1. Let $p \geq 5$ be prime. Let G be a group of order $4p$. Show that:

[Compare this problem to HW9 problem 1, HW7 problem 3, Quiz 7+]

(a) The group G contains a normal, cyclic p-sylow subgroup. What are the possible isomorphism types of a 2-sylow subgroup of G?

(b) If G is abelian, then G is isomorphic to either

$$\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \text{ or } (\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}/p\mathbb{Z}.$$

(c) If G is non-abelian and $p \equiv 3 \mod 4$, then G is isomorphic to

$$D_{2p} \times \mathbb{Z}/2\mathbb{Z} \text{ or } \mathbb{Z}/p\mathbb{Z}, \rtimes \varphi \mathbb{Z}/4\mathbb{Z}$$

where $\varphi(1) = [-1] \in (\mathbb{Z}/p\mathbb{Z})^\times$. Deduce that up to isomorphism there are four groups of order $4p$ if $p \geq 5$ and $p \equiv 3 \mod 4$.

(d) Classify all groups G' of order 12 which contain a normal 3-sylow subgroup. Show that if the 3-sylow $P \leq G'$ of a group G' of order 12 is not normal, then the homomorphism $\phi : G' \to S_{G/P} \cong S_4$ defined by left multiplication is injective and $G' \cong A_4$. Deduce that up to isomorphism there are five groups of order $12 = 4 \cdot 3$.

2. Let p and q be distinct primes and G be a group of order p^2q. Assume that $p \not\equiv \pm 1 \mod q$ and $q \not\equiv 1 \mod p$.

(a) Using the Sylow theorems, show that $n_p := |Syl_p(G)| = 1$ and $n_q := |Syl_q(G)| = 1$. Deduce that the (unique) p-sylow and q-sylow subgroups of G are normal.

(b) Show G is isomorphic to the product of its p-sylow and q-sylow subgroups. Classify (up to isomorphism) all groups of order p^2q such that $p \not\equiv \pm 1 \mod q$ and $q \not\equiv 1 \mod p$.

(c) What is the smallest order p^2q with the property that $p \not\equiv \pm 1 \mod q$ and $q \not\equiv 1 \mod p$?

3. In this exercise you’ll show that if $n \geq 5$, then the only normal subgroups of A_n are $\{e\}$ and A_n. Recall that you have previously shown that the only normal subgroups of S_n are $\{e\}$ and A_n and S_n. This does not imply the result, as a subgroup $H \leq G$ may have more normal subgroups than those of the form $K \cap H$, where K a normal subgroup of G. Here’s an example:

(a) Show that the normal subgroup $V \leq S_4$ contains a normal subgroup $H \leq V$ which is not normal in S_4. Conclude that the property of normality is not a transitive property. Show that H is not of the form $K \cap V$ for some normal subgroup $K \leq S_4$.

The next three parts show the only normal subgroups of A_n are $\{e\}$ and A_n.

(b) Let n be a positive integer and $K \leq A_n$ be a normal subgroup. Show that if $\sigma \in S_n$ is a 2-cycle then
 i. $K^\sigma := \sigma K \sigma^{-1}$ is a normal subgroup of A_n.
 ii. $K \cap K^\sigma$ is a normal subgroup of S_n.
 iii. KK^σ is a normal subgroup of S_n.

(c) Let $n \geq 5$ and $K \leq A_n$ be a normal subgroup. Let $\sigma \in S_n$ be a 2-cycle. Show that if $K \neq A_n$, then $K \cap K^\sigma = \{e\}$. Show that if $K \neq \{e\}$, then $KK^\sigma = A_n$. Deduce that if K is a non-trivial, proper subgroup of A_n, then $A_n \cong K \times K^\sigma \cong K^2$.

(d) Let $n \geq 5$ and $K \leq A_n$ be a non-trivial, proper normal subgroup. Show that the image of the diagonal $\Delta(K) := \{k(\sigma k \sigma^{-1}) : k \in K\} \leq KK^\sigma$ is a normal subgroup of S_n isomorphic to K. Produce a contradiction and conclude:

Theorem 0.1. The only normal subgroups of A_n are $\{e\}$ and A_n.

Groups G with the property that the only normal subgroups of G are G and $\{e\}$ are called simple. This exercise showed A_n is simple if $n \geq 5$. Another simple group is $\mathbb{Z}/p\mathbb{Z}$ (where p is prime), as the only subgroups are $\mathbb{Z}/p\mathbb{Z}$ and $\{0\}$.

4. For each $n > 0$, let P_n denote a (fixed) 2-sylow subgroup of S_n. Hence, $P_2 \cong \mathbb{Z}/2\mathbb{Z}$ and $P_4 \cong D_8, \ldots$

 (a) Show that P_{2k+1} contains a subgroup isomorphic to $P_{2k} \times P_{2k}$ whose index in P_{2k+1} is 2. Show that $P_{2k+1} \cong (P_{2k} \times P_{2k}) \rtimes \varphi \mathbb{Z}/2\mathbb{Z}$ where $\varphi(1)(x, y) = (y, x)$.

 (b) Show that if the binary expansion of n is $2^k + a_{k-1}2^{k-1} + \ldots + a_0$, where $a_i \in \{0, 1\}$ then $P_n \cong \prod_{i=0}^{k}(P_2)^{a_i}$, where $(P_2)^0 := \{e\}$.

