = 2n− 1 is odd and we let ti
denote the ith triangular number, then

k∑
j=1

(−1)j+1tj = n2.

(For a quick visual proof of this fact, we refer the reader to http://www.jstor.org/stable/2690575.)
Therefore, since T2010 is the 2011th triangular number and 2011 = 2(1006) − 1, we can conclude that
the desired sum is 10062.

10. [1536] Define a sequence (an) by
a0 = 1

a1 = a2 = · · · = a7 = 0

an =
an−8 + an−7

2
for n ≥ 8

Find the limit of this sequence.

Answer:
1
15

Define a sequence (bn) by

bn = an + 2an+1 + 2an+2 + · · ·+ 2an+7.

Now, we observe that

bn+1 = an+1 + 2an+2 + 2an+3 + · · ·+ 2an+8

= an+1 + 2an+2 + · · ·+ 2an+7 + (an + an+1)
= an + 2an+1 + 2an+2 + · · ·+ 2an+7

= bn.

However, if ` denotes the limiting value of the sequence (an), then we have that b0 is equal to the
limiting value of (bn), which must be (2(8) − 1) · ` = 15`. However, we can compute b0 = 1, so the
limiting value of the sequence (an) is 1

15 .
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