(Practice) Midterm 1

(1) Find all solutions in \(\mathbb{R}^4 \) to the system of linear equations:

\[
\begin{align*}
3x_1 + 2x_2 + x_3 + x_4 &= 1, \\
2x_2 + x_4 &= -1, \\
x_1 - 2x_4 &= 0.
\end{align*}
\]

(2) Let \(V \subseteq \mathbb{R}^3 \) be the plane (through 0) consisting of solutions to the equation \(x + y - z = 0 \).
 (a) Find the orthogonal projections of the standard basis vectors
 \[
 e_1 := \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 := \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
 \]
 onto \(V \).
 (b) Let \(\text{Proj}_V : \mathbb{R}^3 \to \mathbb{R}^3 \) be the linear transformation defined by orthogonal projection onto \(V \). Find a \(3 \times 3 \) matrix \(A \) such that \(Ax = \text{Proj}_V(x) \) for all \(x \in \mathbb{R}^3 \).
 (c) Calculate \(A^2 \).
 (d) Observe that \(A^2 = A \). Can you explain this phenomenon geometrically?

(3) Is the matrix \(A := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} \) invertible?

(4) Let \(B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix} \).
 (a) Find a basis for the image of \(B \).
 (b) Find a basis for the kernel of \(B \).
 (c) State the rank-nullity theorem. Verify that this theorem holds for \(B \).
 (d) Are there two linearly independent vectors that lie outside the image of \(B \)? If so, give examples of such a pair of vectors. If not, explain why.