5. Let \(B = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \)

(a) (10 points) Find the singular value decomposition for \(B \).
(b) (10 points) Find all eigenvalues of B and their associated eigenspaces. Is B diagonalizable?
(c) (6 points) Do the following:

1. Draw a pair of coordinate planes below. Label them domain of B and range of B, respectively.

2. On the coordinate plane labeled domain of B, sketch the unit circle. Sketch each eigenspace of B. Label all unit length eigenvectors for B.

3. On the coordinate plane labeled range of B, sketch the ellipse obtained by applying B to all vectors in the unit circle. Label the principal axes of this ellipse. Sketch each eigenspace of B. Determine the points of intersection between the image of the unit circle under B and each eigenspace explicitly. What are the lengths of these eigenvectors for B which lie on the image of the unit circle?
(d) (3 points) Verify that each (real) eigenvalue λ of B satisfies $\sigma_2 \leq |\lambda| \leq \sigma_1$. Can you explain this inequality using your illustration in part (c)? Would you expect this inequality to hold for the (real) eigenvalues of a general 2×2 matrix?