 (c) Show that if $n! = 2^m m$ where $\gcd(2, m) = 1$, then the number of 2-sylow subgroups of S_n equals m. Deduce that $N_{S_n}(P_n) = P_n$. [Note that it is not generally the case that the normalizer of a p-sylow P in S_n is P. For example, in a previous homework you showed that the normalizer of a p-sylow in S_p has order $p(p-1)$ and is isomorphic to $\mathbb{Z}/p\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z})^\times$. In general, the normalizer of a p-sylow P in S_n is P if and only if $p=2$]
5. (Bonus, Ungraded) This problem determines the \(p \)-sylow subgroups of \(S_{p^2} \):

(a) Let \(p \) be a prime. What are the \(p \)-sylow subgroups of \(S_p \)? How many \(p \)-sylow subgroups are there? What is the order of a normalizer of a \(p \)-sylow subgroup?

(b) Show that the order of a \(p \)-sylow subgroup of \(S_{p^2} \) is \(p^{p+1} \).

(c) Let \(x \in S_{p^2} \) be a \(p^2 \)-cycle. What is the order of the conjugacy class of \(x \)? What is the order of the centralizer of \(x \)? Show that \(C_{S_{p^2}}(x) = \langle x \rangle \).

(d) Let \(P \leq S_{p^2} \) be a \(p \)-sylow subgroup containing the \(p^2 \)-cycle \(x \). Show that \(Z(P) \) is non-trivial and contained in \(\langle x \rangle \). What are the possible cycle types of elements in \(\langle x \rangle \)?

(e) Let \(y \in S_{p^2} \) be an element of \(p \)-power order. Show that \(y \) is contained in the center of some \(p \)-sylow subgroup of \(S_{p^2} \) if and only if \(p^{p+1} \) divides \(|C_{S_{p^2}}(y)| \). Deduce that \(Z(P) = \langle x^p \rangle \).

(f) Deduce that the center of each \(p \)-sylow subgroup of \(S_{p^2} \) is a cyclic subgroup generated by an element with cycle type \(\{p,p,p,\ldots,p\} \) (the product of \(p \) disjoint \(p \)-cycles), and that all subgroups generated by an element of this cycle type occur as the center of some \(p \)-sylow subgroup of \(S_{p^2} \). [Hint: use conjugation.]

(g) Let \(y_1, \ldots, y_p \in S_{p^2} \) be \(p \) pairwise disjoint \(p \)-cycles and \(y := \prod_{i=1}^p y_i \). Show that if \(P \) is a \(p \)-sylow subgroup \(S_{p^2} \) and \(\langle y \rangle = Z(P) \), then \(P \leq C_{S_{p^2}}(y) \). What is the size of the conjugacy class of \(y \)? What is the order of the centralizer of \(y \)? How many subgroups are there which are generated by an element with cycle type \(\{p,p,p,\ldots,p\} \)?

(h) Show that the centralizer \(C_{S_{p^2}}(y) \) acts on the set \(Y := \{y_1, y_2, \ldots, y_p\} \) by conjugation, i.e. for all \(y_j \in Y \) the conjugate \(g y_j g^{-1} = y_j \) for some \(y_j \in Y \). Prove that the associated homomorphism \(\phi : C_G(y) \to S_Y \cong S_p \) is surjective. Show that the kernel of \(\phi \) is \(\langle y_1 \rangle \langle y_2 \rangle \ldots \langle y_p \rangle \cong (\mathbb{Z}/p\mathbb{Z})^p \).

(i) Show there is a subgroup (there will be many) \(S \leq C_{S_{p^2}}(y) \) such that the restriction \(\phi : S \to S_Y \cong S_p \) is an isomorphism. Deduce that

\[
C_{S_{p^2}}(y) \cong \ker(\phi) S \cong (\mathbb{Z}/p\mathbb{Z})^p \rtimes \varphi S_p
\]

where \(\varphi(\sigma)(k_1, \ldots, k_p) = (k_{\sigma(1)}, \ldots, k_{\sigma(p)}) \). Conclude a \(p \)-sylow subgroup of \(S_{p^2} \) is isomorphic to

\[
C_{S_{p^2}}(y) \cong \ker(\phi) S \cong (\mathbb{Z}/p\mathbb{Z})^p \rtimes \varphi \mathbb{Z}/p\mathbb{Z}
\]

where \(\varphi(1)(k_1, k_2, \ldots, k_p) = (k_2, k_3, \ldots, k_{p-1}, k_1) \).

(j) Understanding check: If \(p = 2 \) then the \(p \)-sylow of \(S_8^2 \) is \(D_8 \). Find an explicit isomorphism \(D_8 \cong (\mathbb{Z}/2\mathbb{Z})^2 \rtimes \varphi \mathbb{Z}/2\mathbb{Z} \), where \(\varphi(1)(k_1, k_2) = (k_2, k_1) \).

(k) Show that the set of \(p \)-sylows \(P \leq S_{p^2} \) with center \(Z(P) = \langle y \rangle \) are in bijection with \(p \)-sylows of \(S_p \). Using this, determine the number of \(p \)-sylow subgroups of \(S_{p^2} \), and calculate the order of the normalizer of each (any) \(p \)-sylow subgroup.