Johns Hopkins Mathematics Tournament

April 8, 2006

GEOMETRY QUESTION PAPER

- 1. Unit square ZINC is constructed in the interior of hexagon CARBON. What is the area of triangle BIO?
- 2. If two altitudes of a triangle have length 12 and 4, what integral lengths can the third altitude attain?
- 3. Rectangle ABCD is folded in half so that the vertices D and B coincide, creating the crease \overline{EF} , with E on \overline{AD} and F on \overline{BC} . Let O be the midpoint of \overline{EF} . If triangles DOC and DCF are congruent, what is the ratio BC : CD?
- 4. The square DEFG is contained in equilateral triangle ABC, with E on \overline{AC} , G on \overline{AD} , and F as the midpoint of \overline{BC} . Find AD if DE = 6.
- 5. An ant is on the bottom edge of a right circular cone with base area π and slant length 6. What is the shortest distance that the ant has to travel to loop around the cone and come back to its starting position?
- 6. A right cylinder is inscribed in a right circular cone with height 2 and radius 2 so that the cylinder's bottom base sits on the cone's base. What is the maximum possible surface area of the cylinder?
- 7. AD is the angle bisector of the right triangle ABC with $\angle ABC = 60^{\circ}$ and $\angle BCA = 90^{\circ}$. E is chosen on \overline{AB} so that the line parallel to \overline{DE} through C bisects \overline{AE} . Find $\angle EDB$ in degrees.
- 8. Circles P, Q, and R are externally tangent to one another. The external tangent of P and Q that does not intersect R intersects P and Q at P_Q and Q_P , respectively. Q_R, R_Q, R_P , and P_R are defined similarly. If the radius of Q is 4 and $\overline{Q_P P_Q} \parallel \overline{R_Q Q_R}$, compute $R_P P_R$.