1. If a and b are real numbers, determine the minimum value of:

 $$a^2 + b^2 - 6a.$$

2. A rectangle’s perimeter and area both have a value of 25. What is the length of its longer side?

3. If $b > 1$, what is the positive difference between the two roots of the following equation?

 $$x^2 + 2bx + 1 = 0.$$

4. Consider the following function:

 $$f(x) = 2^x - x - 4.$$

 Compute $f(0) + f(1) + f(2) + \ldots + f(8)$.

5. Determine the sum of the positive factors of 496.

6. Determine $a + b + c + d$ if:

 $$3a + 2b - c - d = 1.$$
 $$2a + 2b - c + 2d = 2.$$
 $$4a - 2b - 3c + d = 3.$$
 $$8a + b - 6c + d = 4.$$

7. An equilateral triangle with area $\sqrt{3}$ and located in the first quadrant has one vertex located on the y-axis and one vertex located on the origin. Find the coordinates of the third vertex.

8. a, b, and c are distinct positive integers satisfying:

 $$(a - b + c)(b - c + a)(c - a + b) = 15.$$

 Find abc.

9. How many integer pairs (a, b) fulfill the following condition?

 $$\frac{1}{a} + \frac{1}{b} = \frac{1}{2}.$$

10. Evaluate the infinite sum:

 $$\frac{3}{(1 \cdot 2)^2} + \frac{5}{(2 \cdot 3)^2} + \frac{7}{(3 \cdot 4)^2} + \frac{9}{(4 \cdot 5)^2} + \ldots$$